JPH11188703A - Porous article treated product and its manufacture - Google Patents

Porous article treated product and its manufacture

Info

Publication number
JPH11188703A
JPH11188703A JP9358876A JP35887697A JPH11188703A JP H11188703 A JPH11188703 A JP H11188703A JP 9358876 A JP9358876 A JP 9358876A JP 35887697 A JP35887697 A JP 35887697A JP H11188703 A JPH11188703 A JP H11188703A
Authority
JP
Japan
Prior art keywords
porous article
treatment
producing
fluorinated
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9358876A
Other languages
Japanese (ja)
Inventor
Kazumi Tanaka
計実 田中
Yasushi Aoki
裕史 青木
Takashi Echigo
貴 愛知後
Ryuji Kadota
隆二 門田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP9358876A priority Critical patent/JPH11188703A/en
Publication of JPH11188703A publication Critical patent/JPH11188703A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Chemical And Physical Treatments For Wood And The Like (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)

Abstract

PROBLEM TO BE SOLVED: To possess antibiotic physical properties, non-environmental pollution properties, etc., which are effective for a long period of time by improving photocatalyst activity of a semiconductor particulate and its dispersibility by a method wherein a treating agent containing the semiconductor particulate having photocatalyst action which is fluorinated is applied to a porous article and/or the article is impregnated therewith. SOLUTION: As a semiconductor particulate used for a fluorinated semiconductor particulate-containing treating agent wherein it is applied to a porous article and/or the article is impregnated therewith, titanium oxide is preferable. As a pretreatment, a coincidence treatment, or an after-treatment of a porous article treatment with a treating agent containing the fluorinated semiconductor particulate, the treatment with a treating agent containing a phenolic compound and/or a metallic compound can be executed. Thereby, the fluorinated semiconductor particulate is more firmly bonded to the porous article, a sticking tendency of the fluorinated semiconductor particulate can be raised, and antibiotic physical properties to be added to the porous article can be adjusted. Then, the antibiotic physical properties of the semiconductor particulate come to be enabled to be used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光触媒作用を有する
半導体微粒子で処理した多孔質物品処理物、及びその製
造方法に関する。更に詳しく言えば、表面をフッ素化処
理し光触媒活性を調整した半導体微粒子を含有する処理
剤を多孔質物品に塗布及び/または含浸して、抗菌性、
防腐性、防虫性、殺虫性、抗ウィルス性、生物忌避性な
どの抗生物性に優れた多孔質物品処理物を製造する方
法、及びその方法により得られる多孔質物品処理物に関
する。
The present invention relates to a processed article of a porous article treated with semiconductor fine particles having a photocatalytic action, and a method for producing the same. More specifically, the surface of the porous article is treated and / or impregnated with a treatment agent containing semiconductor fine particles whose surface has been fluorinated and the photocatalytic activity of which has been adjusted, thereby obtaining antibacterial properties.
The present invention relates to a method for producing a processed article of a porous article having excellent antibiotic properties such as antiseptic properties, insect repellency, insecticidal properties, antiviral properties, and biological repellency, and a processed article of a porous article obtained by the method.

【0002】[0002]

【従来の技術】従来、多孔質物品に、抗菌性、殺菌性、
防腐性、防虫性、殺虫性、抗ウィルス性、生物忌避性な
どの望ましい抗生物性を付与する目的で、様々な薬剤を
多孔質物品に含浸する処理が実施されている。薬剤の具
体例は、硫酸銅等の銅化合物、クロム酸カリウム等のク
ロム化合物、亜砒酸等の砒素化合物、フッ化ソーダ等の
フッ素化合物、ホウ酸等のホウ素化合物があり、これら
の化合物を水溶液として木材等の多孔質物品に注入する
ことにより、抗生物効力を有する多孔質物品の製造が行
なわれてきた。そして上記薬剤の中でも、特に銅化合
物、クロム化合物、砒素化合物の組み合わせはCCA薬
剤として、また銅化合物、クロム化合物、ホウ素化合物
の組み合わせはCCB薬剤として広く使用されている。
2. Description of the Related Art Conventionally, porous articles have been provided with antibacterial, bactericidal,
In order to impart desirable antibiotic properties such as antiseptic properties, insect repellency, insecticidal properties, antiviral properties, and biological repellency, treatments for impregnating porous articles with various agents have been performed. Specific examples of the drug include copper compounds such as copper sulfate, chromium compounds such as potassium chromate, arsenic compounds such as arsenous acid, fluorine compounds such as sodium fluoride, and boron compounds such as boric acid. By injecting into porous articles such as wood, porous articles having antibiotic efficacy have been manufactured. Among the above-mentioned drugs, particularly, a combination of a copper compound, a chromium compound, and an arsenic compound is widely used as a CCA drug, and a combination of a copper compound, a chromium compound, and a boron compound is widely used as a CCB drug.

【0003】しかしながら、クロム化合物あるいは砒素
化合物を含有する薬剤は、比較的安価で、長期間の抗生
物性効力に優れているという特長を有するが、毒性の強
い砒素化合物やクロム化合物を含有するため、薬剤の調
製時、木材への注入処理時、さらには処理された木材の
廃棄処分時に、環境汚染を生じないよう様々な対策を講
じる必要がある。そのため、より安全に調製、使用及び
処理物品の処分が可能な薬剤の開発が求められている。
[0003] However, a drug containing a chromium compound or an arsenic compound has the characteristics of being relatively inexpensive and having excellent long-term antibiotic efficacy, but contains a highly toxic arsenic compound or a chromium compound. It is necessary to take various measures to prevent environmental pollution during the preparation of chemicals, the process of injecting wood, and the disposal of treated wood. Therefore, there is a need for the development of a drug that can be more safely prepared, used, and disposed of.

【0004】また、より安全な多孔質物品処理剤とし
て、従来、比較的安全な銅化合物あるいは亜鉛化合物を
様々な有機化合物と組み合わせて使用する薬剤が使用さ
れている。しかしながら、これらの薬剤を用いて処理さ
れた多孔質物品においては、薬剤の成分として使用した
有機化合物が、処理物品を使用する長い期間において徐
々に分解、揮散、あるいは溶脱の作用を受けるため、前
記のCCA薬剤あるいはCCB薬剤などの無機系薬剤と
比べ、長期安定性に劣るという欠点がある。従って、安
全でかつ効力を長期間維持可能な新たな処理剤の開発が
望まれている。
[0004] As a safer agent for treating porous articles, an agent using a relatively safe copper compound or zinc compound in combination with various organic compounds has hitherto been used. However, in a porous article treated with these agents, the organic compound used as a component of the agent is gradually decomposed, volatilized, or leached during a long period of use of the treated article. There is a drawback that the long-term stability is inferior to inorganic drugs such as CCA drugs or CCB drugs. Therefore, development of a new treatment agent that is safe and can maintain efficacy for a long period of time is desired.

