JPH11189898A - Electrolytic chromate treated steel sheet excellent in film adhesion and color tone and its production - Google Patents

Electrolytic chromate treated steel sheet excellent in film adhesion and color tone and its production

Info

Publication number
JPH11189898A
JPH11189898A JP35524097A JP35524097A JPH11189898A JP H11189898 A JPH11189898 A JP H11189898A JP 35524097 A JP35524097 A JP 35524097A JP 35524097 A JP35524097 A JP 35524097A JP H11189898 A JPH11189898 A JP H11189898A
Authority
JP
Japan
Prior art keywords
steel sheet
chromium
adhesion
color tone
electrolytic treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35524097A
Other languages
Japanese (ja)
Other versions
JP3518301B2 (en
Inventor
Takeshi Suzuki
威 鈴木
Hiroki Iwasa
浩樹 岩佐
Yoshinori Yomura
吉則 余村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP35524097A priority Critical patent/JP3518301B2/en
Publication of JPH11189898A publication Critical patent/JPH11189898A/en
Application granted granted Critical
Publication of JP3518301B2 publication Critical patent/JP3518301B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrolytic chromate treated steel sheet excellent in film working adhesion and simultaneously satisfying a surface color tone sufficiently good as the one for a thinning-worked 2 piece can and to provide a method for producing it. SOLUTION: In an electrolytic chromate treated steel sheet in which a metallic chromium layer of 70 to 200 mg/m<2> coating weight is formed on the surface of a steel sheet, and a chromium hydrated oxide layer of 7 to 25 mg/m<2> coating weight expressed in terms of metallic chromium is formed on the upper layer, granular projections of <=50 nm maximum grain size are formed on the chromium layer, and the total of the occupancy area of the granular projections is regulated to 5 to 80% the surface area of the steel sheet.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、薄肉化加工2ピー
ス缶用ラミネート鋼板に用いる、フィルム密着性及び色
調に優れた電解クロメート処理鋼板及びその製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolytic chromate treated steel sheet having excellent film adhesion and color tone, and a method for producing the same, which is used for a laminated steel sheet for a thinned two-piece can.

【0002】[0002]

【従来の技術】従来、食缶もしくは飲料缶を製缶する場
合、金属板に絞り、しごき、引張、曲げ等の加工を施
し、缶底部および缶胴部を一体成形する2ピース缶製造
方法が行われている。2ピース缶には、金属板を成形し
た後に塗装を施したものの他に、予め金属板に有機樹脂
フィルムを熱融着させたラミネート鋼板に成形加工を加
えたものがあり、特開平3−101930号公報に開示
されている方法により実用化されている。ラミネート鋼
板を成形し2ピース缶体を製造する場合、下地の金属板
には電解クロメート処理鋼板(ティンフリースチール、
以下TFSと称する)が用いられている。TFSの表面
には金属クロム層とさらにその表層にはクロムの水和酸
化物層が形成されており、ラミネートする際有機樹脂フ
ィルムとの間に水素結合を持つことにより密着性を維持
し、製缶加工において金属板と有機樹脂フィルムの界面
での剥離を防止している。
2. Description of the Related Art Conventionally, when making food or beverage cans, a two-piece can manufacturing method is known in which a metal plate is subjected to a process such as drawing, ironing, tensioning, bending, and the like, and a can bottom and a can body are integrally formed. Is being done. There are two-piece cans in which, after forming a metal plate and then applying a coating, a laminated steel plate in which an organic resin film is thermally fused to a metal plate in advance is subjected to a forming process. Has been put to practical use by the method disclosed in Japanese Patent Application Laid-Open Publication No. H10-209,878. When manufacturing a two-piece can body by forming a laminated steel plate, the base metal plate is an electrolytic chromate-treated steel plate (tin-free steel,
(Hereinafter referred to as TFS). A chromium metal layer is formed on the surface of TFS and a hydrated oxide layer of chromium is formed on the surface of the metal layer. In can processing, peeling at the interface between the metal plate and the organic resin film is prevented.

【0003】一方近年製缶メーカーでは材料節減の観点
から缶体の薄肉化が進められており、2ピース缶におい
ては成形時の加工度増大という手段が講じられている。
加工度の増大に従い成型時の変形は大きくなるためフィ
ルム剥離の危険性が高くなる。 さらに、レトルト処理
を施す場合には高温水蒸気による密着界面の攻撃による
密着性劣化が起こるため、加工後密着力がより高く維持
されていなければならない。従ってレトルト処理を要す
る内容物についても、ラミネート時に従来よりもより大
きな密着性が求められる。
On the other hand, in recent years, can manufacturers have been reducing the thickness of can bodies from the viewpoint of material saving, and in the case of two-piece cans, measures have been taken to increase the working ratio during molding.
As the degree of processing increases, the deformation during molding increases, so that the risk of film peeling increases. Further, in the case of performing the retort treatment, the adhesion deteriorates due to the attack of the adhesion interface by the high-temperature steam, so that the adhesion after processing must be kept higher. Therefore, even for contents that require retort treatment, greater adhesion is required at the time of lamination than before.

【0004】ラミネートフィルム密着性を改善するため
の考え方として、TFS表面の金属クロムの粒状突起の
密度とPETフィルムのTピール試験に基づく接着強度
の関係を調査した和泉らの報告(CAMP−ISIJ
vol.8(1995)−718)がある。そこではT
FS表面の粒状突起の存在により、TFSとフィルムの
密着面の表面積が増大し密着性向上に寄与するという知
見が得られている。
Izumi et al. (CAMP-ISIJ) investigated the relationship between the density of granular protrusions of metallic chromium on the TFS surface and the adhesive strength based on a T-peel test of a PET film as a way to improve the adhesion of the laminate film.
vol. 8 (1995) -718). Where T
It has been found that the presence of the granular protrusions on the FS surface increases the surface area of the contact surface between the TFS and the film and contributes to the improvement of the adhesion.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
和泉らの報告においては評価手段としてPETフィルム
をTFSで挟み込み、フィルムを完全溶融させて圧着さ
せた後、Tピール試験により、その引張強度を調査した
に過ぎず、2ピース缶体を製造する場合に問題となる加
工密着性に関する検討は全くなされていない。金属クロ
ムの粒状突起を有する溶接缶用クロムメッキ鋼板の製造
法として、特公昭63−26200号公報、特開昭63
−186894号公報などに、クロム酸溶液中で陰極電
解処理に引き続き陽極電解を行い、再度陰極処理を行う
ことにより、粒径5〜1000nmの粒状突起の混在す
る金属クロム層を形成できると開示されている。そこで
は粒径5〜1000nmの粒状突起が混在するクロムメ
ッキ鋼板が得られており、粒状突起の密度と溶接性と塗
装後耐食性の向上との因果関係が論じられているが、ラ
ミネート鋼板としての適合性は一切論じられていない。
また一方では、ラミネート鋼板を成形し2ピース缶体を
製造する場合、成形後の缶体外面に印刷を行う際の意匠
性を確保するために、ラミネート鋼板の色調の制御が必
要とされる。具体的には下地の鋼板の明度が不十分であ
ったり、色相が不適切である場合、白色フィルムをラミ
ネートした際に印刷の色映えがしない。
However, in the above-mentioned report by Izumi et al., A PET film was sandwiched by TFS as an evaluation means, the film was completely melted and pressed, and then its tensile strength was examined by a T-peel test. However, no study has been made on the processing adhesion which is a problem when a two-piece can is manufactured. JP-B-63-26200 and JP-A-63-63200 disclose methods for producing chromium-plated steel sheets for welding cans having granular projections of metallic chromium.
JP-A-186894 discloses that a metal chromium layer in which granular projections having a particle diameter of 5 to 1000 nm are mixed can be formed by performing anodic electrolysis after performing cathodic electrolysis in a chromic acid solution and then performing cathodic treatment again. ing. There, a chromium-plated steel sheet having a mixture of granular projections having a particle size of 5 to 1000 nm has been obtained, and the causal relationship between the density of the granular projections, the weldability, and the improvement in corrosion resistance after painting has been discussed. No suitability was discussed.
On the other hand, when manufacturing a two-piece can body by molding a laminated steel sheet, it is necessary to control the color tone of the laminated steel sheet in order to secure designability when printing on the outer surface of the molded can body. Specifically, when the brightness of the underlying steel sheet is insufficient or the hue is inappropriate, the printed color does not look good when a white film is laminated.

【0006】特開平7−197295号公報においてT
FSの色調を制御する検討が行われており、色調を良好
とするためのTFSの条件として、クロム水和酸化物の
付着量を25mg/m2 に保持し、かつTFS表面の金
属クロムの粒状突起の個数を20個/μm2 以下にする
ことが必要であるとの知見が得られている。しかしなが
ら、色調に及ぼす粒状突起の粒径を考慮に入れた詳細な
密度の検討はこれまでなされていない。本発明の目的は
かかる事情を鑑み、フィルム加工密着性に優れ、同時に
薄肉化加工2ピース缶用として十分良好な表面色調を満
足する電解クロメート処理鋼板及びその製造方法を提供
することにある。
In Japanese Patent Application Laid-Open No. 7-197295, T
Studies have been made to control the color tone of FS, and as the TFS conditions for improving the color tone, the adhesion amount of chromium hydrated oxide was kept at 25 mg / m 2 and the granularity of metallic chromium on the TFS surface was reduced. It has been found that the number of projections needs to be 20 / μm 2 or less. However, no detailed study of the density taking into account the particle size of the granular projections affecting the color tone has been made so far. In view of such circumstances, an object of the present invention is to provide an electrolytic chromate-treated steel sheet which has excellent film processing adhesion and, at the same time, satisfies a sufficiently good surface color for a thinned two-piece can, and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】前記課題を解決し目的を
達成するために、本発明は以下に示す手段を用いてい
る。 (1)本発明の鋼板は、鋼板の表面に、付着量:70〜
200mg/m2 の金属クロム層と、その上層に金属ク
ロム換算で付着量:7〜25mg/m2 のクロム水和酸
化物層とを形成してなる電解クロメート処理鋼板におい
て、前記クロム層に、最大粒径50nm以下の粒状突起
が形成されており、かつ該粒状突起の占有面積の総和が
鋼板表面積の5〜80%であることを特徴とする、フィ
ルム密着性及び色調に優れた電解クロメート処理鋼板で
ある。
In order to solve the above problems and achieve the object, the present invention uses the following means. (1) The steel sheet of the present invention has an adhesion amount of 70 to
And 200 mg / m 2 of metallic chromium layer, coating weight reckoned as metal chromium thereon: In the electrolytic chromate treated steel sheet to form a 7~25mg / m 2 of hydrated chromium oxide layer formed by, on the chromium layer, Electrolytic chromate treatment excellent in film adhesion and color tone, characterized in that granular projections having a maximum particle size of 50 nm or less are formed, and the total area occupied by the granular projections is 5 to 80% of the surface area of the steel sheet. It is a steel plate.

