JPH11190204A - Turbine stationary blade - Google Patents

Turbine stationary blade

Info

Publication number
JPH11190204A
JPH11190204A JP9357489A JP35748997A JPH11190204A JP H11190204 A JPH11190204 A JP H11190204A JP 9357489 A JP9357489 A JP 9357489A JP 35748997 A JP35748997 A JP 35748997A JP H11190204 A JPH11190204 A JP H11190204A
Authority
JP
Japan
Prior art keywords
end wall
inlet
turbine
wall portion
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9357489A
Other languages
Japanese (ja)
Other versions
JP3368417B2 (en
Inventor
Masaki Tsuruki
昌樹 鶴来
Takashi Ikeguchi
隆 池口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP35748997A priority Critical patent/JP3368417B2/en
Publication of JPH11190204A publication Critical patent/JPH11190204A/en
Application granted granted Critical
Publication of JP3368417B2 publication Critical patent/JP3368417B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce stress on the inner walls of cooling passage inlet/outlet by enhancing rigidity of connection portions for a blade having an internal cooling passage and for end walls which form the cooling passage inlet/outlet. SOLUTION: In a turbine stationary blade in which a blade 9, an outer end wall 7 and an inner end wall are integrally formed, the blade 9 having an internal cooling passage 16, with an inlet 15a and an outlet 15b of the cooling passage 16 opened on an outward surface 14 of the outer end wall 7, a cover plate is provided to form a gap as a cooling passage between it and the outward surface of the outer end wall 7 around an area including the inlet 15a and the outlet 15b, a cylindrical blade extension portion 12 surrounding both the inlet 15a and the outlet 15b extends outward from the cover plate and is integrated with the outer end wall 7, in an area including both the inlet 15a and the outlet 15b on the outer surface 14.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内部に冷却流路を
形成したガスタービン静翼に係わり、特に冷却流路出入
口近傍の剛性を高めるための構造の改良に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas turbine stationary blade having a cooling passage formed therein, and more particularly to an improvement in a structure for increasing rigidity near a cooling passage entrance and exit.

【0002】[0002]

【従来の技術】ガスタービンの効率は、燃焼器出口温度
もしくはタービン入り口温度の上昇とともに向上する。
しかしながら現状のガスタービンの燃焼器出口温度は1
300℃から1500℃に向かっており、すでに高温の
燃焼ガスに曝されるタービン翼表面温度は使用される耐
熱合金の限界温度を超えているため、圧縮機から抽気し
た空気をタービン翼の内部に供給することによりタービ
ン翼を冷却し、その温度を限界以下にして使用してい
る。
2. Description of the Related Art The efficiency of gas turbines increases with increasing combustor exit temperature or turbine entrance temperature.
However, the current gas turbine combustor outlet temperature is 1
Since the temperature of the turbine blade surface already exposed to the high-temperature combustion gas exceeds the limit temperature of the heat-resistant alloy used, the air extracted from the compressor is introduced into the turbine blade from 300 ° C to 1500 ° C. The turbine blades are cooled by the supply and the temperature is used below the limit.

【0003】しかしながら、圧縮機から抽気した空気は
直接には仕事に関与しないため、ガスタービン全体の効
率は低下することになる。従ってタービン翼の冷却は圧
縮機からの空気の抽気量を可能な限り少なくできる構造
であることが望まれる。これに対応する従来技術の公知
例としては、特開平5-195705号公報および特開平6-2574
05号公報に開示された技術があげられる。前者の公知例
においては、開回路空気冷却において冷却流路に挿入体
を挿入し冷却効果を高めることにより、熱効率低下を最
小限にしつつ静翼の冷却を可能としている。また、後者
の公知例においても、閉回路蒸気冷却と開回路空気冷却
を併用することにより熱効率低下を最小限にしつつ静翼
の冷却を可能としている。
[0003] However, the air extracted from the compressor does not directly participate in the work, so that the efficiency of the entire gas turbine is reduced. Therefore, it is desired that the cooling of the turbine blades has a structure capable of reducing the amount of air extracted from the compressor as much as possible. Known examples of the prior art corresponding to this are Japanese Patent Application Laid-Open Nos. 5-195705 and 6-2574.
The technique disclosed in Japanese Patent Publication No. 05 is cited. In the former known example, in the open circuit air cooling, an insert is inserted into a cooling flow path to enhance the cooling effect, thereby enabling cooling of the stationary blade while minimizing a decrease in thermal efficiency. Also in the latter known example, the closed-circuit steam cooling and the open-circuit air cooling are used in combination to allow the cooling of the stationary blades while minimizing the decrease in thermal efficiency.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記公
知例の従来技術では冷却効率の改善により、タービン翼
の温度を耐熱合金の限界温度以下に設計できても、下記
の強度信頼性上の課題が残されていた。従来技術では、
タービン翼の翼部の高温燃焼ガスの流路表面は高温の燃
焼ガスの熱流束により温度が上昇するが、翼部内に形成
された冷却流路の表面は翼部表面からの燃焼ガスからの
熱伝導よりも冷却流路表面からの冷却の熱伝達の効果が
大きく、翼部表面ほど温度は上昇しない。このため、翼
部表面と翼部内の冷却流路表面とではガスタービンの半
径方向への熱膨張に差が生じ、結果として平均的には翼
部表面には圧縮熱応力が、冷却流路表面には引張熱応力
が発生する。またタービン翼全体の温度分布の不均一は
局所的な熱応力も発生させ、強度上の許容値を超えてし
まうことが課題として残されている。特に静翼の場合
は、エンドウォール部半径方向外向き表面に翼冷却流路
へ冷却媒体を流入または流出するための孔が空いている
ことにより翼部とエンドウォール部との取り付き部近傍
の剛性が低下し、エンドウォール部の内向き表面や翼部
表面の熱膨張により大きく変形するために、翼部とエン
ドウォール部との取り付き部近傍の冷却流路内面(図5
に示す部位”A”参照)に大きな応力が発生することが
課題として残されている。
However, in the prior art of the above-mentioned known example, even if the temperature of the turbine blade can be designed to be equal to or lower than the limit temperature of the heat-resistant alloy by improving the cooling efficiency, the following problems in the strength reliability are to be solved. Was left. In the prior art,
The temperature of the high-temperature combustion gas flow path surface of the blade of the turbine blade rises due to the heat flux of the high-temperature combustion gas, but the surface of the cooling flow path formed in the blade has heat from the combustion gas from the blade surface. The effect of heat transfer of cooling from the surface of the cooling passage is larger than that of conduction, and the temperature does not rise as much as the surface of the blade. For this reason, there is a difference in the thermal expansion in the gas turbine radial direction between the blade surface and the cooling channel surface in the blade portion. As a result, on average, compressive thermal stress is applied to the blade surface, and Generates tensile thermal stress. Further, the non-uniform temperature distribution of the entire turbine blade also causes a local thermal stress, which leaves a problem that the strength exceeds an allowable value. Particularly in the case of the stationary blade, the hole near the radially outward surface of the end wall portion for allowing the cooling medium to flow into or out of the blade cooling flow path is opened, so that the rigidity near the attachment portion between the blade portion and the end wall portion is obtained. Of the cooling flow passage near the attachment between the blade and the end wall (see FIG. 5).
The problem remains that a large stress is generated at the portion "A" shown in FIG.