【0005】一方、酸化チタンに代表される光触媒作用
を有する半導体粒子が抗生物作用を有することは従来か
ら知られており、これを利用して抗生物作用を有する素
材の開発が様々な分野で進められている。例えば、特開
平2-6333号には酸化チタンを用いた抗菌性粉末について
開示されており、この粉末を配合することにより抗菌性
組成物が得られることが教示されている。酸化チタンは
光触媒として使用することにより活性酸素などを発生
し、これが抗菌性をもたらすが、活性酸素などの化合物
は寿命が短いため環境への安全性上の問題が無く、こう
した光触媒作用を有する半導体粒子の利用は極めて有用
である。しかしながら、酸化チタン等の光触媒作用を有
する半導体微粒子を、木材などの植物由来の多孔質物品
に含浸及び/または塗布して使用し、抗生物効果を期待
して十分な光触媒作用を発揮させると、半導体粒子の周
辺の有機化合物が分解され多孔質物品の強度の低下や外
観の変化を生じ、さらには分解された多孔質物品構成物
と共に半導体粒子が多孔質物品外部に溶脱し、多孔質物
品処理の直後に付与されていた抗生物性が低下するとい
う問題があった。また酸化チタン等の光触媒作用を有す
る半導体微粒子は、表面エネルギーが高いため、凝集が
起こりやく分散性が悪い。したがって、植物等の多孔質
物品に含浸あるいは塗布する場合、作業液が十分含浸で
きなかったり、あるいは作業液の安定性が悪いといった
問題点があった。
On the other hand, it has been known that semiconductor particles having a photocatalytic action typified by titanium oxide have an antibiotic action, and development of a material having an antibiotic action has been developed in various fields by utilizing this. Is underway. For example, Japanese Patent Application Laid-Open No. 2-6333 discloses an antibacterial powder using titanium oxide, and teaches that an antibacterial composition can be obtained by blending this powder. Titanium oxide generates active oxygen when used as a photocatalyst, which provides antibacterial properties.However, compounds such as active oxygen have a short life and do not pose a problem of environmental safety, and semiconductors that have such a photocatalytic action The use of particles is very useful. However, when semiconductor particles having a photocatalytic action such as titanium oxide are impregnated and / or applied to a plant-derived porous article such as wood and used to exhibit a sufficient photocatalytic action in expectation of an antibiotic effect, Organic compounds around the semiconductor particles are decomposed, resulting in a decrease in strength and a change in appearance of the porous article, and furthermore, the semiconductor particles are leached out of the porous article together with the decomposed porous article components, and the porous article is treated. However, there was a problem that the antibiotic property given immediately after was reduced. Further, semiconductor fine particles having a photocatalytic action, such as titanium oxide, have a high surface energy, so that aggregation is likely to occur and dispersibility is poor. Therefore, when impregnating or applying to a porous article such as a plant, there has been a problem that the working liquid cannot be sufficiently impregnated or the stability of the working liquid is poor.

【0006】[0006]

【発明が解決しようとする課題】従って、本発明の課題
は、光触媒作用を有する半導体微粒子の抗生物性を利用
して多孔質物品処理物を製造する際における上記の問題
点を解決し、処理剤の調製時、多孔質物品への注入処理
時、さらには処理された多孔質物品の廃棄処分時の安全
性に優れた、多孔質物品処理物の製造方法を提供するこ
とにある。本発明の他の課題は、半導体微粒子の光触媒
活性を調整して、長期の抗生物効力を維持し、かつ多孔
質物品構成物の分解性を抑制した半導体微粒子を含有す
る多孔質物品処理物の製造方法、さらにはその方法によ
り得られる、抗菌性、殺菌性、防腐性、防虫性、殺虫
性、抗ウィルス性、生物忌避性などの抗生物性が付与さ
れた処理物を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve the above-mentioned problems in producing a processed porous article by utilizing the antibiotic properties of semiconductor fine particles having a photocatalytic action. It is an object of the present invention to provide a method for producing a processed porous article, which is excellent in safety during preparation of a varnish, injection processing into a porous article, and disposal of the treated porous article. Another object of the present invention is to adjust the photocatalytic activity of the semiconductor fine particles, maintain a long-term antibiotic effect, and suppress the degradability of the porous article constituents. An object of the present invention is to provide a production method, and a treated product obtained by the method, which is provided with antibiotic properties such as antibacterial property, bactericidal property, antiseptic property, insect repellent property, insecticidal property, antiviral property, and biological repellency.

【0007】[0007]

【課題を解決するための手段】本発明者らは、光触媒作
用を有する半導体微粒子を含有する処理剤の調製時、多
孔質物品への注入処理時、さらには処理した多孔質物品
の廃棄処分時の安全性に優れ、長期の抗生物効力を付与
することが可能な多孔質物品の処理方法、そのために用
いる多孔質物品内部への浸透性に優れ、かつ処理作業液
の安定性に優れた処理剤を開発するため、鋭意研究を行
なった。その結果、半導体微粒子としてフッ素化処理し
たものを使用することにより、光触媒活性が適度に調整
され、安全性の高い酸化チタン等の光触媒作用を有する
半導体粒子の抗生物効力が維持され、かつ多孔質物品構
成物の分解が抑制されて、長期の抗生物効力を多孔質物
品に付与することが可能であること、またフッ素化する
ことにより半導体微粒子の表面エネルギーが抑えられ、
多孔質物品に対する十分な注入性と作業液の安定性が得
られ本発明の課題が解決されることを見出し、本発明を
完成する至った。
Means for Solving the Problems The present inventors prepared a treating agent containing semiconductor fine particles having a photocatalytic action, injected a porous article, and disposed of the treated porous article. For treating porous articles that are excellent in safety and can provide long-term antibiotic efficacy, and that have excellent permeability to the inside of the porous articles used for that purpose, and that have excellent stability of the processing working liquid Intensive research was conducted to develop the agent. As a result, by using the fluorinated semiconductor particles, the photocatalytic activity is appropriately adjusted, the antibiotic efficacy of the highly safe semiconductor particles having a photocatalytic effect such as titanium oxide is maintained, and the porous particles are porous. Decomposition of article components is suppressed, and it is possible to impart long-term antibiotic efficacy to the porous article, and the surface energy of the semiconductor fine particles is suppressed by fluorination,
It has been found that sufficient injectability and working fluid stability for a porous article can be obtained and the object of the present invention can be solved, and the present invention has been completed.