【0008】(2)本発明の製造方法は、上記(1)に
記載の電解クロメート処理鋼板を製造する方法におい
て、6価クロムを含む化合物を主剤とし、F- と、重量
比でSO4 2-/F- ≦0.05を満たす量のSO4 2-
を含有する水溶液中で、鋼板に対して1パス以上の陽極
電解処理と1パス以上の陰極電解処理を施す工程を備
え、鋼板に対して施す最終パスが前記陰極電解処理であ
り、かつ前記陽極電解処理の通電電気量が0.05〜2
C/dm2 である断続的電解処理を施すことを特徴とす
る、フィルム密着性及び色調に優れた電解クロメート処
理鋼板の製造方法である。
(2) The production method of the present invention is the method for producing an electrolytic chromate-treated steel sheet according to the above (1), wherein a compound containing hexavalent chromium is used as a main component, and F - and SO 4 2 in a weight ratio. A step of subjecting the steel sheet to at least one pass of anodic electrolysis and at least one pass of cathodic electrolysis in an aqueous solution containing an amount of SO 4 2− that satisfies / F ≦ 0.05; Is the cathodic electrolytic treatment, and the amount of electricity passed in the anodic electrolytic treatment is 0.05 to 2
A method for producing an electrolytic chromate-treated steel sheet having excellent film adhesion and color tone, characterized by performing an intermittent electrolytic treatment of C / dm 2 .

【0009】[0009]

【発明の実施の形態】本発明者らは、上記の課題を解決
するために、フィルム加工密着性及び色調に及ぼすTF
S表面の金属クロムの粒状突起の粒径及び密度の影響を
詳細に調査した結果、以下の知見を得るに至った。
BEST MODE FOR CARRYING OUT THE INVENTION In order to solve the above-mentioned problems, the present inventors have studied the effects of TF on film processing adhesion and color tone.
As a result of a detailed investigation of the influence of the particle size and density of the metallic chromium granular projections on the S surface, the following findings were obtained.

【0010】TFSの表面に金属クロムの粒状突起が存
在する場合、TFS最表層のクロム水和酸化物とラミネ
ートフィルムの密着界面の面積は増大するため密着性は
向上する。しかし同時にTFSの色調は明度及び色相と
もに劣化する。
[0010] When granular projections of chromium metal are present on the surface of TFS, the area of the contact interface between the chromium hydrated oxide on the outermost layer of TFS and the laminate film is increased, so that the adhesion is improved. However, at the same time, the color tone of the TFS deteriorates in both brightness and hue.

【0011】図1に種々の粒径及び密度の粒状突起を有
するTFSに厚さ25μmの透明ポリエステルフィルム
をラミネートしたラミネート鋼板の可視領域の分光反射
率曲線におよぼす影響を示す。
FIG. 1 shows the effect of a laminated steel sheet obtained by laminating a transparent polyester film having a thickness of 25 μm on TFS having granular projections having various particle diameters and densities on the spectral reflectance curve in the visible region.

【0012】分光反射率の波長積分値は反射光の強度を
反映し、明度と密接な相関を持つ。すなわち、図1中に
おいて曲線が上に位置するほど明るい色調を呈する。ま
た、この曲線における480nm〜700nm間の10
nm間隔で測定した反射率−波長の勾配の平均値を10
00nmあたりの反射率差に補正した値を、特開平3−
193897号公報の定めるところに従いK値(%/1
000nm)と称する。K値はTFS表面色相を評価す
るのに有効な手段であり、この値が小さいほど、すなわ
ち図1中の曲線の勾配が急なほど、短波長側の反射が強
いため青っぽく知覚され、ラミネート鋼板の色相として
は良好である。逆にK値が大きい場合、赤みが強く感じ
られラミネート鋼板の色相としては好ましくない。
The wavelength integrated value of the spectral reflectance reflects the intensity of the reflected light and has a close correlation with the brightness. That is, the higher the curve is located in FIG. 1, the brighter the color tone is. In addition, 10 in the curve between 480 nm and 700 nm.
The average value of the reflectance-wavelength gradient measured at nm intervals is 10
The value corrected to the reflectance difference per 00 nm is described in
K value (% / 1
000 nm). The K value is an effective means for evaluating the TFS surface hue. The smaller this value is, that is, the steeper the slope of the curve in FIG. Is good as a hue. Conversely, when the K value is large, redness is strongly felt, which is not preferable as the hue of the laminated steel sheet.

【0013】図1中では、粒状突起を全く持たない平板
状金属クロム(サンプルE)が最も明るくかつ青みが強
く良好な色調であることを示している。これに対し粒状
突起が存在する場合、平板状金属クロムの曲線に比べ、
反射率の低下が見られる。最も良好な曲線Eからの差は
A→B→C→Dの順に大きくなる。粒径50nmの突起
が高密度に存在するAは、短波長側で若干反射率が低下
しているのみで、曲線Eとほぼ同様のスペクトルを示
す。一方、B〜Dの粒径150nmの突起が存在する場
合、短波長から長波長の全波長領域で反射率が低下し明
度が下がっていることがわかる。また粒状突起の密度が
増すにつれ、短波長側の反射率が大きく低下し、相対的
に赤みが増す傾向が認められ色相的に好ましくなくな
る。
FIG. 1 shows that the flat metallic chromium (sample E) having no granular projections has the brightest, strong blue color and good color tone. On the other hand, if there are granular projections,
A decrease in reflectance is seen. The difference from the best curve E increases in the order of A → B → C → D. A in which protrusions having a particle diameter of 50 nm exist at high density shows a spectrum almost similar to that of the curve E, except that the reflectance slightly decreases on the short wavelength side. On the other hand, when protrusions with a particle diameter of 150 nm B to D are present, it can be seen that the reflectance is reduced and the brightness is reduced in all wavelength regions from short wavelength to long wavelength. Further, as the density of the granular projections increases, the reflectance on the short wavelength side greatly decreases, and the tendency of relatively increasing redness is recognized, which is not preferable in terms of hue.

【0014】ラミネート後TFSの分光反射曲線の変化
に及ぼす粒状突起の影響は粒状突起による光の散乱によ
って説明される。平坦な面で可視光が反射する場合、平
面上に波長よりもはるかに小さい凹凸がある場合、光は
凹凸の影響を受けずに全反射するが、凹凸のサイズが大
きくなり、波長のオーダーに近づくにつれ、入射光は凹
凸によって散乱され、反射率が低下するようになる。従
って可視光の表面散乱は凹凸が大きくなるにつれ、まず
短波長光から散乱を受け、凹凸サイズが小さいうちは長
波長光の散乱は少ないが、凹凸のサイズが大きくなるに
従い、可視領域全体で表面散乱が起きるようになる。T
FSの場合、粒状突起の粒径が50nmの場合、短波長
域のみ反射率が低下し、150nmでは全可視光域で反
射率が低下したのはこの理由による。また、粒状突起の
密度が高くなるほど表面散乱が増すため反射光率は低下
し、明度の低下が著しい。しかしながら粒径50nmの
Aの場合150nmのB〜Dよりも1桁多い粒状突起が
存在するにも関わらず明度の低下は極めて小さく、色調
は良好である。以上の理由から、TFSのラミネート色
調への悪影響が極めて小さい粒状突起の粒径及び密度の
範囲が存在することがわかる。本発明者らはラミネート
色調に悪影響を及ぼさない粒径及び密度を綿密に調査し
た結果、その範囲を、金属クロムの粒状突起の粒径がす
べて50nm以下であり、かつ該粒状突起の占有面積の
総和が鋼板表面積の5〜80%と定めた。
The effect of the granular projections on the change in the spectral reflection curve of the TFS after lamination is explained by the scattering of light by the granular projections. If visible light is reflected on a flat surface, and if there is unevenness much smaller than the wavelength on the flat surface, the light will be totally reflected without being affected by the unevenness. As it gets closer, the incident light is scattered by the irregularities, and the reflectivity decreases. Therefore, the surface scattering of visible light is firstly scattered from short-wavelength light as the unevenness increases, and as long as the unevenness size is small, the scattering of long-wavelength light is small. Scattering will occur. T
In the case of FS, when the particle diameter of the granular projections is 50 nm, the reflectance decreases only in the short wavelength region, and at 150 nm, the reflectance decreases in the entire visible light region. In addition, as the density of the granular projections increases, the surface scattering increases, so that the reflectance decreases and the brightness decreases remarkably. However, in the case of A having a particle diameter of 50 nm, the decrease in lightness is extremely small and the color tone is good despite the presence of granular protrusions one digit larger than those of B to D having a diameter of 150 nm. For the above reasons, it can be seen that there is a range of the particle size and density of the granular projections that have a very small adverse effect on the laminate color tone of TFS. The present inventors have conducted a thorough investigation of the particle size and density that do not adversely affect the laminate color tone, and found that the range is such that the particle size of the metallic chromium granular projections is all 50 nm or less, and the area occupied by the granular projections. The total was determined to be 5 to 80% of the steel sheet surface area.

【0015】しかしながら、上記の粒径及び密度の粒状
突起を有する金属クロム層を形成するにあたり、粒径を
50nm以下に制御しつつ粒状突起の占有面積の総和を
鋼板表面積の5〜80%に制御することは非常に困難で
あり、既往の研究においては、例えば5〜1000nm
の粒径分布を有する粒状突起を発生せしめることは可能
であっても粒径を50nm以下に制御することは不可能
であった。
However, in forming the metal chromium layer having the granular projections having the above-described particle diameter and density, the total area occupied by the granular projections is controlled to 5 to 80% of the surface area of the steel sheet while controlling the particle diameter to 50 nm or less. It is very difficult to do this, and in previous studies, for example, 5-1000 nm
However, it was not possible to control the particle size to 50 nm or less, although it was possible to generate granular protrusions having the particle size distribution described above.

【0016】そこで、本発明者らは陽極電解を行うクロ
ム酸溶液の組成を詳しく検討した結果、SO4 2-を全く
含まない、F- 添加のクロム酸溶液中で陽極電解処理を
施す場合、図2に示すように、金属クロムの付着量が5
0〜500mg/m2 の範囲で50nmを越える粒状突
起が混在しない金属クロム層の形成が可能であることを
見出した。
The inventors of the present invention have studied the composition of a chromic acid solution for performing anodic electrolysis in detail. As a result, when the anodic electrolysis treatment is performed in a F - added chromic acid solution containing no SO 4 2- at all, As shown in FIG.
It has been found that it is possible to form a metal chromium layer in the range of 0 to 500 mg / m 2 , in which granular protrusions exceeding 50 nm are not mixed.

【0017】また、図3に示すように、SO4 2-/F-
が重量比で0.05以下の場合粒状突起は50nmを越
える大きさのものは形成されないが、SO4 2-/F-
重量比で0.05を越えると50nmを越えるものが混
入し始めた。
As shown in FIG. 3, SO 4 2- / F
When the weight ratio is less than 0.05, the granular projections having a size exceeding 50 nm are not formed, but when the weight ratio of SO 4 2− / F exceeds 0.05, those exceeding 50 nm begin to mix. Was.

【0018】以上の知見に基づき、本発明者らは、電解
クロメート処理溶液中のSO4 2-の濃度及び陽極電解処
理の通電電気量を調整して、鋼板表面に施す金属クロム
層とその上層のクロム水和酸化物層の各々の付着量及び
前記クロム層の粒状突起の最大粒径と密度を一定範囲内
に制御するようにして、フィルム加工密着性及び色調と
もに優れた電解クロメート処理鋼板及びその製造方法を
見出し、本発明を完成させた。
Based on the above findings, the present inventors adjusted the concentration of SO 4 2- in the electrolytic chromate treatment solution and the amount of electricity supplied in the anodic electrolysis treatment to adjust the metal chromium layer applied to the steel sheet surface and the upper layer thereof. An electrolytic chromate treated steel sheet excellent in both film processing adhesion and color tone by controlling the attached amount of each chromium hydrated oxide layer and the maximum particle size and density of the granular projections of the chromium layer within a certain range. The present inventors have found a manufacturing method and completed the present invention.

【0019】すなわち、本発明は、電解クロメート処理
鋼板の皮膜、及び電解処理条件を下記範囲に限定するこ
とにより、フィルム加工密着性に優れ、同時に薄肉化加
工2ピース缶用として十分良好な表面色調を満足する電
解クロメート処理鋼板及びその製造方法を提供すること
ができる。
That is, the present invention, by limiting the film of the electrolytic chromate treated steel sheet and the electrolytic treatment conditions to the following ranges, is excellent in film processing adhesion, and at the same time, has a sufficiently good surface tone for a two-piece thinned can. And a method for producing the same.

【0020】以下に、本発明の電解クロメート処理鋼板
の皮膜の限定理由及び電解処理条件の限定理由について
説明する。 (1)電解クロメート処理鋼板の皮膜 本発明の電解クロメート処理鋼板は、鋼板の表面に、付
着量:70〜200mg/m2 の金属クロム層と、その
上層に金属クロム換算で付着量:7〜25mg/m2
クロム水和酸化物層とを形成してなり、前記クロム層に
は最大粒径50nm以下の粒状突起が形成されており、
かつ該粒状突起の占有面積の総和が鋼板表面積の5〜8
0%である。
The reasons for limiting the coating of the electrolytic chromate treated steel sheet of the present invention and the reasons for limiting the electrolytic treatment conditions will be described below. (1) Coating of electrolytic chromate-treated steel sheet The electrolytic chromate-treated steel sheet of the present invention has a metal chromium layer having an adhesion amount of 70 to 200 mg / m 2 on the surface of the steel sheet, and an adhesion amount in terms of metal chromium of 7 to 200 mg / m 2. A chromium hydrated oxide layer of 25 mg / m 2 , wherein the chromium layer has granular projections having a maximum particle size of 50 nm or less;
And the sum of the occupied areas of the granular projections is 5 to 8 of the steel sheet surface area.
0%.

【0021】金属クロム層の付着量が70〜200mg
/m2 である理由は、まず70mg/m2 未満では十分
なフィルム加工密着性が得られないためであり、上限が
200mg/m2 であるのは、これ以上付着量を増やし
てもフィルム加工密着性の向上が見られず、徒に付着量
を多くする必要がないためである。
The amount of metal chromium layer adhered is 70 to 200 mg.
/ M is 2 reasons, first is less than 70 mg / m 2 is for a sufficient film processing adhesiveness is not obtained, the upper limit is 200 mg / m 2, even film processing is increased any more adhesion amount This is because there is no improvement in adhesion and there is no need to increase the amount of adhesion.

【0022】水和クロム酸化物付着量が金属クロム換算
で7〜25mg/m2 であるのは、7mg/m2 未満の
場合、いかに金属クロムの粒状突起を表層に配すること
により密着面積を大きくしても、水和クロム酸化物の絶
対量が不足するため被覆性が下がり、ラミネートフィル
ムとの密着性が不十分となるためである。一方、水和酸
化物が25mg/m2 を上回ると、下地が粒状突起を有
さない平板状の金属クロムであっても、水和酸化物自身
の持つ色により茶色く色付き、色調が劣化するからであ
る。
[0022] The hydrated chromium oxide coating weight is 7~25mg / m 2 reckoned as metal chromium in the case of less than 7 mg / m 2, the adhesion area by arranging how granular projections of the metallic chromium on the surface layer This is because, even if it is increased, the absolute amount of the hydrated chromium oxide is insufficient, so that the coatability is lowered and the adhesion to the laminate film becomes insufficient. On the other hand, if the hydrated oxide exceeds 25 mg / m 2 , even if the base material is flat metallic chromium having no granular protrusions, the hydrated oxide itself is colored brown and the color tone deteriorates. It is.

【0023】金属クロム層表面に存在する金属クロムの
粒状突起の粒径をすべて50nm以下に限定した理由
は、50nmを上回る粒状突起が存在、もしくは混在す
る場合、色調は最大粒径の表面散乱によって支配され、
全波長領域で反射光の減少が見られるためである。色調
を平板状金属クロム並に良好にするためには、粒状突起
のすべての粒径は50nmを上回らないことが必要であ
る。また、粒状突起の占有面積の総和を鋼板表面積の5
〜80%に限定した理由は、まず、5%未満では粒状突
起の存在による密着界面積の増大が小さいためフィルム
密着性の改善が認められないためである。従って、フィ
ルム密着性の向上には粒状突起の占有面積の総和は鋼板
表面積の5%以上が必要である。また80%を上回る場
合は、粒径が50nm以下であって表面散乱が可視光の
短波長領域のみに限定されるとは言え、反射光量が不足
し明度が低下するのと同時に青みが不足することによる
色相の劣化が無視できなくなるからである。従って、良
好な色調を得るには、粒状突起の占有面積の総和は鋼板
表面積の80%以下であることが必要である。
The reason why the particle diameter of the metallic chromium granular projections present on the surface of the metallic chromium layer is all limited to 50 nm or less is that when the granular projections exceeding 50 nm exist or are mixed, the color tone is determined by the surface scattering of the maximum particle diameter. Ruled,
This is because reflected light is reduced in all wavelength regions. In order for the color tone to be as good as that of flat metal chromium, it is necessary that all the particle diameters of the granular projections do not exceed 50 nm. In addition, the total area occupied by the granular projections is calculated as 5% of the surface area of the steel sheet.
The reason for limiting the content to ~ 80% is that if the content is less than 5%, the increase in the adhesion area due to the presence of the granular projections is small, so that no improvement in the film adhesion is observed. Therefore, in order to improve the film adhesion, the total area occupied by the granular projections needs to be 5% or more of the surface area of the steel sheet. If it exceeds 80%, it can be said that the particle size is 50 nm or less and the surface scattering is limited to only the short wavelength region of visible light, but the amount of reflected light is insufficient and the brightness is reduced, and at the same time, the bluish is insufficient. This is because the deterioration of the hue due to this cannot be ignored. Therefore, in order to obtain a good color tone, the total area occupied by the granular projections must be 80% or less of the surface area of the steel sheet.

【0024】なお、粒状突起の粒径及び占有面積比(粒
状突起の占有面積の総和/鋼板表面積)の測定方法につ
いては、特に限定されるものではないが、鋼板表面の金
属クロム層にクロム水和酸化物を被覆した状態のサンプ
ル表面の10000倍の走査透過電子顕微鏡(TEM)
写真を撮影し、その写真から粒状突起の粒径や占有面積
比を測定することが望ましい(粒径測定が容易かつ観察
面積確保が可能なため)。実際にサンプルの粒状突起の
粒径や占有面積比を求めるに際しては、写真に撮影され
ている範囲(視野面積)の粒状突起の最大粒径(最大外
径)とし、占有面積比については、画像解析により求め
た粒の総面積と視野面積の比とする。また、上記粒状突
起の最大粒径及び占有面積比の測定は、図4に示すよう
に、少なくとも300μm2 以上でないと粒状突起の測
定数が少なく適当な最大粒径及び占有面積比が得られな
い。
The method of measuring the particle size and the occupied area ratio of the granular projections (total occupied area of the granular projections / surface area of the steel sheet) is not particularly limited. Scanning transmission electron microscope (TEM) of 10,000 times the surface of the sample coated with the hydrated oxide
It is desirable to take a photograph and measure the particle size and the occupied area ratio of the granular projections from the photograph (because the particle size measurement is easy and the observation area can be secured). When actually calculating the particle diameter and the occupied area ratio of the granular projections of the sample, the maximum particle diameter (maximum outer diameter) of the granular projections in the range (viewing area) photographed is taken. The ratio between the total area of the grains and the area of the visual field obtained by the analysis. In addition, as shown in FIG. 4, the measurement of the maximum particle size and the occupied area ratio of the granular projections requires that the number of measured granular projections be at least 300 μm 2 or more, so that an appropriate maximum particle size and occupied area ratio cannot be obtained. .

【0025】なお、ここでいう粒状突起の形態について
は、一定していないので特に定義しないが、主に下地結
晶方位と同方向の単結晶粒が形成されるため、(10
0)面に依存する4回対称(4角形)や(111)面に
依存する6回対称(6角形)が多く見られる(めっき形
態に係る粒以外の突起は考慮に入れない。)。上記の電
解クロメート処理鋼板の皮膜に調整することにより、フ
ィルム加工密着性に優れ、同時に薄肉化加工2ピース缶
用として十分良好な表面色調を満足する電解クロメート
処理鋼板を得ることが可能となる。
The form of the granular projections is not particularly defined because it is not constant. However, since single crystal grains mainly formed in the same direction as the base crystal orientation are formed, (10
The four-fold symmetry (quadrangle) depending on the (0) plane and the six-fold symmetry (hexagon) depending on the (111) plane are often observed (projections other than grains related to the plating form are not taken into account). By adjusting the coating of the above-mentioned electrolytic chromate-treated steel sheet, it becomes possible to obtain an electrolytic chromate-treated steel sheet which is excellent in film processing adhesion and at the same time satisfies a sufficiently good surface tone for a thin-walled two-piece can.

