JPH11193406A - Ironmaking method - Google Patents

Ironmaking method

Info

Publication number
JPH11193406A
JPH11193406A JP36843097A JP36843097A JPH11193406A JP H11193406 A JPH11193406 A JP H11193406A JP 36843097 A JP36843097 A JP 36843097A JP 36843097 A JP36843097 A JP 36843097A JP H11193406 A JPH11193406 A JP H11193406A
Authority
JP
Japan
Prior art keywords
iron
coke
blast furnace
smelting reduction
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP36843097A
Other languages
Japanese (ja)
Inventor
Katsuhiro Iwasaki
克博 岩崎
Shinichi Isozaki
進市 磯崎
Masahiro Kawakami
正弘 川上
Terutoshi Sawada
輝俊 澤田
Takeshi Sekiguchi
関口  毅
Masayuki Watabe
雅之 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP36843097A priority Critical patent/JPH11193406A/en
Priority to KR10-2000-7006438A priority patent/KR100370920B1/en
Priority to PCT/JP1998/005852 priority patent/WO1999034022A1/en
Priority to IDW20001412A priority patent/ID26484A/en
Priority to CA002315031A priority patent/CA2315031A1/en
Priority to CN98812533A priority patent/CN1283222A/en
Priority to BR9814479-0A priority patent/BR9814479A/en
Priority to TW87121601A priority patent/TW467955B/en
Priority to AU16877/99A priority patent/AU755341B2/en
Publication of JPH11193406A publication Critical patent/JPH11193406A/en
Priority to US09/974,511 priority patent/US6837916B2/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the ironmaking cost, to reasonably improve the ironmaking capacity, and to increase the service life of a blast furnace by complementing the blast furnace method with the iron-bath type melting and reducing method in one ironmaking equipment. SOLUTION: In using the iron-bath type melting and reducing method in a mode to complement the blast furnace method by paying attention to the fact that the iron-bath type melting and reducing method has no restriction in the grain size of the raw material, and by feeding sintered ore and cokes small in grain size which cannot be used or is difficult to use in operation in the blast furnace method to the iron-bath type melting and reducing furnace as the raw material, the sintered ore and cokes for steel-making large in grain size among the sintered ore manufactured by a sintering machine and the cokes for steel-making are fed to the blast furnace, and the sintered ore and cokes for steel-making small in grain size are fed to the iron-bath type melting and reducing furnace.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、高炉と鉄浴型溶融
還元炉とを備えた製鉄設備における製銑方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for making pig iron in an iron making facility provided with a blast furnace and an iron bath type smelting reduction furnace.

【0002】[0002]

【従来の技術】一般に、高炉を有する製鉄設備は焼結機
とコークス炉を備えており、焼結機及びコークス炉でそ
れぞれ製造された焼結鉱とコークスを高炉に供給し、溶
銑の製造が行われる。このような高炉による製銑法(高
炉法)では、炉内通気性等の確保のために粒度の小さい
焼結鉱は使用できない。このため焼結機で製造された焼
結鉱は篩分けされ、粒度の小さいものは返し鉱として再
焼結されており、したがって、一般に焼結鉱の製造歩留
まりは約85%程度に留まる。また、コークスについて
も、同様の理由から粒度の小さいコークスは高炉には使
用できず、コークス炉で製造されたコークスは篩分けさ
れ、粒度の小さい粉コークスは焼結鉱の製造等に利用さ
れている。
2. Description of the Related Art Generally, an iron making facility having a blast furnace is provided with a sintering machine and a coke oven, and the sinter and coke produced in the sintering machine and the coke oven are supplied to the blast furnace to produce hot metal. Done. In such an iron making method using a blast furnace (blast furnace method), sintered ore having a small particle size cannot be used in order to secure air permeability in the furnace. For this reason, the sintered ore produced by the sintering machine is sieved, and those having a small particle size are re-sintered as return ore. Therefore, the production yield of the sintered ore is generally about 85%. Regarding coke, coke with a small particle size cannot be used in a blast furnace for the same reason, coke produced in a coke oven is sieved, and coke with a small particle size is used for producing sintered ore. I have.

【0003】一方、鉄浴型溶融還元炉を用いた製銑法
(鉄浴型溶融還元法)では鉱石や炭材に高炉法のような
事前処理の必要がなく、原料に鉱石及び石炭そのものを
用いることができるが、密閉状態で操業が行われる炉内
に鉱石や石炭を供給する必要があることから、供給系内
で鉱石や石炭の付着を生じさせないようにするため、粉
状の鉱石や粉状の石炭を使用する場合は、予め乾燥する
工程とそのための設備が必要となる。
On the other hand, in the iron making method using an iron-bath smelting reduction furnace (iron-bath smelting reduction method), there is no need for a pretreatment such as the blast furnace method for ore and carbonaceous material, and the ore and coal itself are used as raw materials. Although it can be used, it is necessary to supply ore and coal to a furnace that is operated in a closed state, so that in order to prevent ore and coal from adhering in the supply system, powder ore or When powdered coal is used, a step of drying in advance and equipment for the step are required.

【0004】[0004]

【発明が解決しようとする課題】このような従来の製銑
法に対して、本発明は1つの製鉄設備において高炉法を
鉄浴型溶融還元法で補完し、これにより製銑コストの低
減化、製銑能力の向上と適正化、さらには高炉の延命化
を図ることができる新たな製銑法を提供するものであ
る。
In contrast to such a conventional iron making method, the present invention complements the blast furnace method with an iron bath type smelting reduction method in one iron making facility, thereby reducing iron making costs. Another object of the present invention is to provide a new iron making method capable of improving and optimizing the iron making capacity and extending the life of the blast furnace.

【0005】[0005]

【課題を解決するための手段】上述のように鉄浴型溶融
還元法は鉱石や炭材に高炉法のような事前処理の必要が
ない点が最大の利点であり、この利点の故に、近年、高
炉法に代わる製銑法として注目を集めている。本発明者
らは、このような従来一般に考えられている鉄浴型溶融
還元法の利点とは全く別に、同製銑法では原料の粒度に
高炉法のような制約が全くないことに着目し、高炉法で
は使用できない若しくは操業上使用しにくい粒度の小さ
い焼結鉱(返し鉱となるような粒度の焼結鉱)を鉄浴型
溶融還元炉に原料として供給し、高炉法を補完するよう
な形態で鉄浴型溶融還元法を利用することを考えた。
As described above, the iron bath type smelting reduction method has the greatest advantage that ore or carbon material does not require a pretreatment such as the blast furnace method. Has attracted attention as an alternative to the blast furnace method. The present inventors have focused on the fact that, apart from the advantages of the iron bath type smelting reduction method generally considered heretofore, the ironmaking method has no restriction on the particle size of the raw material as in the blast furnace method. In order to complement the blast furnace method, small-sized sinters that cannot be used in the blast furnace method or are difficult to use in operation are supplied to the iron-bath smelting reduction furnace as raw materials. We considered using the iron bath type smelting reduction method in a simple form.

【0006】このような形態の製銑法では、細粒側の焼
結鉱を原料とする製銑を鉄浴型溶融還元炉に分担させる
ため、製造された焼結鉱の全量をそのまま、つまり返し
鉱を生じることなく製銑原料として用いることができ、
このため従来の高炉法単独操業の場合に較べて溶銑の製
造量を増大させることができる。一方において、高炉の
出銑比を低く抑えた操業も可能となり、高炉の熱負荷を
軽減して高炉の寿命を大幅に延ばすことができる。しか
も、鉄浴型溶融還元法で焼結鉱を用いた場合には鉱石の
乾燥工程も全く不要であることから、鉄浴型溶融還元法
を極めて有利に実施することができる。さらに、焼結鉱
はその製造工程においてCaO/SiO2が2前後に調
整されているため、これを鉄浴型溶融還元法で鉄源とし
て用いた場合には生石灰やドロマイト等のスラグ成分調
整のための媒溶材を使用する必要がなくなる。
[0006] In the iron making method of such a form, since the iron making using the sinter of the fine grain side as a raw material is shared by an iron bath type smelting reduction furnace, the entire amount of the produced sinter is as it is, It can be used as a raw material for iron making without generating return ore,
For this reason, the production amount of hot metal can be increased as compared with the conventional blast furnace method alone operation. On the other hand, it is also possible to operate the blast furnace with a low tapping ratio, thereby reducing the heat load of the blast furnace and greatly extending the life of the blast furnace. In addition, when the sintered ore is used in the iron-bath smelting reduction method, the ore drying step is not required at all, so that the iron-bath smelting reduction method can be performed very advantageously. Furthermore, since CaO / SiO 2 is adjusted to around 2 in the production process of sinter, if this is used as an iron source in an iron bath type smelting reduction method, slag components such as quicklime and dolomite are adjusted. It is not necessary to use a solvent for the purpose.

【0007】また本発明者らは、製鉄用コークスについ
ても、鉄浴型溶融還元法では使用する炭材の粒度に高炉
法のような制約が全くないことに着目し、高炉法では使
用できない若しくは操業上使用しにくい粒度の小さいコ
ークスを鉄浴型溶融還元法に炭材として供給することを
考えた。このようなコークスの利用形態によれば、焼結
鉱の製造工程では消費し切れない粉コークスの有効利用
を図ることができるだけでなく、鉄浴型溶融還元法でコ
ークスを用いた場合には炭材の乾燥工程も全く不要であ
ることから、鉄浴型溶融還元法を極めて有利に実施する
ことができ、しかも、炭材として石炭を用いる場合に較
べて二次燃焼率を大幅に高め且つ炉の熱負荷を小さくす
ることができ、これにより鉄溶型溶融還元法の燃料原単
位の低減化と生産性の向上を図ることができる。
The present inventors have also noticed that there is no restriction on the particle size of the carbonaceous material used in the iron-bath smelting reduction method as in the blast furnace method, and that the coke for iron making cannot be used in the blast furnace method. We considered supplying small-sized coke, which is difficult to use in operation, as carbon material to the iron-bath smelting reduction method. According to such a use form of coke, not only can coke fine powder that cannot be consumed in the production process of the sintered ore be effectively utilized, but also if the coke is used by the iron bath type smelting reduction method, Since there is no need for a drying step for the material, the iron bath type smelting reduction method can be carried out extremely advantageously, and the secondary combustion rate can be greatly increased as compared with the case where coal is used as the carbon material, and the furnace , The heat load of the iron-based smelting reduction method can be reduced, and the productivity can be improved.

【0008】さらに、先に述べたような粒度の小さい焼
結鉱を鉄浴型溶融還元法に原料として供給する形態の製
銑法では、基本的には焼結機における返し鉱がなくなる
ため、高炉法単独操業の場合に較べて焼結工程における
粉コークスの使用量が低減し、その分、粉コークスに余
剰が生じることが考えられる。したがって、このような
形態の製銑法において、製鉄用コークスのうちの粉コー
クスの一部を鉄浴型溶融還元法の炭材として用いること
により、高炉、鉄浴型溶融還元炉及び焼結機を備えた製
鉄設備において、粉コークスを含めたコークスをバラン
スよく有効に利用することができる。
Further, in the iron making method of supplying sinter having a small particle size as a raw material to the iron-bath smelting reduction method as described above, since there is basically no return ore in a sintering machine, It is conceivable that the amount of coke breeze used in the sintering process is reduced as compared with the case of the single operation of the blast furnace method, and that the coke breeze becomes excessive. Therefore, in such an iron making method, by using a part of the coke breeze of the iron making coke as a carbon material in the iron bath type smelting reduction method, a blast furnace, an iron bath type smelting reduction furnace and a sintering machine are used. In a steelmaking facility equipped with a coke, coke including powdered coke can be effectively used in a well-balanced manner.

【0009】本発明は、以上のような着想と知見事実に
基づきなされたもので、以下のような特徴を有する。 [1] 高炉、鉄浴型溶融還元炉及び焼結機を備えた製鉄設
備において、焼結機で製造された焼結鉱のうち、粒度の
大きい焼結鉱を高炉に供給し、粒度の小さい焼結鉱を鉄
浴型溶融還元炉に供給することを特徴とする製銑方法。 [2] 高炉及び鉄浴型溶融還元炉を備えた製鉄設備におい
て、製鉄用コークスのうち、粒度の大きいコークスを高
炉に供給し、粒度の小さいコークスを鉄浴型溶融還元炉
に供給することを特徴とする製銑方法。
The present invention has been made based on the above ideas and findings, and has the following features. [1] In an iron making facility equipped with a blast furnace, an iron-bath smelting reduction furnace and a sintering machine, of the sinters produced by the sintering machine, large-sized sinters are supplied to the blast furnace, and A method for producing pig iron, comprising supplying sinter to an iron-bath smelting reduction furnace. [2] In an iron making facility equipped with a blast furnace and an iron-bath smelting reduction furnace, it is necessary to supply large-grain coke to the blast furnace and supply small-grain coke to the iron-bath smelting reduction furnace. Characteristic iron making method.

【0010】[3] 高炉、鉄浴型溶融還元炉及び焼結機を
備えた製鉄設備において、焼結機で製造された焼結鉱の
うち、粒度の大きい焼結鉱を高炉に供給し、粒度の小さ
い焼結鉱を鉄浴型溶融還元炉に供給するとともに、製鉄
用コークスのうち、粒度の大きいコークスを高炉に供給
し、粒度の小さいコークスを鉄浴型溶融還元炉に供給す
ることを特徴とする製銑方法。
[3] In an iron making facility equipped with a blast furnace, an iron-bath smelting reduction furnace and a sintering machine, of the sinters produced by the sintering machine, large-sized sinters are supplied to the blast furnace, Along with supplying small-grained sinter to iron-bath smelting reduction furnaces, supply large-grained coke to blast furnaces and supplying small-grained coke to iron-bath smelting reduction furnaces. Characteristic iron making method.

【0011】[4] 上記[1]または[3]の製銑方法におい
て、焼結機で製造された焼結鉱を3mm以上の篩目で篩
分けし、篩下の焼結鉱を鉄浴型溶融還元炉に供給するこ
とを特徴とする製銑方法。 [5] 上記[2]または[3]の製銑方法において、製鉄用コー
クスを20mm以上の篩目で篩分けし、篩下のコークス
を鉄浴型溶融還元炉に供給することを特徴とする製銑方
法。 [6] 上記[1]〜[5]のいずれかの製銑方法において、高炉
を出銑比1.0〜1.7t/m2/dayで操業するこ
とを特徴とする製銑方法。
[4] In the pig ironing method according to the above [1] or [3], the sintered ore produced by the sintering machine is sieved with a sieve having a size of 3 mm or more, and the sintered ore under the sieve is subjected to an iron bath. A method for producing iron, comprising supplying the molten iron to a smelting reduction furnace. [5] The iron making method according to [2] or [3], wherein the iron-making coke is sieved with a sieve having a size of 20 mm or more, and the coke under the sieve is supplied to an iron-bath smelting reduction furnace. Iron making method. [6] The iron making method according to any one of [1] to [5], wherein the blast furnace is operated at a tapping ratio of 1.0 to 1.7 t / m 2 / day.

【0012】[0012]

【発明の実施の形態】本発明の第1の形態は、高炉、鉄
浴型溶融還元炉及び焼結機を備えた製鉄設備を前提とし
た製銑法であり、焼結工程(焼結機)で製造された焼結
鉱のうち、粒度の大きい焼結鉱(塊状焼結鉱を主体とし
たもの)を高炉に供給し、粒度の小さい焼結鉱(粉状焼
結鉱を主体としたもの)を鉄浴型溶融還元炉に供給し、
それぞれの炉において溶銑を製造するものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention is a pig iron making method based on an iron making facility provided with a blast furnace, an iron bath type smelting reduction furnace and a sintering machine, and a sintering process (sintering machine). ), The sintered ore with large grain size (mainly lump ore) is supplied to the blast furnace, and the sintered ore with small grain size (mainly powdery ore) ) To an iron-bath smelting reduction furnace,
The hot metal is manufactured in each furnace.

【0013】通常、このような製銑法では焼結機で製造
された焼結鉱を適当な篩目により篩分けし、塊状焼結鉱
を含む粒度の大きい焼結鉱と、それよりも粒度の小さい
焼結鉱とに分離し、それぞれを高炉と鉄浴型溶融還元炉
に供給する。高炉と鉄浴型溶融還元炉に供給する焼結鉱
の粒度の分岐点は、一般には返し鉱を選別する際の篩い
分け粒度とすればよいが、それ以上の篩い分け粒度を分
岐点としてもよい。高炉では、なるべく粒径の大きい焼
結鉱を使用した方が通気性等の面で操業がしやすく、経
済性、生産効率等の面でも有利となるからである。
Usually, in such a pig iron making method, a sintered ore produced by a sintering machine is sieved through a suitable sieve to obtain a sintered ore having a large particle size including a lump ore and a particle size larger than that. And sinters are supplied to a blast furnace and an iron-bath smelting reduction furnace, respectively. The branch point of the particle size of the sintered ore to be supplied to the blast furnace and the iron bath type smelting reduction furnace may be generally set to the sieving particle size at the time of sorting the return ore, but a larger sieving particle size may be used as the branch point. Good. In the blast furnace, the use of sintered ore having a large particle size as much as possible facilitates operation in terms of air permeability and the like, and is advantageous in terms of economy, production efficiency, and the like.

【0014】一般に高炉に装入するためには篩い分け粒
度で3mm以上の粒度が必要であり、このため高炉と鉄
浴型溶融還元炉に供給する焼結鉱の粒度の分岐点は、篩
い分け粒度で3mm以上の粒度とすること、すなわち、
焼結機で製造された焼結鉱を3mm以上の篩目で篩分け
し、篩上の焼結鉱を高炉に供給し、篩下の焼結鉱を鉄浴
型溶融還元炉に供給することが好ましい。また、焼結鉱
の粒度の分岐点(篩い分け粒度)はより好ましくは5m
m以上、特に好ましくは8mm以上とするのがよく、こ
れにより高炉側に特に好適な粒度の焼結鉱を供給するこ
とができる。
In general, a sieving particle size of 3 mm or more is required for charging the blast furnace. Therefore, the branch point of the particle size of the sinter supplied to the blast furnace and the iron bath type smelting reduction furnace is determined by sieving. A particle size of 3 mm or more, that is,
Sintering the ore produced by the sintering machine with a sieve of 3 mm or more, supplying the ore on the sieve to the blast furnace, and supplying the ore under the sieve to the iron bath type smelting reduction furnace Is preferred. Further, the branch point (sieving particle size) of the particle size of the sintered ore is more preferably 5 m.
m or more, particularly preferably 8 mm or more, whereby a sintered ore having a particularly suitable particle size can be supplied to the blast furnace side.

【0015】但し、焼結鉱は高炉側に供給可能な粒度の
焼結鉱の全てを高炉に供給する必要はなく、鉄浴型溶融
還元炉に供給すべき篩下の焼結鉱中に、高炉側に供給可
能な粒度の焼結鉱が含まれることは何ら差し支えない。
要は、返し鉱に相当するような高炉への装入が不適な粒
度の焼結鉱が高炉側に供給されないようにすればよく、
このような条件を満たす限り、高炉と鉄浴型溶融還元炉
に供給する焼結鉱の粒度の分岐点は、両炉への焼結鉱供
給量等を勘案して任意に設定することができる。なお、
一般に篩分け後の篩上の焼結鉱には、篩分け粒度未満の
粒径のものがある程度含まれることは避けられず、本発
明法は高炉側に供給される焼結鉱がこのような粒度分布
を有する場合も含むことは言うまでもない。
However, the sinter does not need to supply all of the sinter having the particle size that can be supplied to the blast furnace to the blast furnace. It does not matter at all that the blast furnace side contains sinter of a particle size that can be supplied.
In short, it suffices to prevent sinter ore with a particle size inappropriate for charging into the blast furnace equivalent to return ore from being supplied to the blast furnace side,
As long as such conditions are satisfied, the branch point of the particle size of the sinter supplied to the blast furnace and the iron-bath smelting reduction furnace can be arbitrarily set in consideration of the amount of the sinter supplied to both furnaces. . In addition,
Generally, it is inevitable that the sintered ore on the screen after sieving contains particles having a particle size smaller than the sieving particle size to some extent. Needless to say, the case including the particle size distribution is included.

【0016】図1は、焼結鉱の原料鉱石(シンターフィ
ード)の給鉱粒度分布と、この原料鉱石から製造された
焼結鉱を篩分けした後の篩下及び篩上の各焼結鉱の粒度
分布の一例を示している。この例では篩い分け粒度(篩
目)を6mmに設定して焼結鉱の篩い分けを行ったもの
で、図中のAが給鉱粒度分布を、Bが篩下の焼結鉱の粒
度分布を、Cが篩上の焼結鉱の粒度分布をそれぞれ示し
ている。本発明法では、Bの粒度分布を持つ篩下の焼結
鉱が鉄浴型溶融還元炉に、またCの粒度分布を持つ篩上
の焼結鉱が高炉にそれぞれ供給され、炉内装入される。
FIG. 1 shows the ore supply particle size distribution of the raw ore (sinter feed) of the sinter, and the sinters under and after sieving the sinter produced from the raw ore. 1 shows an example of the particle size distribution of the sample. In this example, the sieving ore was screened by setting the sieving particle size (sieving) to 6 mm. In the figure, A represents the ore supply particle size distribution, and B represents the particle size distribution of the sinter under the sieve. And C indicates the particle size distribution of the sintered ore on the sieve. According to the method of the present invention, the sinter under the sieve having the particle size distribution of B is supplied to the iron bath type smelting reduction furnace, and the sinter on the sieve having the particle size distribution of C is supplied to the blast furnace, and are introduced into the furnace interior. You.

【0017】鉄浴型溶融還元炉では、炉内に装入された
鉄源が酸素による炭材の燃焼により迅速に溶融されると
ともに、炭材ないし炭材中Cが浸炭した溶銑・粒銑によ
り速やかに還元され、そこで発生したCOガスが酸素ガ
スで速やかに二次燃焼することにより、熱効率が良く燃
料原単位・エネルギー原単位の低い製銑が行われる。
In the iron-bath smelting reduction furnace, the iron source charged into the furnace is rapidly melted by the combustion of the carbonaceous material by oxygen, and the carbonaceous material or C in the carbonaceous material is carburized by molten iron or granulated pig iron. The iron gas is reduced quickly, and the CO gas generated there is promptly secondary-combusted with oxygen gas, so that iron making with good thermal efficiency and low fuel consumption unit and energy consumption unit is performed.

【0018】また、一般に鉄浴型溶融還元設備は鉱石を
予備還元するための予備還元炉(通常、流動層式の予備
還元炉)を備えており、この予備還元炉で鉱石を予熱及
び予備還元(通常、予備還元率10〜30%)した後に
鉄浴型溶融還元炉に装入することにより、石炭・酸素原
単位を低減させ、予備還元を実施しない場合に比べて生
産性は10〜50%も向上する。したがって、本発明法
においても焼結鉱を予備還元炉で予備還元した後に鉄浴
型溶融還元炉に装入することが好ましい。また、予備還
元炉における予備還元前に鉱石の予熱を行えば、さらに
生産性を向上させることができる。この鉄浴型溶融還元
法では、鉄浴型溶融還元炉、予備還元炉ともに鉄源であ
る鉱石の粒度に高炉のような制約はなく、したがって、
本発明のような粒度の小さい焼結鉱を装入しても問題な
く溶融還元することができる。
Generally, the iron bath type smelting reduction equipment is provided with a pre-reduction furnace (usually a fluidized bed type pre-reduction furnace) for pre-reducing ore, and the ore is pre-heated and pre-reduced by this pre-reduction furnace. (Usually, a pre-reduction rate of 10 to 30%) is charged into an iron-bath smelting reduction furnace to reduce the unit consumption of coal and oxygen, and the productivity is 10 to 50 as compared with the case where pre-reduction is not performed. % Is also improved. Therefore, also in the method of the present invention, it is preferable that the ore is preliminarily reduced in the prereduction furnace and then charged into the iron bath type smelting reduction furnace. If the ore is preheated before the preliminary reduction in the preliminary reduction furnace, the productivity can be further improved. In this iron-bath smelting reduction method, the iron-bath smelting reduction furnace and the preliminary reduction furnace do not have the same restrictions as the blast furnace on the particle size of the ore that is the iron source.
Even if a sintered ore having a small particle size as in the present invention is charged, the smelting reduction can be performed without any problem.

【0019】また、後述するように鉄浴型溶融還元法で
鉄源として焼結鉱を使用した場合には、従来の鉄浴型溶
融還元法で行われているような鉱石の乾燥は不要となる
が、そのためには製造された焼結鉱が鉄浴型溶融還元炉
に装入されるまでの間に過剰な吸湿をしないこと(例え
ば、水分吸収率:1%以下)が必要である。したがっ
て、製造された焼結鉱のうち鉄浴型溶融還元炉に供給す
べき焼結鉱については、鉄浴型溶融還元炉に装入するま
でのハンドリング途中で極力吸湿しないような配慮、例
えば、貯蔵する際に雨よけの天井を設ける等の配慮をす
ることが必要である。
Further, when sinter is used as an iron source in the iron bath type smelting reduction method as described later, it is unnecessary to dry the ore as in the conventional iron bath type smelting reduction method. However, for that purpose, it is necessary that the produced sintered ore does not absorb excessive moisture before being charged into the iron bath type smelting reduction furnace (for example, a water absorption rate of 1% or less). Therefore, for the sintered ore to be supplied to the iron-bath smelting reduction furnace among the manufactured sinters, consideration should be given to not absorbing moisture as much as possible during handling before charging the iron-bath smelting reduction furnace, for example, At the time of storage, it is necessary to take measures such as providing a rain-proof ceiling.

【0020】このような形態の本発明の製銑法では、従
来行われている高炉法単独操業の場合に較べて次のよう
な利点がある。先ず、焼結機で製造された焼結鉱のうち
細粒側の焼結鉱を原料とする製銑を鉄浴型溶融還元炉に
分担させるため、製造された焼結鉱の全量をそのまま、
つまり返し鉱を生じることなく製銑原料として用いるこ
とができる。このため焼結機の生産能力が従来の高炉法
単独操業の場合と同等である場合には、従来生じていた
返し鉱の分だけ原料鉱石供給量が増加して溶銑を増産す
ることができ、製銑の生産性を高めることができる。
The iron making method of the present invention having such a configuration has the following advantages as compared with the conventional blast furnace method alone. First, in order to share the ironmaking using the sinter of the fine-grain side among the sinters produced by the sintering machine with the iron bath type smelting reduction furnace, the entire amount of the produced sinter is intact.
In other words, it can be used as a raw material for making iron without generating return ore. For this reason, when the production capacity of the sintering machine is equivalent to that of the conventional blast furnace method alone operation, the supply of raw ore is increased by the amount of return ore that has occurred conventionally, and it is possible to increase hot metal production, Ironmaking productivity can be increased.

【0021】一方、溶銑の製造量を従来の高炉法単独操
業の場合と同等とした場合には、高炉の出銑比を低く抑
えた操業が可能となり、これにより高炉の熱負荷が軽減
されて炉内部の損傷が効果的に抑制される結果、高炉の
寿命を大幅に延ばすことができる。この場合、高炉は出
銑比1.0〜1.7t/m3/day程度(特に好まし
くは、1.4t/m3/day前後)で操業することが
好ましい。従来一般に行われている2000m3を超え
る大型の高炉では酸素富化等により出銑比2.0t/m
3/day以上で操業が行われているが、本発明法を適
用することにより出銑比1.7t/m3/day以下と
しても従来の高炉法単独操業の場合と同等の製銑量を確
保することができ、且つこのように出銑比1.7t/m
3/day以下で操業することにより高炉の熱負荷が軽
減され、高炉の寿命を大幅に延ばすことができる。但
し、高炉の出銑比が1.0t/m3/day未満では炉
齢の延長効果が飽和するとともに、生産性の面で却って
不経済となる。なお、以上の観点からして出銑比の最適
値は1.4t/m3/day前後であると考えられる。
On the other hand, when the production amount of the hot metal is made equal to that of the conventional operation of the blast furnace method alone, it is possible to operate the blast furnace with a low tapping ratio, thereby reducing the heat load of the blast furnace. As a result of effectively suppressing damage inside the furnace, the life of the blast furnace can be greatly extended. In this case, the blast furnace Dezukuhi 1.0~1.7t / m 3 / day about (particularly preferably, 1.4t / m 3 / day before and after) it is preferable to operate with. In a conventional large blast furnace exceeding 2000 m 3 , the tapping ratio is 2.0 t / m due to oxygen enrichment.
Although the operation is performed at 3 / day or more, even if the tapping ratio is 1.7 t / m 3 / day or less by applying the method of the present invention, the same iron production as that of the conventional blast furnace method alone operation can be achieved. And a tapping ratio of 1.7 t / m
By operating at 3 / day or less, the heat load of the blast furnace is reduced, and the life of the blast furnace can be greatly extended. However, when the tapping ratio of the blast furnace is less than 1.0 t / m 3 / day, the effect of extending the furnace age is saturated and the productivity is rather uneconomical. From the above viewpoint, it is considered that the optimum value of the tapping ratio is around 1.4 t / m 3 / day.

【0022】また、上記形態の本発明の製銑法では、製
造後の焼結鉱が吸湿しないようにして鉄浴型溶融還元炉
に装入すれば、通常の鉄浴型溶融還元法で必要とされる
鉱石の乾燥工程も全く不要であり、このため鉄浴型溶融
還元法を低コストに実施することができる。さらに、鉄
浴型溶融還元法で鉄源として焼結鉱を用いる場合には、
焼結鉱はその製造工程でCaO/SiO2が2前後に調
整されているため、副原料として生石灰やドロマイト等
の媒溶材を炉に装入することなくスラグ塩基度調整を容
易に行うことができ、鉄源として鉱石を使用する場合に
比べて原料コスト、燃料原単位を低減させることがで
き、この面でも生産性を向上させることができる。な
お、本発明法においては、鉄浴型溶融還元炉に装入する
鉄源として、焼結鉱に加えて適宜鉱石やスクラップ、直
接還元鉄、アイアンカーバイド等の鉄源を使用できるこ
とは言うまでもない。
In the iron making method of the present invention of the above-described embodiment, if the sintered ore after being manufactured is charged into an iron bath type smelting reduction furnace without absorbing moisture, it is necessary for a normal iron bath type smelting reduction method. No ore drying step is required at all, so that the iron bath type smelting reduction method can be carried out at low cost. Furthermore, when using sinter as an iron source in the iron bath type smelting reduction method,
Since CaO / SiO 2 is adjusted to around 2 in the production process of sinter, it is easy to adjust the slag basicity without charging a medium solvent such as quicklime or dolomite as an auxiliary material into the furnace. The raw material cost and the fuel consumption rate can be reduced as compared with the case where ore is used as the iron source, and the productivity can be improved in this aspect as well. In the method of the present invention, it goes without saying that, in addition to the sintered ore, an iron source such as ore, scrap, direct reduced iron, and iron anchor hydride can be used as the iron source to be charged into the iron-bath smelting reduction furnace.

【0023】本発明の第2の形態は、高炉及び鉄浴型溶
融還元炉を備えた製鉄設備において、製鉄用コークスの
うち、粒度の大きいコークス(塊状コークスを主体とし
たもの)を高炉に、粒度の小さいコークス(粉状コーク
スを主体としたもの)を鉄浴型溶融還元炉にそれぞれ供
給して炭材として用いるものである。使用される製鉄用
コークスとしては、製鉄設備内のコークス炉で製造され
たコークス、当該製鉄設備外から供給されたコークスの
いずれでもよい。
A second aspect of the present invention is a steelmaking facility provided with a blast furnace and an iron-bath smelting reduction furnace, wherein, among the ironmaking coke, coke having a large particle size (mainly lump coke) is used in the blast furnace. Coke having a small particle size (mainly powdered coke) is supplied to an iron-bath smelting reduction furnace and used as a carbonaceous material. The coke for iron making used may be any of coke produced in a coke oven in a steel making facility and coke supplied from outside the steel making facility.

【0024】通常、このような製銑法では製鉄用コーク
スを適当な篩目により篩分けし、塊状コークスを含む粒
度の大きいコークスと、それよりも粒度の小さいコーク
スとに分離し、それぞれを高炉と鉄浴型溶融還元炉に炭
材として供給する。高炉と鉄浴型溶融還元炉に供給する
コークスの粒度の分岐点は先に述べた焼結鉱の場合と同
様であり、一般には従来の高炉法において装入に不適な
粒度のコークスを選別する際の篩い分け粒度とすればよ
いが、それ以上の篩い分け粒度を分岐点としてもよい。
Usually, in such an iron making method, coke for iron making is sieved through a suitable sieve to separate coke having a large particle size including large coke and coke having a smaller particle size. And supplied to the iron bath type smelting reduction furnace as carbon material. The branch point of the particle size of coke supplied to the blast furnace and the iron-bath smelting reduction furnace is the same as in the case of the sinter described above, and in general, the coke having a particle size unsuitable for charging in the conventional blast furnace method is selected. The sieving particle size at that time may be used, but a sieving particle size larger than that may be used as the branch point.

【0025】一般にコークスを高炉に装入するためには
篩い分け粒度で20mm以上の粒度が必要であり、この
ため高炉と鉄浴型溶融還元炉に供給するコークスの粒度
の分岐点は、篩い分け粒度で20mm以上の粒度とする
こと、すなわち、製鉄用コークスを20mm以上の篩目
で篩分けし、篩上のコークスを高炉に供給し、篩下のコ
ークスを鉄浴型溶融還元炉に供給することが好ましい。
また、コークスの粒度の分岐点(篩い分け粒度)はより
好ましくは25mm以上、特に好ましくは30mm以上
とするのがよく、これにより高炉側に特に好適な粒度の
コークスを供給することができる。
In general, charging coke into a blast furnace requires a sieving particle size of 20 mm or more. For this reason, the branch point of the particle size of the coke supplied to the blast furnace and the iron bath type smelting reduction furnace is determined by sieving. Particle size of 20 mm or more, that is, ironmaking coke is sieved with a sieve of 20 mm or more, coke on the sieve is supplied to the blast furnace, and coke under the sieve is supplied to the iron-bath smelting reduction furnace. Is preferred.
The branch point of the coke particle size (sieving particle size) is more preferably at least 25 mm, particularly preferably at least 30 mm, so that coke having a particularly suitable particle size can be supplied to the blast furnace side.

【0026】但し、コークスは高炉側に供給可能な粒度
のコークスの全てを高炉に供給する必要はなく、鉄浴型
溶融還元炉に供給すべき篩下のコークス中に、高炉側に
供給可能な粒度のコークスが含まれることは何ら差し支
えない。要は、高炉への装入が不適な粒度のコークスが
高炉側に供給されないようにすればよく、このような条
件を満たす限り、高炉と鉄浴型溶融還元炉に供給するコ
ークスの粒度の分岐点は、両炉へのコークス供給量等を
勘案して任意に設定することができる。なお、一般に篩
分け後の篩上のコークスには篩分け粒度未満の粒径のも
のがある程度含まれることは避けられず、本発明法は高
炉側に供給されるコークスがこのような粒度分布を有す
る場合も含むことは言うまでもない。
However, it is not necessary to supply all the coke having a particle size that can be supplied to the blast furnace to the blast furnace, and the coke can be supplied to the blast furnace during the coke under the sieve to be supplied to the iron bath type smelting reduction furnace. Inclusion of coke of a fine particle size is not a problem. In short, it suffices to prevent coke of a particle size inappropriate for charging the blast furnace from being supplied to the blast furnace side, and as long as such conditions are satisfied, the branching of the particle size of the coke supplied to the blast furnace and the iron-bath smelting reduction furnace The point can be set arbitrarily in consideration of the amount of coke supplied to both furnaces. In general, it is unavoidable that the coke on the screen after sieving contains particles having a particle size smaller than the sieving particle size to some extent, and in the present invention, the coke supplied to the blast furnace side has such a particle size distribution. Needless to say, it also includes the case of having.

【0027】また、後述するように鉄浴型溶融還元法で
炭材としてコークスを使用した場合には、従来の鉄浴型
溶融還元法で行われているような炭材(石炭)の乾燥は
不要となるが、そのためには製造されたコークスが鉄浴
型溶融還元炉に装入されるまでの間に過剰な吸湿をしな
いこと(例えば、水分吸収率:1%以下)が必要であ
る。したがって、製鉄用コークスのうち鉄浴型溶融還元
炉に供給すべきコークスについては、鉄浴型溶融還元炉
に装入するまでのハンドリング途中で極力吸湿しないよ
うな配慮、例えば、貯蔵する際に雨よけの天井を設ける
等の配慮をすることが必要である。
When coke is used as a carbon material in the iron-bath smelting reduction method as described later, the drying of the carbon material (coal) as in the conventional iron-bath smelting reduction method is performed. Although it becomes unnecessary, it is necessary that the produced coke does not absorb excessive moisture until it is charged into the iron-bath smelting reduction furnace (for example, a water absorption rate of 1% or less). Therefore, coke to be supplied to the iron-bath smelting reduction furnace among the coke for iron-making should be designed so that it does not absorb moisture as much as possible during handling before charging it into the iron-bath smelting reduction furnace. It is necessary to give consideration to the provision of ceilings.

【0028】このような形態の本発明の製銑法では、従
来行われている高炉法単独操業の場合に較べて次のよう
な利点がある。すなわち、先ず製鉄設備内のコークス炉
で製造され或いは製鉄設備外から供給される製鉄用コー
クスには高炉で使用できない細粒のコークスが相当量含
まれており、このような細粒のコークスのうち焼結鉱の
製造工程で消費し切れないコークスの有効利用を図るこ
とができる。また、製造後のコークスが吸湿しないよう
にして鉄浴型溶融還元炉に装入すれば、通常の鉄浴型溶
融還元法で必要とされる炭材の乾燥工程も全く不要であ
り、このため鉄浴型溶融還元法を低コストに実施するこ
とができる。
The iron making method of the present invention having such a configuration has the following advantages as compared with the conventional blast furnace method alone. That is, first, iron coke produced in a coke oven inside a steelmaking facility or supplied from outside the steelmaking facility contains a considerable amount of fine coke that cannot be used in a blast furnace. Of such fine coke, Effective use of coke that cannot be consumed in the sinter production process can be achieved. In addition, if the coke after production is charged into an iron-bath smelting reduction furnace so as not to absorb moisture, there is no need for a carbon material drying step required in a normal iron-bath smelting reduction method. The iron bath type smelting reduction method can be performed at low cost.

【0029】さらに、鉄浴型溶融還元法で炭材としてコ
ークスを用いた場合には、炭材として石炭を用いる場合
に較べて炉内発生ガスの二次燃焼率を大幅に高めること
ができる。すなわち、鉄浴型溶融還元法で炭材として石
炭を用いた場合の二次燃焼率はせいぜい30〜40%程
度であるのに対し、炭材としてコークスを用いた場合に
は二次燃焼率が50〜80%程度にもできるため、溶融
還元における燃料原単位の低減化と生産性の向上を図る
ことができる。さらに、コークスは固定炭素が石炭より
も格段に高く、且つ熱割れもしにくく炉内からの飛散を
生じにくいため、鉄浴型溶融還元における浸炭促進に役
立ち、高生産性及び操業の安定化に効果的である。ま
た、コークスは石炭に較べて水素含有量が低いため、排
ガス中のH2O濃度が石炭使用時の10〜25%に対し
て数%〜10%程度であり、ガスの輻射に影響するC
O、CO2、H2Oのうち最も影響の大きいH2O濃度が
石炭使用時に較べて格段に低いため、二次燃焼率が同じ
であれば炉の熱負荷も小さくすることができる。このた
めヒートロスも小さくて済み、この点からも燃料原単位
の低減化を図ることができる。
Further, when coke is used as the carbon material in the iron bath type smelting reduction method, the secondary combustion rate of the gas generated in the furnace can be greatly increased as compared with the case where coal is used as the carbon material. That is, the secondary combustion rate when coal is used as the carbon material in the iron-bath smelting reduction method is at most about 30 to 40%, whereas when the coke is used as the carbon material, the secondary combustion rate is reduced. Since it can be about 50 to 80%, it is possible to reduce the unit fuel consumption and improve the productivity in the smelting reduction. In addition, coke has much higher fixed carbon than coal, and is less prone to thermal cracking and less likely to scatter from inside the furnace. This helps promote carburization in iron-bath smelting reduction, and is effective in increasing productivity and stabilizing operations. It is a target. In addition, since the coke has a lower hydrogen content than coal, the H 2 O concentration in the exhaust gas is about several percent to 10% as compared with 10 to 25% when coal is used, and C is a gas that affects gas radiation.
O, large H 2 O concentration in the most influential of CO 2, H 2 O is for much lower compared to when using coal, it is possible to post combustion ratio is smaller heat load of the furnace if the same. Therefore, the heat loss can be reduced, and the fuel consumption rate can be reduced from this point.

【0030】本発明の第3の形態は、高炉、鉄浴型溶融
還元炉及び焼結機を備えた製鉄設備において、上述した
第1の形態および第2の形態の操業を同時に実施する製
銑法であり、焼結工程(焼結機)で製造された焼結鉱の
うち、粒度の大きい焼結鉱(塊状焼結鉱を主体としたも
の)を高炉に供給し、粒度の小さい焼結鉱(粉状焼結鉱
を主体としたもの)を鉄浴型溶融還元炉に供給し、ま
た、製鉄用コークスのうち、粒度の大きいコークス(塊
状コークスを主体としたもの)を高炉に供給し、粒度の
小さいコークス(粉状コークスを主体としたもの)を鉄
浴型溶融還元炉に供給し、それぞれ炉において溶銑を製
造するものである。
According to a third aspect of the present invention, there is provided a steelmaking facility provided with a blast furnace, an iron-bath type smelting reduction furnace and a sintering machine, in which ironmaking is simultaneously performed in the first and second modes. Of the sintered ore produced in the sintering process (sintering machine), the sintered ore with large grain size (mainly lump ore) is supplied to the blast furnace, Ore (mainly powdery sintered ore) is supplied to an iron-bath smelting reduction furnace, and coke with a large grain size (mainly lump coke) is supplied to a blast furnace for ironmaking coke. In addition, coke having a small particle size (mainly powdered coke) is supplied to an iron-bath smelting reduction furnace, and hot metal is produced in each furnace.

【0031】このような形態の製銑法における焼結鉱お
よびコークスの選別条件、操業条件等は先に述べた第1
の形態および第2の形態の製銑法の場合と同様である。
先に述べたように粒度の小さい焼結鉱を鉄浴型溶融還元
法に鉄源として供給する形態の製銑法では、基本的には
焼結機における返し鉱がなくなるため、高炉法単独操業
の場合に較べて焼結工程における粉コークスの使用量が
低減し、その分、粉コークスに余剰が生じることが考え
られる。したがって、このような形態の製銑法におい
て、製鉄用コークスのうちの粉コークスの一部を鉄浴型
溶融還元法の炭材として用いることにより、高炉、鉄浴
型溶融還元炉及び焼結機を備えた製鉄設備において、コ
ークス、特に粉コークスを主体とする細粒側のコークス
をバランスよく有効に利用することができる。
The conditions for selecting and operating the sintered ore and the coke in the iron making method of this embodiment are the same as those described in the first embodiment.
This is the same as the case of the iron making method of the second embodiment and the second embodiment.
As mentioned earlier, in the ironmaking method in which small ore with a small grain size is supplied as an iron source to the iron bath type smelting reduction method, there is basically no return ore in the sintering machine. It is conceivable that the amount of coke breeze used in the sintering process is reduced as compared with the case of (1), and the coke breeze becomes excessive accordingly. Therefore, in such an iron making method, by using a part of the coke breeze of the iron making coke as a carbon material in the iron bath type smelting reduction method, a blast furnace, an iron bath type smelting reduction furnace and a sintering machine are used. In the iron making facility provided with the above, coke, in particular, fine-grain coke mainly composed of powdered coke can be effectively used in a well-balanced manner.

【0032】なお、本発明法が適用可能な溶融還元法
は、密閉型の炉内で発生ガスに二次燃焼を生じさせる鉄
浴型の溶融還元法であり、COREXプロセスのように
塊原料をシャフト炉で還元した後、ガス化溶融炉に投入
するような溶融還元法は鉄源、炭材ともに塊状であるこ
とが要求されるため、本発明法は適用できない。
The smelting reduction method to which the method of the present invention can be applied is an iron bath type smelting reduction method in which the generated gas undergoes secondary combustion in a closed furnace. Since the smelting reduction method in which the iron source and the carbonaceous material are fed into a gasification melting furnace after reduction in a shaft furnace is required to be in a lump, the method of the present invention cannot be applied.

【0033】[0033]

【実施例】表1に鉄浴型溶融還元炉における操業例を示
す。このうち本発明例1は鉄源として返し鉱に相当する
焼結粉(篩目5mmの篩下の焼結鉱)を用い、炭材とし
て石炭を用いて溶銑を製造した例、本発明例2は鉄源と
して鉄鉱石を用い、炭材として粉コークス(篩目20m
mの篩下のコークス)を用いて溶銑を製造した例、本発
明例3は鉄源として返し鉱に相当する焼結粉(篩目4m
mの篩下の焼結鉱)を用い、炭材として粉コークス(篩
目20mmの篩下のコークス)を用いて溶銑を製造した
例である。また、比較例は鉄源として鉄鉱石を用い、炭
材として石炭を用いて溶銑を製造した例である。
EXAMPLES Table 1 shows an example of operation in an iron bath type smelting reduction furnace. Among them, Example 1 of the present invention was an example in which a hot metal was manufactured using a sintered powder (a sintered ore under a sieve having a sieve of 5 mm) corresponding to return ore as an iron source and using coal as a carbon material, and Example 2 of the present invention. Uses iron ore as an iron source and coke breeze (20 m
The present invention example 3 is a sintered powder (sieving mesh 4 m) corresponding to a return ore as an iron source.
This is an example in which hot metal was manufactured using coke breeze (coke under a sieve with a sieve of 20 mm) as a carbonaceous material using sinter under a sieve under a m. Further, a comparative example is an example in which hot metal was manufactured using iron ore as an iron source and coal as a carbonaceous material.

【0034】表1によれば、鉄源として返し鉱に相当す
る焼結粉を用いた本発明例1では、鉱石の乾燥工程(鉱
石乾燥用の蒸気)が全く不要であり、また、焼石灰や軽
ドロマイトの装入も不要であるため、経済的な効果が大
きい。また、比較例に較べて燃料原単位を低減すること
ができ、その分生産量を増大させることができる。ま
た、炭材として粉コークスを用いた本発明例2では石炭
の乾燥工程(石炭乾燥用の蒸気)が全く不要であり、ま
た実施例1以上に燃料原単位を低減することができ、生
産量をより増大させることができる。さらに、鉄源とし
て返し鉱に相当する焼結粉を用い、且つ炭材として粉コ
ークスを用いた本発明例3では、鉱石及び石炭の乾燥工
程がいずれも全く不要であり、また、本発明例1以上に
燃料原単位を低減することができ、生産量をより増大さ
せることができる。
According to Table 1, in Example 1 of the present invention using the sintered powder corresponding to the return ore as the iron source, the ore drying step (steam for ore drying) is not required at all, and the calcined lime is not required. Since there is no need to load light or light dolomite, the economic effect is great. Further, the fuel consumption rate can be reduced as compared with the comparative example, and the production amount can be increased accordingly. Further, in Example 2 of the present invention using coke breeze as a carbon material, a coal drying step (steam for coal drying) is not required at all, and the fuel consumption rate can be reduced as compared with Example 1 or more. Can be further increased. Furthermore, in Example 3 of the present invention using sintered powder corresponding to return ore as an iron source and using coke breeze as a carbon material, both the ore and coal drying steps were not required at all, and The unit fuel consumption can be reduced to one or more, and the production amount can be further increased.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【0037】[0037]

【発明の効果】以上述べた本発明によれば、1つの製鉄
設備において高炉法を鉄浴型溶融還元法で補完し、鉄浴
型溶融還元炉において高炉では利用できない粒度の小さ
い焼結鉱及びコークスを用いて製銑を製造するため、製
銑コストの低減化、製銑能力の向上と適正化、さらには
高炉の延命化を図ることができる。
According to the present invention described above, the blast furnace method is complemented by the iron bath type smelting reduction method in one iron making facility, and the iron ore smelting reduction furnace has a small particle size sintered ore which cannot be used in the blast furnace. Since ironmaking is manufactured using coke, it is possible to reduce ironmaking costs, improve and optimize ironmaking capacity, and extend the life of blast furnaces.

【図面の簡単な説明】[Brief description of the drawings]

【図1】焼結鉱の原料鉱石の給鉱粒度分布と製造された
焼結鉱を篩分けした後の篩下及び篩上の各焼結鉱の粒度
分布の一例を示すグラフ
FIG. 1 is a graph showing an example of the particle size distribution of the ore raw material ore and the particle size distribution of each of the sintered ore under and after sieving the produced ore.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 澤田 輝俊 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 関口 毅 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 渡部 雅之 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Terutoshi Sawada 1-2-1, Marunouchi, Chiyoda-ku, Tokyo, Japan Inside Nihon Kokan Co., Ltd. (72) Inventor Takeshi Sekiguchi 1-2-1, Marunouchi, Chiyoda-ku, Tokyo, Japan (72) Inventor Masayuki Watanabe 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 高炉、鉄浴型溶融還元炉及び焼結機を備
えた製鉄設備において、焼結機で製造された焼結鉱のう
ち、粒度の大きい焼結鉱を高炉に供給し、粒度の小さい
焼結鉱を鉄浴型溶融還元炉に供給することを特徴とする
製銑方法。
In an iron making facility provided with a blast furnace, an iron-bath smelting reduction furnace and a sintering machine, among the sinters produced by the sintering machine, large-sized sinters are supplied to the blast furnace, A method for making pig iron, comprising supplying a sintered ore having a small diameter to an iron bath type smelting reduction furnace.
【請求項2】 高炉及び鉄浴型溶融還元炉を備えた製鉄
設備において、製鉄用コークスのうち、粒度の大きいコ
ークスを高炉に供給し、粒度の小さいコークスを鉄浴型
溶融還元炉に供給することを特徴とする製銑方法。
2. In an iron making facility provided with a blast furnace and an iron-bath smelting reduction furnace, of the iron-making coke, large-grain coke is supplied to the blast furnace, and small-grain coke is supplied to the iron-bath smelting reduction furnace. An iron making method characterized by the above-mentioned.
【請求項3】 高炉、鉄浴型溶融還元炉及び焼結機を備
えた製鉄設備において、焼結機で製造された焼結鉱のう
ち、粒度の大きい焼結鉱を高炉に供給し、粒度の小さい
焼結鉱を鉄浴型溶融還元炉に供給するとともに、製鉄用
コークスのうち、粒度の大きいコークスを高炉に供給
し、粒度の小さいコークスを鉄浴型溶融還元炉に供給す
ることを特徴とする製銑方法。
3. An iron making facility provided with a blast furnace, an iron bath type smelting reduction furnace, and a sintering machine. In addition to supplying small ore sinter to iron-bath smelting reduction furnace, large-sized coke of ironmaking coke is supplied to blast furnace, and small-grain coke is supplied to iron-bath smelting reduction furnace. Iron making method.
【請求項4】 焼結機で製造された焼結鉱を3mm以上
の篩目で篩分けし、篩下の焼結鉱を鉄浴型溶融還元炉に
供給することを特徴とする請求項1または3に記載の製
銑方法。
4. The sinter produced in a sintering machine is sieved with a sieve of 3 mm or more, and the sinter under the sieve is supplied to an iron-bath smelting reduction furnace. Or the iron making method according to 3.
【請求項5】 製鉄用コークスを20mm以上の篩目で
篩分けし、篩下のコークスを鉄浴型溶融還元炉に供給す
ることを特徴とする請求項2または3に記載の製銑方
法。
5. The iron making method according to claim 2, wherein the coke for iron making is sieved with a sieve having a size of 20 mm or more, and the coke under the sieve is supplied to an iron-bath smelting reduction furnace.
【請求項6】 高炉を出銑比1.0〜1.7t/m3
dayで操業することを特徴とする請求項1、2、3、
4または5に記載の製銑方法。
6. A blast furnace having a tapping ratio of 1.0 to 1.7 t / m 3 /
4. The method according to claim 1, wherein the operation is performed on day.
6. The iron making method according to 4 or 5.
JP36843097A 1997-12-26 1997-12-26 Ironmaking method Pending JPH11193406A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP36843097A JPH11193406A (en) 1997-12-26 1997-12-26 Ironmaking method
CN98812533A CN1283222A (en) 1997-12-26 1998-12-24 Refining method of molten iron and reduction smelting method for producing molten iron
PCT/JP1998/005852 WO1999034022A1 (en) 1997-12-26 1998-12-24 Refining method of molten iron and reduction smelting method for producing the molten iron
IDW20001412A ID26484A (en) 1997-12-26 1998-12-24 METHOD OF PURPLE IRON PURPLE AND PURPLE REDUCTION METHOD TO PRODUCE PASS IRON
CA002315031A CA2315031A1 (en) 1997-12-26 1998-12-24 Refining method of molten iron and smelting reduction method for producing molten iron
KR10-2000-7006438A KR100370920B1 (en) 1997-12-26 1998-12-24 Refining method of molten iron and reduction smelting method for producing the molten iron
BR9814479-0A BR9814479A (en) 1997-12-26 1998-12-24 "method for refining cast iron and method for reducing castings for the production of cast iron"
TW87121601A TW467955B (en) 1997-12-26 1998-12-24 Refining method of molten iron and reduction smelting method for producing molten iron
AU16877/99A AU755341B2 (en) 1997-12-26 1998-12-24 Refining method of molten iron and reduction smelting method for producing the molten iron
US09/974,511 US6837916B2 (en) 1997-12-26 2001-10-10 Smelting reduction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36843097A JPH11193406A (en) 1997-12-26 1997-12-26 Ironmaking method

Publications (1)

Publication Number Publication Date
JPH11193406A true JPH11193406A (en) 1999-07-21

Family

ID=18491801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36843097A Pending JPH11193406A (en) 1997-12-26 1997-12-26 Ironmaking method

Country Status (1)

Country Link
JP (1) JPH11193406A (en)

Similar Documents

Publication Publication Date Title
RU2260624C2 (en) Method and apparatus for recirculation of iron-containing dust and slime at cast iron production process with use of coal and ore fines
RU2490333C2 (en) Method and device for obtaining cast iron or liquid steel half-finished products
CN100560739C (en) A kind of ironmaking technique of fusion and reduction that fully utilizes coal gas and fine ore
EP1408124B1 (en) Method for producing feed material for molten metal production and method for producing molten metal
US6685761B1 (en) Method for producing beneficiated titanium oxides
US4551172A (en) Process of producing liquid carbon-containing iron
KR100584732B1 (en) Recycling method of waste material by using of coal based iron making process
CN104004905B (en) A kind of blast furnace ironmaking prereduced burden production technique
JP4279785B2 (en) Hot metal production apparatus for dry-air feeding iron ore and auxiliary materials and hot metal production method
CN115491453B (en) PLCsmelt smelting reduction iron-making method and device
KR20030052345A (en) Ironmaking process with briquetting facility using fine iron and sludge
CN104988267B (en) A kind of continuous direct steelmaking method of Electromagnetic Heating carbonaceous pelletizing
JP2002517607A (en) Sustained iron production and solid waste minimization by enhanced direct reduction of iron oxide
US4540432A (en) Continuous process of melting sponge iron
JPH11193406A (en) Ironmaking method
CN114395655A (en) Method for reducing energy consumption of Ou metallurgical furnace process
JP4060986B2 (en) How to use dust in converter steelmaking.
JP2016536468A (en) Steel production in coke dry fire extinguishing system.
CN107739819A (en) A kind of method of coal base shaft furnace process processing iron content red mud
US3832158A (en) Process for producing metal from metal oxide pellets in a cupola type vessel
JP6763227B2 (en) Manufacturing method of reduced iron and manufacturing method of molten steel
JPH037723B2 (en)
CN114622049B (en) Iron-making process for efficiently utilizing sintered return ores to reduce energy consumption of HIsmelt process
CN115626814B (en) Converter large fabric produced by using magnesite tailing powder and preparation method thereof
US20220403481A1 (en) System and method for the production of hot briquetted iron (hbi) containing flux and/or carbonaceous material at a direct reduction plant