【0008】また、フッ素化処理した光触媒作用を有す
る半導体微粒子を含有する処理剤を用いる多孔質物品処
理の前処理、同時処理、あるいは後処理として、フェノ
ール性化合物及び/または金属化合物を含有する処理剤
による処理を行なうことにより、抗生物性が増大すると
共に、光触媒作用が多孔質物品抗生物に与える悪影響を
さらに効果的に抑制できることを見出し、本発明を完成
させるに至った。フッ素化処理した半導体微粒子を使用
することにより本発明の作用効果が得られる原理は明ら
かではないが、フッ素化された半導体微粒子、例えばフ
ッ素化された酸化チタンにおいても、酸化チタン等にお
いて一般に認められている光触媒反応が進行し、微粒子
の表面に正孔及び励起電子が生じ、そしてこの正孔の作
用により空気中の酸素が還元され、酸素ラジカルが生
じ、この酸素ラジカルが優れた抗生物性を示すものと考
えられる。その一方で、半導体微粒子をフッ素化するこ
とにより光触媒作用が適度に抑制され、木材等の多孔質
物品の構成成分の分解が抑制され、これにより、強度の
低下、及び半導体微粒子の溶脱が抑制され、長期の抗生
物効力を有する多孔質物品処理物が得られるものと考え
られる。
As a pre-treatment, a simultaneous treatment, or a post-treatment of a porous article using a fluorinated treatment agent containing photocatalytic semiconductor fine particles, a treatment containing a phenolic compound and / or a metal compound. By conducting the treatment with the agent, it has been found that the antibacterial property is increased and that the adverse effect of the photocatalysis on the antibiotic for porous articles can be more effectively suppressed, and the present invention has been completed. Although the principle of obtaining the effect of the present invention by using fluorinated semiconductor fine particles is not clear, it is generally recognized in fluorinated semiconductor fine particles, for example, even in fluorinated titanium oxide, in titanium oxide and the like. The photocatalytic reaction proceeds, holes and excited electrons are generated on the surface of the fine particles, and the action of the holes reduces oxygen in the air to generate oxygen radicals, which show excellent antibiotic properties It is considered something. On the other hand, the photocatalytic action is moderately suppressed by fluorinating the semiconductor fine particles, and the decomposition of the components of the porous article such as wood is suppressed, whereby the strength is reduced and the leaching of the semiconductor fine particles is suppressed. It is considered that a processed porous article having a long-term antibiotic effect can be obtained.

【0009】本発明は以下の多孔質物品処理物の製造方
法及び多孔質物品処理物を提供するものである。 [1] フッ素化処理した光触媒作用を有する半導体微
粒子を含有する処理剤を多孔質物品に塗布及び/または
含浸することを特徴とする多孔質物品処理物の製造方
法。 [2] 半導体微粒子が、TiO2、MnO2、ZnO、
RuO2、GeO2、Cs3Sb、InAs、InSb及
びGaAsから選択される前記[1]に記載の多孔質物
品処理物の製造方法。 [3] 半導体微粒子がTiO2である前記[1]また
は[2]に記載の多孔質物品処理物の製造方法。 [4] 半導体粒子の粒径が100μm以下である前記
[1]乃至[3]のいずれかに記載の多孔質物品処理物
の製造方法。 [5] 半導体粒子の粒径が1μm以下である前記
[4]に記載の多孔質物品処理物の製造方法。 [6] フッ素ガスによりフッ素化処理した半導体粒子
を使用する前記[1]に記載の多孔質物品処理物の製造
方法。
The present invention provides the following method for producing a processed porous article and a processed porous article. [1] A method for producing a treated porous article, which comprises applying and / or impregnating a porous article with a treatment agent containing fluorinated semiconductor fine particles having a photocatalytic action. [2] The semiconductor fine particles are TiO 2 , MnO 2 , ZnO,
The method for producing a treated porous article according to the above [1], which is selected from RuO 2 , GeO 2 , Cs 3 Sb, InAs, InSb, and GaAs. [3] The method for producing a treated porous article according to [1] or [2], wherein the semiconductor fine particles are TiO 2 . [4] The method for producing a treated porous article according to any one of [1] to [3], wherein the particle size of the semiconductor particles is 100 μm or less. [5] The method for producing a treated porous article according to the above [4], wherein the semiconductor particles have a particle size of 1 μm or less. [6] The method for producing a treated porous article according to the above [1], wherein semiconductor particles fluorinated with a fluorine gas are used.

【0010】[7] 処理剤が、さらにフェノール性化
合物及び/または金属化合物を含有する前記[1]に記
載の多孔質物品処理物の製造方法。 [8] フェノール性化合物及び/または金属化合物を
含有する処理剤による前処理、同時処理、あるいは後処
理を行なうことを特徴とする前記[1]乃至[6]のい
ずれかに記載の多孔質物品処理物の製造方法。 [9] フェノール性化合物がピロカテコール、ハイド
ロキノン、ピロガロール、没食子酸、タンニン酸、フェ
ルラ酸、リグニン、リグニンスルホン酸及びこれらの誘
導体から選ばれる少なくとも1種の化合物である前記
[7]または[8]に記載の多孔質物品処理物の製造方
法。 [10] 金属化合物がジルコニウム、チタニウム、バ
ナジウム、モリブデン、マンガン、鉄、コバルト、ニッ
ケル、パラジウム、銅、銀、亜鉛、カドミウム、アルミ
ニウム、錫、鉛、アンチモン、カルシウム、マグネシウ
ム及びバリウムから選ばれる少なくとも1種の金属元素
を含有する化合物である前記[7]または[8]に記載
の多孔質物品処理物の製造方法。
[7] The method for producing a treated porous article according to the above [1], wherein the treating agent further contains a phenolic compound and / or a metal compound. [8] The porous article according to any one of [1] to [6], wherein a pretreatment, a simultaneous treatment, or a post-treatment with a treatment agent containing a phenolic compound and / or a metal compound is performed. Manufacturing method of processed material. [9] The above-mentioned [7] or [8], wherein the phenolic compound is at least one compound selected from pyrocatechol, hydroquinone, pyrogallol, gallic acid, tannic acid, ferulic acid, lignin, ligninsulfonic acid and derivatives thereof. 4. The method for producing a treated porous article according to item 1. [10] At least one metal compound selected from zirconium, titanium, vanadium, molybdenum, manganese, iron, cobalt, nickel, palladium, copper, silver, zinc, cadmium, aluminum, tin, lead, antimony, calcium, magnesium, and barium The method for producing a treated porous article according to the above [7] or [8], which is a compound containing a kind of metal element.