【0005】本発明の目的は、内部に冷却流路を形成し
た翼部と、冷却流路の出入口を形成した外側エンドウォ
ール部と、内側エンドウォール部とからなり、外側エン
ドウォール部の冷却流路出入口近傍の強度不足を解消す
る構造のタービン静翼を提供することにある。
[0005] An object of the present invention is to provide a wing portion having a cooling channel formed therein, an outer end wall portion having an inlet / outlet of the cooling channel, and an inner end wall portion. An object of the present invention is to provide a turbine vane having a structure that eliminates insufficient strength near a road entrance.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明の第1のタービン静翼は、タービンケーシン
グ内にタービン回転軸心を中心軸として固定された外側
取付けリングとこの外側取付けリング内側に同心円的に
配置された内側取付けリングとの間を渡して半径方向に
放射状に組み立てられたもので、翼部と、この翼部長手
方向の外側端に設けられ外側取付けリングに結合する外
側エンドウォール部と、翼部長手方向の内側端に設けら
れ内側取付けリングに結合する内側エンドウォール部と
が一体成形されてなり、翼部内にはその長手方向に冷却
流路が形成され、この冷却流路の入口及び出口が外側エ
ンドウォール部の外向き表面に開口し、さらに冷却流路
の出入口を含む領域の周囲に、外側エンドウォール部の
外向き表面との間にすき間を形成してこのすき間を冷却
流路とする覆い板を有するタービン静翼において、外側
エンドウォール部の外向き表面で冷却流路の出入口を含
む領域に、翼部の横断面形状をもつ延長部を、覆い板よ
り外方向に延ばして、外側エンドウォール部と一体的に
形成したことを特徴とする。
To achieve the above object, a first turbine vane according to the present invention comprises an outer mounting ring fixed in a turbine casing with a turbine rotation axis as a center axis, and an outer mounting ring fixed to the outer mounting ring. Radially assembled radially across an inner mounting ring concentrically disposed inside the ring and coupled to the wing and an outer mounting ring at the longitudinally outer end of the wing. The outer end wall portion and the inner end wall portion provided at the inner end in the longitudinal direction of the wing portion and connected to the inner mounting ring are integrally formed, and a cooling flow path is formed in the wing portion in the longitudinal direction. The inlet and outlet of the cooling flow path are open to the outward surface of the outer end wall portion, and further around the area including the inlet and outlet of the cooling flow path, between the outward surface of the outer end wall portion. In a turbine vane having a cover plate that forms a gap and uses the gap as a cooling flow path, an extension having a cross-sectional shape of the blade section in a region including the entrance and exit of the cooling flow path on the outward surface of the outer end wall section. The portion extends outward from the cover plate and is formed integrally with the outer end wall portion.

【0007】また、本発明の第2のタービン静翼は、第
1のタービン静翼における翼部の横断面形状をもつ延長
部の代わりに、冷却流路の入口及び出口を両方囲う筒状
延長部を設けたもので、この筒状延長部は、翼部の横断
面形状をもつ延長部と同様に、覆い板より外方向に延び
ており、外側エンドウォール部と一体的に形成されたも
のである。第2のタービン静翼の筒状延長部は、横断面
の外郭形状が翼部の横断面外郭形状と略同じとし、接合
したものであることが好ましい。さらにこの筒状延長部
の外端を、冷却流路の入口及び出口に接続する各配管を
取り付けた蓋で閉じてもよい。
Further, the second turbine vane of the present invention has a tubular extension surrounding both the inlet and the outlet of the cooling flow path, instead of the extension having the cross section of the blade portion of the first turbine vane. The tubular extension, like the extension having the cross-sectional shape of the wing portion, extends outward from the cover plate and is formed integrally with the outer end wall portion. It is. It is preferable that the cylindrical extension portion of the second turbine vane has a cross-sectional outer shape substantially the same as the cross-sectional outer shape of the blade portion and is joined. Further, the outer end of the cylindrical extension may be closed by a lid provided with pipes connected to the inlet and outlet of the cooling channel.