【0026】このような特性の鋼板は、以下の製造方法
により製造することができる。 (2)電解クロメート処理鋼板製造工程 (製造方法)6価クロムを含む化合物を主剤とし、F-
と、重量比でSO4 2-/F- ≦0.05を満たす量のS
4 2-とを含有する水溶液中で、鋼板に対して1パス以
上の陽極電解処理と1パス以上の陰極電解処理を施す工
程を備え、鋼板に対して施す最終パスが前記陰極電解処
理であり、かつ前記陽極電解処理の通電電気量が0.0
5〜2C/dm2 である断続的電解処理を施す。
The steel sheet having such characteristics can be manufactured by the following manufacturing method. (2) as a main agent a compound electrolytic chromate treatment steel sheet manufacturing process including (manufacturing method) hexavalent chromium, F -
And an amount of S satisfying SO 4 2− / F ≦ 0.05 by weight ratio.
A step of subjecting the steel sheet to one or more passes of anodic electrolysis and one or more passes of cathodic electrolysis in an aqueous solution containing O 4 2- ; And the amount of electricity passed in the anodic electrolysis treatment is 0.0
An intermittent electrolytic treatment of 5 to 2 C / dm 2 is performed.

【0027】まず、6価クロムを含む化合物(無水クロ
ム酸)を主剤とし、F- を助剤とし、重量比でSO4 2-
/F- ≦0.05を満たす量のSO4 2-とを含有する水
溶液を用いる点については、上記したように、粒状突起
の成長を抑制する上で必要である。即ち、SO4 2-/F
- が0.05を越えると粒状突起の最大粒径が50nm
を越えてしまう。そのような溶液中で断続的に2回以上
電解処理を行い、その内の最終の電解を除くいずれかの
電解において、少なくとも1回の陽極処理を行い、残り
の電解においては陰極処理を行う理由については、陽極
電解が次なる陰極電解において優先析出し粒状突起を発
生させるサイト形成に必要な処理であるからであって、
当然ながら電解の最終段階に陽極処理を行うことは無意
味である。
First, a compound containing hexavalent chromium (chromic anhydride) is used as a main component, F is used as an auxiliary, and SO 4 2− is used in a weight ratio.
The use of an aqueous solution containing an amount of SO 4 2− that satisfies / F ≦ 0.05 is necessary for suppressing the growth of granular projections, as described above. That is, SO 4 2- / F
When- exceeds 0.05, the maximum particle size of the granular projections is 50 nm.
Beyond. The reason why the electrolytic treatment is performed intermittently two or more times in such a solution, and at least one anodization is performed in any of the electrolysis except the final electrolysis, and the cathodic treatment is performed in the remaining electrolysis. This is because anodic electrolysis is a process necessary for forming sites that generate preferential precipitation and granular projections in the next cathodic electrolysis,
It goes without saying that performing anodizing at the final stage of electrolysis is meaningless.

【0028】陽極電解処理の通電電気量が0.05〜2
C/dm2 である断続的電解処理を施す理由は、通電電
気量が0.05C/dm2 未満では、粒状突起の形成が
不十分であり占有面積比が5%未満となる。一方、2C
/dm2 を越えると粒状突起の占有面積比が80%を越
えてしまい、色調が劣化する。また、陽極電解処理によ
る金属Crの酸化溶解により電解効率低下が顕著となり
不経済である。
The amount of electricity passed in the anodic electrolytic treatment is 0.05 to 2
Reason for performing intermittent electrolytic treatment is a C / dm 2, the current amount of electricity is less than 0.05 C / dm 2, formed is insufficient filling ratio of the particulate protrusions is less than 5%. On the other hand, 2C
If the ratio exceeds / dm 2 , the occupied area ratio of the granular projections exceeds 80%, and the color tone deteriorates. In addition, oxidative dissolution of metallic Cr by anodic electrolytic treatment significantly reduces the electrolytic efficiency, which is uneconomical.

【0029】なお、本発明において断続的電解処理を施
す理由は、連続電解処理では所望の表面処理鋼板が得ら
れないからである。すなわち、有限の電極長を持つめっ
き設備でめっきする際、通常所望のめっき付着量を得る
には連続電解(1パスで電解することと同義)では電極
長が長くなりすぎ、めっきタンクも巨大化しなくてはな
らないので、複数の電極で分けて電解する。その際、図
5に示すように通電部と無電解部ができてしまうため、
電解は必然的に断続電解となるのである。陽極電解によ
る粒状突起の形成メカニズムは不明な点も多いが、概ね
以下のメカニズムによって形成されると考えられてい
る。すなわち、陰極電解もしくはクロム酸溶液への浸漬
により予め形成された鉄もしくはクロムの表層酸化物層
が陽極電解処理によりミクロレベルで不均一溶解を起こ
し、金属下地の露出あるいは酸化物層の希薄となった箇
所が多数発生し、これが次なる陰極電解において優先析
出し粒状突起を発生させるサイトとなる。陽極電解処理
におけるSO4 2-の作用は、鉄もしくはクロムの表層酸
化物層を不均一溶解する際のエッチング能に関連してお
り、F- よりも強いエッチング能を有していると考えら
れる。すなわち不均一溶解が起こる際、F- が吸着して
いるサイトに比べ、SO4 2-が吸着しているサイトにお
いては、酸化物のエッチング速度が高く、粒状突起の発
生サイトとしては比較的広く領域が確保される結果、陰
極処理において大きい粒状突起が発生する。
The reason why the intermittent electrolytic treatment is performed in the present invention is that a desired surface-treated steel sheet cannot be obtained by the continuous electrolytic treatment. That is, when plating with a plating facility having a finite electrode length, the electrode length becomes too long in continuous electrolysis (synonymous with performing electrolysis in one pass), and the plating tank becomes large in general, in order to obtain a desired plating adhesion amount. Since it is indispensable, electrolysis is performed with a plurality of electrodes. At that time, as shown in FIG. 5, a current-carrying part and an electroless part are formed,
Electrolysis is necessarily intermittent. Although the formation mechanism of the granular protrusions by anodic electrolysis is unknown in many respects, it is generally considered that the protrusions are formed by the following mechanism. In other words, the surface oxide layer of iron or chromium formed in advance by cathodic electrolysis or immersion in a chromic acid solution causes non-uniform dissolution at the micro level by anodic electrolysis, thereby exposing the metal base or diluting the oxide layer. A large number of locations are generated, which become sites that preferentially precipitate in the next cathodic electrolysis and generate granular projections. The action of SO 4 2- in the anodic electrolysis is related to the etching ability when dissolving the surface oxide layer of iron or chromium inhomogeneously, and is considered to have a stronger etching ability than F −. . That is, when heterogeneous dissolution occurs, the etching rate of the oxide is higher at the site where SO 4 2- is adsorbed than at the site where F is adsorbed, and the site where granular projections are generated is relatively wide. As a result of the area being secured, large granular projections are generated in the cathode treatment.

【0030】SO4 2-はF- に比べ吸着能が高いため、
競争吸着により比較的少量の添加であっても大きな粒状
突起の発生を引き起こす。検討の結果SO4 2-/F-
重量比0.05近傍を境に競争吸着でF- が支配的な状
態からSO4 2-が支配的な状態へと遷移すると考えられ
る。
Since adsorption capacity compared with the high, - [0030] SO 4 2-F-
Competitive adsorption causes the generation of large granular projections even with relatively small additions. In competitive adsorption weight ratio of 0.05 near the border of F - - Results SO 4 2- / F studies have considered the SO 4 2-a dominant state transition to the dominant state.

【0031】また、上記の説明から粒径制御がF- とS
4 2-の競争吸着によって、可不可が決定することか
ら、SO4 2-/F- が重量比で0.05以下のクロム酸
溶液であれば、陽極電解を行うのは金属クロムとクロム
水和酸化物を同時に析出させる1液法、主として金属ク
ロム層を形成させた後にクロム水和酸化物を析出させる
2液法の前半及び後半のいずれでも良く、いずれの処理
法に対しても本発明の処理を行うことで効果が得られ
る。以下に本発明の実施例を挙げ本発明の効果を立証す
る。
From the above description, it can be seen that the particle size control is F - and S
By O 4 2-of competitive adsorption, since Yes No is determined, SO 4 2- / F - if 0.05 or less of chromic acid solution at a weight ratio, the anodic electrolysis and metallic chromium chromium The first half and the second half of the one-liquid method for simultaneously depositing hydrated oxides and the two-liquid method for depositing chromium hydrated oxide after forming a metal chromium layer may be used. An effect can be obtained by performing the processing of the invention. Hereinafter, the effects of the present invention will be proved by giving examples of the present invention.

【0032】[0032]

【実施例】(供試材)すべての供試材(本発明例1〜6
及び比較例1〜7)は、低炭素Alキルド鋼で板厚0.
20mmのT4CA材を原板鋼帯として用い、縦型のT
FSラインによって、以下に示すような種々の電解クロ
メート処理条件にて表1に記載の様々な付着量、粒径及
び占有面積比(粒状突起の占有面積の総和/鋼板表面
積)の粒状突起を含む金属クロム層と、様々な付着量の
クロム水和酸化物とを析出させたTFSを製造し、その
後以下に示す条件でフィルムラミネートを行った。
EXAMPLES (Test Materials) All test materials (Examples 1 to 6 of the present invention)
And Comparative Examples 1 to 7) are made of low carbon Al-killed steel and have a thickness of 0.1 mm.
20mm T4CA material is used as the original steel strip, and the vertical T
The FS line includes various projections having various adhesion amounts, particle diameters, and occupied area ratios (total occupied area of granular projections / surface area of steel sheet) shown in Table 1 under various electrolytic chromate treatment conditions as shown below. TFS on which a chromium metal layer and chromium hydrated oxide having various adhesion amounts were deposited was manufactured, and then film lamination was performed under the following conditions.

【0033】(1)電解クロメート処理条件 (本発明例1):1液法 a.めっき浴組成 CrO3 :100g/l、NaF:4g/l、SO4 2-
<0.01g/l(メッキ薬品に由来の不可避的に混入
する濃度,ICP分析より) b.電解処理 1パス目に陽極電解処理(電流密度5A/dm2 ,処理
時間0.08秒)を行い、引き続いて2〜6パスにおい
て陰極電解処理(電流密度50A/dm2 )した。陽極
電解処理の通電電気量は0.4C/dm2 である。 (本発明例2):2液法 a.めっき浴組成 CrO3 :100g/l、NaF:6g/l、SO4 2-
<0.01g/l(メッキ薬品に由来の不可避的に混入
する濃度,ICP分析より) b.化成浴組成 CrO3 :50g/l、NH4 F:2g/l、SO4 2-
<0.01g/l(メッキ薬品に由来の不可避的に混入
する濃度,ICP分析より) c.電解処理 上記めっき浴にて、1パス目の陽極電解処理(電流密度
10A/dm2 ,処理時間0.12秒)に引き続き2〜
5パス目に陰極電解処理(電流密度40A/dm2 )し
た。上記化成浴にて、1〜4パス目に陰極電解処理(電
流密度30A/dm2 )した。陽極電解処理の通電電気
量は1.2C/dm2 である。
(1) Electrolytic chromate treatment conditions (Example 1 of the present invention): one-component method a. Plating bath composition CrO 3 : 100 g / l, NaF: 4 g / l, SO 4 2-
<0.01 g / l (concentration unavoidably mixed due to plating chemicals, from ICP analysis) b. Electrolytic treatment In the first pass, anodic electrolytic treatment (current density 5 A / dm 2 , treatment time 0.08 seconds) was performed, and subsequently, cathodic electrolytic treatment (current density 50 A / dm 2 ) in 2 to 6 passes. The amount of electricity passed in the anodic electrolysis is 0.4 C / dm 2 . (Invention Example 2): Two-liquid method a. Plating bath composition CrO 3 : 100 g / l, NaF: 6 g / l, SO 4 2-
<0.01 g / l (concentration unavoidably mixed due to plating chemicals, from ICP analysis) b. Chemical bath composition CrO 3 : 50 g / l, NH 4 F: 2 g / l, SO 4 2-
<0.01 g / l (concentration unavoidably mixed due to plating chemicals, from ICP analysis) c. Electrolytic treatment In the above plating bath, after the first pass anodic electrolytic treatment (current density 10 A / dm 2 , treatment time 0.12 seconds),
On the fifth pass, a cathodic electrolytic treatment (current density 40 A / dm 2 ) was performed. In the above chemical conversion bath, cathodic electrolysis (current density: 30 A / dm 2 ) was performed in the first to fourth passes. The amount of electricity passed in the anodic electrolytic treatment is 1.2 C / dm 2 .

【0034】(本発明例3):2液法 a.めっき浴組成 CrO3 :100g/l、NaF:6g/l、SO4 2-
<0.01g/l(メッキ薬品に由来の不可避的に混入
する濃度,ICP分析より) b.化成浴組成 CrO3 :50g/l、NH4 F:2g/l、SO4 2-
<0.01g/l(メッキ薬品に由来の不可避的に混入
する濃度,ICP分析より) c.電解処理 上記めっき浴にて、1パス目の陰極電解処理(電流密度
40A/dm2 )に引き続き2パス目に陽極電解処理
(電流密度2A/dm2 ,処理時間0.3秒)を行い、
引き続き3〜5パス目に陰極電解処理(電流密度40A
/dm2 )を行った。上記化成浴にて、1〜4パス目に
陰極電解処理(電流密度30A/dm2 )を行った。陽
極電解処理の通電電気量は0.6C/dm2 である。
(Example 3 of the present invention): Two-liquid method a. Plating bath composition CrO 3 : 100 g / l, NaF: 6 g / l, SO 4 2-
<0.01 g / l (concentration unavoidably mixed due to plating chemicals, from ICP analysis) b. Chemical bath composition CrO 3 : 50 g / l, NH 4 F: 2 g / l, SO 4 2-
<0.01 g / l (concentration unavoidably mixed due to plating chemicals, from ICP analysis) c. Electrolytic treatment In the above plating bath, anodic electrolytic treatment (current density 2 A / dm 2 , treatment time 0.3 seconds) is performed in the second pass following cathodic electrolytic treatment (current density 40 A / dm 2 ) in the first pass.
Then, in the third to fifth passes, the cathodic electrolytic treatment (current density 40 A)
/ Dm 2 ). In the above-mentioned chemical conversion bath, the cathodic electrolytic treatment (current density 30 A / dm 2 ) was performed in the first to fourth passes. The amount of electricity passed in the anodic electrolysis is 0.6 C / dm 2 .

【0035】(本発明例4):2液法 a.めっき浴組成 CrO3 :175g/l、Na2 SiF6 :5g/l、
SO4 2-:0.6g/l。
(Example 4 of the present invention): Two-liquid method a. Plating bath composition CrO 3 : 175 g / l, Na 2 SiF 6 : 5 g / l,
SO 4 2- : 0.6 g / l.

【0036】b.化成浴組成 CrO3 :50g/l、NH4 F:2g/l、SO4 2-
<0.01g/l(メッキ薬品に由来の不可避的に混入
する濃度,ICP分析より)。
B. Chemical bath composition CrO 3 : 50 g / l, NH 4 F: 2 g / l, SO 4 2-
<0.01 g / l (concentration unavoidably mixed due to plating chemicals, from ICP analysis).

【0037】c.電解処理 上記めっき浴にて、1〜4パス目に陰極電解処理(電流
密度40A/dm2 )を行った。上記化成浴にて、1パ
ス目に陽極電解処理(電流密度2A/dm2 ,処理時間
0.3秒)を行い、引き続き2〜5パス目に陰極電解処
理(電流密度30A/dm2 )を行った。陽極電解処理
の通電電気量は0.6C/dm2 である。
C. Electrolytic treatment In the above plating bath, cathodic electrolytic treatment (current density 40 A / dm 2 ) was performed in the first to fourth passes. In the chemical conversion bath, anodic electrolysis (current density 2 A / dm 2 , processing time 0.3 seconds) is performed in the first pass, and then cathodic electrolysis (current density 30 A / dm 2 ) is performed in the second to fifth passes. went. The amount of electricity passed in the anodic electrolysis is 0.6 C / dm 2 .

【0038】(本発明例5):2液法 a.めっき浴組成 CrO3 :100g/l、NaF:6g/l、SO
4 2-:0.13g/l。
(Example 5 of the present invention): Two-liquid method a. Plating bath composition CrO 3 : 100 g / l, NaF: 6 g / l, SO
4 2- : 0.13 g / l.

【0039】b.化成浴組成 CrO3 :50g/l、NH4 F:2g/l、SO4 2-
<0.01g/l(メッキ薬品に由来の不可避的に混入
する濃度,ICP分析より)。
B. Chemical bath composition CrO 3 : 50 g / l, NH 4 F: 2 g / l, SO 4 2-
<0.01 g / l (concentration unavoidably mixed due to plating chemicals, from ICP analysis).

【0040】c.電解処理 上記めっき浴にて、1パス目に陽極電解処理(電流密度
10A/dm2 ,処理時間0.12秒)を行い、引き続
き2〜5パス目に陰極電解処理(電流密度40A/dm
2 )を行った。上記化成浴にて、1〜4パス目に陰極電
解処理(電流密度30A/dm2 )を行った。陽極電解
処理の通電電気量は1.2C/dm2 である。
C. Electrolytic treatment In the above plating bath, anodic electrolytic treatment (current density 10 A / dm 2 , treatment time 0.12 seconds) is performed in the first pass, and then cathodic electrolytic treatment (current density 40 A / dm) is performed in the second to fifth passes.
2 ) did. In the above-mentioned chemical conversion bath, the cathodic electrolytic treatment (current density 30 A / dm 2 ) was performed in the first to fourth passes. The amount of electricity passed in the anodic electrolytic treatment is 1.2 C / dm 2 .

【0041】(本発明例6):2液法 a.めっき浴組成 CrO3 :100g/l、NaF:6g/l、SO4 2-
<0.01g/l(メッキ薬品に由来の不可避的に混入
する濃度,ICP分析より)。
(Invention Example 6): Two-liquid method a. Plating bath composition CrO 3 : 100 g / l, NaF: 6 g / l, SO 4 2-
<0.01 g / l (concentration unavoidably mixed due to plating chemicals, from ICP analysis).

【0042】b.化成浴組成 CrO3 :50g/l、NH4 F:2g/l、SO4 2-
<0.01g/l(メッキ薬品に由来の不可避的に混入
する濃度,ICP分析より)。
B. Chemical bath composition CrO 3 : 50 g / l, NH 4 F: 2 g / l, SO 4 2-
<0.01 g / l (concentration unavoidably mixed due to plating chemicals, from ICP analysis).

【0043】c.電解処理 上記めっき浴にて、1パス目の陰極電解処理(電流密度
40A/dm2 )に引き続き2,3パス目に陽極電解処
理(電流密度1A/dm2 ,処理時間0.3秒)を行
い、引き続き4パス目に陰極電解処理(電流密度40A
/dm2 )を行った。上記化成浴にて、1〜3パス目に
陰極電解処理(電流密度20A/dm2 )を行った。陽
極電解処理の通電電気量は0.6C/dm2 である。 (比較例1):2液法 a.めっき浴組成 CrO3 :100g/l、NaF:6g/l、SO
4 2-:0.65g/l。 b.化成浴組成 CrO3 :50g/l、NH4 F:2g/l、SO4 2-
<0.01g/l(メッキ薬品に由来の不可避的に混入
する濃度,ICP分析より)。
C. Electrolytic treatment In the above plating bath, anodic electrolytic treatment (current density 1 A / dm 2 , treatment time 0.3 seconds) is performed in the second and third passes following the first pass cathodic electrolytic treatment (current density 40 A / dm 2 ). Then, in the fourth pass, the cathodic electrolytic treatment (current density 40 A
/ Dm 2 ). In the above chemical conversion bath, cathodic electrolysis (current density: 20 A / dm 2 ) was performed in the first to third passes. The amount of electricity passed in the anodic electrolysis is 0.6 C / dm 2 . (Comparative Example 1): Two-liquid method a. Plating bath composition CrO 3 : 100 g / l, NaF: 6 g / l, SO
4 2-: 0.65g / l. b. Chemical bath composition CrO 3 : 50 g / l, NH 4 F: 2 g / l, SO 4 2-
<0.01 g / l (concentration unavoidably mixed due to plating chemicals, from ICP analysis).

【0044】c.電解処理 上記めっき浴にて、1パス目に陽極電解処理(電流密度
10A/dm2 ,処理時間0.12秒)を行い、引き続
き2〜5パス目に陰極電解処理(電流密度40A/dm
2 )を行った。上記化成浴にて、1〜4パス目に陰極電
解処理(電流密度30A/dm2 )を行った。陽極電解
処理の通電電気量は1.2C/dm2 である。 (比較例2):2液法 a.めっき浴組成 CrO3 :100g/l、NaF:6g/l、SO4 2-
<0.01g/l(メッキ薬品に由来の不可避的に混入
する濃度,ICP分析より)。
C. Electrolytic treatment In the above plating bath, anodic electrolytic treatment (current density 10 A / dm 2 , treatment time 0.12 seconds) is performed in the first pass, and then cathodic electrolytic treatment (current density 40 A / dm) is performed in the second to fifth passes.
2 ) did. In the above-mentioned chemical conversion bath, the cathodic electrolytic treatment (current density 30 A / dm 2 ) was performed in the first to fourth passes. The amount of electricity passed in the anodic electrolytic treatment is 1.2 C / dm 2 . (Comparative Example 2): Two-liquid method a. Plating bath composition CrO 3 : 100 g / l, NaF: 6 g / l, SO 4 2-
<0.01 g / l (concentration unavoidably mixed due to plating chemicals, from ICP analysis).

【0045】b.化成浴組成 CrO3 :35g/l、NH4 F:1.2g/l、SO
4 2-<0.01g/l(メッキ薬品に由来の不可避的に
混入する濃度,ICP分析より)。
B. Chemical bath composition CrO 3 : 35 g / l, NH 4 F: 1.2 g / l, SO
4 2- <0.01 g / l (concentration of inevitable contamination from plating chemicals, from ICP analysis).

【0046】c.電解処理 上記めっき浴にて、1〜3パス目に陰極電解処理(電流
密度60A/dm2 )を行った。上記化成浴にて、1〜
4パス目に陰極電解処理(電流密度30A/dm2 )を
行った。
C. Electrolytic treatment In the above plating bath, cathodic electrolytic treatment (current density: 60 A / dm 2 ) was performed in the first to third passes. In the above chemical bath,
In the fourth pass, a cathodic electrolytic treatment (current density 30 A / dm 2 ) was performed.

【0047】(比較例3):2液法 a.めっき浴組成 CrO3 :100g/l、NaF:6g/l、SO4 2-
<0.01g/l(メッキ薬品に由来の不可避的に混入
する濃度,ICP分析より)。
(Comparative Example 3): Two-liquid method a. Plating bath composition CrO 3 : 100 g / l, NaF: 6 g / l, SO 4 2-
<0.01 g / l (concentration unavoidably mixed due to plating chemicals, from ICP analysis).

【0048】b.化成浴組成 CrO3 :50g/l、NH4 F:2g/l、SO4 2-
<0.01g/l(メッキ薬品に由来の不可避的に混入
する濃度,ICP分析より)。
B. Chemical bath composition CrO 3 : 50 g / l, NH 4 F: 2 g / l, SO 4 2-
<0.01 g / l (concentration unavoidably mixed due to plating chemicals, from ICP analysis).

【0049】c.電解処理 上記めっき浴にて、1パス目に陽極電解処理(電流密度
10A/dm2 ,処理時間0.12秒)を行い、引き続
き2パス目に陰極電解処理(電流密度30A/dm2
を行った。上記化成浴にて、1〜3パス目に陰極電解処
理(電流密度30A/dm2 )を行った。陽極電解処理
の通電電気量は1.2C/dm2 である。 (比較例
4):1液法 a.めっき浴組成 CrO3 :100g/l、NaF:8g/l、SO4 2-
<0.01g/l(メッキ薬品に由来の不可避的に混入
する濃度,ICP分析より)。
C. Electrolytic treatment In the above plating bath, anodic electrolytic treatment (current density 10 A / dm 2 , treatment time 0.12 seconds) is performed in the first pass, and then cathodic electrolytic treatment (current density 30 A / dm 2 ) in the second pass.
Was done. In the above chemical conversion bath, cathodic electrolysis (current density: 30 A / dm 2 ) was performed in the first to third passes. The amount of electricity passed in the anodic electrolytic treatment is 1.2 C / dm 2 . (Comparative Example 4): One-part method a. Plating bath composition CrO 3 : 100 g / l, NaF: 8 g / l, SO 4 2-
<0.01 g / l (concentration unavoidably mixed due to plating chemicals, from ICP analysis).

【0050】b.電解処理 上記めっき浴にて、1パス目に陽極電解(電流密度10
A/dm2 ,処理時間0.1秒)を行い、引き続き2〜
6パス目に陰極電解処理(電流密度50A/dm2 )を
行った。陽極電解処理の通電電気量は1C/dm2 であ
る。
B. Electrolytic treatment In the above plating bath, anodic electrolysis (current density 10
A / dm 2 , processing time 0.1 second)
At the sixth pass, a cathodic electrolytic treatment (current density: 50 A / dm 2 ) was performed. The amount of electricity passed in the anodic electrolysis is 1 C / dm 2 .

【0051】(比較例5):2液法 a.めっき浴組成 CrO3 :100g/l、NaF:6g/l、SO4 2-
<0.01g/l(メッキ薬品に由来の不可避的に混入
する濃度,ICP分析より)。
(Comparative Example 5): Two-liquid method a. Plating bath composition CrO 3 : 100 g / l, NaF: 6 g / l, SO 4 2-
<0.01 g / l (concentration unavoidably mixed due to plating chemicals, from ICP analysis).

【0052】b.化成浴組成 CrO3 :50g/l、NH4 F:1g/l、SO4 2-
<0.01g/l(メッキ薬品に由来の不可避的に混入
する濃度,ICP分析より)。
B. Chemical bath composition CrO 3 : 50 g / l, NH 4 F: 1 g / l, SO 4 2-
<0.01 g / l (concentration unavoidably mixed due to plating chemicals, from ICP analysis).

【0053】c.電解処理 上記めっき浴にて、1パス目に陽極電解処理(電流密度
10A/dm2 ,処理時間0.1秒)を行い、引き続き
2〜5パス目に陰極電解処理(電流密度40A/dm
2 )を行った。上記化成浴にて、1〜5パス目に陰極電
解処理(電流密度30A/dm2 )を行った。陽極電解
処理の通電電気量は1C/dm2 である。
C. Electrolytic treatment In the above plating bath, anodic electrolytic treatment (current density 10 A / dm 2 , treatment time 0.1 second) is performed in the first pass, and then cathodic electrolytic treatment (current density 40 A / dm) in the second to fifth passes.
2 ) did. In the above chemical conversion bath, cathodic electrolytic treatment (current density 30 A / dm 2 ) was performed in the first to fifth passes. The amount of electricity passed in the anodic electrolysis is 1 C / dm 2 .

【0054】(比較例6):2液法 a.めっき浴組成 CrO3 :100g/l、NaF:6g/l、SO4 2-
<0.01g/l(メッキ薬品に由来の不可避的に混入
する濃度,ICP分析より)。
(Comparative Example 6): Two-liquid method a. Plating bath composition CrO 3 : 100 g / l, NaF: 6 g / l, SO 4 2-
<0.01 g / l (concentration unavoidably mixed due to plating chemicals, from ICP analysis).

【0055】b.化成浴組成 CrO3 :50g/l、NH4 F:2g/l、SO4 2-
<0.01g/l(メッキ薬品に由来の不可避的に混入
する濃度,ICP分析より)。
B. Chemical bath composition CrO 3 : 50 g / l, NH 4 F: 2 g / l, SO 4 2-
<0.01 g / l (concentration unavoidably mixed due to plating chemicals, from ICP analysis).

【0056】c.電解処理 上記めっき浴にて、1パス目の陰極電解処理(電流密度
40A/dm2 )に引き続き、2パス目に陽極電解処理
(電流密度2A/dm2 ,処理時間0.6秒)を行い、
3パス目に陰極電解処理(電流密度40A/dm2 )を
行い、4パス目に陽極電解処理(電流密度2A/dm
2 ,処理時間0.6秒)を行い、5,6パス目に陰極電
解処理(電流密度40A/dm2 )を行った。上記化成
浴にて、1〜4パス目に陰極電解処理(電流密度30A
/dm2 )を行った。陽極電解処理の通電電気量は2.
4C/dm2 である。
C. Electrolytic treatment In the above plating bath, anodic electrolytic treatment (current density 2 A / dm 2 , treatment time 0.6 seconds) is performed in the second pass, following the first pass cathodic electrolytic treatment (current density 40 A / dm 2 ). ,
Cathode electrolysis (current density 40 A / dm 2 ) is performed in the third pass, and anodic electrolysis (current density 2 A / dm 2 ) is performed in the fourth pass.
2 , a processing time of 0.6 seconds), and a cathodic electrolytic treatment (current density 40 A / dm 2 ) was performed on the fifth and sixth passes. In the above-mentioned chemical conversion bath, cathodic electrolytic treatment (current density 30A) in the first to fourth passes
/ Dm 2 ). The amount of electricity passed in the anodic electrolysis is 2.
4 C / dm 2 .

【0057】(比較例7):2液法 a.めっき浴組成 CrO3 :100g/l、NaF:6g/l、SO4 2-
<0.01g/l(メッキ薬品に由来の不可避的に混入
する濃度,ICP分析より)。
(Comparative Example 7): Two-liquid method a. Plating bath composition CrO 3 : 100 g / l, NaF: 6 g / l, SO 4 2-
<0.01 g / l (concentration unavoidably mixed due to plating chemicals, from ICP analysis).

【0058】b.化成浴組成 CrO3 :50g/l、NH4 F:2g/l、SO4 2-
<0.01g/l(メッキ薬品に由来の不可避的に混入
する濃度,ICP分析より)。
B. Chemical bath composition CrO 3 : 50 g / l, NH 4 F: 2 g / l, SO 4 2-
<0.01 g / l (concentration unavoidably mixed due to plating chemicals, from ICP analysis).

【0059】c.電解処理 上記めっき浴にて、1パス目の陽極電解処理(電流密度
0.2A/dm2 ,処理時間0.1秒)に引き続き、2
〜5パス目に陰極電解処理(電流密度40A/dm2
を行った。上記化成浴にて、1〜4パス目に陰極電解処
理(電流密度30A/dm2 )を行った。陽極電解処理
の通電電気量は0.02C/dm2 である。
C. Electrolytic treatment In the above plating bath, following the first pass anodic electrolytic treatment (current density 0.2 A / dm 2 , treatment time 0.1 second),
Cathode electrolytic treatment on the 5th to 5th pass (current density 40A / dm 2 )
Was done. In the above-mentioned chemical conversion bath, the cathodic electrolytic treatment (current density 30 A / dm 2 ) was performed in the first to fourth passes. The amount of electricity passed in the anodic electrolysis is 0.02 C / dm 2 .

【0060】(2)フィルムラミネート条件 フィルムラミネートは、鋼板の一方の面に透明フィルム
を、もう一方の面に白色フィルムを用い、以下に示した
単一条件で行った。
(2) Film Lamination Conditions The film lamination was performed under the following single conditions using a transparent film on one side of the steel sheet and a white film on the other side.

【0061】a.透明フィルム面 フィルム材質:透明二軸配向ポリエステルフィルム(ポ
リエチレングリコールとテレフタル酸/イソフタル酸の
共重合体)、フィルム厚さ:25μm、フィルムの融
点:229℃、ラミネート直前鋼板温度:230℃、ラ
ミネート後残存二軸配向度:17〜19%。
A. Transparent film surface Film material: Transparent biaxially oriented polyester film (copolymer of polyethylene glycol and terephthalic acid / isophthalic acid), film thickness: 25 μm, film melting point: 229 ° C, steel sheet temperature immediately before lamination: 230 ° C, after lamination Remaining biaxial orientation degree: 17 to 19%.

【0062】b.白色フィルム面 フィルム材質:白色二軸配向ポリエステルフィルム(ポ
リエチレングリコールとテレフタル酸/イソフタル酸の
共重合体に平均粒径0.3μm酸化チタンを12重量%
添加したもの)、フィルム厚さ:10μm、フィルムの
融点:229℃、ラミネート直前鋼板温度:230℃、
ラミネート後残存二軸配向度:20〜24%。
B. White film surface Film material: White biaxially oriented polyester film (polyethylene glycol and terephthalic acid / isophthalic acid copolymer, average particle size 0.3 μm titanium oxide 12% by weight
Added), film thickness: 10 μm, melting point of the film: 229 ° C., steel sheet temperature immediately before lamination: 230 ° C.,
Remaining biaxial orientation degree after lamination: 20 to 24%.

【0063】上記の透明フィルム面,白色フィルム面と
もにラミネート速度は40m/分で行った。 (加工密着性評価)ラミネート鋼板より、ブランク径が
80mmの円板を打ち抜き、絞り加工を行った後にレト
ルト処理を行い、深絞りカップの内面のフィルムの剥離
程度をルーペで観察し、剥離無しを5、全面剥離を1と
し、5段階で評価した。なお、絞り加工及びその後のレ
トルト条件の組み合わせで以下に示す条件1〜2の2段
階の試験条件を設け、より過酷な加工度及びレトルト条
件下での密着性を調べた。
The laminating speed was 40 m / min for both the transparent film surface and the white film surface. (Evaluation of processing adhesion) A disc having a blank diameter of 80 mm was punched out of a laminated steel sheet, subjected to redrawing, and then subjected to retort treatment. 5. The total peeling was set to 1, and the evaluation was made in five steps. In addition, two-stage test conditions of the following conditions 1 and 2 were provided by a combination of the drawing process and the subsequent retort conditions, and a more severe workability and adhesion under retort conditions were examined.

【0064】a.加工密着性試験条件(絞り加工及びレ
トルト条件) 条件1:絞り加工比=1.6,レトルト条件=110℃
×30分、条件2:絞り加工比=2.0,レトルト条件
=125℃×30分。
A. Processing adhesion test conditions (drawing and retort conditions) Condition 1: drawing ratio = 1.6, retort conditions = 110 ° C
× 30 minutes, condition 2: drawing ratio = 2.0, retort condition = 125 ° C. × 30 minutes.

【0065】より加工度の厳しい条件2において評点4
以上のものを加工密着性良好と判定した。 (色調)ラミネート鋼板の白色フィルム面の明度をJI
S Z 8729において規定される10度視野の明度
指数L* 値に基づき5段階で評価した(評点が高いほど
良好)。
A score of 4 was obtained under the condition 2 with a higher degree of processing.
The above was judged to be good in processing adhesion. (Color) JI to measure the brightness of the white film surface of the laminated steel sheet
The evaluation was made in five steps based on the brightness index L * value of a 10-degree visual field defined in SZ8729 (the higher the score, the better).

【0066】評点5:L* ≧83、評点4:83>L*
≧77、評点3:77>L* ≧70、評点2:70>L
* ≧60、評点1:60>L* 。 また、K値を用いて色相の評価を行う際、白色フィルム
ラミネート面では色相の違いを数値化するのが困難であ
り、透明フィルムラミネート面での色相で比較する方が
優劣を付けやすい。ラミネート後のTFSのK値を指標
に色相の優劣を5段階で評価した(評点が高いほど良
好)。
Rating 5: L * ≧ 83, Rating 4:83> L *
≧ 77, rating 3: 77> L * ≧ 70, rating 2: 70> L
* ≧ 60, rating 1:60> L * . Further, when evaluating the hue using the K value, it is difficult to quantify the difference in hue on the white film laminated surface, and it is easier to compare the hue on the transparent film laminated surface. Hue quality was evaluated on a scale of 5 using the K value of TFS after lamination as an index (the higher the grade, the better).

【0067】評点5:−20≧K、評点4:−15≧K
>−20、評点3:−10≧K>−15、評点2:−5
≧K>−10、評点1:K>−5 上記加工密着性及び色調の評価結果も併せて表1に記載
する。
Rating 5: -20 ≧ K, Rating 4: -15 ≧ K
> -20, score 3: -10 ≧ K> -15, score 2: -5
≧ K> −10, rating 1: K> −5 Table 1 also shows the evaluation results of the processing adhesion and the color tone.

【0068】表1より、本発明の製造条件によって製造
された本発明例1〜6は、金属クロム及びクロム水和酸
化物付着量、金属クロムの粒状突起の粒径及び占有面積
比(粒状突起の占有面積の総和/鋼板表面積)が本発明
の範囲内であるラミネート鋼板であり、低加工度(条件
1)、高加工度(条件2)のいずれの加工条件に対して
もフィルムの剥離に対しては良好な水準にあり、かつ色
調にも問題を生じていない結果が得られている。
From Table 1, it can be seen that Examples 1 to 6 of the present invention, which were produced under the production conditions of the present invention, showed that the deposition amount of metal chromium and chromium hydrated oxide, the particle size of the metal chromium granular protrusion, and the occupied area ratio (granular protrusion Is the laminated steel sheet whose total area occupied by the steel sheet / surface area of the steel sheet is within the range of the present invention, and is capable of peeling the film under any of the low working degree (condition 1) and the high working degree (condition 2). On the other hand, the results are at a satisfactory level and no problem is caused in the color tone.

【0069】一方、比較例1は電解処理溶液中のSO4
2-濃度が本発明の範囲を逸脱しており、ラミネートフィ
ルム加工密着性には優れるものの粒状突起の粒径が本発
明の範囲を越えて大きいため、色調の劣化が見られる。
比較例2は粒状突起を持たない平板状の金属クロムに、
本発明における付着量上限のクロム水和酸化物を付着さ
せたラミネート鋼板である。色調は問題ないが、フィル
ム加工密着性に関しては高加工度の条件2において剥離
を起こし、不十分である。比較例3はめっき浴中での陰
極電解処理のパス数が少ないため、金属クロムの付着量
が不足しており、加工密着性が劣っている。比較例4は
電解処理溶液中のF- 濃度が高いため、電解中のクロム
水和酸化物の溶解が顕著となりクロム水和酸化物の付着
量が不足し、加工密着性が劣っている。比較例5は粒
径、占有面積比は本発明の範囲内であるが、化成浴中で
の陰極電解処理のパス数が多いため、クロム水和酸化物
の付着量が多すぎ、加工密着性は良好であるが色調が悪
い。比較例6は陽極電解処理の通電電気量が本発明の範
囲を越えているため粒状突起の占有面積比が大きくな
り、色調が優れない。比較例7は逆に陽極電解処理の通
電電気量が本発明の範囲を下回っているため粒状突起の
占有面積比が小さくなり、加工密着性の向上に乏しい。
On the other hand, in Comparative Example 1, SO 4 in the electrolytic treatment solution was used.
2- The concentration is out of the range of the present invention, and although the adhesion to the processing of the laminate film is excellent, the grain size of the granular projections is larger than the range of the present invention, so that the color tone is deteriorated.
Comparative Example 2 is a flat metal chromium having no granular protrusions.
It is a laminated steel sheet to which a chromium hydrate oxide having an upper limit of the amount of adhesion in the present invention is adhered. Although there is no problem with the color tone, the film processing adhesion is insufficient under the condition 2 of high processing degree because of peeling. In Comparative Example 3, since the number of passes of the cathodic electrolysis treatment in the plating bath was small, the amount of deposited metal chromium was insufficient, and the processing adhesion was poor. Comparative Example 4 is F the electrolysis solution - for high density, the adhesion amount of dissolved chromium hydrous oxide becomes conspicuous of hydrated chromium oxide in the electrolyte is insufficient, it has poor processability adhesion. In Comparative Example 5, the particle diameter and the occupied area ratio were within the range of the present invention. However, since the number of passes of the cathodic electrolysis treatment in the chemical conversion bath was large, the adhesion amount of hydrated chromium oxide was too large, Is good but has poor color tone. In Comparative Example 6, since the amount of electricity supplied in the anodic electrolysis exceeds the range of the present invention, the occupied area ratio of the granular projections is large, and the color tone is not excellent. On the contrary, in Comparative Example 7, since the amount of electricity passed in the anodic electrolysis treatment was below the range of the present invention, the occupied area ratio of the granular projections was small, and the improvement in working adhesion was poor.

【0070】以上のように本発明の製造条件に従い、金
属クロム及び水和酸化物の付着量を本発明の範囲内に限
定し、所定の金属クロムの粒状突起の粒径及び占有面積
比の範囲内におさめることにより、フィルム加工密着性
及び色調ともに優れた電解クロメート処理鋼板を製造で
きることが確認された。
As described above, according to the production conditions of the present invention, the adhesion amount of metallic chromium and hydrated oxide is limited within the scope of the present invention, and the range of the particle diameter and the occupied area ratio of the predetermined metallic chromium granular projections is limited. It has been confirmed that by setting the inside, it is possible to manufacture an electrolytic chromate-treated steel sheet having excellent film processing adhesion and color tone.

【0071】[0071]

【表1】 [Table 1]

【0072】[0072]

【発明の効果】以上説明したように、本発明によれば電
解クロメート処理鋼板の皮膜及び電解処理条件を特定す
ることにより、フィルム密着性及び色調ともに優れる電
解クロメート処理鋼板の製造方法を提供できる。
As described above, according to the present invention, it is possible to provide a method for producing an electrolytic chromate-treated steel sheet having excellent film adhesion and color tone by specifying the film and electrolytic treatment conditions of the electrolytic chromate-treated steel sheet.

【0073】本発明の製造方法を用いることにより、薄
肉化加工2ピース缶の加工度の増大に対応でき、また、
密着性の向上に従い、レトルト処理を要する内容物に適
応可能となるため、その経済的価値は極めて高い。
By using the manufacturing method of the present invention, it is possible to cope with an increase in the working ratio of a thinned two-piece can.
The economic value is extremely high because it can be adapted to contents that require retort processing as the adhesion is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】透明フィルムラミネート鋼板の分光反射曲線に
及ぼす金属クロム粒状突起の影響を示す図。
FIG. 1 is a view showing the influence of metallic chromium granular projections on the spectral reflection curve of a transparent film-laminated steel sheet.

【図2】金属クロム付着量と粒状突起の粒径の関係を示
す図。
FIG. 2 is a graph showing the relationship between the amount of deposited chromium metal and the particle size of granular projections.

【図3】金属クロム粒状突起の粒径変化に及ぼすSO4
2-/F- の影響を示す顕微鏡写真。
FIG. 3 shows the effect of SO 4 on the particle size change of metallic chromium granular protrusions.
2-/ F - micrographs showing the effect of.

【図4】本発明の実施の形態に係る視野面積と粒占有面
積率の関係を示す図。
FIG. 4 is a diagram showing a relationship between a visual field area and a grain occupation area ratio according to the embodiment of the present invention.

【図5】本発明の実施の形態に係る断続的電解処理めっ
き設備の概要を示す図。
FIG. 5 is a diagram showing an outline of an intermittent electrolytic treatment plating facility according to an embodiment of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 鋼板の表面に、付着量:70〜200m
g/m2 の金属クロム層と、その上層に金属クロム換算
で付着量:7〜25mg/m2 のクロム水和酸化物層と
を形成してなる電解クロメート処理鋼板において、 前記金属クロム層に、最大粒径50nm以下の粒状突起
が形成されており、かつ該粒状突起の占有面積の総和が
鋼板表面積の5〜80%であることを特徴とする、フィ
ルム密着性及び色調に優れた電解クロメート処理鋼板。
1. The amount of adhesion on the surface of a steel sheet: 70 to 200 m
g / m 2 of a metal chromium layer, and an upper layer of the chromium hydrated oxide layer having a coating weight of 7 to 25 mg / m 2 in terms of metal chromium. Characterized in that granular projections having a maximum particle diameter of 50 nm or less are formed and the total area occupied by the granular projections is 5 to 80% of the surface area of the steel sheet, and is excellent in film adhesion and color tone. Treated steel sheet.
【請求項2】 請求項1に記載の電解クロメート処理鋼
板を製造する方法において、 6価クロムを含む化合物を主剤とし、F- と、重量比で
SO4 2-/F- ≦0.05を満たす量のSO4 2-とを含
有する水溶液中で、鋼板に対して1パス以上の陽極電解
処理と1パス以上の陰極電解処理を施す工程を備え、 鋼板に対して施す最終パスが前記陰極電解処理であり、
かつ前記陽極電解処理の通電電気量が0.05〜2C/
dm2 である断続的電解処理を施すことを特徴とする、
フィルム密着性及び色調に優れた電解クロメート処理鋼
板の製造方法。
2. The method for producing an electrolytic chromate-treated steel sheet according to claim 1, wherein a compound containing hexavalent chromium is used as a main component, and F and SO 4 2− / F ≦ 0.05 in weight ratio. A step of subjecting the steel sheet to one or more passes of anodic electrolysis and one or more passes of cathodic electrolysis in an aqueous solution containing a satisfying amount of SO 4 2- ; Electrolytic treatment,
And the amount of electricity passed in the anodic electrolysis treatment is 0.05 to 2 C /
dm 2 intermittent electrolytic treatment,
A method for producing an electrolytic chromate treated steel sheet having excellent film adhesion and color tone.
JP35524097A 1997-12-24 1997-12-24 Electrolytic chromate treated steel sheet excellent in film adhesion and color tone and method for producing the same Expired - Fee Related JP3518301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35524097A JP3518301B2 (en) 1997-12-24 1997-12-24 Electrolytic chromate treated steel sheet excellent in film adhesion and color tone and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35524097A JP3518301B2 (en) 1997-12-24 1997-12-24 Electrolytic chromate treated steel sheet excellent in film adhesion and color tone and method for producing the same

Publications (2)

Publication Number Publication Date
JPH11189898A true JPH11189898A (en) 1999-07-13
JP3518301B2 JP3518301B2 (en) 2004-04-12

Family

ID=18442786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35524097A Expired - Fee Related JP3518301B2 (en) 1997-12-24 1997-12-24 Electrolytic chromate treated steel sheet excellent in film adhesion and color tone and method for producing the same

Country Status (1)

Country Link
JP (1) JP3518301B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017098991A1 (en) * 2015-12-11 2017-12-14 Jfeスチール株式会社 Steel plate for can and manufacturing method thereof
JPWO2017098994A1 (en) * 2015-12-11 2017-12-21 Jfeスチール株式会社 Steel plate for can and manufacturing method thereof
WO2018225739A1 (en) * 2017-06-09 2018-12-13 Jfeスチール株式会社 Steel sheet for cans, and production method therefor
WO2018225726A1 (en) * 2017-06-09 2018-12-13 Jfeスチール株式会社 Steel sheet for cans, and production method therefor

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10753005B2 (en) 2015-12-11 2020-08-25 Jfe Steel Corporation Steel sheet for cans and production method for steel sheet for cans
JPWO2017098994A1 (en) * 2015-12-11 2017-12-21 Jfeスチール株式会社 Steel plate for can and manufacturing method thereof
CN108368615A (en) * 2015-12-11 2018-08-03 杰富意钢铁株式会社 Steel plate for tanks and its manufacturing method
CN108368616A (en) * 2015-12-11 2018-08-03 杰富意钢铁株式会社 Steel plate for tanks and its manufacturing method
EP3388549A4 (en) * 2015-12-11 2018-10-31 JFE Steel Corporation Steel sheet for cans and production method for steel sheet for cans
JPWO2017098991A1 (en) * 2015-12-11 2017-12-14 Jfeスチール株式会社 Steel plate for can and manufacturing method thereof
US10914016B2 (en) 2015-12-11 2021-02-09 Jfe Steel Corporation Steel sheet for cans and production method for steel sheet for cans
WO2018225739A1 (en) * 2017-06-09 2018-12-13 Jfeスチール株式会社 Steel sheet for cans, and production method therefor
JPWO2018225726A1 (en) * 2017-06-09 2019-06-27 Jfeスチール株式会社 Steel sheet for cans and method for manufacturing the same
TWI676692B (en) * 2017-06-09 2019-11-11 日商Jfe鋼鐵股份有限公司 Steel sheet for cans and method of manufacturing the same
KR20190141247A (en) * 2017-06-09 2019-12-23 제이에프이 스틸 가부시키가이샤 Steel plate for cans and manufacturing method thereof
KR20190141246A (en) * 2017-06-09 2019-12-23 제이에프이 스틸 가부시키가이샤 Steel plate for cans and manufacturing method thereof
CN110709537A (en) * 2017-06-09 2020-01-17 杰富意钢铁株式会社 Steel sheet for can and method for producing same
CN110741110A (en) * 2017-06-09 2020-01-31 杰富意钢铁株式会社 Steel sheet for can and method for producing same
JPWO2018225739A1 (en) * 2017-06-09 2019-06-27 Jfeスチール株式会社 Steel sheet for cans and method for manufacturing the same
WO2018225726A1 (en) * 2017-06-09 2018-12-13 Jfeスチール株式会社 Steel sheet for cans, and production method therefor
US10968528B2 (en) 2017-06-09 2021-04-06 Jfe Steel Corporation Steel sheet for cans, and production method therefor
CN110709537B (en) * 2017-06-09 2021-08-06 杰富意钢铁株式会社 Steel sheet for can and method for producing same
CN110741110B (en) * 2017-06-09 2022-02-25 杰富意钢铁株式会社 Steel sheet for can and method for producing same
US11339491B2 (en) 2017-06-09 2022-05-24 Jfe Steel Corporation Steel sheet for cans, and production method therefor

Also Published As

Publication number Publication date
JP3518301B2 (en) 2004-04-12

Similar Documents

Publication Publication Date Title
JP7330187B2 (en) Roughened nickel plated sheet
TWI490369B (en) Steel sheet for container
JPH11189898A (en) Electrolytic chromate treated steel sheet excellent in film adhesion and color tone and its production
JPS6326200B2 (en)
JP3161402B2 (en) Laminated steel sheet with excellent processing adhesion and color tone
JPH03229897A (en) Tin-free steel sheet for welded can high in surface brilliance and its production
JPS6335797A (en) Production of electrolytically chromated steel sheet having excellent weldability
JPH04187797A (en) Electrolytically chromate-treated steel sheet for adhered can having superior retorting resistance and fine surface color tone
JPH0726236B2 (en) Method for producing electrolytic chromate treated steel plate for welding can
JP3348671B2 (en) Laminated steel plate for unpolished welding can
JPH0196397A (en) Production of chromium-plated steel sheet for welded can having excellent corrosion resistance
JP3511957B2 (en) Material for welding can and method for producing the same
JP3432676B2 (en) Method for producing tin-free steel sheet excellent in surface brightness and retort resistance
JPS62139898A (en) Surface treated steel sheet for can making having excellent seam weldability
JPH11197704A (en) Plating steel plate having excellent color tone, adhesion and weldability and its manufacture
JP3426489B2 (en) Electrolytic treatment bath mainly composed of chromic anhydride
JPS5927400B2 (en) Manufacturing method of electrolytically chromate treated steel sheet with excellent wet sliding adhesion
JPH03239538A (en) Polyester resin film-laminated surface-treated steel sheet excellent in corrosion resistance and manufacture thereof
JP2938750B2 (en) Surface-treated steel sheet excellent in weldability, paint adhesion, film adhesion, and color tone, and method for producing the same
JPH09209171A (en) Laminated steel sheet for welded can excellent in corrosion resistance, weldability and laminate adhesion
JPH11264095A (en) Production of tin-free steel sheet excellent in surface appearance and retorting resistance property
JPH11193491A (en) Tinned steel sheet for welded can and its production
JPH083781A (en) Tinned steel sheet for three-piece can excellent in print clearness and film adhesion and its production
JPH11131285A (en) Plated steel sheet for welded can and its production
JP2001288585A (en) Plated steel sheet for welded can

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110206

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees