JPH11192551A - Method for predicting progression of disconnection of secondary cable strand for welding - Google Patents

Method for predicting progression of disconnection of secondary cable strand for welding

Info

Publication number
JPH11192551A
JPH11192551A JP36840297A JP36840297A JPH11192551A JP H11192551 A JPH11192551 A JP H11192551A JP 36840297 A JP36840297 A JP 36840297A JP 36840297 A JP36840297 A JP 36840297A JP H11192551 A JPH11192551 A JP H11192551A
Authority
JP
Japan
Prior art keywords
value
resistance
short
secondary cable
resistance value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP36840297A
Other languages
Japanese (ja)
Inventor
Hiroyuki Ishii
博幸 石井
Shinya Okamoto
真也 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP36840297A priority Critical patent/JPH11192551A/en
Publication of JPH11192551A publication Critical patent/JPH11192551A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make it possible to check the deterioration of a secondary cable or connector and to make remedy, such as early exchange, by emitting a display and alarm when the short-circuit voltage increment of the N-th time exceeds the permissible value of a resistance increase voltage drop. SOLUTION: A permissible value ΔRr of the resistance increase from the resistance value at the section and length of the connected secondary cable to the resistance value to give rise to the danger of an overheat burn is set before the start of work. The short-circuit current after a stud is pushed into a material to be welded is supplied at the time of first welding at the start of the work and the average value V2a=V21 of the pushing short-circuit current and the average value I2a=I21 of the pushing short-circuit current are detected. The initial resistance value R1=V21/I21 is then calculated. The average value V2a=V2n of the pushing short-circuit current and the average value I2a=I2n of the pushing short-circuit current are detected and Rn=V 2n/I2n is calculated during the supply of the short-circuit current of the N-th time. The resistance value increment ΔRn=Rn-R1 of the N-th time is then determined and is compared with ΔRr. The point of the time that ΔRn exceeds ΔRr is determined as the time for exchange of the secondary cable.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、スタッド溶接ガン
又は半自動ガスシールド消耗電極アーク溶接トーチの本
体に取付けられているケ−ブルの固定部分(以下、本体
ケ−ブルという)又は本体ケ−ブルに延長接続する溶接
用ケーブル素線の断線進行予測方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fixed part of a cable (hereinafter referred to as a main body cable) or a main body cable attached to a main body of a stud welding gun or a semi-automatic gas shield consumable electrode arc welding torch. The present invention relates to a method for predicting the progress of disconnection of a welding cable strand to be extendedly connected to a cable.

【0002】[0002]

【従来の技術】本体ケ−ブル及び溶接用ケーブル(以
下、2次ケーブルという)は、通常の固定配線されたケ
ーブルに比べて、第1に、溶接箇所まで頻繁に引き回さ
れ、屈曲と延伸との繰り返し回数(以下、屈曲回数とい
う)及び2次ケーブルの捻れが多いために、ケーブル素
線の断線(以下、部分断線という)することが多い。第
2に、本体ケ−ブルは可撓性をよくするために通常のケ
ーブルよりも細い素線を使用しているので素線が断線し
やすい。第3に、溶接箇所まで頻繁に移動させ、大電流
を通電するので、固定配線されたケーブルに比べて、断
面積の小さいケーブルを使用するために、電圧降下によ
る発熱が大となり、素線の一部が断線すると残りの素線
の断線が急速に進行する。したがつて、通常の固定配線
されたケーブルの劣化が、電圧降下による発熱によって
絶縁が低下して使用不能になるのに対して、2次ケーブ
ルの劣化は、素線の断線が進行して異常発熱して使用不
能になる。
2. Description of the Related Art First, a main body cable and a welding cable (hereinafter referred to as a secondary cable) are frequently routed to a welded portion, bent and extended, as compared with a normal fixedly wired cable. (Hereinafter, referred to as the number of bending times) and the twisting of the secondary cable is large, so that the cable strand is often disconnected (hereinafter, referred to as partial disconnection). Second, since the main body cable uses a thinner wire than a normal cable in order to improve flexibility, the wire is easily broken. Third, since the wire is frequently moved to the welded portion and a large current is applied, compared to a fixedly wired cable, a cable having a smaller cross-sectional area is used. When a part of the wire breaks, the remaining wire breaks rapidly. Therefore, the deterioration of ordinary fixed-wired cables deteriorates insulation due to the heat generated by the voltage drop, making them unusable. On the other hand, the deterioration of secondary cables is abnormal due to the progression of wire breakage. It becomes unusable due to overheating.

【0004】特に、溶接箇所が建築物等の大形構造物の
スタッド溶接作業は、溶接箇所まで溶接ケーブルを本体
ケ−ブルに接続延長して、総延長長さが100[m]に
及ぶ場合もある。この2次ケ−ブルは、溶接箇所まで頻
繁に引き回され、特に、本体ケ−ブルは、屈曲回数が多
く、使用を繰り返すと部分断線し、しかもその部分断線
数の進行が速い。
[0004] In particular, in a stud welding operation for a large structure such as a building where a welding portion is to be welded, a welding cable is connected and extended to a main body cable up to the welding portion, and the total extension length is 100 [m]. There is also. The secondary cable is frequently routed to the welding location. In particular, the main body cable has a large number of bendings, and is partially broken when used repeatedly, and the number of the partially broken wires progresses rapidly.

【0006】さらに、スタッド溶接は、1000[A]
以上の大電流を通電するために、2次ケーブルのわずか
な抵抗値であっても、10〜30[V]程度のかなり大
きい電圧降下が発生して、2次ケーブルが発熱し、特
に、屈曲回数が多い部分で、2次ケーブルの劣化が激し
く、溶接作業中に急速に部分断線数が進行して、部分断
線部分にア−クが発生することがあり危険である。この
2次ケーブルの屈曲回数が多い部分は、溶接作業者近傍
の位置であるために、実際に火傷事故が発生したことが
ある。そこで、定期的に又は溶接作業の開始前に、溶接
ケーブル素線の断線及びその部分断線数の進行をチェッ
ク(以下、断線チェックという)する必要がある。
Further, stud welding is performed at 1000 [A].
Since the above large current flows, even if the secondary cable has a small resistance value, a considerably large voltage drop of about 10 to 30 [V] occurs, and the secondary cable generates heat. In the part where the number of times is large, the deterioration of the secondary cable is severe, and the number of partial breaks progresses rapidly during welding work, which may cause arcs in the partial breaks, which is dangerous. Since the portion where the number of times of bending of the secondary cable is large is located near the welding operator, a burn accident has actually occurred in some cases. Therefore, it is necessary to check the disconnection of the welding cable strand and the progress of the number of partial disconnections thereof (hereinafter referred to as disconnection check) periodically or before starting the welding operation.

【0010】本出願人は、スタッド溶接において、実際
に発生した事故に対する対策(2次ケ−ブルの断線チェ
ック)として、2次ケ−ブル自体に定電流を通電して、
断線チェックしたい部分の温度上昇を確認する方法を検
討した。以下に、この2次ケ−ブルの検討済断線チェッ
ク方法を説明する。
[0010] The present applicant has applied a constant current to the secondary cable itself as a countermeasure against an accident that actually occurred in the stud welding (check for disconnection of the secondary cable).
A method for confirming a temperature rise in a portion to be checked for disconnection was examined. Hereinafter, a method for checking the broken connection of the secondary cable will be described.

【0011】図1は、通常のスタッド溶接をするときの
2次ケ−ブルの接続状態を示す図である。通常、溶接ガ
ン2の本体ケ−ブル17aの一端は、スタッドSを保持
するスタッドチャック2bを移動させるスタッド移動用
シャフト2aに取り付けられた本体ケーブル接続金具2
cに接続されている。通常のスタッド溶接をするとき
は、溶接ガン2の本体ケ−ブル17aの他端を溶接電源
装置1の一方の出力端子に接続し、溶接ケ−ブル17を
被溶接材Wと溶接電源装置1の他方の出力端子間に接続
する。
FIG. 1 is a view showing a connection state of a secondary cable when ordinary stud welding is performed. Normally, one end of the main body cable 17a of the welding gun 2 has a main body cable connection fitting 2 attached to a stud moving shaft 2a for moving a stud chuck 2b holding a stud S.
c. When performing normal stud welding, the other end of the main body cable 17a of the welding gun 2 is connected to one output terminal of the welding power supply 1, and the welding cable 17 is connected to the workpiece W and the welding power supply 1. Between the other output terminals.

【0012】図2は、本出願人の従来方法のスタッド溶
接の2次ケ−ブルの劣化状態をチェックするときの2次
ケ−ブルの接続状態を示す図である。この断線チェック
方法は、2次ケーブル素線数の1/2が断線した場合
を、2次ケ−ブルの寿命と定める。同図において、通常
のスタッド用溶接電源装置1を使用して、2次ケ−ブル
17に定電流を通電する。本体ケ−ブル17aの劣化状
態をチェックするときは、図1の状態から、本体ケーブ
ル接続金具2cに接続されている本体ケーブル17aを
取り外し、溶接電源装置1の一方の出力端子に接続され
ている溶接ケーブル17に接続する。この断線チェック
したい本体ケーブル17aの断線チェック部分17bの
温度上昇値を、熱電対32等を使用した温度上昇値測定
器31を使用して予め測定しておき、この初回の温度上
昇値を判定温度上昇値Trとする。
FIG. 2 is a diagram showing a connection state of the secondary cable when checking the deterioration state of the secondary cable of the stud welding according to the conventional method of the present applicant. In this disconnection checking method, the life of the secondary cable is determined when half of the number of the secondary cables is disconnected. In the figure, a constant current is supplied to the secondary cable 17 by using a normal stud welding power supply 1. When checking the deterioration state of the main body cable 17a, the main body cable 17a connected to the main body cable connection fitting 2c is removed from the state of FIG. 1 and is connected to one output terminal of the welding power supply device 1. Connect to welding cable 17. The temperature rise value of the disconnection check portion 17b of the main body cable 17a to be checked for disconnection is measured in advance using a temperature rise value measuring device 31 using a thermocouple 32 or the like, and this initial temperature rise value is determined as a judgment temperature. The rising value Tr is used.

【0014】次に、実際に、スタッド溶接電流に相当す
る1秒間通電と5秒間休止とを1サイクルとする約15
00[A]の電流を通電する。20サイクル及び100
サイクル(以下、N回目という)の通電中に、温度上昇
値測定器31を使用して溶接終了後の断線チェック部分
17bの温度上昇値を測定し、このN回目の測定温度上
昇値Tnと判定温度上昇値Trとを比較して、寿命を推
定する。
Next, actually, a cycle of 1 second energization corresponding to the stud welding current and a 5 second pause is approximately 15 cycles.
A current of 00 [A] is applied. 20 cycles and 100
During the energization of the cycle (hereinafter, referred to as Nth cycle), the temperature rise value of the disconnection check portion 17b after the end of welding is measured using the temperature rise value measuring device 31 and determined as the Nth measured temperature rise value Tn. The life is estimated by comparing the temperature rise value Tr.

【0020】[0020]

【発明が解決しようとする課題】この本出願人の従来方
法は、断線の発生しやすい屈曲部分、例えば、図2の断
線チェック部分17bを特定しておき、その特定した断
線チェック部分17bの温度上昇値を熱電対32等を用
いて測定しなければならないために、かなりの労力を必
要とし、特に、建築現場での作業では実用的でない。さ
らに、特定した箇所の温度測定時に、誤差及びバラツキ
が生じるために、この検討済断線チェック方法は、常
に、2次ケ−ブルの被覆外観をチェックと併用する必要
がある。
In the conventional method of the present applicant, a bent portion where disconnection is likely to occur, for example, a disconnection check portion 17b in FIG. 2 is specified, and the temperature of the specified disconnection check portion 17b is determined. Since the rising value has to be measured using the thermocouple 32 or the like, a considerable amount of labor is required, and it is not practical especially for work at a construction site. Further, since errors and variations occur at the time of measuring the temperature of the specified portion, this considered disconnection check method must always be used in combination with the check of the coating appearance of the secondary cable.

【0031】[0031]

【課題を解決するための手段】請求項1の方法は、2次
ケーブルの劣化チェック方法において、作業開始前に接
続している2次ケ−ブル(判定基準2次ケ−ブル)の断
面及び長さにおける抵抗値から過熱焼損の危険を生ずる
抵抗値までの抵抗増加電圧降下許容値ΔVrを予め定め
ておき、作業開始時の初回の溶接時に短絡電流を通電し
て短絡電圧平均値V2a=V21(以下、初回短絡電圧平均
値V21という)を測定し、次に、溶接毎、例えばN回目
の溶接時に短絡電流を通電してN回目短絡電圧平均値V
2a=V2n(以下、N回目短絡電圧平均値V2nという)を
測定して、このN回目短絡電圧平均値V2nと上記初回短
絡電圧平均値V21との差のN回目短絡電圧増加分ΔV2n
=V2n−V21を算出し、このN回目短絡電圧増加分ΔV
2nと上記抵抗増加電圧降下許容値ΔVrとを比較して、
上記N回目短絡電圧増加分ΔV2nが上記抵抗増加電圧降
下許容値ΔVrを越えた時点を、2次ケーブルの交換時
期とする溶接用の2次ケーブル素線の断線進行予測方法
である。
According to a first aspect of the present invention, there is provided a method for checking deterioration of a secondary cable, wherein a cross-section of a secondary cable (judgment reference secondary cable) connected before starting work. The resistance increase voltage drop allowable value ΔVr from the resistance value at the length to the resistance value causing the danger of overheating burnout is determined in advance, and a short-circuit current is supplied during the first welding at the start of work, and the short-circuit voltage average value V2a = V21 (Hereinafter, referred to as an initial short-circuit voltage average value V21), and then a short-circuit current is supplied at each welding, for example, at the time of the N-th welding, and an N-th short-circuit voltage average value V21 is applied.
2a = V2n (hereinafter referred to as an N-th short-circuit voltage average value V2n), and an N-th short-circuit voltage increase ΔV2n of a difference between the N-th short-circuit voltage average value V2n and the first short-circuit voltage average value V21.
= V2n-V21, and the Nth short-circuit voltage increase ΔV
2n and the above-mentioned resistance increase voltage drop allowable value ΔVr,
This is a method for predicting the progress of the disconnection of a secondary wire for welding at the time when the N-th short-circuit voltage increase ΔV2n exceeds the resistance increase voltage drop allowable value ΔVr.

【0032】請求項2の方法は、2次ケーブルの劣化チ
ェック方法において、作業開始前に接続している2次ケ
−ブルの断面及び長さにおける抵抗値から過熱焼損の危
険を生ずる抵抗値までの抵抗増加電圧降下許容値ΔVr
を予め定めておき、作業開始時の初回の溶接時に、スタ
ッドを被溶接材に押し込んだ後の短絡電流通電中に、初
回押し込み短絡電圧平均値V2a=V21を測定し、次に、
溶接毎、例えばN回目にスタッドを被溶接材に押し込ん
だ後の短絡電流通電中に、N回目押し込み短絡電圧平均
値V2a=V2nを測定して、このN回目押し込み短絡電圧
平均値V2a=V2nと上記初回押し込み短絡電圧平均値V
2a=V21との差のN回目押し込み短絡電圧増加分ΔV2n
=V2n−V21を算出し、このN回目押し込み短絡電圧増
加分ΔV2nと上記抵抗増加電圧降下許容値ΔVrとを比
較して、上記N回目押し込み短絡電圧増加分ΔV2nが上
記抵抗増加電圧降下許容値ΔVrを越えた時点を、2次
ケーブルの交換時期とする溶接用の2次ケーブル素線の
断線進行予測方法である。
According to a second aspect of the present invention, in the method for checking the deterioration of the secondary cable, the resistance from the cross section and the length of the secondary cable connected before the start of the operation to the resistance value which may cause overheating and burning. Resistance increase voltage drop ΔVr
In advance, at the time of the first welding at the start of the work, during the short-circuit current flow after pushing the stud into the workpiece, the initial indentation short-circuit voltage average value V2a = V21 is measured,
For each welding, for example, during the short-circuit current flow after pushing the stud into the material to be welded for the Nth time, the Nth indentation short-circuit voltage average value V2a = V2n is measured, and this Nth indentation short-circuit voltage average value V2a = V2n Above initial short-circuit voltage V
2a = N21th press-in short-circuit voltage increase ΔV2n difference from V21
= V2n-V21, and compares the Nth press-in short-circuit voltage increase ΔV2n with the resistance increase voltage drop allowable value ΔVr, and calculates the Nth push-in short-circuit voltage increase ΔV2n as the resistance increase voltage drop allowable value ΔVr. This is a method for predicting the progress of disconnection of a secondary cable strand for welding, with the point in time beyond which the secondary cable is replaced.

【0033】請求項3の方法は、2次ケーブルの劣化チ
ェック方法において、作業開始前に接続している2次ケ
−ブルの断面及び長さにおける抵抗値から過熱焼損の危
険を生ずる抵抗値までの抵抗増加許容値ΔRrを予め定
めておき、作業開始時の初回溶接時の初期抵抗値R1と
N回目溶接時のN回目抵抗値Rnとの差のN回目抵抗値
増加分ΔRn=Rn−R1を算出し、このN回目抵抗値
増加分ΔRnと上記抵抗増加許容値ΔRrとを比較し
て、上記N回目抵抗値増加分ΔRnが上記抵抗増加許容
値ΔRrを越えた時点を、2次ケーブルの交換時期とす
る溶接用の2次ケーブル素線の断線進行予測方法であ
る。
According to a third aspect of the present invention, in the method for checking the deterioration of a secondary cable, from the resistance value in the cross section and the length of the secondary cable connected before the start of the operation to the resistance value causing a danger of overheating and burning. Is set in advance, and the Nth resistance value increase ΔRn = Rn−R1 of the difference between the initial resistance value R1 at the time of initial welding at the start of work and the Nth resistance value Rn at the time of Nth welding. Is calculated, and the N-th resistance increase ΔRn is compared with the resistance increase allowable value ΔRr, and the time when the N-th resistance increase ΔRn exceeds the resistance increase allowable value ΔRr is determined. This is a method for predicting the progress of disconnection of a secondary cable strand for welding to be replaced.

【0034】請求項4の方法は、2次ケーブルの劣化チ
ェック方法において、作業開始前に接続している2次ケ
−ブルの断面及び長さにおける抵抗値から過熱焼損の危
険を生ずる抵抗値までの抵抗増加許容値ΔRrを予め定
めておき、作業開始時の初回の溶接時に短絡電流を通電
して短絡電圧平均値V2a=V21と短絡電流平均値I2a=
I21とを検出して初期抵抗値R1=V21/I21を算出
し、次に、溶接毎、例えばN回目の溶接時に短絡電流を
通電してN回目短絡電圧平均値V2a=V2nと短絡電流平
均値I2a=I2nとを検出してN回目抵抗値Rn=V2n/
I2nを算出して、このN回目抵抗値Rnと上記初期抵抗
値R1との差のN回目抵抗値増加分ΔRn=Rn−R1
を算出し、このN回目抵抗値増加分ΔRnと上記抵抗増
加許容値ΔRrとを比較して、上記N回目抵抗値増加分
ΔRnが上記抵抗増加許容値ΔRrを越えた時点を、2
次ケーブルの交換時期とする溶接用の2次ケーブル素線
の断線進行予測方法である。
According to a fourth aspect of the present invention, in the method for checking the deterioration of a secondary cable, from the resistance value in the cross section and the length of the secondary cable connected before the start of the operation to the resistance value causing a risk of overheating and burning. Is set in advance, and a short-circuit current is supplied during the first welding at the start of the work, and the short-circuit voltage average value V2a = V21 and the short-circuit current average value I2a =
I21 is detected to calculate an initial resistance value R1 = V21 / I21. Then, a short-circuit current is supplied at each welding, for example, at the time of the Nth welding, and an Nth short-circuit voltage average value V2a = V2n and a short-circuit current average value I2a = I2n is detected and the Nth resistance value Rn = V2n /
I2n is calculated, and the Nth resistance value increase ΔRn = Rn−R1 of the difference between the Nth resistance value Rn and the initial resistance value R1 is calculated.
Is calculated, and the N-th resistance increase ΔRn is compared with the resistance increase allowable value ΔRr, and the time when the N-th resistance increase ΔRn exceeds the resistance increase allowable value ΔRr is determined by 2
This is a method for predicting the progress of disconnection of a secondary cable strand for welding at the time of replacing the next cable.

【0035】請求項5の方法は、2次ケーブルの劣化チ
ェック方法において、作業開始前に接続している2次ケ
−ブルの断面及び長さにおける抵抗値から過熱焼損の危
険を生ずる抵抗値までの抵抗増加許容値ΔRrを予め定
めておくき、作業開始時の初回の溶接時に、スタッドを
被溶接材に押し込んだ後の短絡電流通電中に、押し込み
短絡電圧平均値V2a=V21と押し込み短絡電流平均値I
2a=I21とを検出して初期抵抗値R1=V21/I21を算
出し、次に、溶接毎、例えばN回目にスタッドを被溶接
材に押し込んだ後の短絡電流通電中に、押し込み短絡電
圧平均値V2a=V2nと押し込み短絡電流平均値I2a=I
2nとを検出してN回目抵抗値Rn=V2n/I2nを算出し
て、このN回目抵抗値Rnと上記初期抵抗値R1との差
のN回目抵抗値増加分ΔRn=Rn−R1を算出し、こ
のN回目抵抗値増加分ΔRnと上記抵抗増加許容値ΔR
rとを比較して、上記N回目抵抗値増加分ΔRnが上記
抵抗増加許容値ΔRrを越えた時点を、2次ケーブルの
交換時期とする溶接用の2次ケーブル素線の断線進行予
測方法である。
According to a fifth aspect of the present invention, in the method for checking the deterioration of a secondary cable, from the resistance value in the cross section and the length of the secondary cable connected before the start of the operation to the resistance value causing a risk of overheating and burning. The resistance increase allowable value ΔRr is determined in advance, and at the time of the first welding at the start of the work, the short-circuit voltage average value V2a = V21 when the short-circuit voltage average value V2a = V21 during the short-circuit current after the stud is pushed into the workpiece. Average value I
2a = I21 is detected and the initial resistance value R1 = V21 / I21 is calculated. Then, during the welding, for example, when the short-circuit current is applied after the stud is pushed into the work to be welded at the Nth time, the average of the pushing short-circuit voltage is obtained. Value V2a = V2n and the average value of the inrush short-circuit current I2a = I
2n is detected and the Nth resistance value Rn = V2n / I2n is calculated, and the Nth resistance value increase ΔRn = Rn−R1 of the difference between the Nth resistance value Rn and the initial resistance value R1 is calculated. The Nth resistance value increase ΔRn and the resistance increase allowable value ΔR
When the N-th resistance increase ΔRn exceeds the resistance increase allowable value ΔRr, the time at which the secondary cable is replaced is determined by the method of predicting the progress of the disconnection of the secondary cable strand for welding. is there.

【0036】請求項6の方法は、2次ケーブルの劣化チ
ェック方法において、作業開始前に接続している2次ケ
−ブルの断面及び長さにおける抵抗値から過熱焼損の危
険を生ずる抵抗値までの抵抗増加許容値ΔRrを予め定
めておき、作業開始時の初回の溶接時に短絡電流を通電
して、初回短絡検出期間Tsdの間、時刻tの短絡電圧瞬
時値V(t)及び短絡電流瞬時値I(t)を検出し、短
絡電圧瞬時値V(t)を短絡電流瞬時値I(t)で除算
して瞬時抵抗値R(t)= V(t)/I(t)を算出
してこの瞬時抵抗値R(t)を累積して、初回短絡検出
期間Tsdの初期抵抗値R1を算出し、次に、溶接毎、例
えばN回目の溶接時に短絡電流を通電してN回目短絡検
出期間Tsdの間、時刻tの短絡電圧瞬時値V(t)及び
短絡電流瞬時値I(t)を検出し、短絡電圧瞬時値V
(t)を短絡電流瞬時値I(t)で除算して瞬時抵抗値
R(t)= V(t)/I(t)を算出して、この瞬時
抵抗値R(t)を累積して、N回目短絡検出期間Tsd内
の累積抵抗値Rntを算出し、上記短絡電圧瞬時値V
(t)及び短絡電流瞬時値I(t)の検出ごとに、上記
累積抵抗値Rntと上記初期抵抗値R1との差のN回目溶
接時の累積抵抗値増加分ΔRnt=Rnt−R1を算出し、
この累積抵抗値増加分ΔRntと上記抵抗増加許容値ΔR
rとを比較して、上記累積抵抗値増加分ΔRntが上記抵
抗増加許容値ΔRrを越えたときに、溶接電流を遮断す
るか、又は2次ケーブルの交換時期である表示をする溶
接用の2次ケーブル素線の断線進行予測方法である。
According to a sixth aspect of the present invention, in the method for checking the deterioration of the secondary cable, from the resistance value in the cross section and the length of the secondary cable connected before the start of the operation to the resistance value that may cause overheating and burning. , A short-circuit current is supplied during the first welding at the start of the work, and during the initial short-circuit detection period Tsd, the short-circuit voltage instantaneous value V (t) and the short-circuit current The instantaneous resistance value R (t) = V (t) / I (t) is calculated by detecting the value I (t) and dividing the short-circuit voltage instantaneous value V (t) by the short-circuit current instantaneous value I (t). The instantaneous resistance value R (t) is accumulated to calculate the initial resistance value R1 during the initial short-circuit detection period Tsd. During the period Tsd, the short-circuit voltage instantaneous value V (t) and the short-circuit current instantaneous value I (t) at time t Detecting a short-circuit voltage instantaneous value V
(T) is divided by the instantaneous short-circuit current value I (t) to calculate an instantaneous resistance value R (t) = V (t) / I (t), and this instantaneous resistance value R (t) is accumulated. , The accumulated resistance value Rnt within the Nth short-circuit detection period Tsd is calculated, and the short-circuit voltage instantaneous value V
For each detection of (t) and the instantaneous short-circuit current value I (t), the cumulative resistance increase ΔRnt = Rnt−R1 at the Nth welding of the difference between the cumulative resistance value Rnt and the initial resistance value R1 is calculated. ,
The accumulated resistance increase ΔRnt and the resistance increase allowable value ΔR
When the cumulative resistance value increase ΔRnt exceeds the resistance increase allowable value ΔRr, the welding current is cut off or a secondary cable replacement time is displayed. This is a method for predicting the progress of the disconnection of the next cable strand.

【0037】請求項7の方法は、2次ケーブルの劣化チ
ェック方法において、作業開始前に接続している2次ケ
−ブルの断面及び長さにおける抵抗値から過熱焼損の危
険を生ずる抵抗値までの抵抗増加許容値ΔRrを予め定
めておき、作業開始時の初回の溶接時に、スタッドを被
溶接材に押し込んだ後の短絡電流の通電中の押し込み短
絡検出期間Tsdの間、時刻tの押し込み短絡電圧瞬時値
V(t)及び押し込み短絡電流瞬時値I(t)を検出し
て、押し込み短絡電圧瞬時値V(t)を押し込み短絡電
流瞬時値I(t)で除算して瞬時抵抗値R(t)= V
(t)/I(t)を算出して、この瞬時抵抗値R(t)
を累積して、初回短絡検出期間Tsdの初期抵抗値R1を
算出し、次に、溶接毎、例えばN回目にスタッドを被溶
接材に押し込んだ後の短絡電流の通電中の押し込み短絡
検出期間Tsdの間、時刻tの押し込み短絡電圧瞬時値V
(t)及び押し込み短絡電流瞬時値I(t)を検出し
て、押し込み短絡電圧瞬時値V(t)を押し込み短絡電
流瞬時値I(t)で除算して瞬時抵抗値R(t)= V
(t)/I(t)を算出して、この瞬時抵抗値R(t)
を累積して、N回目短絡検出期間Tsd内の累積抵抗値R
ntを算出し、上記短絡電圧瞬時値V(t)及び短絡電流
瞬時値I(t)の検出ごとに、上記累積抵抗値Rntと上
記初期抵抗値R1との差のN回目溶接時の累積抵抗値増
加分ΔRnt=Rnt−R1を算出し、この累積抵抗値増加
分ΔRntと上記抵抗増加許容値ΔRrとを比較して、上
記累積抵抗値Rntが上記抵抗増加許容値ΔRrを越えた
ときに、溶接電流を遮断するか、又は2次ケーブルの交
換時期である表示をする溶接用の2次ケーブル素線の断
線進行予測方法である。
According to a seventh aspect of the present invention, in the method for checking deterioration of a secondary cable, from a resistance value in a cross-section and a length of a secondary cable connected before starting work to a resistance value causing a danger of overheating and burning. The resistance increase allowable value ΔRr is determined in advance, and at the time of the first welding at the start of the work, the push-in short-circuit at time t during the push-in short-circuit detection period Tsd during the current application of the short-circuit current after the stud is pushed into the workpiece. The instantaneous voltage value V (t) and the instantaneous pushing short-circuit current I (t) are detected, and the instantaneous pushing short-circuit voltage value V (t) is divided by the instantaneous pushing short-circuit current value I (t) to obtain an instantaneous resistance value R ( t) = V
(T) / I (t) is calculated, and this instantaneous resistance value R (t) is calculated.
Is accumulated to calculate the initial resistance value R1 of the initial short-circuit detection period Tsd, and then the indentation short-circuit detection period Tsd during energization of the short-circuit current after the stud is pushed into the material to be welded, for example, every Nth time. , The instantaneous value of the inrush short-circuit voltage V at time t
(T) and the instantaneous pushing short-circuit current value I (t) are detected, and the instantaneous pushing short-circuit voltage value V (t) is divided by the instantaneous pushing short-circuit current value I (t) to obtain an instantaneous resistance value R (t) = V.
(T) / I (t) is calculated, and this instantaneous resistance value R (t) is calculated.
Is accumulated, and the accumulated resistance value R within the Nth short-circuit detection period Tsd is calculated.
nt, and each time the short-circuit voltage instantaneous value V (t) and short-circuit current instantaneous value I (t) are detected, the cumulative resistance at the time of N-th welding of the difference between the cumulative resistance value Rnt and the initial resistance value R1 is calculated. The value increase ΔRnt = Rnt−R1 is calculated, and the cumulative resistance increase ΔRnt is compared with the resistance increase allowable value ΔRr. When the cumulative resistance Rnt exceeds the resistance increase allowable value ΔRr, This is a method for predicting the progress of the disconnection of the secondary cable for welding, which interrupts the welding current or indicates the time to replace the secondary cable.

【0038】請求項8の方法は、2次ケーブルの劣化チ
ェック方法において、2次ケーブルの劣化チェックの保
守点検時又は任意の溶接作業開始時に、新品の2次ケ−
ブルの判定基準抵抗値Rsを予め測定又は算出すると共
に、新品の2次ケ−ブルの断面及び長さにおける抵抗値
から過熱焼損の危険を生ずる抵抗値までの抵抗値変化許
容値δRを予め定めておき、新品でない2次ケ−ブルの
初期抵抗値R1を算出して上記判定基準抵抗値Rsと比
較し、この差の絶対値|R1−Rs|が予め定めた抵抗
値変化許容値δRを越えた時点を、2次ケーブルの交換
時期とする溶接用の2次ケーブル素線の断線進行予測方
法である。
According to a eighth aspect of the present invention, in the method for checking deterioration of the secondary cable, a new secondary cable may be used at the time of maintenance inspection of the deterioration check of the secondary cable or at the start of any welding work.
The reference resistance value Rs of the cable is measured or calculated in advance, and the allowable resistance value change δR from the resistance value in the cross section and the length of the new secondary cable to the resistance value that may cause overheating burnout is determined in advance. In advance, the initial resistance value R1 of the secondary cable which is not new is calculated and compared with the reference resistance value Rs. The absolute value | R1-Rs | This is a method of predicting the progress of the disconnection of a secondary cable strand for welding at a point in time when the secondary cable is replaced.

【0039】請求項9の方法は、2次ケーブルの劣化チ
ェック方法において、2次ケーブルの劣化チェックの保
守点検時又は任意の溶接作業開始時に、新品の2次ケ−
ブルの判定基準抵抗値Rsを予め測定又は算出すると共
に、新品の2次ケ−ブルの断面及び長さにおける抵抗値
から過熱焼損の危険を生ずる抵抗値までの抵抗値変化許
容値δRを予め定めておき、新品でない2次ケ−ブルを
使用して、2次ケーブルの劣化チェックの定期点検時又
は任意の溶接作業開始時の短絡電流通電中に、短絡電圧
平均値V2a=V21と短絡電流平均値I2a=I21とを検出
して初期抵抗値R1=V21/I21を算出し、上記判定基
準抵抗値Rsと比較し、この差の絶対値|R1−Rs|
が上記抵抗値変化許容値δRを越えた時点を、2次ケー
ブルの交換時期とする溶接用の2次ケーブル素線の断線
進行予測方法である。
In the method for checking the deterioration of the secondary cable, a new secondary cable may be used at the time of maintenance and inspection of the deterioration check of the secondary cable or at the start of an arbitrary welding operation.
The reference resistance value Rs of the cable is measured or calculated in advance, and the allowable resistance value change δR from the resistance value in the cross section and the length of the new secondary cable to the resistance value that may cause overheating burnout is determined in advance. The short circuit voltage average value V2a = V21 and the short circuit current average during the periodic inspection of the deterioration check of the secondary cable or when the short circuit current is applied at the start of an arbitrary welding operation using a new secondary cable. Detecting the value I2a = I21, calculating the initial resistance value R1 = V21 / I21, comparing the calculated resistance value with the reference resistance value Rs, and calculating the absolute value | R1-Rs |
Is a method for predicting the progression of disconnection of a secondary cable for welding, with the time when the resistance value change allowable value δR is exceeded being the time for replacing the secondary cable.

【0040】請求項10の方法は、2次ケーブルの劣化
チェック方法において、2次ケーブルの劣化チェックの
保守点検時又は任意の溶接作業開始時に、新品の2次ケ
−ブルの判定基準抵抗値Rsを予め測定又は算出すると
共に、新品の2次ケ−ブルの断面及び長さにおける抵抗
値から過熱焼損の危険を生ずる抵抗値までの抵抗値変化
許容値δRを予め定めておき、新品でない2次ケ−ブル
を使用して、スタッドを被溶接材に押し込んだ後の短絡
電流通電中に、押し込み短絡電圧平均値V2a=V21と押
し込み短絡電流平均値I2a=I21とを検出して初期抵抗
値R1=V21/I21を算出し、上記判定基準抵抗値Rs
と比較し、この差の絶対値|R1−Rs|が上記抵抗値
変化許容値δRを越えた時点を、2次ケーブルの交換時
期とする溶接用の2次ケーブル素線の断線進行予測方法
である。
A method according to a tenth aspect of the present invention is the secondary cable deterioration checking method, wherein a judgment reference resistance value Rs of a new secondary cable is determined at the time of maintenance inspection of the deterioration check of the secondary cable or at the start of an arbitrary welding operation. Is measured or calculated in advance, and a resistance change allowable value δR from a resistance value in a cross section and a length of a new secondary cable to a resistance value causing a danger of overheating burnout is determined in advance, and the secondary cable which is not new is determined. During the short-circuit current flow after the stud is pushed into the workpiece by using a cable, the average push-in short-circuit voltage value V2a = V21 and the average push-in short-circuit current value I2a = I21 are detected, and the initial resistance value R1 is set. = V21 / I21, and the above-described determination reference resistance value Rs
When the absolute value | R1−Rs | of the difference exceeds the resistance change allowable value δR, the method of predicting the progress of the disconnection of the secondary cable for welding is used as the time to replace the secondary cable. is there.

【0041】請求項11の方法は、2次ケーブルの劣化
チェック方法において、溶接作業開始時に、新品の2次
ケ−ブルの判定基準抵抗値Rsを予め測定又は算出する
と共に、新品の2次ケ−ブルの断面及び長さにおける抵
抗値から過熱焼損の危険を生ずる抵抗値までの抵抗値変
化許容値δRを予め定めておき、新品でない2次ケ−ブ
ルを使用して、溶接毎、例えばN回目抵抗値Rnを算出
して上記判定基準抵抗値Rsと比較し、この差の絶対値
|Rn−Rs|が予め定めた抵抗値変化許容値δRを越
えた時点を、2次ケーブルの交換時期とする溶接用の2
次ケーブル素線の断線進行予測方法である。
According to a eleventh aspect of the present invention, in the method for checking the deterioration of a secondary cable, the judgment reference resistance value Rs of a new secondary cable is measured or calculated in advance at the start of welding work, and the new secondary cable is measured. A resistance change allowable value δR from a resistance value in a section and a length of the cable to a resistance value causing a danger of overheating burnout is determined in advance, and a non-new secondary cable is used for each welding, for example, N The second resistance value Rn is calculated and compared with the above-described determination reference resistance value Rs, and the time when the absolute value | Rn−Rs | of the difference exceeds a predetermined resistance value change allowable value δR is determined when the secondary cable is replaced. 2 for welding
This is a method for predicting the progress of the disconnection of the next cable strand.

【0042】請求項12の方法は、2次ケーブルの劣化
チェック方法において、溶接作業開始時に、新品の2次
ケ−ブルの判定基準抵抗値Rsを予め測定又は算出する
と共に、新品の2次ケ−ブルの断面及び長さにおける抵
抗値から過熱焼損の危険を生ずる抵抗値までの抵抗値変
化許容値δRを予め定めておき、新品でない2次ケ−ブ
ルを使用して、溶接毎、例えばN回目の短絡電流通電中
に、N回目短絡電圧平均値V2a=V2nと短絡電流平均値
I2a=I2nとを検出してN回目抵抗値Rn=V2n/I2n
を算出し、上記判定基準抵抗値Rsと比較し、この差の
絶対値|Rn−Rs|が上記抵抗値変化許容値δRを越
えた時点を、2次ケーブルの交換時期とする溶接用の2
次ケーブル素線の断線進行予測方法である。
According to a twelfth aspect of the present invention, in the method for checking deterioration of a secondary cable, a judgment reference resistance value Rs of a new secondary cable is measured or calculated in advance at the start of welding work, and a new secondary cable is measured. A resistance change allowable value δR from a resistance value in a section and a length of the cable to a resistance value causing a danger of overheating burnout is determined in advance, and a non-new secondary cable is used for each welding, for example, N During the energization of the short-circuit current, the average N-th short-circuit voltage V2a = V2n and the average short-circuit current I2a = I2n are detected, and the N-th resistance Rn = V2n / I2n
Is calculated and compared with the determination reference resistance value Rs. The time when the absolute value | Rn−Rs | of the difference exceeds the resistance value change allowable value δR is used as the welding time for the secondary cable replacement.
This is a method for predicting the progress of the disconnection of the next cable strand.

【0043】請求項13の方法は、2次ケーブルの劣化
チェック方法において、2次ケーブルの劣化チェックの
保守点検時又は任意の溶接作業開始時に、新品の2次ケ
−ブルの判定基準抵抗値Rsを予め測定又は算出すると
共に、新品の2次ケ−ブルの断面及び長さにおける抵抗
値から過熱焼損の危険を生ずる抵抗値までの抵抗値変化
許容値δRを予め定めておき、新品でない2次ケ−ブル
を使用して、スタッドを被溶接材に押し込んだ溶接毎、
例えばN回目の短絡電流通電中に、N回目の押し込み短
絡電圧平均値V2a=V2nと押し込み短絡電流平均値I2a
=I2nとを検出してN回目抵抗値Rn=V2n/I2nを算
出し、上記判定基準抵抗値Rsと比較し、この差の絶対
値|Rn−Rs|が上記抵抗値変化許容値δRを越えた
時点を、2次ケーブルの交換時期とする溶接用の2次ケ
ーブル素線の断線進行予測方法である。
According to a thirteenth aspect of the present invention, in the method for checking the deterioration of the secondary cable, the judgment reference resistance value Rs of the new secondary cable at the time of maintenance inspection of the deterioration check of the secondary cable or at the start of an arbitrary welding operation. Is measured or calculated in advance, and a resistance change allowable value δR from a resistance value in a cross section and a length of a new secondary cable to a resistance value causing a danger of overheating burnout is determined in advance, and the secondary cable which is not new is determined. Each time the stud is pushed into the material to be welded using a cable,
For example, during the N-th short-circuit current conduction, the N-th indentation short-circuit voltage average value V2a = V2n and the indentation short-circuit current average value I2a
= I2n and the Nth resistance value Rn = V2n / I2n is calculated and compared with the determination reference resistance value Rs, and the absolute value | Rn−Rs | of the difference exceeds the resistance value change allowable value δR. This is a method for predicting the progress of disconnection of a secondary cable strand for welding, with the time point when the secondary cable is replaced.

【0044】請求項14の方法は、請求項8又は請求項
9又は請求項10又は請求項11又は請求項12又は請
求項13の新品の2次ケ−ブルの判定基準抵抗値Rs
が、2次ケ−ブルの直径Dsと2次ケ−ブルの合計長さ
Lsとから算出した抵抗値である溶接用の2次ケーブル
素線の断線進行予測方法である。
The method according to claim 14 is a method according to claim 8 or claim 9 or claim 10 or claim 11 or claim 12 or claim 13 wherein the reference resistance value Rs of a new secondary cable is determined.
The following is a method for predicting the progress of the disconnection of the secondary wire for welding, which is the resistance value calculated from the diameter Ds of the secondary cable and the total length Ls of the secondary cable.

【0045】請求項15の方法は、請求項8又は請求項
9又は請求項10又は請求項11又は請求項12又は請
求項13の新品の2次ケ−ブルの判定基準抵抗値Rs
が、2次ケ−ブルの直径Ds及び2次ケ−ブルの合計長
さLsから算出した合計ケーブル抵抗値と1接続箇所の
接触抵抗値と接続箇所数との積の合計接触抵抗値との和
である溶接用の2次ケーブル素線の断線進行予測方法で
ある。
A method according to claim 15 is a method for determining a reference resistance Rs of a new secondary cable according to claim 8 or claim 9 or claim 10 or claim 11 or claim 12 or claim 13.
Is the sum of the total cable resistance calculated from the diameter Ds of the secondary cable and the total length Ls of the secondary cable, the total contact resistance of the product of the contact resistance at one connection point and the number of connection points. This is a method of predicting the progress of disconnection of a secondary cable strand for welding, which is a sum.

【0046】請求項16の方法は、2次ケーブルの劣化
チェック方法において、溶接開始後に算出した2次ケー
ブルの算出抵抗値Raのばらつきを検出して、この算出
抵抗値Raのばらつきが予め定めた算出抵抗変動許容値
ΔRmを超えた時点を、2次ケーブルの交換時期とする
溶接用の2次ケーブル素線の断線進行予測方法である。
According to a sixteenth aspect of the present invention, in the secondary cable deterioration checking method, a variation in the calculated resistance value Ra of the secondary cable calculated after the start of welding is detected, and the variation in the calculated resistance value Ra is determined in advance. This is a method of predicting the progress of disconnection of a secondary cable strand for welding, in which a point in time when the calculated resistance fluctuation allowable value ΔRm is exceeded is set as a time to replace the secondary cable.

【0047】請求項17の方法は、2次ケーブルの劣化
チェック方法において、作業開始前に接続している2次
ケ−ブルの断面及び長さにおける抵抗値から過熱焼損の
危険を生ずる抵抗値までの算出抵抗変動許容値ΔRmを
予め定めておき、溶接開始後の算出抵抗最大値Rmaと算
出抵抗最小値Rmiとの差の算出抵抗最大変動値(Rma−
Rmi)が、算出抵抗変動許容値ΔRmを超えた時点を、
2次ケーブルの交換時期とする溶接用の2次ケーブル素
線の断線進行予測方法である。
According to a seventeenth aspect of the present invention, in the method for checking the deterioration of a secondary cable, from the resistance value in the cross section and the length of the secondary cable connected before the start of the operation to the resistance value causing a risk of overheating and burning. Is calculated in advance, and the calculated resistance maximum fluctuation value (Rma-Rm) of the difference between the calculated resistance maximum value Rma and the calculated resistance minimum value Rmi after the start of welding is determined.
Rmi) exceeds the calculated resistance variation allowable value ΔRm,
This is a method for predicting the progress of disconnection of a secondary cable strand for welding when the secondary cable is to be replaced.

【0048】請求項18の方法は、2次ケーブルの劣化
チェック方法において、作業開始前に接続している2次
ケ−ブルの断面及び長さにおける抵抗値から過熱焼損の
危険を生ずる抵抗値までの算出抵抗変動許容値ΔRmを
予め定めておき、溶接毎、例えばN回目の溶接時に短絡
電流を通電してN回目短絡電圧平均値V2a=V2nと短絡
電流平均値I2a=I2nとを検出してN回目抵抗値Rn=
V2n/I2nを算出して、N回目抵抗値Rnが(N−1)
回目までの算出抵抗最大値Rma又は算出抵抗最小値Rmi
をこえたときは、このN回目抵抗値Rnを(N−1)回
目までの算出抵抗最大値Rma又は算出抵抗最小値Rmiと
し、溶接開始後のN回目算出抵抗最大値Rmaと算出抵抗
最小値Rmiとの差の算出抵抗最大変動値(Rma−Rmi)
が、算出抵抗変動許容値ΔRmを超えた時点を、2次ケ
ーブルの交換時期とする溶接用の2次ケーブル素線の断
線進行予測方法である。
In a method for checking the deterioration of a secondary cable, the method according to the present invention provides a method for checking the deterioration of a secondary cable, from a resistance value in a cross-section and a length of a secondary cable connected before starting a work to a resistance value causing a risk of overheating and burning. The resistance change allowable value ΔRm is determined in advance, and a short-circuit current is supplied at each welding, for example, at the time of the Nth welding, and an Nth short-circuit voltage average value V2a = V2n and a short-circuit current average value I2a = I2n are detected. Nth resistance value Rn =
By calculating V2n / I2n, the N-th resistance value Rn becomes (N-1)
The calculated resistance maximum value Rma or the calculated resistance minimum value Rmi up to the first time
Is exceeded, the N-th resistance value Rn is set to the calculated resistance maximum value Rma or the calculated resistance minimum value Rmi up to the (N-1) th time, and the N-th calculated resistance maximum value Rma and the calculated resistance minimum value after the start of welding. Calculation of the difference with Rmi Maximum resistance fluctuation value (Rma-Rmi)
Is a method of predicting the progress of the disconnection of the secondary cable for welding, with the time when the calculated resistance variation allowable value ΔRm is exceeded as the replacement time of the secondary cable.

【0049】[0049]

【発明の実施の形態】本発明の前述した溶接用の2次ケ
ーブル断線チェック方法は、通電時間が経過して2次ケ
−ブル素線の断線数が増加するに従って、素線断線部分
の温度が著しく上昇するときは、その素線断線部分を含
む2次ケ−ブル抵抗値が上昇する。 (1)そこで、作業開始前に、接続している2次ケ−ブ
ルの断面及び長さにおける抵抗値から過熱焼損の危険を
生ずる抵抗値までの抵抗増加許容値ΔRrを予め定めて
おく。 (2)作業開始時の初回の溶接時に、スタッドを被溶接
材に押し込んだ後の短絡電流通電中に、押し込み短絡電
圧平均値V2a=V21と押し込み短絡電流平均値I2a=I
21とを検出して初期抵抗値R1=V21/I21を算出す
る。 (3)次に、溶接毎、例えばN回目にスタッドを被溶接
材に押し込んだ後の短絡電流通電中に、押し込み短絡電
圧平均値V2a=V2nと押し込み短絡電流平均値I2a=I
2nとを検出してN回目抵抗値Rn=V2n/I2nを算出す
る。 (4)このN回目抵抗値Rnと上記初期抵抗値R1との
差のN回目抵抗値増加分ΔRn=Rn−R1を算出す
る。 (5)このN回目抵抗値増加分ΔRnと上記抵抗増加許
容値ΔRrとを比較して、上記N回目抵抗値増加分ΔR
nが上記抵抗増加許容値ΔRrよりも大になったとき
に、作業者に表示又は警報する溶接用の2次ケーブル素
線の断線進行予測方法である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the above-described method for checking the disconnection of the secondary cable for welding according to the present invention, the temperature of the wire breakage portion increases as the energizing time elapses and the number of disconnections of the secondary cable increases. Is significantly increased, the resistance of the secondary cable including the broken wire is increased. (1) Therefore, before the start of the work, the allowable resistance increase ΔRr from the resistance value in the cross section and the length of the connected secondary cable to the resistance value causing the danger of overheating and burning is determined in advance. (2) During the first welding at the start of the work, during the short-circuit current application after the stud is pushed into the workpiece, the average indentation short-circuit voltage V2a = V21 and the average indentation short-circuit current I2a = I
21 to calculate the initial resistance value R1 = V21 / I21. (3) Next, during the short-circuit current flow after the stud is pushed into the material to be welded, for example, at the N-th welding, the short-circuit voltage average value V2a = V2n and the short-circuit current average value I2a = I
2n is detected and the Nth resistance value Rn = V2n / I2n is calculated. (4) Calculate an Nth resistance value increase ΔRn = Rn−R1 of a difference between the Nth resistance value Rn and the initial resistance value R1. (5) The N-th resistance increase ΔRn is compared with the resistance increase allowable value ΔRr to obtain the N-th resistance increase ΔR.
This is a method for predicting the progress of the disconnection of the secondary wire for welding, which is displayed or warned to the operator when n becomes larger than the allowable resistance increase value ΔRr.

【0050】[0050]

【実施例】図3は、本発明の2次ケ−ブル断線チェック
機能を備えたスタッド溶接装置のブロック図である。同
図のスタッド溶接装置は、溶接電源装置1と溶接ガン2
と溶接制御装置3とから構成される。この溶接電源装置
1は、溶接ガン2にパイロット電流Ipと主ア−ク電流
Iaとから成る溶接電流を出力し、後述する溶接制御装
置3から出力されるアナログ信号に応じて、溶接電流値
Ioを制御する電流指令出力回路5と、この電流指令に
基づいて溶接電流を制御するサイリスタ等の半導体スイ
ッチング素子からなる溶接電流出力回路15と、2次ケ
ーブル17を通って溶接ガン2に装着されたスタッドS
に出力される溶接電流値Ioを検出して溶接電流検出信
号Icを出力する溶接電流検出回路ICと、出力端子電
圧値Vdを検出して溶接電圧検出信号Vcを出力する溶
接電圧検出回路VCとから形成される。
FIG. 3 is a block diagram of a stud welding apparatus having a secondary cable disconnection check function according to the present invention. The stud welding apparatus shown in FIG.
And a welding control device 3. The welding power supply device 1 outputs a welding current consisting of a pilot current Ip and a main arc current Ia to a welding gun 2, and in accordance with an analog signal output from a welding control device 3 described later, a welding current value Io. Command output circuit 5 for controlling the welding current, a welding current output circuit 15 composed of a semiconductor switching element such as a thyristor for controlling the welding current based on the current command, and a welding cable 2 attached to the welding gun 2 through the secondary cable 17. Stud S
A welding current detection circuit IC for detecting a welding current value Io output to the inverter and outputting a welding current detection signal Ic, and a welding voltage detection circuit VC for detecting an output terminal voltage value Vd and outputting a welding voltage detection signal Vc. Formed from

【0052】溶接制御装置3は、溶接電流検出信号Ic
をディジタル溶接電流検出信号Iddに変換して演算処理
回路CPUに出力するA/D変換器7と、溶接電圧検出
信号Vcをディジタル溶接電圧検出信号Vddに変換して
演算処理回路CPUに出力するA/D変換器8と、ディ
ジタル溶接電流検出信号Iddとディジタル溶接電圧検出
信号Vddとを入力して後述するディジタル出力信号を出
力する演算処理回路CPUと、演算処理回路CPUのデ
ィジタル出力信号Iodをアナログ出力信号Ioaに変換し
て電流指令出力回路5に出力するD/A変換器6と、溶
接条件を設定する溶接条件設定回路19と、設定値を記
憶する記憶回路11と、断線チェック結果の異常を表示
又は警報する表示回路又は警報器12(以下、表示回路
という)とからなる。このD/A変換器6、A/D変換
器7、A/D変換器8は演算処理回路CPUに内蔵して
もよい。
The welding control device 3 receives the welding current detection signal Ic
A / D converter 7 which converts a welding voltage detection signal Idd into a digital welding current detection signal Idd and outputs it to the arithmetic processing circuit CPU, and an A / D converter 7 which converts the welding voltage detection signal Vc into a digital welding voltage detection signal Vdd and outputs it to the arithmetic processing circuit CPU. A / D converter 8, an arithmetic processing circuit CPU which receives a digital welding current detection signal Idd and a digital welding voltage detection signal Vdd, and outputs a digital output signal to be described later, and converts a digital output signal Iod of the arithmetic processing circuit CPU into an analog signal. A D / A converter 6 for converting to an output signal Ioa and outputting it to a current command output circuit 5, a welding condition setting circuit 19 for setting welding conditions, a storage circuit 11 for storing set values, and an abnormality in a disconnection check result And an alarm device 12 (hereinafter, referred to as a display circuit) for displaying or alarming. The D / A converter 6, the A / D converter 7, and the A / D converter 8 may be built in the arithmetic processing circuit CPU.

【0060】以下、図3に示す実施例のブロック図を参
照して、2次ケ−ブル断線チェック方法の動作について
説明する。溶接ガン2に保持されたスタッドSの先端を
被溶接材Wに押し当て、溶接ガン2の溶接開始終了スイ
ッチ13を押すと、押し当てた位置にあったスタッドS
は予め設定された位置まで引き上げられ、続いて予め設
定されたパイロット電流Ipを通電する。スタッドが引
き上げられてアークが発生すると、予め設定した時間後
にパイロット電流Ipを主ア−ク電流Iaに切り換え
る。パイロット電流Ip又は主ア−ク電流Iaの通電開
始から所要の溶接電流値に達した後に、予め設定された
主ア−ク期間Taが経過すると、スタッドSを被溶接材
Wに向かって押し込む。その途中で、スタッドSが被溶
接材Wに対して短絡し、押し込み短絡期間Tsだけ短絡
電流Isが流れる。この一連の溶接動作のうちで、後述
する押し込み短絡期間Tsのサンプリング時間(押し込
み短絡検出期間)Tsdの間、演算処理回路CPUによっ
て、押し込み短絡電流平均値I2a及び押し込み短絡電圧
平均値V2aを検出する。これらの手順を下記の図4に示
す。
The operation of the secondary cable disconnection check method will be described below with reference to the block diagram of the embodiment shown in FIG. When the tip of the stud S held by the welding gun 2 is pressed against the workpiece W and the welding start / end switch 13 of the welding gun 2 is pressed, the stud S at the pressed position is pressed.
Is raised to a preset position, and then a preset pilot current Ip is supplied. When the arc is generated by raising the stud, the pilot current Ip is switched to the main arc current Ia after a preset time. After a predetermined main arc period Ta elapses after reaching a required welding current value from the start of energization of the pilot current Ip or the main arc current Ia, the stud S is pushed toward the workpiece W. On the way, the stud S is short-circuited to the workpiece W, and the short-circuit current Is flows for the indentation short-circuit period Ts. In the series of welding operations, during the sampling time (push short-circuit detection period) Tsd of the push short-circuit period Ts described later, the arithmetic processing circuit CPU detects the push-in short-circuit current average value I2a and the push-in short-circuit voltage average value V2a. . These procedures are shown in FIG. 4 below.

【0070】図4(A)は、溶接電流値Ioの波形を示
す溶接電流波形図であり、同図(B)は溶接電源装置の
出力端子で検出した出力端子電圧Vdの波形を示す図で
あり、同図(C)はスタッド先端の移動量Mを示す図で
ある。押し込み短絡電圧検出開始時点t91から押し込み
短絡電圧検出終了時点t9nまでの押し込み短絡検出期間
Tsdに、押し込み短絡電圧瞬時値V(t)を累積して、
数1によって押し込み短絡検出期間Tsdで除算して押し
込み短絡電圧平均値V2aを算出する。
FIG. 4A is a welding current waveform diagram showing the waveform of the welding current value Io, and FIG. 4B is a diagram showing the waveform of the output terminal voltage Vd detected at the output terminal of the welding power supply device. FIG. 7C is a diagram showing the movement amount M of the stud tip. The push-in short-circuit voltage instantaneous value V (t) is accumulated during the push-in short-circuit detection period Tsd from the push-in short-circuit voltage detection start time t91 to the push-in short-circuit voltage detection end time t9n,
By dividing by the indentation short-circuit detection period Tsd according to Equation 1, the indentation short-circuit voltage average value V2a is calculated.

【0072】[0072]

【数1】 (Equation 1)

【0074】同様に、押し込み短絡検出期間Tsdに、押
し込み短絡電流瞬時値I(t)を累積して、数2によっ
て押し込み短絡検出期間Tsdで除算して押し込み短絡電
流平均値I2aを算出する。
Similarly, the indentation short-circuit current instantaneous value I (t) is accumulated in the indentation short-circuit detection period Tsd, and the result is divided by the indentation short-circuit detection period Tsd according to Equation 2 to calculate the average indentation short-circuit current I2a.

【0076】[0076]

【数2】 (Equation 2)

【0078】上記数1によって算出した押し込み短絡電
圧平均値V2aは、溶接電源装置から溶接箇所までの距離
に関係する2次ケーブルの長さ及び直径、被溶接材の抵
抗値等の違いによって変化する溶接回路電圧降下であ
る。なお、本発明の目的を達成するためには、被溶接材
の電圧降下が2次ケーブルの電圧降下よりも小であるほ
ど、断線チェック精度が高くなる。
The indentation short-circuit voltage average value V2a calculated by the above equation (1) varies depending on differences in the length and diameter of the secondary cable related to the distance from the welding power source to the welding point, the resistance value of the material to be welded, and the like. It is the welding circuit voltage drop. In order to achieve the object of the present invention, as the voltage drop of the material to be welded is smaller than the voltage drop of the secondary cable, the disconnection check accuracy becomes higher.

【0080】次に、式1によって、上記算出した押し込
み短絡電圧平均値V2aを押し込み短絡電流平均値I2aで
除算して、押し込み短絡検出期間Tsdの2次ケ−ブルの
抵抗値Raを算出する。以下、Raを算出抵抗値とい
う。 Ra=V2a/I2a …(式1)
Next, the resistance value Ra of the secondary cable during the press-in short-circuit detection period Tsd is calculated by dividing the above-described calculated press-in short-circuit voltage V2a by the press-in short-circuit current average value I2a. Hereinafter, Ra is referred to as a calculated resistance value. Ra = V2a / I2a (Equation 1)

【0082】作業開始時の初回の溶接で算出した押し込
み短絡電圧平均値V2aをV21とし、押し込み短絡電流平
均値I2aをI21とし、式1によって算出した作業開始時
の初回の算出抵抗値Raを初期抵抗値R1とすると、初
期抵抗値R1は式2のとおりとなる。 R1=V21/I21 …(式2) この初期抵抗値R1を、2次ケ−ブルの抵抗値の基準値
とする。
The average indentation short-circuit voltage V2a calculated in the first welding at the start of the operation is V21, the average indentation short-circuit current I2a is I21, and the first calculated resistance value Ra at the start of the operation calculated by the equation 1 is the initial value. Assuming that the resistance value is R1, the initial resistance value R1 is as shown in Expression 2. R1 = V21 / I21 (Equation 2) The initial resistance value R1 is used as a reference value of the resistance value of the secondary cable.

【0084】次に、溶接作業開始して、同じ2次ケ−ブ
ルを使用しているとき、N回目溶接時の算出抵抗値Ra
をN回目抵抗値Rnとすると、N回目抵抗値Rnは式3
のとおりとなる。 Rn=V2n/I2n …(式3) このとき、Rnは、溶接電流通電による温度上昇のため
抵抗値が増加し、R1よりも大になる。
Next, when the welding operation is started and the same secondary cable is used, the calculated resistance value Ra at the time of the Nth welding is calculated.
Is the N-th resistance value Rn, the N-th resistance value Rn is given by Equation 3.
It becomes as follows. Rn = V2n / I2n (Equation 3) At this time, the resistance value of Rn increases due to a rise in temperature due to the application of the welding current, and becomes larger than R1.

【0086】N回目抵抗値Rnと初期抵抗値R1との差
をN回目抵抗値増加分ΔRnとすると、N回目抵抗値増
加分ΔRnは式4のとおりとなる。 ΔRn=Rn−R1 …(式4)
Assuming that the difference between the N-th resistance value Rn and the initial resistance value R1 is the N-th resistance value increase ΔRn, the N-th resistance value increase ΔRn is as shown in Equation 4. ΔRn = Rn−R1 (Equation 4)

【0090】ケ−ブル長さ及び直径によって2次ケ−ブ
ルの抵抗値が異なり、2次ケ−ブルの温度上昇値が異な
る。頭付きスタッド溶接(φ16〜22)において使用
する2次ケ−ブルの直径は、80[mm2]又は100[m
m2]であり、現場作業では、2次ケ−ブルの温度上昇値
が150℃に達する場合もある。そこで、ケ−ブル長さ
及び直径に応じて、抵抗増加許容値をΔRrと定めてお
く。例えば100[m]の2次ケ−ブル長であればRr
100とし予め設定しておく。このΔRr=Rr100と上記N
回目抵抗値増加分ΔRnとを比較する。
The resistance value of the secondary cable differs depending on the length and diameter of the cable, and the temperature rise value of the secondary cable differs. The diameter of the secondary cable used in headed stud welding (φ16-22) is 80 [mm 2 ] or 100 [m
m 2 ], and in the field work, the temperature rise value of the secondary cable may reach 150 ° C. in some cases. Therefore, an allowable resistance increase value is defined as ΔRr according to the cable length and the diameter. For example, if the secondary cable length is 100 [m], Rr
Set to 100 in advance. This ΔRr = Rr 100 and the N
A comparison is made with the second increase in resistance value ΔRn.

【0092】N回目抵抗値増加分ΔRnが、抵抗増加許
容値ΔRrよりも小のときは、通常の使用範囲における
発熱が発生していると考えられる。しかし、N回目抵抗
値増加分ΔRnが抵抗増加許容値ΔRrよりも大のとき
は異常発熱していると考えられる。この異常発熱は、通
常の直径よりも細径の2次ケ−ブルを使用しているか、
又は前述した屈曲部分が部分断線しているか、コネクタ
等の接続不良が生じている場合である。このときは、溶
接動作を停止し、作業者に2次ケ−ブル異常を知らせ
る。
When the Nth resistance value increase ΔRn is smaller than the resistance increase allowable value ΔRr, it is considered that heat is generated in the normal use range. However, when the Nth resistance value increase ΔRn is larger than the resistance increase allowable value ΔRr, it is considered that abnormal heat is generated. This abnormal heat generation is caused by using a secondary cable with a diameter smaller than the normal diameter.
Alternatively, the above-described bent portion is partially broken or a connection failure of a connector or the like occurs. At this time, the welding operation is stopped and the operator is notified of the secondary cable abnormality.

【0100】演算処理回路CPUは、後述する図5のフ
ロチャ−トに示す機能を、ディジタル信号によって実行
する演算処理回路であって、基準にする押し込み短絡検
出期間Tsdに検出したディジタル溶接電圧検出信号Vdd
とディジタル溶接電流検出信号Iddとを入力して、後述
する押し込み短絡検出期間(サンプリング時間)Tsdの
スタッドを被溶接材に押し込んで短絡させる。押し込み
短絡検出期間Tsdのディジタル溶接電圧検出信号Vddと
ディジタル溶接電流検出信号Iddとを入力して、後述す
る押し込み短絡検出期間Tsdの押し込み短絡電圧平均値
V2aと押し込み短絡電流平均値I2aとを検出した後で、
押し込み短絡電圧平均値V2aを押し込み短絡電流平均値
I2aで除算して算出抵抗値Raを算出し、記憶回路11
に記憶する。また、この算出抵抗値Raと予め定めてお
いた抵抗増加許容値ΔRrとを比較する。
The arithmetic processing circuit CPU is an arithmetic processing circuit for executing the function shown in the flowchart of FIG. 5 described later by a digital signal, and is a digital welding voltage detection signal detected during the indentation short-circuit detection period Tsd as a reference. Vdd
And a digital welding current detection signal Idd, and a stud of a later-described indentation short-circuit detection period (sampling time) Tsd is pushed into the workpiece to be short-circuited. The digital welding voltage detection signal Vdd and the digital welding current detection signal Idd for the indentation short-circuit detection period Tsd were input, and the indentation short-circuit voltage average value V2a and the indentation short-circuit current average value I2a in the indentation short-circuit detection period Tsd described below were detected. later,
The calculated resistance value Ra is calculated by dividing the indentation short-circuit voltage average value V2a by the indentation short-circuit current average value I2a.
To memorize. Also, the calculated resistance value Ra is compared with a predetermined resistance increase allowable value ΔRr.

【0102】図5は、溶接用の2次ケーブル素線の断線
進行を予測するための溶接毎の2次ケ−ブルの抵抗増加
分をチェックする手順を示すフローチャートである。 (1)ステップST1は、接続している2次ケ−ブル
(以下、判定基準2次ケ−ブルという)の断面及び長さ
における抵抗値から過熱焼損して全部断線にまで及ぶ危
険を生ずる抵抗値までの抵抗増加許容値ΔRrを設定す
る抵抗増加許容値設定ステップである。 (2)ステップST2は、判定基準2次ケ−ブルを使用
して、スタッドを被溶接材に押し込んで短絡させ、短絡
通電中に、押し込み短絡電圧平均値V21と押し込み短絡
電流平均値I21とを検出する初期短絡電圧電流検出ステ
ップである。 (3)ステップST3は、短絡電流通電中に検出した初
回の押し込み短絡電圧平均値V21を初回の押し込み短絡
電流平均値I21で除算して初期抵抗値R1を算出する初
期抵抗値算出ステップである。 (4)ステップST4は、判定するスタッド溶接時の2
次ケ−ブルにおいて、スタッドを被溶接材に押し込んで
短絡させ、短絡電流通電中に、N回目押し込み短絡電圧
平均値V2nとN回目押し込み短絡電流平均値I2nとを検
出するN回目短絡電圧電流検出ステップである。
FIG. 5 is a flowchart showing a procedure for checking the increase in resistance of the secondary cable for each welding for predicting the progress of the disconnection of the secondary cable strand for welding. (1) Step ST1 is a step of generating a danger of overheating and burning from the resistance value in the cross section and the length of the connected secondary cable (hereinafter referred to as a criterion secondary cable) to the extent of a complete disconnection. This is a resistance increase allowable value setting step of setting the resistance increase allowable value ΔRr up to the value. (2) In step ST2, the stud is pushed into the work to be short-circuited by using a secondary cable for judgment criteria, and the short-circuit voltage average value V21 and the short-circuit current average value I21 are determined during the short circuit. This is an initial short-circuit voltage / current detection step to be detected. (3) Step ST3 is an initial resistance value calculating step of calculating the initial resistance value R1 by dividing the initial push-in short-circuit voltage average value V21 detected during the short-circuit current application by the initial push-in short-circuit current average value I21. (4) Step ST4 is a step 2 for judging stud welding.
In the next cable, the stud is pushed into the material to be welded to short-circuit, and the N-th short-circuit voltage average value V2n and the N-th short-circuit current average value I2n are detected while the short-circuit current is flowing. Step.

【0104】(5)ステップST5は、短絡電流通電中
に検出した押し込み短絡電圧平均値V2nを押し込み短絡
電流平均値I2nで除算して判定したいN回目抵抗値Rn
を算出するN回目抵抗値算出ステップである。 (6)ステップST6は、N回目抵抗値Rnから、初期
抵抗値R1を減算して判定したいN回目抵抗値増加分Δ
Rn=Rn−R1を算出する抵抗値増加算出ステップで
ある。 (7)ステップST7は、N回目抵抗値増加分ΔRnと
予め設定された抵抗増加許容値ΔRrとを比較して、2
次ケーブル素線の断線進行を予測する判定抵抗値比較ス
テップである。 この判定するN回目抵抗値増加分ΔRnと抵抗増加許容
値ΔRrとを比較した信号によって、表示、警報等を行
うことができる。
(5) In step ST5, the N-th resistance value Rn to be determined by dividing the indentation short-circuit voltage average value V2n detected during the short-circuit current conduction by the indentation short-circuit current average value I2n.
Is the Nth resistance value calculation step of calculating the resistance value. (6) Step ST6 is to subtract the initial resistance value R1 from the Nth resistance value Rn and determine the Nth resistance value increase Δ
This is a resistance value increase calculation step of calculating Rn = Rn-R1. (7) Step ST7 compares the Nth resistance increase ΔRn with a preset resistance increase allowable value ΔRr,
This is a determination resistance value comparison step of predicting the progress of the disconnection of the next cable strand. Display, warning, and the like can be performed by a signal obtained by comparing the Nth resistance value increase ΔRn and the resistance increase allowable value ΔRr.

【0110】次に、押し込み短絡検出期間Tsdの間、時
刻tの押し込み短絡電圧瞬時値V(t)及び押し込み短
絡電流瞬時値I(t)を検出して、累積抵抗値Rntを算
出し、この算出した累積抵抗値Rntと初期抵抗値R1と
の差のN回目溶接時の累積抵抗値増加分ΔRnt=Rnt−
R1を算出し、この累積抵抗値増加分ΔRntが抵抗増加
許容値ΔRrを越えたときに、溶接電流を遮断する方法
について説明する。
Next, during the push-in short-circuit detection period Tsd, the push-in short-circuit voltage instantaneous value V (t) and the push-in short-circuit current instantaneous value I (t) at time t are detected, and the cumulative resistance value Rnt is calculated. The difference between the calculated cumulative resistance value Rnt and the initial resistance value R1 is the cumulative resistance value increase ΔNnt = Rnt− during the Nth welding.
A method of calculating R1 and interrupting the welding current when the cumulative resistance increase ΔRnt exceeds the resistance increase allowable value ΔRr will be described.

【0112】この方法の手順は次のとおりである。 (1)最初に、作業開始前に接続している2次ケ−ブル
の断面及び長さにおける抵抗値から過熱焼損の危険を生
ずる抵抗値までの抵抗増加許容値ΔRrを予め定めてお
く。 (2)次に、作業開始時の初回の溶接時に短絡電流を通
電して、初回短絡検出期間Tsdの間、時刻tの短絡電圧
瞬時値V(t)及び短絡電流瞬時値I(t)を検出す
る。 (3)上記短絡電圧瞬時値V(t)を短絡電流瞬時値I
(t)で除算して瞬時抵抗値R(t)を、短絡電圧検出
開始時点t91から短絡電圧検出終了時点t9nまでの短絡
検出期間Tsdの間、式5によって算出する。 R(t)= V(t)/I(t) …(式5)
The procedure of this method is as follows. (1) First, before starting the operation, a resistance increase allowable value ΔRr from a resistance value in a cross section and a length of the secondary cable connected to a resistance value causing a danger of overheating and burning is determined in advance. (2) Next, a short-circuit current is supplied at the time of the first welding at the start of the work, and during the initial short-circuit detection period Tsd, the short-circuit voltage instantaneous value V (t) and the short-circuit current instantaneous value I (t) at time t are determined. To detect. (3) The instantaneous short-circuit voltage value V (t) is converted to the instantaneous short-circuit current value I.
The instantaneous resistance value R (t) is calculated by Equation 5 during the short circuit detection period Tsd from the short circuit voltage detection start time t91 to the short circuit voltage detection end time t9n. R (t) = V (t) / I (t) (Equation 5)

【0114】(4)この瞬時抵抗値R(t)を累積し
て、初回短絡検出期間Tsdの初期抵抗値R1を算出す
る。 (5)次に、溶接毎、例えばN回目の溶接時に短絡電流
を通電してN回目短絡検出期間Tsdの間、時刻tの短絡
電圧瞬時値V(t)及び短絡電流瞬時値I(t)を検出
する。 (6)短絡電圧瞬時値V(t)を短絡電流瞬時値I
(t)で除算して瞬時抵抗値R(t)= V(t)/I
(t)を算出する。 (7)この瞬時抵抗値R(t)を累積して、短絡電圧検
出開始時点t91から短絡電圧検出終了時点t9nまでのN
回目短絡検出期間Tsd内の累積抵抗値Rntを算出する。 この短絡検出期間Tsdの累積抵抗値Rntは、演算処理回
路CPUが、数3によって算出する。
(4) The instantaneous resistance value R (t) is accumulated to calculate the initial resistance value R1 in the initial short-circuit detection period Tsd. (5) Next, a short-circuit current is supplied at the time of each welding, for example, at the time of the N-th welding, and during the N-th short-circuit detection period Tsd, the short-circuit voltage instantaneous value V (t) and the short-circuit current instantaneous value I (t) at time t. Is detected. (6) The instantaneous value of the short-circuit voltage V (t) is converted to the instantaneous value of the short-circuit current I
(T) divided by the instantaneous resistance value R (t) = V (t) / I
(T) is calculated. (7) This instantaneous resistance value R (t) is accumulated, and N is calculated from the short-circuit voltage detection start time t91 to the short-circuit voltage detection end time t9n.
The cumulative resistance value Rnt within the third short detection period Tsd is calculated. The arithmetic processing circuit CPU calculates the accumulated resistance value Rnt during the short-circuit detection period Tsd according to Equation 3.

【0116】[0116]

【数3】 (Equation 3)

【0118】(8)上記短絡電圧瞬時値V(t)及び短
絡電流瞬時値I(t)の検出ごとに、上記累積抵抗値R
ntと上記初期抵抗値R1との差のN回目溶接時の累積抵
抗値増加分ΔRnt=Rnt−R1を算出する。 (9)この累積抵抗値増加分ΔRntと上記抵抗増加許容
値ΔRrとを比較して、上記累積抵抗値増加分ΔRntが
上記抵抗増加許容値ΔRrを越えたときに、溶接電流を
遮断するか、又は2次ケーブルの交換時期である表示を
する。
(8) Each time the short-circuit voltage instantaneous value V (t) and short-circuit current instantaneous value I (t) are detected, the cumulative resistance R
The difference between the nt and the initial resistance value R1 is calculated as an accumulated resistance value increase ΔRnt = Rnt−R1 at the Nth welding. (9) The accumulated resistance increase ΔRnt is compared with the resistance increase allowable value ΔRr, and when the cumulative resistance increase ΔRnt exceeds the resistance increase allowable value ΔRr, whether the welding current is interrupted, Alternatively, a display indicating the time of replacement of the secondary cable is displayed.

【0120】本発明の溶接用の2次ケーブル素線の断線
進行予測方法では、溶接作業前に、溶接条件設定回路1
9に、初回の溶接時に算出する初期抵抗値R1又は新品
の2次ケ−ブルの判定基準抵抗値Rsが、2回目以後の
各溶接毎、例えばN回目の溶接時に短絡電流を通電して
算出するN回目抵抗値Rnと比較するための基準値とす
るための設定をする。また2次ケ−ブル長さに変更があ
れば、溶接条件設定回路19によって、プリセットされ
た値(2次ケ−ブル長さ、抵抗増加許容値ΔRr等)を
選択して、抵抗増加許容値ΔRrを設定している。これ
らの両者とも、最初に新品の2次ケ−ブルを使用して、
経年変化等でその抵抗値が増加する場合を想定している
が、経年変化等で抵抗値が減少する場合は適用できな
い。
In the method for predicting the progress of disconnection of a secondary cable strand for welding according to the present invention, the welding condition setting circuit 1 is provided before the welding operation.
9, the initial resistance value R1 calculated at the time of the first welding or the judgment reference resistance value Rs of a new secondary cable is calculated by applying a short-circuit current at each welding after the second welding, for example, at the Nth welding. Is set as a reference value for comparison with the Nth resistance value Rn. If there is a change in the secondary cable length, the welding condition setting circuit 19 selects a preset value (secondary cable length, resistance increase allowable value ΔRr, etc.), and sets the resistance increase allowable value. ΔRr is set. Both of these use a new secondary cable first,
Although it is assumed that the resistance value increases due to aging or the like, it is not applicable when the resistance value decreases due to aging or the like.

【0122】そこで、新品でない2次ケ−ブルの初期抵
抗値R1を新品の2次ケ−ブルの判定基準抵抗値Rsに
修正変更しておき、2次ケ−ブルが新品でないときの任
意の溶接作業開始時の初期抵抗値R1を算出した後、新
品の2次ケ−ブルの判定基準抵抗値Rsと比較し、その
差の絶対値が、式6に示す予め定めた抵抗値変化許容値
δRを越えた場合、抵抗値が大きく変化していることを
表している。 δR<|R1−Rs| …(式6) その差の絶対値|R1−Rs|が、抵抗値変化許容値δ
Rを越えて変化したときに、表示回路12で作業者に知
らせることができる。
Therefore, the initial resistance value R1 of the non-new secondary cable is modified and changed to the judgment reference resistance value Rs of the new secondary cable, and an arbitrary value when the secondary cable is not new is changed. After calculating the initial resistance value R1 at the start of the welding operation, the resistance value is compared with a judgment reference resistance value Rs of a new secondary cable, and the absolute value of the difference is determined by a predetermined resistance value change allowable value shown in Expression 6. If it exceeds δR, it indicates that the resistance value has changed significantly. δR <| R1-Rs | (Equation 6) The absolute value of the difference | R1-Rs |
When the value exceeds R, the operator can be notified by the display circuit 12.

【0123】以下、上記の新品の2次ケ−ブルの判定基
準抵抗値Rsを適用する方法を説明する。第1の方法
は、2次ケーブルの劣化チェックの保守点検時又は任意
の溶接作業開始時に、新品の2次ケ−ブルの判定基準抵
抗値Rsを予め測定又は算出すると共に、新品の2次ケ
−ブルの断面及び長さにおける抵抗値から過熱焼損の危
険を生ずる抵抗値までの抵抗値変化許容値δRを予め定
めておき、新品でない2次ケ−ブルの初期抵抗値R1を
算出して上記判定基準抵抗値Rsと比較し、この差の絶
対値|R1−Rs|が予め定めた抵抗値変化許容値δR
を越えた時点を、2次ケーブルの交換時期とする溶接用
の2次ケーブル素線の断線進行予測方法である。
A method of applying the judgment reference resistance value Rs of the new secondary cable will be described below. The first method is to measure or calculate a judgment reference resistance value Rs of a new secondary cable in advance at the time of maintenance inspection of the deterioration check of the secondary cable or at the start of an arbitrary welding operation, and at the same time, to measure a new secondary cable. A resistance change allowable value δR from a resistance value in a section and a length of the cable to a resistance value causing a danger of overheating burnout is determined in advance, and an initial resistance value R1 of a non-new secondary cable is calculated. The absolute value | R1−Rs | of the difference is compared with a determination reference resistance value Rs and a predetermined resistance value change allowable value δR
This is a method for predicting the progress of disconnection of a secondary cable strand for welding, with the point in time beyond which the secondary cable is replaced.

【0124】第2の方法は、2次ケーブルの劣化チェッ
クの保守点検時又は任意の溶接作業開始時に、新品の2
次ケ−ブルの判定基準抵抗値Rsを予め測定又は算出す
ると共に、新品の2次ケ−ブルの断面及び長さにおける
抵抗値から過熱焼損の危険を生ずる抵抗値までの抵抗値
変化許容値δRを予め定めておき、新品でない2次ケ−
ブルを使用して、2次ケーブルの劣化チェックの定期点
検時又は任意の溶接作業開始時の短絡電流通電中に、短
絡電圧平均値V2a=V21と短絡電流平均値I2a=I21と
を検出して初期抵抗値R1=V21/I21を算出し、上記
判定基準抵抗値Rsと比較し、この差の絶対値|R1−
Rs|が上記抵抗値変化許容値δRを越えた時点を、2
次ケーブルの交換時期とする溶接用の2次ケーブル素線
の断線進行予測方法である。
[0124] The second method is to carry out a new 2
The judgment reference resistance value Rs of the next cable is measured or calculated in advance, and the resistance change allowable value δR from the resistance value in the cross section and the length of the new secondary cable to the resistance value that may cause overheating burnout. Is determined in advance and the secondary
The average short-circuit voltage V2a = V21 and the average short-circuit current I2a = I21 are detected during the periodic inspection of the deterioration check of the secondary cable or at the start of any welding work using the cable during the short-circuit current supply. The initial resistance value R1 = V21 / I21 is calculated and compared with the determination reference resistance value Rs, and the absolute value | R1-
Rs | exceeds the resistance change allowable value δR,
This is a method for predicting the progress of disconnection of a secondary cable strand for welding at the time of replacing the next cable.

【0125】第3の方法は、2次ケーブルの劣化チェッ
クの保守点検時又は任意の溶接作業開始時に、新品の2
次ケ−ブルの判定基準抵抗値Rsを予め測定又は算出す
ると共に、新品の2次ケ−ブルの断面及び長さにおける
抵抗値から過熱焼損の危険を生ずる抵抗値までの抵抗値
変化許容値δRを予め定めておき、新品でない2次ケ−
ブルを使用して、スタッドを被溶接材に押し込んだ後の
短絡電流通電中に、押し込み短絡電圧平均値V2a=V21
と押し込み短絡電流平均値I2a=I21とを検出して初期
抵抗値R1=V21/I21を算出し、上記判定基準抵抗値
Rsと比較し、この差の絶対値|R1−Rs|が上記抵
抗値変化許容値δRを越えた時点を、2次ケーブルの交
換時期とする溶接用の2次ケーブル素線の断線進行予測
方法である。
The third method is to use a new 2
The judgment reference resistance value Rs of the next cable is measured or calculated in advance, and the resistance change allowable value δR from the resistance value in the cross section and the length of the new secondary cable to the resistance value that may cause overheating burnout. Is determined in advance and the secondary
The short-circuit voltage average value V2a = V21 during the short-circuit current flow after the stud is pushed into the material to be welded using a stud.
And the average indentation short-circuit current value I2a = I21, calculate the initial resistance value R1 = V21 / I21, compare the calculated resistance value with the reference resistance value Rs, and determine the absolute value | R1-Rs | This is a method for predicting the progress of the disconnection of a secondary cable strand for welding, in which the point in time when the change exceeds the allowable change value δR is the time for replacing the secondary cable.

【0126】第4の方法は、溶接作業開始時に、新品の
2次ケ−ブルの判定基準抵抗値Rsを予め測定又は算出
すると共に、新品の2次ケ−ブルの断面及び長さにおけ
る抵抗値から過熱焼損の危険を生ずる抵抗値までの抵抗
値変化許容値δRを予め定めておき、新品でない2次ケ
−ブルを使用して、溶接毎、例えばN回目抵抗値Rnを
算出して上記判定基準抵抗値Rsと比較し、この差の絶
対値|Rn−Rs|が予め定めた抵抗値変化許容値δR
を越えた時点を、2次ケーブルの交換時期とする溶接用
の2次ケーブル素線の断線進行予測方法である。
A fourth method is to measure or calculate a judgment reference resistance value Rs of a new secondary cable in advance at the time of starting a welding operation, and to determine a resistance value in a cross section and a length of the new secondary cable. The allowable value δR of the resistance change from the temperature to the resistance value causing the danger of overheating burnout is determined in advance, and a non-new secondary cable is used to calculate the Nth resistance value Rn for each welding, for example, and the above determination is made. The absolute value | Rn−Rs | of this difference is compared with a reference resistance value Rs, and a predetermined resistance value change allowable value δR
This is a method for predicting the progress of disconnection of a secondary cable strand for welding, with the point in time beyond which the secondary cable is replaced.

【0127】第5の方法は、溶接作業開始時に、新品の
2次ケ−ブルの判定基準抵抗値Rsを予め測定又は算出
すると共に、新品の2次ケ−ブルの断面及び長さにおけ
る抵抗値から過熱焼損の危険を生ずる抵抗値までの抵抗
値変化許容値δRを予め定めておき、新品でない2次ケ
−ブルを使用して、溶接毎、例えばN回目の短絡電流通
電中に、N回目短絡電圧平均値V2a=V2nと短絡電流平
均値I2a=I2nとを検出してN回目抵抗値Rn=V2n/
I2nを算出し、上記判定基準抵抗値Rsと比較し、この
差の絶対値|Rn−Rs|が上記抵抗値変化許容値δR
を越えた時点を、2次ケーブルの交換時期とする溶接用
の2次ケーブル素線の断線進行予測方法である。
A fifth method is to measure or calculate a judgment reference resistance value Rs of a new secondary cable in advance at the time of starting a welding operation, and to determine a resistance value in a cross section and a length of the new secondary cable. The allowable value δR of the resistance change from the temperature to the resistance value causing the danger of overheating burnout is determined in advance, and the N-th time is used for each welding, for example, during the N-th short-circuit current application, using a non-new secondary cable. Detecting the short circuit voltage average value V2a = V2n and the short circuit current average value I2a = I2n, the Nth resistance value Rn = V2n /
I2n is calculated and compared with the judgment reference resistance value Rs. The absolute value | Rn-Rs |
This is a method for predicting the progress of disconnection of a secondary cable strand for welding, with the point in time beyond which the secondary cable is replaced.

【0128】第6の方法は、、2次ケーブルの劣化チェ
ックの保守点検時又は任意の溶接作業開始時に、新品の
2次ケ−ブルの判定基準抵抗値Rsを予め測定又は算出
すると共に、新品の2次ケ−ブルの断面及び長さにおけ
る抵抗値から過熱焼損の危険を生ずる抵抗値までの抵抗
値変化許容値δRを予め定めておき、新品でない2次ケ
−ブルを使用して、スタッドを被溶接材に押し込んだ溶
接毎、例えばN回目の短絡電流通電中に、N回目の押し
込み短絡電圧平均値V2a=V2nと押し込み短絡電流平均
値I2a=I2nとを検出してN回目抵抗値Rn=V2n/I
2nを算出し、上記判定基準抵抗値Rsと比較し、この差
の絶対値|Rn−Rs|が上記抵抗値変化許容値δRを
越えた時点を、2次ケーブルの交換時期とする溶接用の
2次ケーブル素線の断線進行予測方法である。
The sixth method is to measure or calculate the judgment reference resistance value Rs of a new secondary cable in advance at the time of maintenance inspection of the deterioration check of the secondary cable or at the start of an arbitrary welding operation. The resistance change allowable value δR from the resistance value in the cross section and the length of the secondary cable to the resistance value causing the risk of overheating and burning is determined in advance, and the stud is used by using a non-new secondary cable. Is pushed into the workpiece, for example, during the N-th short-circuit current application, the N-th indentation short-circuit voltage average value V2a = V2n and the indentation short-circuit current average value I2a = I2n are detected, and the Nth resistance value Rn is detected. = V2n / I
2n is calculated and compared with the determination reference resistance value Rs. The time when the absolute value | Rn−Rs | of the difference exceeds the resistance value change allowable value δR is used as a time for replacing the secondary cable. This is a method for predicting the progress of disconnection of a secondary cable strand.

【0130】2次ケ−ブルで部分断線が生じた場合、素
線断線部が図6(A)のように接触している場合の抵抗
値は、正常時と変わらないために、2次ケ−ブルの異常
を判定できない。そこで、引き回し等の状態によっては
図6(B)のような状態になり、このとき算出抵抗値R
aがばらつくために、このばらつきを検出して断線進行
予測をしてもよい。
When a partial break occurs in the secondary cable, the resistance when the wire break is in contact as shown in FIG. -The abnormality of the bull cannot be determined. Therefore, depending on the state of the wiring or the like, the state shown in FIG.
Since a varies, the variation may be detected to predict the progress of the disconnection.

【0132】この方法は、作業開始前に接続している2
次ケ−ブルの断面及び長さにおける抵抗値から過熱焼損
の危険を生ずる抵抗値までの算出抵抗変動許容値ΔRm
を予め定めておき、溶接開始後の算出抵抗最大値Rmaと
算出抵抗最小値Rmiとの差の算出抵抗最大変動値(Rma
−Rmi)が、算出抵抗変動許容値ΔRmを超えた時点
を、2次ケーブルの交換時期とする溶接用の2次ケーブ
ル素線の断線進行予測方法である。
In this method, the connection is made before starting the work.
Calculated resistance change allowable value ΔRm from the resistance value at the cross section and length of the next cable to the resistance value causing danger of overheating
Is calculated in advance, and the calculated resistance maximum fluctuation value (Rma) of the difference between the calculated resistance maximum value Rma and the calculated resistance minimum value Rmi after the welding is started.
−Rmi) is a method of predicting the progress of the disconnection of the secondary cable strand for welding, with the time point when the calculated resistance variation allowable value ΔRm exceeds the secondary cable replacement time.

【0134】上記の方法を具体化すると、作業開始前に
接続している2次ケ−ブルの断面及び長さにおける抵抗
値から過熱焼損の危険を生ずる抵抗値までの算出抵抗変
動許容値ΔRmを予め定めておき、溶接毎、例えばN回
目の溶接時に短絡電流を通電してN回目短絡電圧平均値
V2a=V2nと短絡電流平均値I2a=I2nとを検出してN
回目抵抗値Rn=V2n/I2nを算出して、N回目抵抗値
Rnが(N−1)回目までの算出抵抗最大値Rma又は算
出抵抗最小値Rmiをこえたときは、このN回目抵抗値R
nを(N−1)回目までの算出抵抗最大値Rma又は算出
抵抗最小値Rmiとし、溶接開始後のN回目算出抵抗最大
値Rmaと算出抵抗最小値Rmiとの差の算出抵抗最大変動
値(Rma−Rmi)が、算出抵抗変動許容値ΔRmを超え
た時点を、2次ケーブルの交換時期とする溶接用の2次
ケーブル素線の断線進行予測方法である。
When the above-mentioned method is embodied, the calculated resistance variation allowable value ΔRm from the resistance value in the cross section and the length of the secondary cable connected before starting the operation to the resistance value causing the danger of overheating and burning is calculated. In advance, a short-circuit current is supplied at the time of each welding, for example, at the time of the N-th welding, and an N-th short-circuit voltage average value V2a = V2n and a short-circuit current average value I2a = I2n are detected.
When the N-th resistance value Rn exceeds the calculated resistance maximum value Rma or the calculated resistance minimum value Rmi up to the (N-1) th calculation, the N-th resistance value Rn is calculated.
n is the calculated resistance maximum value Rma or the calculated resistance minimum value Rmi up to the (N-1) th time, and the calculated resistance maximum fluctuation value of the difference between the Nth calculated resistance maximum value Rma and the calculated resistance minimum value Rmi after the start of welding ( (Rma-Rmi) exceeds the calculated resistance variation allowable value ΔRm, which is a method of predicting the progress of the disconnection of the secondary cable strand for welding, when the secondary cable is to be replaced.

【1000】[1000]

【発明の効果】本発明の共通の効果は、以下のとおりで
ある。 (1)2次ケーブルは、通常の固定配線されたケーブル
に比べて、第1に、溶接箇所まで頻繁に引き回され、屈
曲回数及び捻れが多いために、ケーブル素線が断線(部
分断線)することが多く、第2に、本体ケ−ブルの可撓
性をよくするために通常のケーブルよりも細い素線を使
用しているので素線が断線しやすく、第3に、溶接箇所
まで頻繁に移動させ、大電流を通電するので、固定配線
されたケーブルに比べて、断面積の小さいケーブルを使
用するために、電圧降下による発熱が大となり、素線の
一部が断線すると残りの素線の断線が急速に進行し、異
常発熱して危険である。特に、建築物等の大形構造物の
溶接作業は、本体ケ−ブルに溶接ケーブルを接続して、
溶接箇所まで延長して頻繁に移動させ、特に、本体ケ−
ブルは、屈曲回数が多く、使用を繰り返すと部分断線が
急速に進行する。それに対して、本発明においては、作
業開始時の初回溶接時の初期抵抗値R1とN回目溶接時
のN回目抵抗値Rnとの差のN回目抵抗値増加分ΔRn
が、作業開始前に接続している2次ケ−ブルの断面及び
長さにおける抵抗値から過熱焼損の危険を生ずる抵抗値
までの抵抗増加許容値ΔRrを越えたとき、又は溶接開
始後の算出抵抗最大値Rmaと算出抵抗最小値Rmiとの差
の算出抵抗最大変動値(Rma−Rmi)が、算出抵抗変動
許容値ΔRmを超えた時点で、2次ケーブルを交換する
ことによって、上記の課題を解決することができる。
The common effects of the present invention are as follows. (1) First, the secondary cable is frequently routed to the welded portion and has a large number of bendings and twists as compared with a normal fixedly wired cable, so that the cable strand is disconnected (partial disconnection). Secondly, since the wires used are thinner than ordinary cables in order to improve the flexibility of the main body cable, the wires are liable to be broken. Since it is moved frequently and carries a large current, it uses a cable with a smaller cross-sectional area than a cable with fixed wiring, so the heat generation due to the voltage drop becomes large. Wire breakage progresses rapidly, resulting in abnormal heating and dangerous. In particular, when welding large structures such as buildings, connect the welding cable to the main body cable,
Extend to the welding point and move frequently, especially when
The bull has a large number of bendings, and the partial disconnection progresses rapidly after repeated use. On the other hand, in the present invention, the Nth resistance increase ΔRn of the difference between the initial resistance R1 at the time of initial welding at the start of the work and the Nth resistance Rn at the time of Nth welding.
Exceeds the allowable resistance increase ΔRr from the resistance value in the cross-section and length of the secondary cable connected before the start of the operation to the resistance value causing the danger of overheating, or calculation after the start of welding. The above-described problem is caused by replacing the secondary cable when the calculated maximum resistance change value (Rma−Rmi) of the difference between the maximum resistance value Rma and the minimum calculated resistance value Rmi exceeds the calculated resistance fluctuation allowable value ΔRm. Can be solved.

【1001】(2)本発明においては、N回目抵抗値増
加分ΔRnが予め定められた抵抗増加許容値ΔRrを越
える時点で表示、警報等が出力されるので、2次ケーブ
ル又はコネクタが劣化しているかどうかを確認すること
ができ、早期の交換等の対策が可能になる。また、使用
可能なケーブル長を越えたときでも認識することができ
る。
(2) In the present invention, a display or an alarm is output when the Nth resistance increase ΔRn exceeds a predetermined allowable resistance increase ΔRr, so that the secondary cable or connector is deteriorated. Can be confirmed, and measures such as early replacement can be taken. In addition, it can be recognized even when the available cable length is exceeded.

【1002】(3)本発明においては、初期抵抗値R1
が予め定められた抵抗値、例えば判定基準抵抗値Rsを
越えると表示されるので、使用可能なケーブル長を越え
ていることを知ることができる。
(3) In the present invention, the initial resistance value R1
Is displayed as exceeding a predetermined resistance value, for example, a judgment reference resistance value Rs, so that it can be known that the cable length exceeds the usable cable length.

【1003】(4)請求項1の効果は、溶接電源装置の
外部出力特性が定電流特性であるときは、前述した本発
明の共通の効果に加えて、短絡電圧平均値を算出して、
この短絡電圧平均値の変化を自動的に監視するので、簡
単な装置で、溶接用の2次ケーブル素線の断線の進行を
予測することができる。
(4) The effect of claim 1 is that when the external output characteristic of the welding power supply device is a constant current characteristic, in addition to the above-mentioned common effect of the present invention, an average value of the short-circuit voltage is calculated.
Since the change in the short-circuit voltage average value is automatically monitored, it is possible to predict the progress of disconnection of the secondary cable for welding with a simple device.

【1004】(5)請求項2の効果は、本発明の共通の
効果の他に、つぎの効果がある。スタッド溶接は、通
常、2次ケーブルに大電流を通電するために、2次ケー
ブルのわずかな抵抗値であっても、大きい電圧降下が発
生して2次ケーブルが発熱し、特に、屈曲回数が多い部
分で、溶接作業中に部分断線数が急速に進行して、部分
断線部分にア−クが発生すると危険であり、特に、2次
ケーブルの屈曲回数が多い部分は、溶接作業者近傍の位
置であるために、火傷事故が発生することがある。それ
に対して、本発明においては、作業開始時の初回の溶接
時に、スタッドを被溶接材に押し込んだ後の短絡電流通
電中に、N回目押し込み短絡電圧平均値V2a=V2nと初
回押し込み短絡電圧平均値V2a=V21との差のN回目押
し込み短絡電圧増加分ΔV2nが、作業開始前に接続して
いる2次ケ−ブルの断面及び長さにおける抵抗値から過
熱焼損の危険を生ずる抵抗値までの抵抗増加電圧降下許
容値ΔVrを越えた時点で、2次ケーブルを交換するこ
とによって、上記の課題を解決することができる。さら
に、本発明をスタッド溶接に適用すると、溶接回路電圧
降下を測定する目的で短絡電流Isを通電する必要がな
く、通常のスタッド溶接中に、溶接回路電圧降下を測定
することができるので、溶接ガンと被溶接材の溶接すべ
き箇所付近との間を短絡して溶接回路電圧降下を測定す
る労力を省くことができる。
(5) The effect of claim 2 has the following effect in addition to the common effect of the present invention. In stud welding, a large current is usually passed through the secondary cable. Therefore, even if the secondary cable has a small resistance value, a large voltage drop occurs and the secondary cable generates heat. It is dangerous if the number of partial breaks progresses rapidly during welding work in a large number of parts and an arc is generated in the partially broken part. Burn accidents may occur due to the location. On the other hand, in the present invention, at the time of the first welding at the start of the work, the N-th indentation short-circuit voltage average value V2a = V2n and the initial in-push short-circuit voltage average during the short-circuit current flow after the stud was pushed into the workpiece. The difference between the value V2a = V21 and the Nth indentation short circuit voltage increase ΔV2n is from the resistance value in the cross section and the length of the secondary cable connected before the start of the operation to the resistance value that may cause overheating burnout. The above-mentioned problem can be solved by replacing the secondary cable when the resistance increase voltage drop allowable value ΔVr is exceeded. Furthermore, when the present invention is applied to stud welding, it is not necessary to supply the short-circuit current Is for the purpose of measuring the welding circuit voltage drop, and the welding circuit voltage drop can be measured during normal stud welding. A short circuit between the gun and the vicinity of the portion to be welded of the workpiece can be saved, and labor for measuring the welding circuit voltage drop can be omitted.

【1005】(6)請求項3の効果は、本発明の共通の
効果の他に、溶接電源装置の外部出力特性が定電流特性
でないときであっても、精度よく、適用することができ
る。
(6) In addition to the common effects of the present invention, the effect of claim 3 can be applied with high accuracy even when the external output characteristics of the welding power supply device are not constant current characteristics.

【1006】(7)請求項4の効果は、請求項3の効果
の他に、通常の溶接に使用する溶接電源装置に、断線を
チェックしようとする2次ケ−ブルを短絡接続して短絡
電流を通電するだけで、算出抵抗値を精度よく算出する
ができる。
(7) In addition to the effect of the third aspect, the effect of the fourth aspect is that the secondary cable for checking for disconnection is short-circuited to the welding power supply device used for ordinary welding. The calculated resistance value can be calculated with high accuracy only by applying a current.

【1007】(8)請求項5の効果は、請求項2及び請
求項4の効果を有している。
(8) The effect of claim 5 has the effect of claim 2 and claim 4.

【1008】(9)請求項6の効果は、短絡電圧瞬時値
V(t)及び短絡電流瞬時値I(t)の検出ごとに、累
積抵抗値Rntと初期抵抗値R1との差のN回目溶接時の
累積抵抗値増加分ΔRnt=Rnt−R1を算出し、この累
積抵抗値増加分ΔRntが抵抗増加許容値ΔRrを越えた
ときに、溶接電流を遮断することによって、2次ケーブ
ルの過熱焼損を余裕をもって防止することができる。
(9) The effect of claim 6 is that every time the short-circuit voltage instantaneous value V (t) and the short-circuit current instantaneous value I (t) are detected, the difference between the cumulative resistance value Rnt and the initial resistance value R1 becomes Nth time. By calculating the cumulative resistance increase ΔRnt = Rnt−R1 at the time of welding, and when the cumulative resistance increase ΔRnt exceeds the resistance increase allowable value ΔRr, the welding current is cut off to thereby overheat and burn the secondary cable. Can be prevented with a margin.

【1009】(10)請求項7の効果は、請求項2及び
請求項6の効果を有している。
(10) The effect of claim 7 has the effect of claim 2 and claim 6.

【1010】(11)請求項8の効果は、新品でない2
次ケ−ブルの初期抵抗値R1を算出して新品の2次ケ−
ブルの判定基準抵抗値Rsと比較し、この差の絶対値|
R1−Rs|が、新品の2次ケ−ブルの断面及び長さに
おける抵抗値から過熱焼損の危険を生ずる抵抗値までの
抵抗値変化許容値δRを越えた時点で、2次ケーブルを
交換することによって、第1に、新品でない2次ケ−ブ
ルの初期抵抗値R1を、新品の2次ケ−ブルの判定基準
抵抗値Rsと比較するので、常に一定した判定基準に基
づく結果(2次ケーブルの交換時期)を予測することが
でき、第2に、2次ケーブルの劣化チェックの保守点検
時又は任意の溶接作業開始時にも、2次ケーブルの交換
時期の予測をすることができる。
(11) The effect of claim 8 is that the effect is not new.
The initial resistance value R1 of the next cable is calculated and a new secondary cable is calculated.
And the absolute value of the difference |
When R1-Rs | exceeds the resistance change allowable value δR from the resistance in the cross section and the length of the new secondary cable to the resistance causing the danger of overheating, replace the secondary cable. First, the initial resistance value R1 of the non-new secondary cable is compared with the reference resistance value Rs of the new secondary cable. Second, the secondary cable replacement time can be predicted also at the time of maintenance inspection of the deterioration check of the secondary cable or at the start of an arbitrary welding operation.

【1011】(12)請求項9の効果は、請求項8の効
果の他に、通常の溶接に使用する溶接電源装置に、断線
をチェックしようとする2次ケ−ブルを短絡接続して短
絡電流を通電するだけで、算出抵抗値を精度よく算出す
るができる。
(12) In addition to the effect of the eighth aspect, the effect of the ninth aspect is that the secondary cable for checking the disconnection is short-circuited to the welding power supply device used for ordinary welding. The calculated resistance value can be calculated with high accuracy only by applying a current.

【1012】(13)請求項10の効果は、請求項2及
び請求項9の効果を有している。
(13) The effect of claim 10 has the effect of claim 2 and claim 9.

【1013】(14)請求項11の効果は、新品でない
2次ケ−ブルを使用して、N回目抵抗値Rnを算出し
て、溶接作業開始時に、新品の2次ケ−ブルの判定基準
抵抗値Rsと比較し、この差の絶対値|Rn−Rs|
が、新品の2次ケ−ブルの断面及び長さにおける抵抗値
から過熱焼損の危険を生ずる抵抗値までの抵抗値変化許
容値δRを越えた時点で、2次ケーブルを交換すること
によって、2次ケーブルの劣化チェックの保守点検時又
は任意の溶接作業開始時だけでなく、新品でない2次ケ
−ブルのN回目溶接時のN回目抵抗値Rnを、新品の2
次ケ−ブルの判定基準抵抗値Rsと比較するので、常に
一定した判定基準に基づく結果(2次ケーブルの交換時
期)を予測することができる。
(14) The effect of claim 11 is that an N-th resistance value Rn is calculated by using a non-new secondary cable, and a criterion for determining a new secondary cable at the start of welding work. The absolute value of the difference | Rn−Rs |
However, by replacing the secondary cable when the resistance change allowable value δR from the resistance value in the cross section and the length of the new secondary cable to the resistance value causing the danger of overheating is exceeded, the secondary cable is replaced. The Nth resistance value Rn at the time of the Nth welding of a non-new secondary cable, as well as at the time of maintenance inspection of the deterioration check of the next cable or at the start of arbitrary welding work, is set to
Since the comparison is made with the judgment reference resistance value Rs of the next cable, it is possible to predict the result (replacement time of the secondary cable) based on the constant judgment criterion.

【1014】(15)請求項12の効果は、請求項11
の効果の他に、通常の溶接に使用する溶接電源装置に、
断線をチェックしようとする2次ケ−ブルを短絡接続し
て短絡電流を通電するだけで、算出抵抗値を精度よく算
出するができる。
(15) The effect of claim 12 is the effect of claim 11
In addition to the effect of, the welding power supply used for normal welding,
The calculated resistance value can be accurately calculated only by short-circuiting the secondary cable to be checked for disconnection and supplying a short-circuit current.

【1015】(16)請求項13の効果は、請求項2及
び請求項12の効果を有している。
(16) The effect of claim 13 has the effect of claim 2 and claim 12.

【1016】(17)請求項16及び請求項17の効果
は、2次ケ−ブルで部分断線が生じた場合、素線断線部
が図6(A)のように接触している場合は、正常時の抵
抗値となるために、2次ケ−ブルの部分断線の進行を判
定することができない。そこで、引き回し等の状態によ
っては図6(B)のような状態になり、このとき算出抵
抗値Raがばらつくので、このばらつきを算出して、溶
接用の2次ケーブル素線の断線の進行を予測することが
できる。
(17) The effect of claim 16 and claim 17 is that, when a partial break occurs in the secondary cable, and when the wire break portion is in contact as shown in FIG. Since the resistance value is normal, the progress of the partial disconnection of the secondary cable cannot be determined. Therefore, depending on the state of the wiring and the like, a state as shown in FIG. 6B is obtained. At this time, the calculated resistance value Ra varies, so that this variation is calculated and the progress of the disconnection of the welding secondary cable strand is calculated. Can be predicted.

【1017】(18)請求項18の効果は、請求項2及
び請求項17の効果を有している。
(18) The effect of claim 18 has the effects of claims 2 and 17.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、通常のスタッド溶接をするときの2次
ケ−ブルの接続状態を示す図である。
FIG. 1 is a view showing a connection state of a secondary cable when normal stud welding is performed.

【図2】図2は、本出願人の従来方法のスタッド溶接の
2次ケ−ブルの劣化状態をチェックするときの2次ケ−
ブルの接続状態を示す図である。
FIG. 2 is a diagram showing a secondary cable for checking the deterioration state of a secondary cable of stud welding according to the conventional method of the present applicant.
It is a figure showing the connection state of a cable.

【図3】図3は、本発明の方法を実施するスタッド溶接
装置の実施例を示す図である。
FIG. 3 is a diagram showing an embodiment of a stud welding apparatus for performing the method of the present invention.

【図4】図4(A)は、溶接電流Ioの波形を示す溶接
電流波形図であり、同図(B)は溶接電源装置の出力端
子で検出した出力端子電圧Vdの波形を示す図であり、
同図(C)はスタッド先端の移動量Mを示す図である。
FIG. 4A is a welding current waveform diagram showing a waveform of a welding current Io, and FIG. 4B is a diagram showing a waveform of an output terminal voltage Vd detected at an output terminal of the welding power supply device. Yes,
FIG. 9C is a diagram showing the movement amount M of the stud tip.

【図5】図5は、本発明のスタッド溶接の等価アーク電
圧を算出する引き上げ期間入熱管理方法のフローチャー
トである。
FIG. 5 is a flowchart of a method for managing heat input during a pulling-up period for calculating an equivalent arc voltage of stud welding according to the present invention.

【図6】図6は(A)は、2次ケ−ブルの断線部が接触
している場合の状態を示す図であり、同図(B)は、断
線部の素線が離れている状態を示す図である。
FIG. 6A is a view showing a state in which a broken portion of the secondary cable is in contact with the secondary cable, and FIG. It is a figure showing a state.

【符号の説明】[Explanation of symbols]

1 溶接電源装置 2 溶接ガン 2a スタッド移動用シャフト 2b スタッドチャック 2c 本体ケーブル接続金具 3 溶接制御装置 5 電流指令出力回路 6 D/A変換器 7、8 A/D変換器 11 記憶回路 12 表示回路又は警報器 13 溶接開始終了スイッチ 15 溶接電流出力回路 16 制御ケーブル 17 2次ケーブル/溶接ケーブル 17a 本体ケーブル/断線チェックしたい2次ケー
ブル 17b 断線チェックしたい2次ケーブル17aの断
線チェック部分 19 溶接条件設定回路 31 温度上昇値測定器 32 熱電対 CPU 演算処理回路 I2a (押し込み)短絡電流平均値 I21 初回溶接時の短絡電流平均値/初回の押し込み
短絡電流平均値 I2n N回目溶接時の短絡電流平均値/N回目の押し
込み短絡電流平均値 Ia 主ア−ク電流 IC 溶接電流検出回路 Ic 溶接電流検出信号 Io 溶接電流/溶接電流値 Ip パイロット電流 Is Tsd期間中の押し込み短絡電流平均値 I(t) 押し込み短絡電流瞬時値 M スタッド先端の移動量 R1 初期抵抗値[V21/I21] Ra 算出抵抗値[V2a/I2a] Rma 算出抵抗最大値 Rmi 算出抵抗最小値 (Rma−Rmi) 算出抵抗最大変動値 ΔRm 算出抵抗変動許容値 Rn N回目抵抗値[V2n/I2n] Rnt 累積抵抗値 ΔRnt N回目溶接時の累積抵抗値増加分[Rnt−R
1] Rs (新品の2次ケ−ブルの)判定基準抵抗値 R(t) 瞬時抵抗値 |R1−Rs| 初期抵抗値と判定基準抵抗値との差
の絶対値 |Rn−Rs| N回目抵抗値と判定基準抵抗値との
差の絶対値 δR 2次ケ−ブルの過熱焼損の危険を生ずる抵抗値
変化許容値 ΔRr 抵抗増加許容値 ΔRn=Rn−R1 N回目抵抗値増加分 S スタッド t9 (押し込み)短絡開始時点 t10 (押し込み)短絡終了時点 t91 (押し込み)短絡電圧検出開始時点 t9n (押し込み)短絡電圧検出終了時点 Ta 主ア−ク期間 Tm 押し込み期間 Tn N回目の測定温度上昇値 Tp パイロット電流期間 Tr 判定温度上昇値 Ts 押し込み短絡期間 Tsd 押し込み短絡検出期間 V2a (押し込み)短絡電圧平均値 V21 初回溶接時の短絡電圧平均値/初回の押し込み
短絡電圧平均値 V2n N回目溶接時の短絡電圧平均値/N回目の押し
込み短絡電圧平均値 V2a Tsd期間中の(押し込み)短絡電圧平均値 VC 溶接電圧検出回路 Vc 溶接電圧検出信号 Vd 出力端子電圧/出力端子電圧値 V(t) 押し込み短絡電圧瞬時値 ΔV2n N回目短絡電圧増加分[V2n−V21] ΔVr 抵抗増加電圧降下許容値
REFERENCE SIGNS LIST 1 welding power supply device 2 welding gun 2 a stud moving shaft 2 b stud chuck 2 c body cable connection fitting 3 welding control device 5 current command output circuit 6 D / A converter 7, 8 A / D converter 11 storage circuit 12 display circuit or Alarm 13 Welding start / end switch 15 Welding current output circuit 16 Control cable 17 Secondary cable / Welding cable 17a Body cable / Secondary cable 17b to check for disconnection Disconnection check part of secondary cable 17a to check for disconnection 19 Welding condition setting circuit 31 Temperature rise value measuring device 32 Thermocouple CPU arithmetic processing circuit I2a (Push-in) average short-circuit current I21 Average short-circuit current during initial welding / Average short-circuit current during initial push-in I2n Average short-circuit current during Nth welding / Nth welding Inrush current average value Ia Main arc current IC Contact current detection circuit Ic Welding current detection signal Io Welding current / welding current value Ip Pilot current Is Tsd Average short-circuit current during pushing I (t) Instantaneous pushing short-circuit current M Movement amount of stud tip R1 Initial resistance value [V21 / I21] Ra calculated resistance value [V2a / I2a] Rma calculated resistance maximum value Rmi calculated resistance minimum value (Rma-Rmi) calculated resistance maximum fluctuation value ΔRm calculated resistance fluctuation allowable value Rn Nth resistance value [V2n / I2n] Rnt accumulation Resistance value ΔRnt Cumulative resistance value increase at Nth welding [Rnt-R
1] Rs (the new secondary cable) judgment reference resistance R (t) instantaneous resistance | R1-Rs | absolute value of difference between initial resistance and judgment reference resistance | Rn-Rs | Nth time Absolute value of difference between resistance value and judgment reference resistance value δR Resistance change allowable value causing danger of overheating and burning of secondary cable ΔRr Resistance increase allowable value ΔRn = Rn-R1 Nth increase in resistance value S Stud t9 (Push) Short circuit start time t10 (Push) Short circuit end time t91 (Push) Short circuit voltage detection start time t9n (Push) Short circuit voltage detection end time Ta Main arc period Tm Push period Tn Nth measured temperature rise value Tp Pilot Current period Tr Judgment temperature rise value Ts Push-in short-circuit period Tsd Push-in short-circuit detection period V2a (Push-in) Short-circuit voltage average value V21 Short-circuit voltage average value at the time of initial welding / Short-time of initial push-in Voltage average value V2n Short-circuit voltage average value at N-th welding / N-th press-in short-circuit voltage average value V2a Average (push-in) short-circuit voltage value during Tsd period VC Welding voltage detection circuit Vc Welding voltage detection signal Vd Output terminal voltage / output Terminal voltage value V (t) Instantaneous value of short-circuit voltage to be pushed in. ΔV2n Nth increase in short-circuit voltage [V2n-V21] ΔVr Allowable value of resistance increase voltage drop

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B23K 11/24 337 B23K 11/24 337 31/00 31/00 Z ────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 6 Identification code FI B23K 11/24 337 B23K 11/24 337 31/00 31/00 Z

Claims (18)

【特許請求の範囲】[Claims] 【請求項1】 2次ケーブルの劣化チェック方法におい
て、作業開始前に接続している2次ケ−ブルの断面及び
長さにおける抵抗値から過熱焼損の危険を生ずる抵抗値
までの抵抗増加電圧降下許容値を予め定めておき、作業
開始時の初回の溶接時に短絡電流を通電して短絡電圧平
均値を測定し、次に、N回目の溶接時に短絡電流を通電
してN回目短絡電圧平均値を測定して、前記N回目短絡
電圧平均値と前記初回短絡電圧平均値との差のN回目短
絡電圧増加分を算出し、前記N回目短絡電圧増加分と前
記抵抗増加電圧降下許容値とを比較して、前記N回目短
絡電圧増加分が前記抵抗増加電圧降下許容値を越えた時
点を、2次ケーブルの交換時期とする溶接用の2次ケー
ブル素線の断線進行予測方法。
In a method for checking deterioration of a secondary cable, a resistance increasing voltage drop from a resistance value in a cross section and a length of a secondary cable connected before starting work to a resistance value causing a danger of overheating and burning. A permissible value is set in advance, a short-circuit current is applied at the first welding at the start of work, and a short-circuit voltage average value is measured. Then, at the Nth welding, a short-circuit current is applied and the Nth short-circuit voltage average value is measured. To calculate the N-th short-circuit voltage increase of the difference between the N-th short-circuit voltage average and the first short-circuit voltage average, and calculate the N-th short-circuit voltage increase and the resistance increase voltage drop allowable value. In comparison, a method for predicting the progress of disconnection of a secondary wire for welding is set such that a point in time when the N-th short-circuit voltage increase exceeds the resistance increase voltage drop allowable value is a secondary cable replacement time.
【請求項2】 2次ケーブルの劣化チェック方法におい
て、作業開始前に接続している2次ケ−ブルの断面及び
長さにおける抵抗値から過熱焼損の危険を生ずる抵抗値
までの抵抗増加電圧降下許容値を予め定めておき、作業
開始時の初回の溶接時に、スタッドを被溶接材に押し込
んだ後の短絡電流通電中に、初回押し込み短絡電圧平均
値を測定し、次に、N回目にスタッドを被溶接材に押し
込んだ後の短絡電流通電中に、N回目押し込み短絡電圧
平均値を測定して、前記N回目押し込み短絡電圧平均値
と前記初回押し込み短絡電圧平均値との差のN回目押し
込み短絡電圧増加分を算出し、前記N回目押し込み短絡
電圧増加分と前記抵抗増加電圧降下許容値とを比較し
て、前記N回目押し込み短絡電圧増加分が前記抵抗増加
電圧降下許容値を越えた時点を、2次ケーブルの交換時
期とする溶接用の2次ケーブル素線の断線進行予測方
法。
2. A method for checking deterioration of a secondary cable, comprising: increasing a voltage drop from a resistance value in a cross section and a length of a secondary cable connected before starting operation to a resistance value causing a danger of overheating and burning. The allowable value is determined in advance, and at the time of the first welding at the start of work, the average value of the initial pushing short-circuit voltage is measured during the short-circuit current flow after pushing the stud into the workpiece, and then the Nth stud During the short-circuit current flow after pushing into the workpiece, the N-th indentation short-circuit voltage average is measured, and the N-th indentation of the difference between the N-th indentation short-circuit voltage average and the first indentation short-circuit voltage average is performed. Calculate the short-circuit voltage increase and compare the N-th press-in short-circuit voltage increase with the resistance increase voltage drop allowable value. The N-th press-in short-circuit voltage increase exceeds the resistance increase voltage drop allowable value. A method for predicting the progress of the disconnection of a secondary cable strand for welding, with the time at which the secondary cable is replaced as the time of replacement.
【請求項3】 2次ケーブルの劣化チェック方法におい
て、作業開始前に接続している2次ケ−ブルの断面及び
長さにおける抵抗値から過熱焼損の危険を生ずる抵抗値
までの抵抗増加許容値を予め定めておき、作業開始時の
初回溶接時の初期抵抗値とN回目溶接時のN回目抵抗値
との差のN回目抵抗値増加分を算出し、前記N回目抵抗
値増加分と前記抵抗増加許容値とを比較して、前記N回
目抵抗値増加分が前記抵抗増加許容値を越えた時点を、
2次ケーブルの交換時期とする溶接用の2次ケーブル素
線の断線進行予測方法。
3. A method for checking deterioration of a secondary cable, which is an allowable value of resistance increase from a resistance value in a cross section and a length of a secondary cable connected before starting work to a resistance value causing a risk of overheating and burning. Is calculated in advance, and the N-th resistance increase of the difference between the initial resistance at the first welding at the start of the work and the N-th resistance at the N-th welding is calculated, and the N-th resistance increase and the N-th resistance increase are calculated. Comparing with the resistance increase allowable value, the time when the Nth resistance value increase exceeds the resistance increase allowable value,
A method for predicting the progress of disconnection of a secondary cable strand for welding when the secondary cable is to be replaced.
【請求項4】 2次ケーブルの劣化チェック方法におい
て、作業開始前に接続している2次ケ−ブルの断面及び
長さにおける抵抗値から過熱焼損の危険を生ずる抵抗値
までの抵抗増加許容値を予め定めておき、作業開始時の
初回の溶接時に短絡電流を通電して短絡電圧平均値と短
絡電流平均値とを検出して初期抵抗値を算出し、次に、
N回目の溶接時に短絡電流を通電してN回目短絡電圧平
均値と短絡電流平均値とを検出してN回目抵抗値を算出
して、前記N回目抵抗値と前記初期抵抗値との差のN回
目抵抗値増加分を算出し、前記N回目抵抗値増加分と前
記抵抗増加許容値とを比較して、前記N回目抵抗値増加
分が前記抵抗増加許容値を越えた時点を、2次ケーブル
の交換時期とする溶接用の2次ケーブル素線の断線進行
予測方法。
4. A method for checking the deterioration of a secondary cable, which is an allowable resistance increase from a resistance value in a cross section and a length of a secondary cable connected before starting work to a resistance value causing a danger of overheating and burning. In advance, at the time of the first welding at the start of the work, a short-circuit current is supplied, a short-circuit voltage average value and a short-circuit current average value are detected, and an initial resistance value is calculated.
During the Nth welding, a short circuit current is applied to detect the Nth short circuit voltage average value and the short circuit current average value, calculate the Nth resistance value, and calculate the difference between the Nth resistance value and the initial resistance value. The N-th resistance increase is calculated, and the N-th resistance increase is compared with the resistance increase allowable value. The time when the N-th resistance increase exceeds the resistance increase allowable value is calculated as a secondary time. A method for predicting the progress of disconnection of a secondary cable strand for welding at the time of replacing a cable.
【請求項5】 2次ケーブルの劣化チェック方法におい
て、作業開始前に接続している2次ケ−ブルの断面及び
長さにおける抵抗値から過熱焼損の危険を生ずる抵抗値
までの抵抗増加許容値を予め定めておくき、作業開始時
の初回の溶接時に、スタッドを被溶接材に押し込んだ後
の短絡電流通電中に、押し込み短絡電圧平均値と押し込
み短絡電流平均値とを検出して初期抵抗値を算出し、次
に、N回目にスタッドを被溶接材に押し込んだ後の短絡
電流通電中に、押し込み短絡電圧平均値と押し込み短絡
電流平均値とを検出してN回目抵抗値を算出して、前記
N回目抵抗値と前記初期抵抗値との差のN回目抵抗値増
加分を算出し、前記N回目抵抗値増加分と前記抵抗増加
許容値とを比較して、前記N回目抵抗値増加分が前記抵
抗増加許容値を越えた時点を、2次ケーブルの交換時期
とする溶接用の2次ケーブル素線の断線進行予測方法。
5. A method for checking the deterioration of a secondary cable, the allowable value of resistance increase from a resistance value in a cross section and a length of a secondary cable connected before starting work to a resistance value causing a danger of overheating and burning. At the time of the first welding at the start of work, the initial resistance is detected by detecting the average value of the short-circuit voltage and the average value of the short-circuit current during the short-circuit current flow after the stud is pressed into the workpiece. Then, during the N-th short-circuit current application after the stud is pushed into the workpiece, the N-th resistance value is calculated by detecting the average value of the short-circuit voltage and the average value of the short-circuit current. Calculating an N-th resistance increase in the difference between the N-th resistance and the initial resistance, comparing the N-th resistance increase with the allowable resistance increase, and calculating the N-th resistance. Increase exceeds the allowable resistance increase A method for predicting the progress of the disconnection of a secondary cable strand for welding, with the time at which the secondary cable is replaced as the time of replacement.
【請求項6】 2次ケーブルの劣化チェック方法におい
て、作業開始前に接続している2次ケ−ブルの断面及び
長さにおける抵抗値から過熱焼損の危険を生ずる抵抗値
までの抵抗増加許容値を予め定めておき、作業開始時の
初回の溶接時に短絡電流を通電して、初回短絡検出期間
の間、短絡電圧瞬時値及び短絡電流瞬時値を検出し、短
絡電圧瞬時値を短絡電流瞬時値で除算して瞬時抵抗値を
算出して前記瞬時抵抗値を累積して、初回短絡検出期間
の初期抵抗値を算出し、次に、N回目の溶接時に短絡電
流を通電してN回目短絡検出期間の間、短絡電圧瞬時値
及び短絡電流瞬時値を検出し、短絡電圧瞬時値を短絡電
流瞬時値で除算して瞬時抵抗値を算出して、前記瞬時抵
抗値を累積して、N回目短絡検出期間内の累積抵抗値を
算出し、前記短絡電圧瞬時値及び短絡電流瞬時値の検出
ごとに、前記累積抵抗値と前記初期抵抗値との差のN回
目溶接時の累積抵抗値増加分を算出し、前記累積抵抗値
増加分と前記抵抗増加許容値とを比較して、前記累積抵
抗値増加分が前記抵抗増加許容値を越えたときに、溶接
電流を遮断するか、又は2次ケーブルの交換時期である
表示をする溶接用の2次ケーブル素線の断線進行予測方
法。
6. A method for checking deterioration of a secondary cable, which is an allowable resistance increase from a resistance value in a cross-section and a length of a secondary cable connected before starting work to a resistance value causing a risk of overheating and burning. The short-circuit current is supplied at the time of the first welding at the start of work, and the short-circuit voltage instantaneous value and the short-circuit current instantaneous value are detected during the initial short-circuit detection period. , The instantaneous resistance value is calculated, the instantaneous resistance value is accumulated, the initial resistance value during the initial short-circuit detection period is calculated, and then a short-circuit current is supplied during the N-th welding to detect the N-th short-circuit. During the period, the instantaneous value of the short-circuit voltage and the instantaneous value of the short-circuit current are detected, the instantaneous value of the short-circuit voltage is divided by the instantaneous value of the short-circuit current, the instantaneous resistance value is calculated, the instantaneous resistance value is accumulated, and the N-th short circuit is performed. The cumulative resistance value during the detection period is calculated, and the Each time the instantaneous pressure value and the instantaneous short-circuit current value are detected, the cumulative resistance increase at the N-th welding of the difference between the cumulative resistance and the initial resistance is calculated, and the cumulative resistance increase and the resistance increase are calculated. When the cumulative resistance increase exceeds the resistance increase allowable value, the welding current is cut off or a secondary cable replacement indication is displayed indicating that it is time to replace the secondary cable. A method for predicting the progress of cable breaks.
【請求項7】 2次ケーブルの劣化チェック方法におい
て、作業開始前に接続している2次ケ−ブルの断面及び
長さにおける抵抗値から過熱焼損の危険を生ずる抵抗値
までの抵抗増加許容値を予め定めておき、作業開始時の
初回の溶接時に、スタッドを被溶接材に押し込んだ後の
短絡電流の通電中の押し込み短絡検出期間の間、押し込
み短絡電圧瞬時値及び押し込み短絡電流瞬時値を検出し
て、押し込み短絡電圧瞬時値を押し込み短絡電流瞬時値
で除算して瞬時抵抗値を算出して、前記瞬時抵抗値を累
積して、初回短絡検出期間の初期抵抗値を算出し、次
に、N回目にスタッドを被溶接材に押し込んだ後の短絡
電流の通電中の押し込み短絡検出期間の間、押し込み短
絡電圧瞬時値及び押し込み短絡電流瞬時値を検出して、
押し込み短絡電圧瞬時値を押し込み短絡電流瞬時値で除
算して瞬時抵抗値を算出して、前記瞬時抵抗値を累積し
て、N回目短絡検出期間内の累積抵抗値を算出し、前記
短絡電圧瞬時値及び短絡電流瞬時値の検出ごとに、前記
累積抵抗値と前記初期抵抗値との差のN回目溶接時の累
積抵抗値増加分を算出し、前記累積抵抗値増加分と前記
抵抗増加許容値とを比較して、前記累積抵抗値が前記抵
抗増加許容値を越えたときに、溶接電流を遮断するか、
又は2次ケーブルの交換時期である表示をする溶接用の
2次ケーブル素線の断線進行予測方法。
7. A method for checking deterioration of a secondary cable, which is an allowable resistance increase from a resistance value in a cross section and a length of a secondary cable connected before starting work to a resistance value causing a danger of overheating and burning. During the initial welding at the beginning of the work, the instantaneous value of the indentation short-circuit voltage and the instantaneous value of the indentation short-circuit current during the indentation short-circuit detection period during the energization of the short-circuit current after pushing the stud into the work piece Detect, calculate the instantaneous resistance by dividing the instantaneous value of the indentation short-circuit voltage by the instantaneous value of the indentation short-circuit current, accumulate the instantaneous resistance, calculate the initial resistance in the initial short-circuit detection period, , Detecting the instantaneous value of the indentation short-circuit voltage and the instantaneous value of the indentation short-circuit current during the indentation short-circuit detection period during the energization of the short-circuit current after pushing the stud into the material to be welded N times;
The instantaneous indentation short-circuit voltage value is divided by the instantaneous indentation short-circuit voltage value to calculate an instantaneous resistance value, the instantaneous resistance value is accumulated, and the accumulated resistance value in the Nth short-circuit detection period is calculated. Value and the instantaneous value of the short-circuit current, for each of the detections of the cumulative resistance value and the initial resistance value, calculate the cumulative resistance value increase at the Nth welding of the difference between the cumulative resistance value and the initial resistance value, and calculate the cumulative resistance value increase and the resistance increase allowable value. When the cumulative resistance exceeds the resistance increase allowable value, the welding current is interrupted,
Alternatively, a method of predicting the progress of disconnection of a secondary cable for welding, which indicates the time of replacement of the secondary cable.
【請求項8】 2次ケーブルの劣化チェック方法におい
て、2次ケーブルの劣化チェックの保守点検時又は任意
の溶接作業開始時に、新品の2次ケ−ブルの判定基準抵
抗値を予め測定又は算出すると共に、新品の2次ケ−ブ
ルの断面及び長さにおける抵抗値から過熱焼損の危険を
生ずる抵抗値までの抵抗値変化許容値を予め定めてお
き、新品でない2次ケ−ブルの初期抵抗値を算出して前
記判定基準抵抗値と比較し、前記差の絶対値が予め定め
た抵抗値変化許容値を越えた時点を、2次ケーブルの交
換時期とする溶接用の2次ケーブル素線の断線進行予測
方法。
8. A method for checking deterioration of a secondary cable, in which a reference resistance value of a new secondary cable is measured or calculated in advance at the time of maintenance check of the deterioration of the secondary cable or at the start of an arbitrary welding operation. In addition, an allowable resistance change value from a resistance value in a cross section and a length of a new secondary cable to a resistance value causing a danger of overheating and burning is previously determined, and an initial resistance value of a non-new secondary cable is determined. Is calculated and compared with the criterion resistance value, and the time when the absolute value of the difference exceeds a predetermined resistance value change allowable value is set as the secondary cable replacement time. Disconnection progress prediction method.
【請求項9】 2次ケーブルの劣化チェック方法におい
て、2次ケーブルの劣化チェックの保守点検時又は任意
の溶接作業開始時に、新品の2次ケ−ブルの判定基準抵
抗値を予め測定又は算出すると共に、新品の2次ケ−ブ
ルの断面及び長さにおける抵抗値から過熱焼損の危険を
生ずる抵抗値までの抵抗値変化許容値を予め定めてお
き、新品でない2次ケ−ブルを使用して、2次ケーブル
の劣化チェックの定期点検時又は任意の溶接作業開始時
の短絡電流通電中に、短絡電圧平均値と短絡電流平均値
とを検出して初期抵抗値を算出し、前記判定基準抵抗値
と比較し、前記差の絶対値が前記抵抗値変化許容値を越
えた時点を、2次ケーブルの交換時期とする溶接用の2
次ケーブル素線の断線進行予測方法。
9. In the secondary cable deterioration checking method, a reference resistance value of a new secondary cable is measured or calculated in advance at the time of maintenance inspection of the secondary cable deterioration check or at the start of any welding work. At the same time, an allowable resistance change value from a resistance value in a cross section and a length of a new secondary cable to a resistance value causing a danger of overheating and burning is determined in advance, and a non-new secondary cable is used. During the periodical inspection of the deterioration check of the secondary cable or during the passage of the short-circuit current at the start of any welding work, the average value of the short-circuit voltage and the average value of the short-circuit current are detected to calculate the initial resistance value, The time at which the absolute value of the difference exceeds the allowable value of the resistance value change is regarded as the time for replacing the secondary cable.
How to predict the progress of disconnection of the next cable strand.
【請求項10】 2次ケーブルの劣化チェック方法にお
いて、2次ケーブルの劣化チェックの保守点検時又は任
意の溶接作業開始時に、新品の2次ケ−ブルの判定基準
抵抗値を予め測定又は算出すると共に、新品の2次ケ−
ブルの断面及び長さにおける抵抗値から過熱焼損の危険
を生ずる抵抗値までの抵抗値変化許容値を予め定めてお
き、新品でない2次ケ−ブルを使用して、スタッドを被
溶接材に押し込んだ後の短絡電流通電中に、押し込み短
絡電圧平均値と押し込み短絡電流平均値とを検出して初
期抵抗値を算出し、前記判定基準抵抗値と比較し、前記
差の絶対値が前記抵抗値変化許容値を越えた時点を、2
次ケーブルの交換時期とする溶接用の2次ケーブル素線
の断線進行予測方法。
10. A method for checking deterioration of a secondary cable, wherein a judgment reference resistance value of a new secondary cable is measured or calculated in advance at the time of maintenance inspection of the deterioration check of the secondary cable or at the start of an arbitrary welding operation. With the new secondary case
The allowable value of the resistance change from the resistance value in the cross section and the length of the cable to the resistance value causing the risk of overheating and burning is determined in advance, and the stud is pushed into the material to be welded using a secondary cable which is not new. During the short-circuit current energization after that, the indentation short-circuit voltage average value and the indentation short-circuit current average value are detected to calculate an initial resistance value, compared with the determination reference resistance value, and the absolute value of the difference is the resistance value. The point at which the change allowable value is exceeded
A method for predicting the progress of disconnection of a secondary cable strand for welding at the time of replacing the next cable.
【請求項11】 2次ケーブルの劣化チェック方法にお
いて、溶接作業開始時に、新品の2次ケ−ブルの判定基
準抵抗値を予め測定又は算出すると共に、新品の2次ケ
−ブルの断面及び長さにおける抵抗値から過熱焼損の危
険を生ずる抵抗値までの抵抗値変化許容値を予め定めて
おき、新品でない2次ケ−ブルを使用して、N回目抵抗
値を算出して前記判定基準抵抗値と比較し、前記差の絶
対値が予め定めた抵抗値変化許容値を越えた時点を、2
次ケーブルの交換時期とする溶接用の2次ケーブル素線
の断線進行予測方法。
11. A method for checking the deterioration of a secondary cable, wherein, at the start of a welding operation, a reference resistance value for judging a new secondary cable is measured or calculated in advance, and a section and a length of the new secondary cable are measured. The allowable change in the resistance value from the resistance value to the resistance value causing the danger of overheating is determined in advance, and the N-th resistance value is calculated by using a non-new secondary cable to determine the N-th resistance value. The time when the absolute value of the difference exceeds a predetermined resistance value change allowable value,
A method for predicting the progress of disconnection of a secondary cable strand for welding at the time of replacing the next cable.
【請求項12】 2次ケーブルの劣化チェック方法にお
いて、溶接作業開始時に、新品の2次ケ−ブルの判定基
準抵抗値を予め測定又は算出すると共に、新品の2次ケ
−ブルの断面及び長さにおける抵抗値から過熱焼損の危
険を生ずる抵抗値までの抵抗値変化許容値を予め定めて
おき、新品でない2次ケ−ブルを使用して、N回目の短
絡電流通電中に、N回目短絡電圧平均値と短絡電流平均
値とを検出してN回目抵抗値を算出し、前記判定基準抵
抗値と比較し、前記差の絶対値が前記抵抗値変化許容値
を越えた時点を、2次ケーブルの交換時期とする溶接用
の2次ケーブル素線の断線進行予測方法。
12. A method for checking the deterioration of a secondary cable, in which a reference resistance value of a new secondary cable is measured or calculated in advance at the start of a welding operation, and a cross section and a length of the new secondary cable are determined. The allowable change in the resistance value from the resistance value to the resistance value causing the danger of overheating and burning is determined in advance, and the N-th short-circuit is performed during the N-th short-circuit current application using a non-new secondary cable. A voltage average value and a short-circuit current average value are detected to calculate an N-th resistance value, which is compared with the determination reference resistance value. A method for predicting the progress of disconnection of a secondary cable strand for welding at the time of replacing a cable.
【請求項13】 2次ケーブルの劣化チェック方法にお
いて、2次ケーブルの劣化チェックの保守点検時又は任
意の溶接作業開始時に、新品の2次ケ−ブルの判定基準
抵抗値を予め測定又は算出すると共に、新品の2次ケ−
ブルの断面及び長さにおける抵抗値から過熱焼損の危険
を生ずる抵抗値までの抵抗値変化許容値を予め定めてお
き、新品でない2次ケ−ブルを使用して、スタッドを被
溶接材に押し込んだN回目の短絡電流通電中に、N回目
の押し込み短絡電圧平均値と押し込み短絡電流平均値と
を検出してN回目抵抗値を算出し、前記判定基準抵抗値
と比較し、前記差の絶対値が前記抵抗値変化許容値を越
えた時点を、2次ケーブルの交換時期とする溶接用の2
次ケーブル素線の断線進行予測方法。
13. A method for checking the deterioration of a secondary cable, wherein a judgment reference resistance value of a new secondary cable is measured or calculated in advance at the time of maintenance and inspection of the deterioration check of the secondary cable or at the start of an arbitrary welding operation. With the new secondary case
The allowable value of the resistance change from the resistance value in the cross section and the length of the cable to the resistance value causing the risk of overheating and burning is determined in advance, and the stud is pushed into the material to be welded using a secondary cable which is not new. During the N-th short-circuit current conduction, the N-th push-in short-circuit voltage average value and the push-in short-circuit current average value are detected, the N-th resistance value is calculated and compared with the determination reference resistance value, and the absolute value of the difference is calculated. The time when the value exceeds the resistance change allowable value is the time for replacing the secondary cable.
How to predict the progress of disconnection of the next cable strand.
【請求項14】 請求項8又は請求項9又は請求項10
又は請求項11又は請求項12又は請求項13の新品の
2次ケ−ブルの判定基準抵抗値が、2次ケ−ブルの直径
と2次ケ−ブルの合計長さとから算出した抵抗値である
溶接用の2次ケーブル素線の断線進行予測方法。
14. The method of claim 8 or claim 9 or claim 10.
Alternatively, the criterion resistance value of the new secondary cable according to claim 11 or 12 or 13 is a resistance value calculated from the diameter of the secondary cable and the total length of the secondary cable. A method for predicting the progress of disconnection of a secondary cable for welding.
【請求項15】 請求項8又は請求項9又は請求項10
又は請求項11又は請求項12又は請求項13の新品の
2次ケ−ブルの判定基準抵抗値が、2次ケ−ブルの直径
及び2次ケ−ブルの合計長さから算出した合計ケーブル
抵抗値と1接続箇所の接触抵抗値と接続箇所数との積の
合計接触抵抗値との和である溶接用の2次ケーブル素線
の断線進行予測方法。
15. The claim 8 or claim 9 or claim 10.
Alternatively, the reference resistance value of the new secondary cable according to claim 11, 12 or 13 is a total cable resistance calculated from the diameter of the secondary cable and the total length of the secondary cable. A method for predicting the progress of the disconnection of a secondary wire for welding, which is the sum of the value and the total contact resistance value of the product of the contact resistance value of one connection point and the number of connection points.
【請求項16】 2次ケーブルの劣化チェック方法にお
いて、溶接開始後に算出した2次ケーブルの算出抵抗値
のばらつきを検出して、前記算出抵抗値のばらつきが予
め定めた算出抵抗変動許容値を超えた時点を、2次ケー
ブルの交換時期とする溶接用の2次ケーブル素線の断線
進行予測方法。
16. A method for checking deterioration of a secondary cable, comprising detecting a variation in a calculated resistance value of the secondary cable calculated after the start of welding, and determining that the variation in the calculated resistance value exceeds a predetermined calculated resistance variation allowable value. A method for predicting the progress of the disconnection of a secondary cable strand for welding, with the time at which the secondary cable is replaced as the time of replacement.
【請求項17】 2次ケーブルの劣化チェック方法にお
いて、作業開始前に接続している2次ケ−ブルの断面及
び長さにおける抵抗値から過熱焼損の危険を生ずる抵抗
値までの算出抵抗変動許容値を予め定めておき、溶接開
始後の算出抵抗最大値と算出抵抗最小値との差の算出抵
抗最大変動値が、算出抵抗変動許容値を超えた時点を、
2次ケーブルの交換時期とする溶接用の2次ケーブル素
線の断線進行予測方法。
17. A method for checking deterioration of a secondary cable, which allows a change in resistance from a resistance value in a cross-section and a length of a secondary cable connected before starting work to a resistance value causing danger of overheating and burning. The value is determined in advance, and the time when the calculated resistance maximum fluctuation value of the difference between the calculated resistance maximum value and the calculated resistance minimum value after the start of welding exceeds the calculated resistance fluctuation allowable value,
A method for predicting the progress of disconnection of a secondary cable strand for welding when the secondary cable is to be replaced.
【請求項18】 2次ケーブルの劣化チェック方法にお
いて、作業開始前に接続している2次ケ−ブルの断面及
び長さにおける抵抗値から過熱焼損の危険を生ずる抵抗
値までの算出抵抗変動許容値を予め定めておき、N回目
の溶接時に短絡電流を通電してN回目短絡電圧平均値と
短絡電流平均値とを検出してN回目抵抗値を算出して、
N回目抵抗値が(N−1)回目までの算出抵抗最大値又
は算出抵抗最小値をこえたときは、前記N回目抵抗値を
(N−1)回目までの算出抵抗最大値又は算出抵抗最小
値とし、溶接開始後のN回目算出抵抗最大値と算出抵抗
最小値との差の算出抵抗最大変動値が、算出抵抗変動許
容値を超えた時点を、2次ケーブルの交換時期とする溶
接用の2次ケーブル素線の断線進行予測方法。
18. A method for checking deterioration of a secondary cable, which allows a calculated resistance to vary from a resistance value in a cross-section and a length of a secondary cable connected before starting work to a resistance value causing a danger of overheating and burning. A value is determined in advance, and a short-circuit current is supplied during the N-th welding, the N-th short-circuit voltage average value and the short-circuit current average value are detected, and the N-th resistance value is calculated.
When the Nth resistance value exceeds the calculated resistance maximum value or the calculated resistance minimum value up to the (N-1) th time, the Nth resistance value is reduced to the calculated resistance maximum value or the calculated resistance minimum value up to the (N-1) th time. For the welding of the secondary cable, the point at which the calculated resistance maximum fluctuation value of the difference between the N-th calculated resistance maximum value and the calculated resistance minimum value after the start of welding exceeds the calculated resistance fluctuation allowable value is used. The method for predicting the progress of the disconnection of the secondary cable strand.
JP36840297A 1997-12-26 1997-12-26 Method for predicting progression of disconnection of secondary cable strand for welding Pending JPH11192551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36840297A JPH11192551A (en) 1997-12-26 1997-12-26 Method for predicting progression of disconnection of secondary cable strand for welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36840297A JPH11192551A (en) 1997-12-26 1997-12-26 Method for predicting progression of disconnection of secondary cable strand for welding

Publications (1)

Publication Number Publication Date
JPH11192551A true JPH11192551A (en) 1999-07-21

Family

ID=18491728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36840297A Pending JPH11192551A (en) 1997-12-26 1997-12-26 Method for predicting progression of disconnection of secondary cable strand for welding

Country Status (1)

Country Link
JP (1) JPH11192551A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007139488A (en) * 2005-11-16 2007-06-07 Omron Corp Break sign detection method, break sign detection apparatus, and power source incorporating the apparatus
EP3351950A1 (en) * 2017-01-19 2018-07-25 Toyota Jidosha Kabushiki Kaisha Wire-cable snapping symptom detection apparatus
KR20200104098A (en) * 2019-02-26 2020-09-03 김수빈 apparatus and method for monitoring motor
WO2024052994A1 (en) * 2022-09-06 2024-03-14 三菱電機株式会社 Analog current output device, fa system, break prediction device, break prediction method, and program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01262080A (en) * 1988-04-12 1989-10-18 Toyota Auto Body Co Ltd Method and device for measuring resistance between cables of welding secondary cable and disconnection preview method utilizing method thereof
JPH01280260A (en) * 1988-04-30 1989-11-10 Toyota Auto Body Co Ltd Foreseeing method for breaking of wire of welded secondary cable
JPH07328775A (en) * 1994-06-08 1995-12-19 Kokuyou Denki Kogyo Kk Device for judging deterioration of secondary cable of resistance welding machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01262080A (en) * 1988-04-12 1989-10-18 Toyota Auto Body Co Ltd Method and device for measuring resistance between cables of welding secondary cable and disconnection preview method utilizing method thereof
JPH01280260A (en) * 1988-04-30 1989-11-10 Toyota Auto Body Co Ltd Foreseeing method for breaking of wire of welded secondary cable
JPH07328775A (en) * 1994-06-08 1995-12-19 Kokuyou Denki Kogyo Kk Device for judging deterioration of secondary cable of resistance welding machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007139488A (en) * 2005-11-16 2007-06-07 Omron Corp Break sign detection method, break sign detection apparatus, and power source incorporating the apparatus
EP3351950A1 (en) * 2017-01-19 2018-07-25 Toyota Jidosha Kabushiki Kaisha Wire-cable snapping symptom detection apparatus
JP2018115992A (en) * 2017-01-19 2018-07-26 トヨタ自動車株式会社 Rupture sign detector of wire cable
KR20200104098A (en) * 2019-02-26 2020-09-03 김수빈 apparatus and method for monitoring motor
WO2024052994A1 (en) * 2022-09-06 2024-03-14 三菱電機株式会社 Analog current output device, fa system, break prediction device, break prediction method, and program

Similar Documents

Publication Publication Date Title
JP2014530106A (en) Real-time inductance monitoring in power supply for welding and fusing
JP4585929B2 (en) Cable abnormality monitoring apparatus and method
EP1920866A1 (en) Dual-conductor welding gun
JP2009130944A (en) Electric wire protection method and electric wire protection device
KR101777931B1 (en) Protecting tube deterioration detecting apparatus and method therefor
US20140151349A1 (en) Method to monitor the life of the contact tip in gmaw-pulse
JPH11192551A (en) Method for predicting progression of disconnection of secondary cable strand for welding
JPS61189882A (en) Control device with secondary conductor monitor for resistance welder
JP4112665B2 (en) Defect cause removal method of stud welding
JP3898811B2 (en) Method and apparatus for determining welding stability of arc welding steady state part
JP2016137505A (en) Resistance welding power supply apparatus
JPH11123546A (en) Method for judging stability of welding at starting arc and device for judging stability
CN108262581B (en) Method and system for visually displaying thermal duty cycle
CN110891723B (en) Arc welding machine
JP2008202974A (en) Method of detecting disconnection in power supply cable
US10777991B2 (en) Method and device for evaluating the energy produced by an electric arc in a photovoltaic installation
JP4633885B2 (en) Measuring instrument for starting resistance
JP2002001534A (en) Method for monitoring of arc welding and its device
JPH10277745A (en) Quality control method for stud welding
JP2000171501A (en) Resistance measuring device
JP7265308B2 (en) welding equipment
JP2524666B2 (en) Fusing abnormality detection method
WO2020095501A1 (en) Inverter power source device
JP2005238267A (en) Welding monitor
KR20030000424A (en) An apparatus for controlling initial position of electrode bar in DC electric furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080121

A131 Notification of reasons for refusal

Effective date: 20080701

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110524