【0008】また本発明の第3のタービン静翼は、第1
のタービン静翼と同様に、外側取付けリングと内側取付
けリングとの間を渡して半径方向に放射状に組み立てら
れたものであって、翼部と、この翼部長手方向の外側端
に設けられ外側取付けリングに結合する外側エンドウォ
ール部と、該翼部長手方向の内側端に設けられ内側取付
けリングに結合する内側エンドウォール部と、外側エン
ドウォール部の外向き表面で翼部に対応する位置に翼部
の横断面形状で突出する段部と、が一体成形されてな
り、翼部内には翼部長手方向に冷却流路が形成され、こ
の冷却流路の入口及び出口が外側エンドウォール部の段
部の外向き表面に開口し、さらにこの段部の周囲に外側
エンドウォール部の外向き表面との間にすき間を冷却流
路として形成する覆い板を有するタービン静翼におい
て、外側エンドウォール部の段部外向き表面に、冷却流
路の入口、または冷却流路の入口及び出口のそれぞれを
囲って外方向へ延びるそれぞれの筒状延長部を外側エン
ドウォール部と一体的に設けたことを特徴とする。
[0008] The third turbine vane of the present invention comprises a first turbine vane.
Similarly to the turbine vane of the present invention, it is radially assembled across an outer mounting ring and an inner mounting ring, and is provided with a wing portion, and an outer portion provided at an outer end in a longitudinal direction of the wing portion. An outer end wall portion coupled to the mounting ring, an inner end wall portion provided at the longitudinally inner end of the wing portion and coupled to the inner mounting ring, and a position corresponding to the wing portion on the outward surface of the outer end wall portion. And a step portion projecting in the cross-sectional shape of the wing portion are integrally formed, and a cooling passage is formed in the wing portion in the longitudinal direction of the wing portion, and an inlet and an outlet of the cooling passage are formed in the outer end wall portion. A turbine vane having an opening on an outward surface of a step portion and further having a cover plate formed around the step portion as a cooling passage between the outward surface of the outer end wall portion and the outer end wall. A cylindrical extension extending outwardly surrounding the inlet of the cooling channel or the inlet and outlet of the cooling channel, and being provided integrally with the outer end wall on the outward surface of the step. It is characterized by.

【0009】[0009]

【発明の実施の形態】本発明の実施の形態となるタービ
ン静翼について図面を用いて説明する。図1にガスター
ビン1の全体構成を示す。ガスタービン1は、空気を圧
縮する圧縮機2と、該圧縮機2によって圧縮された空気
と燃料を混合して燃焼させて高温の燃焼ガスを生成する
燃焼器3と、燃焼ガスのエネルギをタービンロータ5の
回転運動に変換するタービン部4とからなる。タービン
部4には複数のタービン翼が列状に円周方向に配置さ
れ、さらに複数の翼列がタービン軸方向に配置される。
翼列には固定されて周方向には動かない静翼の列とター
ビンロータ5に取り付けられて周方向に回転可能な動翼
の列があり、静翼列と動翼列が軸方向に交互に配置され
ている。静翼列は、タービンケーシング23内に固定さ
れた取付けリング24(外側取付けリング)と、この取付
けリング24内側にあるリング状のダイヤフラム25
(内側取付けリング)との間を渡して半径方向に放射状に
組み立てられている。取付けリング24及びダイヤフラ
ム25は、共にタービン回転軸心について同心円的に配
置されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A turbine vane according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows the overall configuration of the gas turbine 1. The gas turbine 1 includes a compressor 2 that compresses air, a combustor 3 that mixes air and fuel compressed by the compressor 2 and burns the mixture to generate high-temperature combustion gas, and converts the energy of the combustion gas into a turbine. And a turbine unit 4 that converts the rotational motion of the rotor 5. In the turbine section 4, a plurality of turbine blades are arranged in a row in the circumferential direction, and a plurality of blade rows are arranged in the turbine axial direction.
The cascade includes a row of stationary vanes fixed in the circumferential direction and a row of moving blades attached to the turbine rotor 5 and rotatable in the circumferential direction. The vane row and the moving blade row alternate in the axial direction. Are located in The stationary blade row includes a mounting ring 24 (outside mounting ring) fixed in the turbine casing 23 and a ring-shaped diaphragm 25 inside the mounting ring 24.
(Inner mounting ring) and radially assembled in the radial direction. The mounting ring 24 and the diaphragm 25 are both arranged concentrically about the turbine rotation axis.

【0010】図2に実施の形態1となるタービン静翼6
を示す。タービン静翼6は燃焼器3から排出された高温
の燃焼ガスを動翼に適切に指向する働きをもっている。
タービン静翼6は、横断面が羽根状で縦軸方向に延びる
翼部9と、翼部9の外側端に結合する外側エンドウォー
ル部7と、該翼部9の内側端に結合する内側エンドウォ
ール部8とから構成されている。外側エンドウォール部
7の半径方向外向き表面には、ケーシングの取付けリン
グ23にタービン静翼6を取り付けるための支持フック
10a、10bが設けられている。支持フック10a、
10bは、外側エンドウォール部7の外向き表面の前後
部(タービン軸方向からみて前後)に位置している。ま
た、外側エンドウォール部7の外向き表面で支持フック
10a、10bに挟まれた中央部には、本発明のかかる
翼部延長部12が設けられている。この翼部延長部12
は、翼部9と同様の横断面を有し、翼部9内に設けた冷
却孔であるリターンフロー16(図3参照)の流入孔及
び流出孔が縦方向に通っている。流入孔及び流出孔は、
翼部延長部12外端に設けた冷却媒体の流入配管11
a、流出配管11bに接続している。図2に示している
のはタービン静翼6は第1翼列の静翼であり、従って、
燃焼器3から排出される高温の燃焼ガスに直接曝され
る。従って、この翼の冷却は極めて重要である。
FIG. 2 shows a turbine stationary blade 6 according to the first embodiment.
Is shown. The turbine stationary blade 6 has a function of appropriately directing the high-temperature combustion gas discharged from the combustor 3 to the moving blade.
The turbine vane 6 includes a blade portion 9 having a blade-like cross section and extending in the longitudinal direction, an outer end wall portion 7 connected to an outer end of the blade portion 9, and an inner end connected to an inner end of the blade portion 9. And a wall portion 8. On the radially outward surface of the outer end wall portion 7, support hooks 10a, 10b for mounting the turbine vane 6 to the mounting ring 23 of the casing are provided. Support hook 10a,
10 b is located at the front and rear portions (front and rear when viewed from the turbine axial direction) of the outward surface of the outer end wall portion 7. Further, the wing extension 12 according to the present invention is provided at a central portion between the support hooks 10a and 10b on the outward surface of the outer end wall portion 7. This wing extension 12
Has a cross section similar to that of the wing portion 9, and an inflow hole and an outflow hole of a return flow 16 (see FIG. 3), which are cooling holes provided in the wing portion 9, pass vertically. The inlet and outlet are
Coolant inflow pipe 11 provided at outer end of wing extension 12
a, connected to the outflow pipe 11b. FIG. 2 shows that the turbine vane 6 is a vane of the first cascade,
It is directly exposed to the high-temperature combustion gas discharged from the combustor 3. Therefore, cooling of this wing is very important.

【0011】図3は実施の形態2となるタービン静翼の
外側エンドウォール部を説明するもので、図3(A)にそ
の外観を示し、図3(B)にはその一部断面構造を示す。
外側エンドウォール部7の外向き表面14の部位で前後
の支持フック10aと支持フック10abとの間の中央
部には、翼部9の内部に形成されたリターンフロー流路
16の流入口15a及び流出口15bがそれぞれ開口し
ている。流入口15a及び流出口15bは1つあるいは
複数適宜設ける。流入口15a及び流出口15bを含む
領域の周囲には、図4に示す覆い板22が設けられ、こ
の覆い板22と外側エンドウォール部7の外向き表面1
4間にすき間を設けこのすき間を冷却媒体の流路とす
る。このすき間には外部から覆い板22に形成した噴出
孔19を通じて冷却媒体が供給される。なお、覆い板は
図2に示すタービン静翼にも同様に設けられている。
FIG. 3 illustrates an outer end wall portion of the turbine vane according to the second embodiment. FIG. 3 (A) shows its appearance, and FIG. 3 (B) shows its partial cross-sectional structure. Show.
At the central portion between the front and rear support hooks 10a and 10ab at the outward surface 14 of the outer end wall portion 7, the inlet 15a of the return flow channel 16 formed inside the wing portion 9 is provided. The outlets 15b are open. One or more inlets 15a and outlets 15b are provided as appropriate. A cover plate 22 shown in FIG. 4 is provided around a region including the inflow port 15a and the outflow port 15b, and the cover plate 22 and the outward surface 1 of the outer end wall portion 7 are provided.
A gap is provided between the four, and this gap is used as a flow path for the cooling medium. The cooling medium is supplied from outside to the gap through the ejection holes 19 formed in the cover plate 22. The cover plate is also provided on the turbine vane shown in FIG.

【0012】この実施の形態では、外向き表面14上に
翼部9の外殻を延長するかのように、筒状の翼部延長部
12を形成する。筒状の翼部延長部12は、冷却媒体の
流入口15a及び流出口15bの両方を囲んで表面14
から立ち上がる外壁12aと、外壁12aの外端面をふ
さぐ蓋12bと、蓋12bを貫通して冷却媒体の流入孔
15a及び流出孔15bにまで延びる配管11a、11
bとから構成している。筒状の翼部延長部12は鋳造で
一体構造にするか、または別体の翼部延長部12を外側
エンドウォール部7に接合して一体構造としてもよい。
In this embodiment, the tubular wing extension 12 is formed on the outward surface 14 as if the outer shell of the wing 9 were extended. The cylindrical wing extension 12 has a surface 14 surrounding both the coolant inlet 15a and the coolant outlet 15b.
, An outer wall 12a that rises from the outer wall, a lid 12b that covers the outer end surface of the outer wall 12a, and pipes 11a and 11 that extend through the lid 12b and extend to the inlet 15a and the outlet 15b of the coolant.
b. The tubular wing extension 12 may be cast into an integral structure, or a separate wing extension 12 may be joined to the outer endwall 7 to form an integral structure.

【0013】圧縮機2から抽気される空気は冷却媒体1
3として外側エンドウォール部7に供給される。冷却媒
体13は、配管11aを経て外側エンドウォール7の外
向き表面14にある流入口15aより翼部9の内部のリ
ターンフロー流路16に流入し、該流路に沿って流れ対
流冷却により翼部9を冷却し、そして外向き表面14に
ある流出口15bから流出する。
The air extracted from the compressor 2 is a cooling medium 1
3 is supplied to the outer end wall portion 7. The cooling medium 13 flows into the return flow passage 16 inside the wing portion 9 from the inflow port 15a on the outward surface 14 of the outer end wall 7 via the pipe 11a, and flows along the flow passage to form the blades by convection cooling. The part 9 cools and flows out of the outlet 15b on the outward surface 14.

【0014】上記のように筒状の翼部延長部12を設け
ることにより、特に冷却媒体流入孔15a入口近傍の剛
性を高め、外側エンドウォール部7と翼部9との取合せ
部分で冷却流路内面に高い応力が発生することを防止す
る。ちなみに、筒状の翼部延長部12がない場合は、従
来の記述の項で述べたように、図5に示す冷却媒体流入
孔15a入口近傍の領域”A”に高い応力が発生する。
なお、図3(A)、(B)では翼部延長部12の上面を蓋1
2bで閉じいるが、閉じなくても外壁12aが覆い板2
2の位置よりも十分な高さを有していれば、剛性に関す
る効果は同様に得られる。
By providing the cylindrical wing extension 12 as described above, the rigidity particularly near the inlet of the cooling medium inflow hole 15a is increased, and the cooling flow path is formed at the joint between the outer end wall 7 and the wing 9. High stress is prevented from being generated on the inner surface. Incidentally, when there is no tubular wing extension 12, high stress is generated in the area "A" near the inlet of the cooling medium inflow hole 15a shown in FIG. 5 as described in the description of the related art.
3A and 3B, the upper surface of the wing extension 12 is covered with the lid 1.
2b, the outer wall 12a is covered with the cover plate 2 even if it is not closed.
If it has a sufficient height above the position 2, the effect on stiffness is obtained as well.

【0015】従来は、図5に示すように、外側エンドウ
ォール部7の外向き表面14に翼部を突出させて段部1
7を形成し、段部17上に、図6に示すような覆い板1
8を取り付けて、外向き表面14の全面を覆い、覆い板
18と外向き表面14との間に、冷却媒体が表面14を
冷却するに必要十分な隙間を形成する。覆い板18には
噴出孔19が形成されており、それにより、外側エンド
ウォール部7に供給される冷却媒体は噴出孔19を通っ
て高速度で衝突をするジェットとなり、それにより冷却
が促進される。このためには外向き表面表面14と覆い
板18との隙間は適正な距離を有していなければならな
い。本発明の好適な例では大きくとも約3mmである。な
お、表面14に衝突した冷却媒体は外向き表面14と覆
い板18の隙間を流れて外側エンドウォール部7に設け
られた流出孔(図示せず)より流出する。
Conventionally, as shown in FIG. 5, the stepped portion 1 is formed by projecting a wing portion on the outward surface 14 of the outer end wall portion 7.
7 and cover plate 1 as shown in FIG.
Attach 8 to cover the entire surface of the outward surface 14, and form a gap between the cover plate 18 and the outward surface 14 that is necessary and sufficient for the cooling medium to cool the surface 14. A jet hole 19 is formed in the cover plate 18, whereby the cooling medium supplied to the outer end wall portion 7 becomes a jet colliding at a high speed through the jet hole 19, thereby promoting cooling. You. For this purpose, the gap between the outwardly facing surface 14 and the cover plate 18 must have an appropriate distance. In a preferred embodiment of the invention, it is at most about 3 mm. The cooling medium that has collided with the surface 14 flows through a gap between the outward surface 14 and the cover plate 18 and flows out of an outflow hole (not shown) provided in the outer end wall portion 7.

【0016】しかし、図5で示す従来のような程度の段
部17の高さ(3mm)では本発明の効果は得られない。図
2の本発明の好適な例でしめされた約17mmの延長部1
2を設けた場合は、約3mmの段部17を設けた場合およ
び段部17を設けない場合に比して、ミーゼスの相当応
力で約15%の応力減少が可能であった。筒状の翼延長
部12はエンドウォール部7や翼部9と必ずしも一体成
形する必要はなく、別部材として形成し、製作中に外側
エンドウォール部7に接合してもよい。なお、図3に示
すタービン静翼の外側エンドウォール部7には、タービ
ン静翼の製造の都合上、段部17を設けておいてもよ
い。
However, the effect of the present invention cannot be obtained with the height (3 mm) of the step portion 17 as in the prior art shown in FIG. Approximately 17 mm extension 1 shown in the preferred embodiment of the invention of FIG.
In the case where No. 2 was provided, it was possible to reduce the stress by approximately 15% with the Mises equivalent stress as compared with the case where the step 17 of about 3 mm was provided and the case where the step 17 was not provided. The tubular wing extension 12 does not necessarily need to be integrally formed with the end wall 7 and the wing 9, but may be formed as a separate member and joined to the outer end wall 7 during manufacture. In addition, a step portion 17 may be provided on the outer end wall portion 7 of the turbine vane shown in FIG. 3 for convenience of manufacturing the turbine vane.

【0017】図7により、本発明の実施の形態3を説明
する。図7に示すように、この実施の形態では、外側エ
ンドウォール部7の外向き面にある段部17の表面に開
口する冷却媒体の流入孔15aあるいは流出孔15bの
うち、もっとも高い応力が発生する翼前縁に最も近い流
入口15aを囲むように外壁を含む筒状延長部20を設
けている。しかし、それ以外の流入口あるいは流出口に
も高い応力が発生する場合は、個別に各口を囲む筒状延
長部を設ければよい。
Embodiment 3 of the present invention will be described with reference to FIG. As shown in FIG. 7, in this embodiment, the highest stress is generated among the cooling medium inflow holes 15a or outflow holes 15b opening on the surface of the step portion 17 on the outward surface of the outer end wall portion 7. A tubular extension 20 including an outer wall is provided so as to surround the inlet 15a closest to the leading edge of the blade. However, when a high stress is generated also in the other inflow ports or outflow ports, a cylindrical extension surrounding each port may be provided individually.

【0018】図8により本発明の実施の形態4を説明す
る。この実施の形態は、翼前縁に側にある流入孔15a
と共に後縁側の流出孔15bにも外壁を含む筒状延長部
21を設けた例である。
Embodiment 4 of the present invention will be described with reference to FIG. In this embodiment, the inflow hole 15a on the side of the leading edge of the blade is used.
In addition, a tubular extension 21 including an outer wall is provided in the outflow hole 15b on the trailing edge side.

【0019】なお、図6に示す覆い板18と同じ機能を
もつ覆い板が、図7及8に示す各外側エンドウォール部
7にある段部17にも取り付けられる。
A cover plate having the same function as the cover plate 18 shown in FIG. 6 is also attached to the step portion 17 on each outer end wall portion 7 shown in FIGS.

【0020】[0020]

【発明の効果】本発明によれば、エンドウォール部外向
き面側に開口する冷却流路入口及び出口の部分に翼部の
断面形状をもつ翼部延長部または筒状の延長部を設ける
ことにより、翼部とエンドウォール部との取り付き部近
傍の剛性を増加せしめ、エンドウォール部との取り付き
部近傍の冷却流路内面に生じる熱応力を低下させる効果
がある。
According to the present invention, a wing extension or a cylindrical extension having a wing cross-sectional shape is provided at the cooling flow passage inlet and outlet portions that open to the outer surface of the end wall. This has the effect of increasing the stiffness in the vicinity of the attachment portion between the wing portion and the end wall portion, and reducing the thermal stress generated on the inner surface of the cooling passage near the attachment portion with the end wall portion.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ガスタービン全体構成図。FIG. 1 is an overall configuration diagram of a gas turbine.

【図2】本発明の実施の形態1のタービン静翼の側面
図。
FIG. 2 is a side view of the turbine vane according to the first embodiment of the present invention.

【図3】本発明の実施の形態2の静翼のエンドウォール
部を示す斜視図。
FIG. 3 is a perspective view showing an end wall portion of a stationary blade according to a second embodiment of the present invention.

【図4】実施の形態2におけるエンドウォール部に設け
る覆い板を示す図。
FIG. 4 is a diagram showing a cover plate provided on an end wall portion in the second embodiment.

【図5】従来の静翼のエンドウォール部を示す斜視図。FIG. 5 is a perspective view showing an end wall portion of a conventional stationary blade.

【図6】従来の静翼の覆い板を示す斜視図。FIG. 6 is a perspective view showing a cover plate of a conventional stationary blade.

【図7】本発明の実施の形態3の静翼のエンドウォール
部を示す斜視図。
FIG. 7 is a perspective view showing an end wall portion of a stationary blade according to a third embodiment of the present invention.

【図8】本発明の実施の形態4の静翼のエンドウォール
部を示す斜視図。
FIG. 8 is a perspective view showing an end wall portion of a stationary blade according to a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 ガスタービン 2 圧縮機 3 燃焼器 4 タービン部 5 タービンロータ 6 タービン静翼 7 外側エンドウォール部 8 内側エンドウォール部 9 翼部 10a、10b 支持フック 11a、11b 冷却媒体配管 12 翼部延長部 13 冷却媒体 14 外側エンドウォール部外向き表面 15a 冷却媒体流入口 15b 冷却媒体流出口 16 冷却流路 17 段部 18 覆い板 19 噴出孔 20、21 筒状延長部 DESCRIPTION OF SYMBOLS 1 Gas turbine 2 Compressor 3 Combustor 4 Turbine part 5 Turbine rotor 6 Turbine stationary blade 7 Outer end wall part 8 Inner end wall part 9 Blade part 10a, 10b Support hook 11a, 11b Cooling medium piping 12 Blade part extension 13 Cooling Medium 14 Outer surface of outer end wall portion 15a Cooling medium inlet 15b Cooling medium outlet 16 Cooling channel 17 Step 18 Covering plate 19 Spout hole 20, 21 Cylindrical extension

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 タービンケーシング内にタービン回転軸
心を中心軸として固定された外側取付けリングと該外側
取付けリング内側に同心円的に配置された内側取付けリ
ングとの間を渡して半径方向に放射状に組み立てられた
タービン静翼であって、翼部と、該翼部長手方向の外側
端に設けられ外側取付けリングに結合する外側エンドウ
ォール部と、該翼部長手方向の内側端に設けられ内側取
付けリングに結合する内側エンドウォール部と、が一体
成形されてなり、翼部内には該翼部長手方向に冷却流路
が形成され、該冷却流路の入口及び出口が外側エンドウ
ォール部の外向き表面に開口し、さらに冷却流路の入口
及び出口を含む領域の周囲に外側エンドウォール部の外
向き表面との間にすき間を冷却流路として形成する覆い
板を有するタービン静翼において、 外側エンドウォール部の外向き表面で冷却流路の入口及
び出口を含む領域に、翼部の横断面形状をもつ延長部
を、覆い板より外方向に延ばして、外側エンドウォール
部と一体的に形成したことを特徴とするタービン静翼。
1. Radially radially extending between an outer mounting ring fixed in a turbine casing with a turbine rotation axis as a center axis and an inner mounting ring concentrically arranged inside the outer mounting ring. An assembled turbine vane, comprising: a wing portion; an outer endwall portion provided at an outer longitudinal end of the wing portion and coupled to an outer mounting ring; and an inner mounting portion provided at an inner longitudinal end portion of the wing portion. And an inner end wall portion coupled to the ring are integrally formed, and a cooling flow path is formed in the wing portion in a longitudinal direction of the wing portion, and an inlet and an outlet of the cooling flow path are directed outward from the outer end wall portion. A turbine having a cover plate that is open on the surface and further forms a gap as a cooling flow path between an outer surface of an outer end wall portion around an area including an inlet and an outlet of the cooling flow path. In the stator vane, an extension having a cross-sectional shape of the wing portion is extended outward from the cover plate in a region including an inlet and an outlet of the cooling flow path on an outward surface of the outer end wall portion. And a turbine vane formed integrally with the turbine vane.
【請求項2】 タービンケーシング内にタービン回転軸
心を中心軸として固定された外側取付けリングと該外側
取付けリング内側に同心円的に配置された内側取付けリ
ングとの間を渡して半径方向に放射状に組み立てられた
タービン静翼であって、翼部と、該翼部長手方向の外側
端に設けられ外側取付けリングに結合する外側エンドウ
ォール部と、該翼部長手方向の内側端に設けられ内側取
付けリングに結合する内側エンドウォール部と、が一体
成形されてなり、翼部内には該翼部長手方向に冷却流路
が形成され、該冷却流路の入口及び出口が外側エンドウ
ォール部の外向き表面に開口し、さらに冷却流路の入口
及び出口を含む領域の周囲に外側エンドウォール部の外
向き表面との間にすき間を冷却流路として形成する覆い
板を有するタービン静翼において、 外側エンドウォール部の外向き表面で冷却流路の入口及
び出口を含む領域に、冷却流路の入口及び出口を両方囲
う筒状の翼部延長部を、覆い板より外方向に延ばして、
外側エンドウォール部と一体的に形成したことを特徴と
するタービン静翼。
2. Radially radially extending between an outer mounting ring fixed in a turbine casing with a turbine rotation axis as a center axis and an inner mounting ring concentrically arranged inside the outer mounting ring. An assembled turbine vane, comprising: a wing portion; an outer endwall portion provided at an outer longitudinal end of the wing portion and coupled to an outer mounting ring; and an inner mounting portion provided at an inner longitudinal end portion of the wing portion. And an inner end wall portion coupled to the ring are integrally formed, and a cooling flow path is formed in the wing portion in a longitudinal direction of the wing portion, and an inlet and an outlet of the cooling flow path are directed outward from the outer end wall portion. A turbine having a cover plate that is open on the surface and further forms a gap as a cooling flow path between an outer surface of an outer end wall portion around an area including an inlet and an outlet of the cooling flow path. In the stator vane, a cylindrical wing extension surrounding both the inlet and the outlet of the cooling flow passage is formed in a region including the inlet and the outlet of the cooling flow passage on the outward surface of the outer end wall portion in a direction outward from the cover plate. Extend it,
A turbine vane integrally formed with an outer end wall portion.
【請求項3】 筒状の翼部延長部は、横断面の外郭形状
が翼部の横断面外郭形状と略同じとし、接合されたもの
である請求項2に記載のタービン静翼。
3. The turbine vane according to claim 2, wherein the tubular blade extension has a cross-sectional outer shape that is substantially the same as the cross-sectional outer shape of the blade portion and is joined.
【請求項4】 筒状の翼部延長部の外端を、冷却流路の
入口及び出口に接続する各配管を取り付けた蓋で閉じた
請求項2または3に記載のタービン静翼。
4. The turbine vane according to claim 2, wherein an outer end of the cylindrical blade extension is closed with a lid attached with each pipe connected to an inlet and an outlet of the cooling channel.
【請求項5】 タービンケーシング内にタービン回転軸
心を中心軸として固定された外側取付けリングと該外側
取付けリング内側に同心円的に配置された内側取付けリ
ングとの間を渡して半径方向に放射状に組み立てられた
タービン静翼であって、翼部と、該翼部長手方向の外側
端に設けられ外側取付けリングに結合する外側エンドウ
ォール部と、該翼部長手方向の内側端に設けられ内側取
付けリングに結合する内側エンドウォール部と、外側エ
ンドウォール部の外向き表面で翼部に対応する位置に翼
部の横断面形状で突出する段部と、が一体成形されてな
り、翼部内には該翼部長手方向に冷却流路が形成され、
該冷却流路の入口及び出口が外側エンドウォール部の段
部の外向き表面に開口し、さらに該段部の周囲に外側エ
ンドウォール部の外向き表面との間にすき間を冷却流路
として形成する覆い板を有するタービン静翼において、 外側エンドウォール部の段部外向き表面に、冷却流路の
入口、または冷却流路の入口及び出口のそれぞれを囲っ
て外方向へ延びるそれぞれの筒状延長部を外側エンドウ
ォール部と一体的に設けたことを特徴とするタービン静
翼。
5. Radially radially extending across an outer mounting ring fixed in a turbine casing around a turbine rotation axis and an inner mounting ring concentrically disposed inside the outer mounting ring. An assembled turbine vane, comprising: a wing portion; an outer endwall portion provided at an outer longitudinal end of the wing portion and coupled to an outer mounting ring; and an inner mounting portion provided at an inner longitudinal end portion of the wing portion. An inner end wall portion connected to the ring, and a step portion projecting in a cross-sectional shape of the wing portion at a position corresponding to the wing portion on the outward surface of the outer end wall portion are integrally formed, and inside the wing portion A cooling channel is formed in the wing portion longitudinal direction,
An inlet and an outlet of the cooling channel are opened on the outward surface of the step of the outer end wall portion, and a gap is formed around the step with the outward surface of the outer end wall portion as a cooling channel. A turbine vane having a cover plate that covers the outer end wall portion, the cylindrical extension extending outwardly around the inlet of the cooling flow path, or each of the inlet and outlet of the cooling flow path, on the outward surface of the stepped portion. A turbine vane characterized in that a portion is provided integrally with an outer end wall portion.
JP35748997A 1997-12-25 1997-12-25 Turbine vane Expired - Fee Related JP3368417B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35748997A JP3368417B2 (en) 1997-12-25 1997-12-25 Turbine vane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35748997A JP3368417B2 (en) 1997-12-25 1997-12-25 Turbine vane

Publications (2)

Publication Number Publication Date
JPH11190204A true JPH11190204A (en) 1999-07-13
JP3368417B2 JP3368417B2 (en) 2003-01-20

Family

ID=18454391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35748997A Expired - Fee Related JP3368417B2 (en) 1997-12-25 1997-12-25 Turbine vane

Country Status (1)

Country Link
JP (1) JP3368417B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175207A (en) * 2007-01-18 2008-07-31 Siemens Ag Gas turbine having stationary vane
US20170211418A1 (en) * 2016-01-25 2017-07-27 Ansaldo Energia Switzerland AG Cooled wall of a turbine component and a method for cooling this wall
EP3708782A1 (en) * 2019-03-15 2020-09-16 United Technologies Corporation Boas and methods of making a boas having fatigue resistant cooling inlets
CN113153447A (en) * 2021-04-25 2021-07-23 西安交通大学 Pre-rotation structure for strengthening cooling of leakage flow of turbine stationary blade end wall

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08177406A (en) * 1994-08-23 1996-07-09 General Electric Co <Ge> Stator vane-segment and turbine vane-segment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08177406A (en) * 1994-08-23 1996-07-09 General Electric Co <Ge> Stator vane-segment and turbine vane-segment

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175207A (en) * 2007-01-18 2008-07-31 Siemens Ag Gas turbine having stationary vane
JP4607195B2 (en) * 2007-01-18 2011-01-05 シーメンス アクチエンゲゼルシヤフト Gas turbine with stationary blades
US8257032B2 (en) 2007-01-18 2012-09-04 Siemens Aktiengesellschaft Gas turbine with a guide vane
US20170211418A1 (en) * 2016-01-25 2017-07-27 Ansaldo Energia Switzerland AG Cooled wall of a turbine component and a method for cooling this wall
US10851668B2 (en) * 2016-01-25 2020-12-01 Ansaldo Energia Switzerland AG Cooled wall of a turbine component and a method for cooling this wall
EP3708782A1 (en) * 2019-03-15 2020-09-16 United Technologies Corporation Boas and methods of making a boas having fatigue resistant cooling inlets
US10995626B2 (en) 2019-03-15 2021-05-04 Raytheon Technologies Corporation BOAS and methods of making a BOAS having fatigue resistant cooling inlets
CN113153447A (en) * 2021-04-25 2021-07-23 西安交通大学 Pre-rotation structure for strengthening cooling of leakage flow of turbine stationary blade end wall

Also Published As

Publication number Publication date
JP3368417B2 (en) 2003-01-20

Similar Documents

Publication Publication Date Title
JP4693985B2 (en) Hook support for circulating fluid cooled gas turbine nozzle stage segment
JP4486201B2 (en) Priority cooling turbine shroud
EP0911486B1 (en) Gas turbine stationary blade cooling
JP5898902B2 (en) Apparatus and method for cooling a platform area of a turbine blade
JP4130321B2 (en) Gas turbine engine components
US6554563B2 (en) Tangential flow baffle
JP5080159B2 (en) Shroud hanger assembly and gas turbine engine
US6508623B1 (en) Gas turbine segmental ring
JP4015695B2 (en) Turbine blade cooling
JP3978143B2 (en) Stator blade cooling structure and gas turbine
US6769865B2 (en) Band cooled turbine nozzle
JP5898898B2 (en) Apparatus and method for cooling the platform area of a turbine rotor blade
JP4502517B2 (en) Guide vanes and guide vane rings of fluid machinery
JP4130540B2 (en) Apparatus and method for locally cooling a gas turbine nozzle wall
JP2002213209A (en) Gas turbine segment
TWI632289B (en) Blade and gas turbine provided with the same
JP2001271604A (en) Turbine stationary blade segment having internal cooling circuit
JP2006189044A (en) Blade outer air seal assembly and turbine blade shroud assembly
JPH02233802A (en) Cooling type turbine blade
JP4100916B2 (en) Nozzle fillet rear cooling
US5813827A (en) Apparatus for cooling a gas turbine airfoil
US5953919A (en) Combustion chamber having integrated guide blades
JP2004138041A (en) Gas turbine
JP4087586B2 (en) Gas turbine and its stationary blade
JP2004506827A (en) Turbine vane

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees