JPH11193994A - Flat heat pipe - Google Patents

Flat heat pipe

Info

Publication number
JPH11193994A
JPH11193994A JP9367766A JP36776697A JPH11193994A JP H11193994 A JPH11193994 A JP H11193994A JP 9367766 A JP9367766 A JP 9367766A JP 36776697 A JP36776697 A JP 36776697A JP H11193994 A JPH11193994 A JP H11193994A
Authority
JP
Japan
Prior art keywords
sealing plate
flat
heat pipe
main body
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9367766A
Other languages
Japanese (ja)
Inventor
Nyuen Tan
ニューエン タン
Masataka Mochizuki
正孝 望月
Koichi Masuko
耕一 益子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP9367766A priority Critical patent/JPH11193994A/en
Publication of JPH11193994A publication Critical patent/JPH11193994A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular

Abstract

PROBLEM TO BE SOLVED: To provide a flat heat pipe with superior heat transportation capability. SOLUTION: In a flat heat pipe 1 where fluid with a condensation property is encapsulated as an operating fluid to the inside of a hollow flat container 2 being made of metal where a flat heating part 20 opposes the flat radiating part 21, the container 2 is formed by a sectronally recessed main body 3 with an opening width being equal to or more than a depth and a sealing plate 4 for sealing the opening part of the body part 3. Also, a support 8 for connecting the inner surface of a part opposing the sealing plate 4 out of the body part 3 to the inner surface of the sealing plate 4 is integrally formed on the sealing plate 4. Furthermore, a porous layer 9 for generating capillary pressure is formed on the entire inner surface of the container 2 including the surface of the support 8.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、作動流体の潜熱
として熱輸送するヒートパイプに関し、特にコンテナが
中空平板状を成す平板状ヒートパイプに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat pipe for transporting heat as latent heat of a working fluid, and more particularly to a flat heat pipe in which a container has a hollow flat shape.

【0002】[0002]

【従来の技術】周知のように平板状ヒートパイプは、中
空平板構造のコンテナの内部に密閉した空間部を形成
し、その空間部に空気などの非凝縮性ガスを脱気した状
態で凝縮性の流体を作動流体として封入したものであ
る。この種のヒートパイプでは、表面が平坦になるの
で、熱交換対象物との接触面積が広くなり、熱伝達性能
あるいは熱交換性能が向上する利点がある反面、コンテ
ナの内部圧力が真空圧となる非動作時にコンテナの壁面
が撓み易い問題があり、したがって、所期のコンテナ形
態を維持するために何等かの手段を講じる必要がある。
2. Description of the Related Art As is well known, a flat heat pipe forms a closed space inside a container having a hollow flat plate structure, and a condensable gas is formed in the space by removing non-condensable gas such as air. Is sealed as a working fluid. In this type of heat pipe, the surface becomes flat, so the contact area with the heat exchange target is increased, and there is an advantage that heat transfer performance or heat exchange performance is improved, but the internal pressure of the container becomes vacuum pressure There is a problem that the wall surface of the container is liable to bend when not in operation. Therefore, it is necessary to take some measures to maintain the expected container configuration.

【0003】その一例として、従来、深さ以上の開口幅
を有する凹断面形状の本体部と、その本体部の開口部分
を密閉する上板とによって中空平板状のコンテナを形成
し、内壁面の全域に溶射被膜からなるウィックを設ける
とともに、その溶射皮膜に沿ってスクリーンメッシュを
配設した構成の平板状ヒートパイプがある。すなわち、
この平板状ヒートパイプでは、上板と本体部のうちの上
板と対向する箇所との撓みをスクリーンメッシュの弾性
力によって防止する構成となっている。
As one example, a hollow flat-plate-shaped container is conventionally formed by a main body having a concave cross-sectional shape having an opening width equal to or greater than a depth, and an upper plate closing the opening of the main body. There is a flat heat pipe having a configuration in which a wick made of a thermal spray coating is provided in the entire area and a screen mesh is arranged along the thermal spray coating. That is,
This flat heat pipe is configured to prevent the upper plate and the portion of the main body portion facing the upper plate from being bent by the elastic force of the screen mesh.

【0004】したがって、この平板状ヒートパイプで
は、本体部の底部の下側を加熱部として動作させること
によって、作動流体蒸気が上板の内面で放熱して凝縮す
る。その液相の作動流体は、溶射皮膜ならびにスクリー
ンメッシュの毛細管圧力によって上板から滴下せずに保
持されるとともに、本体部の側壁部を通じてその底部内
面の蒸発部に還流し、再度加熱されて蒸発する。
Therefore, in this flat heat pipe, the working fluid vapor is radiated and condensed on the inner surface of the upper plate by operating the lower side of the bottom of the main body as a heating unit. The working fluid in the liquid phase is retained without being dripped from the upper plate by the thermal spray coating and the capillary pressure of the screen mesh, and is returned to the evaporating portion on the bottom inner surface through the side wall of the main body, and is heated again to evaporate. I do.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来の平板状ヒートパイプでは、スクリーンメッシュに
は、その目地内に浸透した作動液による表面張力が作用
するために、スクリーンメッシュとコンテナ内面との間
に作動流体蒸気が遮蔽されたままになるおそれがある。
そのうえ、この種のヒートパイプは、コンテナの開口断
面積が小さく、蒸発部と凝縮部とが互いに接近している
ために、蒸発部と凝縮部との間での圧力差が小さくなり
易い。その結果、上記従来の平板状ヒートパイプでは、
作動流体の熱輸送サイクルが正常には行われず、熱輸送
能力に劣る不都合があった。
However, in the above-mentioned conventional flat heat pipe, the surface tension of the screen mesh due to the hydraulic fluid penetrating into the joint acts on the screen mesh, so that the screen mesh is not placed between the screen mesh and the inner surface of the container. In some cases, the working fluid vapor may remain shielded.
In addition, in this type of heat pipe, since the opening cross-sectional area of the container is small and the evaporating part and the condensing part are close to each other, the pressure difference between the evaporating part and the condensing part tends to be small. As a result, in the above-mentioned conventional flat heat pipe,
The heat transfer cycle of the working fluid was not performed normally, and the heat transfer ability was inferior.

【0006】この発明は上記の事情に鑑みてなされたも
ので、熱輸送能力に優れる平板状ヒートパイプを提供す
ることを目的としている。
The present invention has been made in view of the above circumstances, and has as its object to provide a flat heat pipe having excellent heat transport ability.

【0007】[0007]

【課題を解決するための手段およびその作用】上記の課
題を解決するための手段として、この発明は、平坦な加
熱部と平坦な放熱部とが対向する中空平板状の金属製の
コンテナの内部に、脱気した状態で凝縮性流体を作動流
体として封入した平板状ヒートパイプにおいて、深さ以
上の開口幅を有する凹断面形状の本体部と、その本体部
の開口部を密閉する封止板とによって、前記コンテナが
形成されるとともに、前記本体部のうち前記封止板と対
向する部分の内面と前記封止板の内面とを連結する支柱
が、該封止板に一体に形成され、更に、前記支柱の表面
を含む前記コンテナの内面全体に、毛細管圧力を生じる
多孔質層が形成されていることを特徴とするものであ
る。
As a means for solving the above-mentioned problems, the present invention relates to a hollow flat metal container in which a flat heating section and a flat heat radiating section are opposed to each other. In a flat heat pipe filled with a condensable fluid as a working fluid in a degassed state, a main body having a concave cross section having an opening width equal to or greater than a depth, and a sealing plate for sealing the opening of the main body By this, while the container is formed, a column connecting the inner surface of the portion of the main body facing the sealing plate and the inner surface of the sealing plate is integrally formed with the sealing plate, Furthermore, a porous layer that generates capillary pressure is formed on the entire inner surface of the container including the surface of the column.

【0008】この発明の平板状ヒートパイプによれば、
例えば封止板を本体部の上側に配置した姿勢で本体部の
下側を加熱部として動作させると、作動流体の蒸気は内
部圧力の低い封止板側に向けて流動し、封止板の内面で
熱を奪われて(放熱して)凝縮する。液相に戻った作動
流体の大半は、多孔質層に生じる毛細管圧力によって封
止板の内面から支柱の基端部側に移動するとともに、支
柱の表面上を先端部側に向けて移動し、更に底部の内面
の広範囲に拡散されつつ、加熱されて蒸発する。
According to the flat heat pipe of the present invention,
For example, when the lower side of the main body is operated as a heating unit in a posture where the sealing plate is arranged above the main body, the vapor of the working fluid flows toward the lower sealing plate side of the internal pressure, and the Heat is deprived (dissipates heat) on the inner surface and condenses. Most of the working fluid that has returned to the liquid phase moves from the inner surface of the sealing plate to the base end side of the column due to capillary pressure generated in the porous layer, and moves toward the distal end side on the surface of the column, Further, it is heated and evaporated while being diffused over a wide area on the inner surface of the bottom.

【0009】すなわち、支柱が液還流路となって、作動
流体の大半が蒸発部に直接供給される。そのうえ、作動
流体が蒸発部の表面上に薄膜状に広げられていわゆる濡
れ性の良好な状態となるから、蒸発部の実効面積が大き
くなる。また、コンテナの内部が遮蔽物のない開放空間
として構成されていて、蒸発部と凝縮部との間の圧力差
が大きく維持されるから、作動流体による熱輸送サイク
ルが活発に行われる。その結果、高い熱輸送能力を得る
ことができる。
That is, the columns serve as a liquid return path, and most of the working fluid is directly supplied to the evaporator. In addition, since the working fluid is spread on the surface of the evaporator in a thin film state, so-called good wettability is obtained, the effective area of the evaporator is increased. Further, since the inside of the container is configured as an open space without a shield, and the pressure difference between the evaporating section and the condensing section is largely maintained, the heat transport cycle by the working fluid is actively performed. As a result, a high heat transport capability can be obtained.

【0010】また、この発明の平板状ヒートパイプで
は、封止板と同じ実質的な剛体からなる支柱によって、
封止板と本体部とが内側から支持されているから、ヒー
トパイプ動作しておらずにその内部圧力が真空圧であっ
ても、加熱部と放熱部とが接近する方向にコンテナが窪
まず、所期の中空平板形状を維持することができる。
[0010] In the flat heat pipe of the present invention, the same substantially rigid post as the sealing plate is used.
Since the sealing plate and the main body are supported from the inside, even when the heat pipe is not operating and the internal pressure is a vacuum pressure, the container does not depress in a direction in which the heating unit and the heat radiation unit approach. The desired hollow flat plate shape can be maintained.

【0011】[0011]

【発明の実施の形態】つぎに、パソコンに搭載されるC
PUの冷却に、この発明の平板状ヒートパイプを適用し
た具体例を、図1ないし図3を参照して説明する。平板
状ヒートパイプ1は、本体部3と封止板4とからなる中
空平板状の密閉金属容器によってコンテナ2が構成され
ている。そして、コンテナ2の内部には、真空脱気した
状態で図示しない作動流体が封入されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a C mounted on a personal computer will be described.
A specific example in which the flat heat pipe of the present invention is applied to cooling a PU will be described with reference to FIGS. In the flat heat pipe 1, a container 2 is configured by a hollow flat closed metal container including a main body 3 and a sealing plate 4. A working fluid (not shown) is sealed in the container 2 in a vacuum degassed state.

【0012】より詳細には、本体部3は矩形の板状体か
らなる底壁部5と、その底壁部4の4つの辺(縁部)か
らそれぞれ立ち上がる平板状の側壁部6とによって構成
されたカップ状の部材である。なお、各側壁部6の高さ
は、底壁部5の長さおよび幅のいずれよりも小さく設定
されている。すなわち、本体部3は、その深さ以上の開
口幅を有している。また、底壁部5の上面には、互いに
平行な複数条のグルーブ7が形成されている。これに対
して、底壁部5の下面は、平坦面を成している。なお、
各グルーブ7は、要は毛細管圧力を生じるものであれば
よく、図示する方形状断面には限定されず、例えばV字
形状断面あるいはU字形状断面のものを採用することも
できる。
More specifically, the main body 3 is composed of a bottom wall 5 made of a rectangular plate-like body, and flat side walls 6 rising from four sides (edges) of the bottom wall 4. Cup-shaped member. The height of each side wall 6 is set smaller than both the length and the width of the bottom wall 5. That is, the main body 3 has an opening width equal to or greater than its depth. A plurality of parallel grooves 7 are formed on the upper surface of the bottom wall 5. On the other hand, the lower surface of the bottom wall 5 forms a flat surface. In addition,
Each groove 7 is only required to generate capillary pressure, and is not limited to the illustrated rectangular cross section. For example, a V-shaped cross section or a U-shaped cross section may be employed.

【0013】また、側壁部6の各縁部のうちの内面側に
は、直角断面の段差からなる嵌合部10が形成されてい
る。この嵌合部10は、封止板4を嵌め込んで取り付け
る部分である。そして、この嵌合部10を除く本体部3
の内面の全域、すなわち、各側壁部6と底壁部5ならび
にグルーブの表面には、所定厚さの溶射皮膜9が設けら
れている。
A fitting portion 10 having a step having a right-angled cross section is formed on the inner surface of each edge of the side wall portion 6. The fitting portion 10 is a portion into which the sealing plate 4 is fitted and attached. Then, the main body 3 excluding the fitting portion 10
Is provided with a thermal spray coating 9 of a predetermined thickness on the entire inner surface, that is, on the surfaces of the side walls 6 and the bottom wall 5 and the groove.

【0014】この溶射皮膜9は、互いに結合する溶射粒
子同士の間に気孔を備えた多孔構造となっており、大き
い毛細管圧力を生じさせるようになっている。したがっ
て、この溶射皮膜9が、この発明の多孔質層に相当す
る。なお、溶射粒子としては、各グルーブ7の内部空間
を埋めないように、各グルーブ7の開口幅よりも粒径の
小さいものが採用されている。
The thermal spray coating 9 has a porous structure having pores between thermal spray particles bonded to each other, and generates a large capillary pressure. Therefore, this thermal spray coating 9 corresponds to the porous layer of the present invention. As the thermal spray particles, particles having a smaller particle size than the opening width of each groove 7 are employed so as not to fill the internal space of each groove 7.

【0015】なお、溶射皮膜9は、例えば本体部3と封
止板4とを組み付ける以前にプラズマ溶射あるいはガス
溶射等を行うことによって、簡単に形成することができ
る。すなわち、解放された空間において溶射工程を実施
できるために、溶射トーチの操作性が良好であること、
あるいは熱が籠らないこと、更には洗浄が容易であるこ
と等の利点がある。また、溶射材料としては、熱伝導性
および耐熱性に優れるものであれば異種金属またはセラ
ミックスあるいはそれらを混合したサーメットでもよ
く、好ましくは、それ自体が熱伝導性および耐熱性に優
れ、かつ長期に亘って作動流体と接触させても溶解しな
いものを採用する。
The thermal spray coating 9 can be easily formed by, for example, performing plasma spraying or gas spraying before assembling the main body 3 and the sealing plate 4. That is, since the spraying process can be performed in the open space, the operability of the spraying torch is good,
Alternatively, there are advantages that heat does not accumulate and that cleaning is easy. Further, as the thermal spraying material, a different metal or ceramic or a cermet obtained by mixing them may be used as long as it is excellent in thermal conductivity and heat resistance. A material that does not dissolve even when it is brought into contact with the working fluid over the entire area is adopted.

【0016】他方、封止板4は、嵌合部10と平面図上
で一致する大きさの金属製の板状体である。この封止板
4の図2での下面は、平坦面を成している。これに対し
て、封止板4の図2での上面には、一例として一辺の大
きさがグルーブ7の開口幅とほぼ同じ角柱状の支柱8が
複数本設けられている。これらの支柱8の基端部15
は、封止板4と一体に形成されている。したがって、各
支柱8は、銅などの実質的な剛体からなっている。ま
た、一例としてこれらの支柱8は、図2での横4本・縦
3列の列ごとを横方向に互いにずらした配列とされてい
る。更に、各支柱8の表面および封止板4の図2での上
面うち、縁部以外の全域、つまり、嵌合部10に取り付
けられて接触する範囲を除いた部分には、溶射皮膜9が
形成されている。この溶射皮膜9は、本体部3に備えら
れるものと同じ組成となっている。したがって、この発
明の多孔質層に相当している。
On the other hand, the sealing plate 4 is a metal plate having a size that matches the fitting portion 10 in a plan view. The lower surface in FIG. 2 of the sealing plate 4 forms a flat surface. On the other hand, on the upper surface of the sealing plate 4 in FIG. 2, for example, a plurality of prism-shaped columns 8 each having a side substantially equal to the opening width of the groove 7 are provided. The base end 15 of these columns 8
Are formed integrally with the sealing plate 4. Therefore, each support 8 is made of a substantially rigid body such as copper. Further, as an example, these columns 8 are arranged so that every four columns and three columns in FIG. 2 are shifted from each other in the horizontal direction. Further, the thermal spray coating 9 is provided on the entire surface of the surface of each column 8 and the upper surface of the sealing plate 4 in FIG. Is formed. The thermal spray coating 9 has the same composition as that of the main body 3. Therefore, it corresponds to the porous layer of the present invention.

【0017】図3に示すように、封止板4は、支柱8の
先端部14を底壁部5と対向させた向きで嵌合部10に
緊密に嵌め込まれている。すなわち、封止板4は、各側
壁部6の上縁部からなる開口部分を閉じる状態で本体部
3に組み付けられている。そして、封止板4と本体部3
との接合部分は、溶接によって密閉されている。なお、
各支柱8の先端部14は、各グルーブ7の開口部分の一
部を覆うように図3での横方向にずらした状態で、底壁
部5に付き合わされている。
As shown in FIG. 3, the sealing plate 4 is tightly fitted into the fitting portion 10 in a direction in which the tip 14 of the column 8 faces the bottom wall 5. That is, the sealing plate 4 is assembled to the main body 3 in a state where the opening formed by the upper edge of each side wall 6 is closed. Then, the sealing plate 4 and the main body 3
Is sealed by welding. In addition,
The distal end portion 14 of each column 8 is brought into contact with the bottom wall portion 5 in a state shifted in the lateral direction in FIG. 3 so as to cover a part of the opening of each groove 7.

【0018】そして、上記構成の平板状ヒートパイプ1
は、図3に示すように、底壁部5の下面をCPU11の
上面に密着させた状態で、ホルダ12によって回路基板
13上に支持されている。したがって、底壁部5の下面
が加熱部20とされ、これに対して、封止板4の上面が
放熱部21とされている。
The flat heat pipe 1 having the above structure
3 is supported on a circuit board 13 by a holder 12 with the lower surface of the bottom wall portion 5 being in close contact with the upper surface of the CPU 11, as shown in FIG. Therefore, the lower surface of the bottom wall portion 5 is the heating portion 20, whereas the upper surface of the sealing plate 4 is the heat radiating portion 21.

【0019】つぎに、上記具体例の作用について説明す
る。パソコンの使用に伴う通電によってCPU11が発
熱すると、その熱は平板状ヒートパイプ1のうち本体部
3に伝達され、コンテナ2の底部に溜まっている作動流
体が加熱されて蒸発する。したがって、本体部3の底壁
部5および各グルーブ7が蒸発部16となる。
Next, the operation of the above specific example will be described. When the CPU 11 generates heat by energization due to the use of the personal computer, the heat is transmitted to the main body 3 of the flat heat pipe 1, and the working fluid stored at the bottom of the container 2 is heated and evaporated. Therefore, the bottom wall 5 of the main body 3 and each groove 7 become the evaporator 16.

【0020】蒸気となった作動流体は、圧力および温度
の低い上方に向けて支柱8同士の間の空隙を流動して、
封止板4の内面で熱を奪われて凝縮し、溶射皮膜9内に
浸透する。したがって、封止板4の内面が凝縮部17と
なる。なお、放出された熱は、封止板4の外面からパソ
コンケースの内部空間などに放散され、その結果、CP
U11が冷却される。
The working fluid that has turned into steam flows upward through the gap between the columns 8 at a low pressure and temperature, and
The heat is removed from the inner surface of the sealing plate 4, condensed, and penetrates into the thermal spray coating 9. Therefore, the inner surface of the sealing plate 4 becomes the condensing portion 17. Note that the released heat is radiated from the outer surface of the sealing plate 4 to the internal space of the personal computer case, and as a result, the CP
U11 is cooled.

【0021】凝縮した作動流体は、溶射粒子同士の隙間
に生じる毛細管圧力によって封止板4の内面に保持され
る。そして、作動流体の大半は、支柱8の基端部15側
に移動するとともに、支柱8の壁面を薄膜状に広がりつ
つ、その先端部14に向けて移動して、本体部3の底壁
部5ならびに各グルーブ7に供給される。また、作動流
体の一部は、封止板4の内面から各側面部を薄膜状に広
がりつつ移動して蒸発部16に還流する。すなわち、複
数本の支柱8が凝縮部17から蒸発部への直接の液還流
路として作用するから、蒸発部16に必要充分な量の作
動流体が確実に供給される。
The condensed working fluid is held on the inner surface of the sealing plate 4 by capillary pressure generated in the gap between the spray particles. Most of the working fluid moves toward the base end 15 of the support 8, moves toward the distal end 14 while spreading the wall surface of the support 8 in a thin film shape, and moves toward the bottom 14 of the main body 3. 5 and each groove 7. In addition, a part of the working fluid moves from the inner surface of the sealing plate 4 while spreading in a thin film form on each side surface, and returns to the evaporator 16. That is, since the plurality of columns 8 function as a direct liquid recirculation path from the condenser 17 to the evaporator, a necessary and sufficient amount of working fluid is reliably supplied to the evaporator 16.

【0022】コンテナ2の底部に還流した作動流体は、
溶射皮膜9内に浸透するとともに、各グルーブ7に入り
込み、溶射粒子同士の隙間に生じる毛細管圧力によって
底壁部5の面方向に移動するとともに、各グルーブ7に
沿って図3での奥行き方向に移動する。その結果、コン
テナ2の底部のほぼ全域が蒸発部16の実効面積として
作用する。
The working fluid returned to the bottom of the container 2 is
While penetrating into the thermal spray coating 9 and entering each groove 7, it moves in the surface direction of the bottom wall portion 5 by the capillary pressure generated in the gap between the thermal spray particles, and along the groove 7 in the depth direction in FIG. Moving. As a result, almost the entire area of the bottom of the container 2 acts as the effective area of the evaporating section 16.

【0023】このように、上記構成の平板状ヒートパイ
プ1では、上下に対向する凝縮部17から蒸発部16に
向けて作動流体が支柱8を介して直接供給されるうえ
に、その作動流体が蒸発部16の広範囲に分散されるか
ら、熱輸送能力を向上させることができる。また、蒸発
部16と凝縮部17との間が遮蔽物のない開放空間とし
て構成されていて、蒸発部16と凝縮部17との間の圧
力差が大きいために、作動流体の蒸発・凝縮サイクルが
活発に行われ、この点からも熱輸送能力が良好になる。
As described above, in the flat heat pipe 1 having the above-described structure, the working fluid is directly supplied from the vertically opposed condensing portion 17 to the evaporating portion 16 through the support 8, and the working fluid is also supplied. Since the heat is dispersed over a wide range of the evaporator 16, the heat transport capability can be improved. In addition, the space between the evaporating section 16 and the condensing section 17 is configured as an open space without a shield, and the pressure difference between the evaporating section 16 and the condensing section 17 is large. And the heat transport ability is improved from this point.

【0024】更に、上記構成の平板状ヒートパイプ1に
よれば、共に平板体からなる封止板4と本体部3とが複
数本の支柱8によって内側から支持されているから、コ
ンテナ2の内部圧力が真空となる状態、つまり非動作状
態でも、特に封止板4と底壁部5とが撓まず、コンテナ
2を所期形状に維持することができる。なお、各支柱8
が封止板4と同じ材料からなり、しかも互いに充分な間
隔を有して配置されているために、作動流体による熱輸
送作用は何等阻害されない。
Further, according to the flat heat pipe 1 having the above-described structure, the sealing plate 4 and the main body 3, both of which are formed of a flat body, are supported from inside by the plurality of columns 8, so that the inside of the container 2 is Even in a state where the pressure is in a vacuum state, that is, in a non-operating state, particularly, the sealing plate 4 and the bottom wall 5 do not bend, and the container 2 can be maintained in an intended shape. In addition, each support 8
Are made of the same material as the sealing plate 4 and are arranged at a sufficient distance from each other, so that the heat transport action by the working fluid is not hindered at all.

【0025】なお、上記具体例では、多孔質層として溶
射皮膜を例示したが、この発明は上記具体例に限定され
るものではなく、多孔質層の他の例としては、金属粒を
コンテナの内面に焼結させたものを挙げることができ
る。また、上記具体例では、CPUの冷却に適用した
が、例えばサーバー用の電子デバイスなどの冷却に適用
することもできる。更に、上記具体例では、各側壁部の
縁部に段差を設けて、ここ封止板を嵌め込む構成とした
が、この発明は上記の具体例に限定されるものではな
く、例えば側壁部の縁部を底壁部と平行な方向に折り曲
げてフランジ部を形成し、そこに封止板を密着させた構
成のコンテナとすることもできる。
In the above specific example, a sprayed coating is exemplified as the porous layer. However, the present invention is not limited to the above specific example. The thing sintered on the inner surface can be mentioned. Further, in the above specific example, the present invention is applied to cooling of a CPU, but may be applied to cooling of an electronic device for a server, for example. Further, in the above specific example, a step is provided at the edge of each side wall portion, and the sealing plate is fitted here. However, the present invention is not limited to the above specific example. The edge portion may be bent in a direction parallel to the bottom wall portion to form a flange portion, and a container having a configuration in which a sealing plate is adhered to the flange portion may be used.

【0026】[0026]

【発明の効果】以上説明したように、この発明によれ
ば、深さ以上の開口幅を有する凹断面形状の本体部と、
その本体部の開口部を密閉する封止板とによって、中空
平板状のコンテナを形成するとともに、本体部のうち封
止板と対向する部分の内面と封止板の内面とを連結する
支柱を、封止板に一体に形成し、更に、支柱の表面を含
むコンテナの内面全体に多孔質層を形成しており、凝縮
部の作動液が支柱を経由して蒸発部に直接供給されるこ
とに加えて、蒸発部と凝縮部との間での大きい圧力差に
よって作動流体の熱輸送サイクルが活発に行われるか
ら、熱輸送能力を向上させることができる。
As described above, according to the present invention, a main body having a concave cross-sectional shape having an opening width equal to or greater than a depth is provided.
With a sealing plate that seals the opening of the main body, a hollow plate-shaped container is formed, and a column connecting the inner surface of the portion of the main body facing the sealing plate and the inner surface of the sealing plate is formed. , Formed integrally with the sealing plate, and further formed with a porous layer on the entire inner surface of the container including the surface of the column, so that the working fluid in the condensing section is directly supplied to the evaporating section via the column. In addition, since the heat transfer cycle of the working fluid is actively performed by a large pressure difference between the evaporator and the condenser, the heat transfer capacity can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本体部を示す概略図である。FIG. 1 is a schematic diagram showing a main body.

【図2】 封止板および支柱を示す概略図である。FIG. 2 is a schematic diagram showing a sealing plate and a support.

【図3】 平板状ヒートパイプをCPUに取り付けた状
態を示す概略図である。
FIG. 3 is a schematic diagram showing a state in which a flat heat pipe is attached to a CPU.

【符号の説明】[Explanation of symbols]

1…平板状ヒートパイプ、 2…コンテナ、 3…本体
部、 4…封止板、7…グルーブ、 8…支柱、 9…
溶射皮膜、 10…嵌合部、 14…先端部、 15…
基端部、 20…加熱部、 21…放熱部。
DESCRIPTION OF SYMBOLS 1 ... Flat heat pipe, 2 ... Container, 3 ... Body part, 4 ... Sealing plate, 7 ... Groove, 8 ... Prop, 9 ...
Thermal spray coating, 10 ... fitting part, 14 ... tip part, 15 ...
Base end portion, 20: heating portion, 21: heat radiation portion.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 平坦な加熱部と平坦な放熱部とが対向す
る中空平板状の金属製のコンテナの内部に、脱気した状
態で凝縮性流体を作動流体として封入した平板状ヒート
パイプにおいて、 深さ以上の開口幅を有する凹断面形状の本体部と、その
本体部の開口部を密閉する封止板とによって、前記コン
テナが形成されるとともに、前記本体部のうち前記封止
板と対向する部分の内面と前記封止板の内面とを連結す
る支柱が、該封止板に一体に形成され、更に、前記支柱
の表面を含む前記コンテナの内面全体に、毛細管圧力を
生じる多孔質層が形成されていることを特徴とする平板
状ヒートパイプ。
1. A flat heat pipe in which a condensable fluid is sealed as a working fluid in a degassed state inside a hollow flat metal container in which a flat heating section and a flat heat radiating section face each other. The container is formed by a main body having a concave cross-sectional shape having an opening width equal to or greater than the depth, and a sealing plate for sealing the opening of the main body, and the main body is opposed to the sealing plate in the main body. A column connecting the inner surface of the portion to be formed and the inner surface of the sealing plate is formed integrally with the sealing plate, and further, a porous layer that generates capillary pressure over the entire inner surface of the container including the surface of the column. A flat plate heat pipe, characterized in that a heat pipe is formed.
JP9367766A 1997-12-29 1997-12-29 Flat heat pipe Pending JPH11193994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9367766A JPH11193994A (en) 1997-12-29 1997-12-29 Flat heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9367766A JPH11193994A (en) 1997-12-29 1997-12-29 Flat heat pipe

Publications (1)

Publication Number Publication Date
JPH11193994A true JPH11193994A (en) 1999-07-21

Family

ID=18490143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9367766A Pending JPH11193994A (en) 1997-12-29 1997-12-29 Flat heat pipe

Country Status (1)

Country Link
JP (1) JPH11193994A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7032652B2 (en) * 2004-07-06 2006-04-25 Augux Co., Ltd. Structure of heat conductive plate
JP2016205693A (en) * 2015-04-21 2016-12-08 東芝ホームテクノ株式会社 Sheet-shaped heat pipe
US20170023308A1 (en) * 2015-07-20 2017-01-26 Delta Electronics, Inc. Slim vapor chamber
CN113301777A (en) * 2021-04-26 2021-08-24 江西展耀微电子有限公司 Vapor chamber, method for manufacturing vapor chamber, and electronic apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7032652B2 (en) * 2004-07-06 2006-04-25 Augux Co., Ltd. Structure of heat conductive plate
JP2016205693A (en) * 2015-04-21 2016-12-08 東芝ホームテクノ株式会社 Sheet-shaped heat pipe
US20170023308A1 (en) * 2015-07-20 2017-01-26 Delta Electronics, Inc. Slim vapor chamber
US10502498B2 (en) * 2015-07-20 2019-12-10 Delta Electronics, Inc. Slim vapor chamber
US11561050B2 (en) 2015-07-20 2023-01-24 Delta Electronics, Inc. Slim vapor chamber
CN113301777A (en) * 2021-04-26 2021-08-24 江西展耀微电子有限公司 Vapor chamber, method for manufacturing vapor chamber, and electronic apparatus

Similar Documents

Publication Publication Date Title
US4951740A (en) Bellows heat pipe for thermal control of electronic components
US6302192B1 (en) Integrated circuit heat pipe heat spreader with through mounting holes
US4352392A (en) Mechanically assisted evaporator surface
WO2018003957A1 (en) Vapor chamber
US20070012429A1 (en) Heat Transfer Device
JP3659844B2 (en) Flat heat pipe
JP7169555B2 (en) Vapor chambers, vapor chamber mounting substrates and metal sheets for vapor chambers
KR20050032888A (en) Flat plate heat transfer device
US20030024691A1 (en) High efficiency heat sink
JPH11183067A (en) Plate-shaped heat pipe
JP2001339026A (en) Plate-shaped heat pipe
JPH11193994A (en) Flat heat pipe
JPH11304381A (en) Heat pipe
KR102381018B1 (en) Vapor chamber
JP3967427B2 (en) Flat heat pipe
KR20210118688A (en) Vapor chamber
JP2007003034A (en) Cooling device
JPH09303979A (en) Heat pipe
JPH11330329A (en) Vaporizing cooling device
US20020050341A1 (en) Heat pipe heat spreader with internal solid heat conductor
JP2004060911A (en) Heat pipe
JP2002062071A (en) Flat plate type heat pipe
US20020144802A1 (en) Evaporative cooling device and method
JPH05304384A (en) Heat pipe type heat sink
JPH09210582A (en) Heat pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070213