【0011】[11] 多孔質物品への処理剤の含浸を
加圧及び/または減圧により行なう前記[1]乃至[1
0]のいずれかに記載の多孔質物品処理物の製造方法。 [12] 加圧を1〜20気圧で実施する前記[11]
に記載の多孔質物品処理物の製造方法。 [13] 多孔質物品が植物由来の多孔質物品である前
記[1]乃至[12]のいずれかに記載の多孔質物品処
理物の製造方法。 [14] 植物由来の多孔質物品が木材、木片、木粉、
木質加工品、モミ、藺草、藁、竹材、植物繊維、または
植物繊維加工品であることを特徴とする前記[13]に
記載の多孔質物品処理物の製造方法。 [15] 前記[1]乃至[14]のいずれかに記載の
製造方法で得られる多孔質物品処理物。
[11] The above-mentioned [1] to [1], wherein the impregnation of the porous article with the treating agent is carried out by applying pressure and / or pressure.
0]. The method for producing a treated porous article according to any one of the above items. [12] The above-mentioned [11], wherein the pressurization is performed at 1 to 20 atm.
4. The method for producing a treated porous article according to item 1. [13] The method for producing a treated porous article according to any one of [1] to [12], wherein the porous article is a plant-derived porous article. [14] Plant-derived porous articles are wood, wood chips, wood flour,
The method for producing a treated porous article according to the above [13], which is a processed wood product, a fir, a rush, a straw, a bamboo material, a plant fiber, or a processed plant fiber product. [15] A treated porous article obtained by the production method according to any one of [1] to [14].

【0012】[0012]

【発明の実施の形態】以下本発明について詳細に説明す
る。 [フッ素化半導体微粒子含有処理剤] 半導体微粒子:本発明において、多孔質物品に塗布及び
/または含浸させるフッ素化半導体微粒子含有処理剤に
使用する半導体微粒子としては、電子−正孔移動度比が
比較的大きく、光触媒作用を有する半導体の微粒子であ
ればいずれも使用可能である。例えば、TiO2、Mn
2、ZnO、RuO2、GeO2、Cs3Sb、InA
s、InSb、GaAsが挙げられるが、これらの中で
も特に酸化チタンが望ましい。これらは光触媒作用を有
するものであればいかなる形態のものも使用可能であ
り、例えば酸化チタンの場合は、アナターゼ型、ルチル
型、ブルッカイト型などの様々な半導体微粒子が利用可
能である。また、塩酸法、硫酸法、気相法、液相法など
何れの半導体微粒子の製造方法によるものも、本発明の
フッ素化半導体微粒子の原料として使用可能である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail. [Processing Agent Containing Fluorinated Semiconductor Fine Particles] Semiconductor Fine Particles: In the present invention, the semiconductor fine particles used in the processing agent containing fluorinated semiconductor fine particles to be coated and / or impregnated on a porous article have a comparative electron-hole mobility ratio. Any semiconductor fine particles which are large and have a photocatalytic action can be used. For example, TiO 2 , Mn
O 2 , ZnO, RuO 2 , GeO 2 , Cs 3 Sb, InA
s, InSb, and GaAs, among which titanium oxide is particularly desirable. Any of these can be used as long as they have a photocatalytic action. For example, in the case of titanium oxide, various semiconductor fine particles such as anatase type, rutile type and brookite type can be used. Further, any method of producing semiconductor fine particles such as a hydrochloric acid method, a sulfuric acid method, a gas phase method, and a liquid phase method can be used as a raw material of the fluorinated semiconductor fine particles of the present invention.

【0013】使用する半導体微粒子は、木材等の多孔質
物品の内部への浸透性を高めるためには、粒径が100
μm以下、より望ましくは1μm以下のものが望ましい
が、多孔質物品処理剤溶液の状態で適度の分散性を維持
し、さらには多孔質物品内部への浸透性が充分である
か、あるいは内部への浸透性が重要ではない場合には、
さらに大きな粒径を有する半導体微粒子も利用可能であ
る。本発明で使用する半導体微粒子の粒径の下限値とし
ては、粒径が1nmより小さくなると、紫外線等のエネ
ルギーの大きな光の照射下でなければ光触媒性能が得ら
れないという問題が生じ、また、あまりに粒径が小さい
と分散性が悪化して取り扱い上の不都合が生じるため、
1nm以上の粒径であることが望ましい。
The semiconductor fine particles used have a particle size of 100 in order to increase the permeability into the interior of a porous article such as wood.
μm or less, more preferably 1 μm or less is desirable. However, it maintains a proper dispersibility in the state of the porous article treating agent solution, and furthermore has sufficient permeability to the inside of the porous article, or If permeability is not important,
Semiconductor fine particles having a larger particle size can also be used. As the lower limit of the particle diameter of the semiconductor fine particles used in the present invention, if the particle diameter is smaller than 1 nm, there occurs a problem that the photocatalytic performance can not be obtained unless under irradiation of light having a large energy such as ultraviolet rays, If the particle size is too small, dispersibility deteriorates and handling inconvenience occurs,
Desirably, the particle size is 1 nm or more.

【0014】半導体微粒子のフッ素化:原料半導体微粒
子をフッ素化する手段としては、公知の方法、例えば、
酸化チタンを懸濁したスラリーにフッ化ナトリウムを加
えて撹拌処理する方法(特開昭59-184263号公報)、疎
水性球状酸化チタン粒子を製造する際に疎水性付与物質
として有機フッ素化合物を用いる方法(特開昭61-21521
6号公報)、超微粒子酸化チタンにフロンガスを接触
し、200〜400℃の高温で表面をフッ素化させる方
法(特開平3-40919号公報)等の公知の方法が利用出来
るが、好ましいのは本出願人が先に開発したフッ素ガス
により直接半導体微粒子表面を実質的にフッ素化する方
法である(特願平8-339806号)。
Fluorination of semiconductor fine particles: As a means for fluorinating raw material semiconductor fine particles, a known method, for example,
A method in which sodium fluoride is added to a slurry in which titanium oxide is suspended, and the mixture is stirred (JP-A-59-184263). An organic fluorine compound is used as a hydrophobicity-imparting substance when producing hydrophobic spherical titanium oxide particles. Method (JP-A-61-21521)
Known methods such as a method of contacting ultrafine titanium oxide with Freon gas and fluorinating the surface at a high temperature of 200 to 400 ° C. (Japanese Patent Laid-Open No. 3-40919) can be used. This is a method of directly fluorinating the surface of semiconductor fine particles directly with fluorine gas developed by the present applicant (Japanese Patent Application No. 8-339806).

【0015】例えば、フッ素ガスによる半導体微粒子の
フッ素化反応は気相法で次のように行なわれる。すなわ
ち、半導体微粒子原料をそのまま常圧気相流通式などの
リアクターに充填し、リアクターを所定の温度(通常0
〜200℃、好ましくは20〜150℃)に保ち、この
リアクターにフッ素ガスあるいは窒素、アルゴン等で希
釈したフッ素ガスを流しながら、所定時間(瞬時〜3時
間、好ましくは瞬時〜1時間)反応させ、表面フッ素化
処理を行なうものである。この方法で得られる表面フッ
素化半導体微粒子は、原料の粒子状、高比表面積を維持
しており、撥水・撥油性効果を示し、耐酸・耐アルカリ
性に優れ、さらに分散性も良好である。
For example, a fluorination reaction of semiconductor fine particles with fluorine gas is performed as follows by a gas phase method. That is, the semiconductor fine particle raw material is directly charged into a reactor such as a normal-pressure gas-phase flow system, and the reactor is heated to a predetermined temperature (usually 0 ° C).
To 200 ° C., preferably 20 to 150 ° C.), and reacting for a predetermined time (instantaneously to 3 hours, preferably instantaneously to 1 hour) while flowing a fluorine gas or a fluorine gas diluted with nitrogen, argon or the like into this reactor. And a surface fluorination treatment. The surface fluorinated semiconductor fine particles obtained by this method maintain the particle shape and high specific surface area of the raw material, exhibit water and oil repellency effects, have excellent acid and alkali resistance, and have good dispersibility.

【0016】フッ素ガスにより直接原料半導体微粒子表
面を実質的にフッ素化する方法によるフッ素化半導体微
粒子のフッ素含有率は、XPS(X線光電子スペクト
ル)での定量値で、好ましくは0.001〜61%、特に好
ましくは、0.1〜61%である。因みに、半導体微粒子
表面のフッ素化率はXPS(X-ray photoelectron spec
troscopy:X線光電子分光法)により定量される粒子表
面から約100オングストロームの深さまでに存在する
全元素量からその割合が求められる。例えば、酸化チタ
ンのフッ素化で表面のTiの全て(すなわち、100
%)がTiF4になったとすると、粒子表面のフッ素含
有率は(4F/TiF4)×100=61.3重量%とな
る。
The fluorine content of the fluorinated semiconductor fine particles by the method of substantially directly fluorinating the surface of the raw material semiconductor fine particles with fluorine gas is a quantitative value by XPS (X-ray photoelectron spectrum), preferably 0.001 to 61%, Particularly preferably, it is 0.1 to 61%. Incidentally, the fluorination rate of the surface of the semiconductor fine particles is determined by XPS (X-ray photoelectron spec.).
The ratio is determined from the total amount of elements existing from the particle surface to a depth of about 100 angstroms determined by troscopy (X-ray photoelectron spectroscopy). For example, all of the Ti on the surface (ie, 100
%) Becomes TiF 4 , the fluorine content on the particle surface becomes (4F / TiF 4 ) × 100 = 61.3% by weight.

【0017】フッ素化半導体微粒子処理剤:本発明で
は、フッ素化半導体微粒子を、通常は溶媒に懸濁したス
ラリー状の処理剤として、多孔質物品に塗布あるいは含
浸させる。溶媒としては、水、エタノールなどが用いら
れる。フッ素化半導体微粒子の処理剤中の濃度は、0.01
〜50重量%、好ましくは 0.1〜20重量%である。ま
た、処理剤の安定性、処理対象物への浸透性、展着性を
向上させるため、分散剤あるいは界面活性剤を添加する
ことができる。さらに必要に応じて無機アルカリなどの
pH調整剤、天然物あるいは合成物の色素、顔料、増粘
剤、高分子量化合物、固形物などを本発明の処理剤に添
加して使用可能である。
Fluorinated semiconductor fine particle treating agent: In the present invention, fluorinated semiconductor fine particles are usually applied or impregnated on a porous article as a slurry-like treating agent suspended in a solvent. Water, ethanol, or the like is used as the solvent. The concentration of the fluorinated semiconductor fine particles in the treating agent is 0.01
5050% by weight, preferably 0.1-20% by weight. Further, a dispersant or a surfactant can be added in order to improve the stability of the treatment agent, the permeability to the object to be treated, and the spreadability. Further, if necessary, a pH adjuster such as an inorganic alkali, a natural or synthetic coloring matter, a pigment, a thickener, a high molecular weight compound, a solid, or the like can be added to the treating agent of the present invention for use.

【0018】[フェノール性化合物及び金属化合物]本
発明においては、フッ素化半導体微粒子を含有する処理
剤による多孔質物品処理の前処理、同時処理、あるいは
後処理としてフェノール性化合物及び/または金属化合
物を含有する処理剤による処理を行なうことが出来る。
同時処理の場合には、通常前記フッ素化半導体微粒子を
含有する処理剤中にフェノール性化合物及び/または金
属化合物を含有せしめる。
[Phenolic Compound and Metal Compound] In the present invention, a phenolic compound and / or a metal compound is used as a pre-treatment, a simultaneous treatment, or a post-treatment of a porous article with a treatment agent containing fluorinated semiconductor fine particles. The treatment with the contained treating agent can be performed.
In the case of simultaneous treatment, a phenolic compound and / or a metal compound are usually contained in the treating agent containing the fluorinated semiconductor fine particles.

【0019】処理剤の構成成分として含有されるフェノ
ール性化合物は、空気(酸素)により酸化を受ける化合
物が利用可能であり、特に、ピロカテコール、ハイドロ
キノン、ピロガロール、没食子酸、タンニン酸、フェル
ラ酸、リグニン、リグニンスルホン酸、またはこれらの
誘導体が好適に利用できる。これらの化合物を使用する
ことにより、フッ素化した半導体微粒子と多孔質物品と
をより強固に結合し、フッ素化した半導体微粒子の固着
性を高めることが可能である。また、同時に、フッ素化
した半導体微粒子の有する光触媒作用により多孔質物品
構成成分が受ける分解反応をより効果的に防止すること
が可能となる。フェノール性化合物の処理剤中の濃度
は、0.001〜5重量%、好ましくは0.01〜1重量%であ
る。
As the phenolic compound contained as a component of the treating agent, a compound which is oxidized by air (oxygen) can be used. In particular, pyrocatechol, hydroquinone, pyrogallol, gallic acid, tannic acid, ferulic acid, Lignin, ligninsulfonic acid, or derivatives thereof can be suitably used. By using these compounds, it is possible to more firmly bond the fluorinated semiconductor fine particles and the porous article, and to enhance the adhesion of the fluorinated semiconductor fine particles. At the same time, the photocatalytic action of the fluorinated semiconductor fine particles makes it possible to more effectively prevent the decomposition reaction of the components of the porous article. The concentration of the phenolic compound in the treating agent is 0.001 to 5% by weight, preferably 0.01 to 1% by weight.

【0020】また、処理剤の構成成分として含有される
金属化合物は、様々なものが使用可能であるが、例えば
ジルコニウム、チタニウム、バナジウム、モリブデン、
マンガン、鉄、コバルト、ニッケル、パラジウム、銅、
銀、亜鉛、カドミウム、アルミニウム、錫、鉛、アンチ
モン、カルシウム、マグネシウム、あるいはバリウムか
ら選ばれる少なくとも1種の金属元素を含有する化合物
が好適に利用可能である。これらの化合物を使用するこ
とにより、多孔質物品に付与される抗生物性を調整する
ことができる。
Various metal compounds can be used as constituents of the treating agent. For example, zirconium, titanium, vanadium, molybdenum,
Manganese, iron, cobalt, nickel, palladium, copper,
A compound containing at least one metal element selected from silver, zinc, cadmium, aluminum, tin, lead, antimony, calcium, magnesium, and barium can be suitably used. By using these compounds, the antibiotic properties imparted to the porous article can be adjusted.

【0021】これらの金属化合物は様々な既存のキレー
ト剤と共に使用することが可能であるが、特に上記のピ
ロカテコール、ハイドロキノン、ピロガロール、没食子
酸、タンニン酸、フェルラ酸、リグニン、リグニンスル
ホン酸、またはこれらの誘導体などのフェノール性化合
物と、金属化合物を同時に使用することで、フェノール
性化合物の効果と金属化合物の効果を同時に多孔質物品
に付与することが可能となる。フェノール性化合物と金
属化合物を同時に使用する際、これらの化合物は様々な
組み合わせで実施可能であるが、例えば、ピロガロール
と硫酸銅を併用することで、フッ素化した半導体微粒子
の固着性がピロガロールにより向上すると共に、フッ素
化した半導体微粒子の有する光触媒作用による多孔質物
品構成成分の分解反応を、硫酸銅及びピロガロールの作
用により抑制することが可能となる。また、フッ素化し
た半導体微粒子の有する光触媒作用によりピロガロール
が分解反応を受け、分解物が多孔質物品外部に溶脱する
際に、銅化合物または銅イオンが共に溶脱するため、結
果的に金属イオンの徐放性を有する多孔質物品が製造可
能になる。このように、フェノール性化合物及び金属化
合物を併用することで、多孔質物品に付与される抗生物
性の強度や物品周辺への抗菌性金属イオン(または錯
体)の拡散の程度を調整することが可能である。金属化
合物の処理剤中の濃度は、0.01〜90重量%、好ましく
は1〜50重量%である。
These metal compounds can be used with a variety of existing chelating agents, especially the above-mentioned pyrocatechol, hydroquinone, pyrogallol, gallic acid, tannic acid, ferulic acid, lignin, ligninsulfonic acid, or By simultaneously using a phenolic compound such as a derivative thereof and a metal compound, it is possible to simultaneously impart the effects of the phenolic compound and the metal compound to the porous article. When a phenolic compound and a metal compound are used simultaneously, these compounds can be used in various combinations.For example, by using pyrogallol and copper sulfate together, pyrogallol improves the fixation of fluorinated semiconductor fine particles. In addition, the decomposition reaction of the components of the porous article due to the photocatalysis of the fluorinated semiconductor fine particles can be suppressed by the action of copper sulfate and pyrogallol. Further, pyrogallol undergoes a decomposition reaction due to the photocatalytic action of the fluorinated semiconductor fine particles, and when the decomposition product leaches out of the porous article, the copper compound or copper ion is leached together. A porous article having a release property can be manufactured. As described above, by using the phenolic compound and the metal compound together, it is possible to adjust the strength of the antibiotic property imparted to the porous article and the degree of diffusion of the antibacterial metal ion (or complex) around the article. It is. The concentration of the metal compound in the treating agent is 0.01 to 90% by weight, preferably 1 to 50% by weight.

【0022】多孔質物品:本発明によるフッ素化半導体
微粒子を含有する処理剤は、金属焼結体、鋳造品、合
金、ダイカスト品、セラミックス、レンガ、コンクリー
ト、木材、木片、木粉、木質加工品、モミ、藺草、藁、
竹材、炭、繊維、繊維加工品、合成樹脂の発泡体などの
様々な多孔質物品の表面処理及び/または内部処理のた
めの処理剤として利用可能であるが、特に、植物由来の
多孔質物品、例えば木材、木片、木粉、木質加工品、モ
ミ、藺草、藁、竹材、植物繊維、植物繊維加工品などの
処理に用いることで、従来は多孔質物品構成物である有
機化合物が分解し、多孔質物品の強度が低下するため
に、光触媒作用を有する半導体微粒子を使用することが
できなかった場合においても、半導体微粒子の抗生物性
を利用することが可能となる。
Porous articles: The treating agent containing the fluorinated semiconductor fine particles according to the present invention is a metal sintered body, a cast product, an alloy, a die-cast product, a ceramic, a brick, a concrete, a wood, a piece of wood, a wood powder, a wood-processed product. , Fir, rush, straw,
It can be used as a treatment agent for surface treatment and / or internal treatment of various porous articles such as bamboo, charcoal, fiber, processed textiles, and synthetic resin foams. For example, by using wood, wood chips, wood flour, wood products, fir, rush, straw, bamboo, plant fiber, plant fiber processed products, etc., organic compounds that are conventionally porous article components are decomposed. In addition, even when the strength of the porous article is reduced, and the semiconductor fine particles having a photocatalytic action cannot be used, the antibiotic properties of the semiconductor fine particles can be utilized.

【0023】本発明の多孔質物品処理において、望まし
い抗生物性を多孔質物品に付与するために必要なフッ素
化半導体微粒子の量は、多孔質物品の種類、多孔質物品
処理物の用途などにより調整することが望ましいが、例
えば、木材に対して保存木材の製造を目的として処理を
行なう場合は、薬剤処理される木材に対して0.01〜20
0重量%の範囲にあることが望ましい。0.01重量%より
少ない微粒子の使用量では十分な抗生物性効果が得られ
ず、一方、200重量%を超える微粒子の使用量では木
材としての特性が著しく変化する。
In the treatment of the porous article of the present invention, the amount of the fluorinated semiconductor fine particles necessary for imparting the desired antibiotic property to the porous article is adjusted depending on the type of the porous article, the use of the treated porous article, and the like. However, for example, when processing wood for the purpose of producing preserved wood, 0.01-20
It is desirably in the range of 0% by weight. If the amount of the fine particles is less than 0.01% by weight, a sufficient antibiotic effect cannot be obtained, while if the amount of the fine particles exceeds 200% by weight, the properties as wood significantly change.

【0024】[処理方法]本発明のフッ素化半導体微粒
子を含有する処理剤を用いて物品処理を行なう際には、
刷毛やローラーなどによる塗布、スプレー、エアゾール
などによる吹き付け操作、あるいは含浸操作が実施され
る。特に含浸操作は、本発明の多孔質物品処理におい
て、十分量の処理剤を物品に固定するために極めて有用
である。含浸操作は、簡単には処理剤溶液へ物品を浸漬
する方法で実施可能であるが、含浸の困難な様々な種類
の多孔質物品に十分な量の処理液を注入するためには、
加圧及び/もしくは減圧操作が極めて有用である。加圧
操作は、大気圧(1気圧)から20気圧、より望ましく
は3から15気圧の範囲で実施される。
[Treatment Method] When performing article treatment using the treatment agent containing the fluorinated semiconductor fine particles of the present invention,
A coating operation using a brush or a roller, a spraying operation using a spray, an aerosol, or the like, or an impregnation operation is performed. In particular, the impregnation operation is extremely useful for fixing a sufficient amount of the treating agent to the article in the treatment of the porous article of the present invention. The impregnation operation can be simply performed by immersing the article in a treatment agent solution, but in order to inject a sufficient amount of the treatment liquid into various types of porous articles that are difficult to impregnate,
Pressurizing and / or depressurizing operations are very useful. The pressurizing operation is performed in a range from atmospheric pressure (1 atm) to 20 atm, more preferably 3 to 15 atm.

【0025】減圧操作は、真空圧までの範囲でいかなる
圧力でも実施可能であるが、含浸の困難な多孔質物品の
有効な処理のためには、100〜760mmHgの範囲
での減圧が望ましい。また減圧操作は、多孔質物品に処
理液を加える前に減圧を実施する前排気の方式がより望
ましい。さらに、多孔質物品中により多量に処理液を含
浸させるために、これらの加圧操作及び減圧操作を組み
合わせて実施することも有効である。また、処理液を多
孔質物品に含浸させた後、減圧処理を行ない、処理液の
一部を多孔質物品外に回収することで、多孔質性の保持
される程度を容易に調整することが可能である。
The depressurizing operation can be performed at any pressure up to a vacuum pressure, but for effective treatment of a porous article which is difficult to impregnate, it is desirable to reduce the pressure in the range of 100 to 760 mmHg. In addition, the pressure reducing operation is more preferably performed by a pre-venting method in which the pressure is reduced before the treatment liquid is added to the porous article. Further, in order to impregnate the treatment liquid in a larger amount in the porous article, it is also effective to combine these pressurizing operation and depressurizing operation. After impregnating the porous article with the treatment liquid, a reduced pressure treatment is performed, and a part of the treatment liquid is collected outside the porous article, so that the degree to which the porous property is maintained can be easily adjusted. It is possible.

【0026】このような多孔質性が保持または調整され
た処理物は、湿度調整能力、保水力、吸着能力、イオン
交換能を保持しており、こうした能力を利用する様々な
用途への利用が可能である。また、多孔質性の保持され
た処理物に対して、さらに、薬剤、ポリマー、プレポリ
マーを含浸させ、様々な複合された性質を有する多孔質
物品が製造可能である。
[0026] The treated material whose porosity is maintained or adjusted has a humidity adjusting ability, a water holding ability, an adsorbing ability, and an ion exchange ability, and can be used for various applications utilizing such ability. It is possible. In addition, a porous article having various composite properties can be manufactured by further impregnating the treated substance having a porous property with a drug, a polymer, or a prepolymer.

【0027】多孔質物品が木材の場合、通常用いられる
様々な加圧及び/もしくは減圧処理方法が使用可能であ
り、具体的には、充細胞法(ベセル法)、半空細胞法
(ローリー法)、空細胞法(リューピング法)、複式真
空法(ダブルバキューム法)、加圧・減圧交替法(Osci
llating Pressure Method)、脈動加圧法(Pulsation P
ressure Method)、定常加圧法(Constant Pressure Me
thod)、低速変動加圧法(Slow Pressure Change Metho
d)、及びこれらの操作を組み合わせた方法が適用可能
である。また、インサイジング加工法もまた、含浸量を
増大させるために適用可能である。また、含浸の困難な
多孔質物品の前処理として、ローラー等を用いる圧縮処
理、マイクロ波加熱、凍結処理、蒸煮処理、水蒸気処
理、あるいは熱処理を行なうことも有効である。本発明
の抗生物剤を用いる塗布及び/または含浸処理は、0〜
150℃、好ましくは10〜100℃で実施される。養
生時の加熱は20〜300℃、より好ましくは40〜1
50℃の温度条件で実施される。
When the porous article is wood, various commonly used pressurizing and / or depressurizing treatment methods can be used, and specifically, a packed cell method (Vesel method) and a semi-empty cell method (Lowry method) , Empty cell method (Leuping method), double vacuum method (double vacuum method), pressurization / decompression alternate method (Osci
llating Pressure Method, Pulsation P
ressure Method, Constant Pressure Me
thod, Slow Pressure Change Metho
d) and a method combining these operations are applicable. Also, the insizing method can be applied to increase the impregnation amount. It is also effective to perform a compression treatment using a roller or the like, a microwave heating, a freezing treatment, a steaming treatment, a steam treatment, or a heat treatment as a pretreatment of the porous article that is difficult to impregnate. The coating and / or impregnating treatment using the antibiotic of the present invention is carried out at 0 to
It is carried out at 150C, preferably 10-100C. Heating during curing is 20 to 300 ° C, more preferably 40 to 1 ° C.
It is carried out at a temperature of 50 ° C.

【0028】[0028]

【実施例】以下に本発明について参考例、実施例及び試
験例を示し、さらに具体的に説明する。ただし、これら
は単なる例示であり、本発明はこれらのみに限られるも
のではない。また、以下の例において%とは特に記載し
ない限り重量%を表す。
EXAMPLES The present invention will be described more specifically with reference examples, examples and test examples. However, these are merely examples, and the present invention is not limited to only these. In the following examples, “%” means “% by weight” unless otherwise specified.

【0029】参考例1:フッ素化酸化チタンの製造法 常圧気相流通式リアクターに超微粒子酸化チタン(比表
面積:80m2/g、一次粒子径20nm)100gを
充填し、減圧下、200℃で1時間焼成して前処理し、
150℃まで冷却後、フッ素ガスを窒素ガスで希釈した
ガスをこのリアクターに15分間送り込み、フッ素化処
理を行なった。このフッ素化表面処理微粒子酸化チタン
の比表面積は80m2/gであり、高比表面積を維持し
ていた。また、超微粒子酸化チタンのフッ素含有率をX
PSにより定量した結果、フッ素含有率は19%であっ
た。これらの結果を表1に示す。
REFERENCE EXAMPLE 1 Production Method of Fluorinated Titanium Oxide 100 g of ultrafine titanium oxide (specific surface area: 80 m 2 / g, primary particle diameter: 20 nm) was charged into a normal-pressure gas-phase flow type reactor at 200 ° C. under reduced pressure. 1 hour firing and pre-treatment,
After cooling to 150 ° C., a gas obtained by diluting a fluorine gas with a nitrogen gas was fed into the reactor for 15 minutes to perform a fluorination treatment. The specific surface area of the fluorinated surface-treated fine particle titanium oxide was 80 m 2 / g, and the high specific surface area was maintained. In addition, the fluorine content of the ultrafine titanium oxide is X
As a result of quantification by PS, the fluorine content was 19%. Table 1 shows the results.

【0030】参考例2:フッ素化酸化チタンの製造法 常圧気相流通式リアクターに超微粒子酸化チタン(比表
面積:80m2/g、一次粒子径20nm)100gを
充填し、減圧下、200℃で1時間焼成して前処理し、
70℃まで冷却後、フッ素ガスを窒素ガスで希釈したガ
スをこのリアクターに1分間送り込み、フッ素化処理を
行なった。このフッ素化表面処理微粒子酸化チタンの比
表面積は80m2/gであり、高比表面積を維持してい
た。また、超微粒子酸化チタンのフッ素含有率をXPS
により定量した結果、フッ素含有率は8%であった。こ
れらの結果を表1に示す。
Reference Example 2 Production Method of Fluorinated Titanium Oxide An atmospheric pressure gas-phase flow reactor was charged with 100 g of ultrafine titanium oxide (specific surface area: 80 m 2 / g, primary particle diameter: 20 nm), and reduced pressure at 200 ° C. 1 hour firing and pre-treatment,
After cooling to 70 ° C., a gas obtained by diluting fluorine gas with nitrogen gas was sent to this reactor for 1 minute to perform a fluorination treatment. The specific surface area of the fluorinated surface-treated fine particle titanium oxide was 80 m 2 / g, and the high specific surface area was maintained. Also, the fluorine content of the ultrafine titanium oxide was determined by XPS
As a result, the fluorine content was 8%. Table 1 shows the results.

【0031】参考例3:フッ素化酸化チタンの製造法 常圧気相流通式リアクターに超微粒子酸化チタン(比表
面積:80m2/g、一次粒子径20nm)100gを
充填し、減圧下、200℃で1時間焼成して前処理し、
20℃まで冷却後、フッ素ガスを窒素ガスで希釈したガ
スをこのリアクターに1分間送り込み、フッ素化処理を
行なった。このフッ素化表面処理微粒子酸化チタンの比
表面積は80m2/gであり、高比表面積を維持してい
た。また、超微粒子酸化チタンのフッ素含有率をXPS
により定量した結果、フッ素含有率は4%であった。こ
れらの結果を表1に示す。
Reference Example 3 Production Method of Fluorinated Titanium Oxide An atmospheric pressure gas phase flow type reactor was charged with 100 g of ultrafine titanium oxide (specific surface area: 80 m 2 / g, primary particle diameter: 20 nm), and the pressure was reduced to 200 ° C. at 200 ° C. 1 hour firing and pre-treatment,
After cooling to 20 ° C., a gas obtained by diluting fluorine gas with nitrogen gas was sent to this reactor for 1 minute to perform a fluorination treatment. The specific surface area of the fluorinated surface-treated fine particle titanium oxide was 80 m 2 / g, and the high specific surface area was maintained. Also, the fluorine content of the ultrafine titanium oxide was determined by XPS
As a result, the fluorine content was 4%. Table 1 shows the results.

【0032】参考例4:フッ素化酸化亜鉛の製造法 常圧気相流通式リアクターに超微粒子酸化亜鉛(比表面
積:40m2/g、一次粒子径40nm)100gを充
填し、減圧下、200℃で1時間焼成して前処理し、1
50℃まで冷却後、フッ素ガスを窒素ガスで希釈したガ
スをこのリアクターに15分間送り込み、フッ素化処理
を行なった。このフッ素化表面処理微粒子酸化亜鉛の比
表面積は40m2/gであり、高比表面積を維持してい
た。また、超微粒子酸化亜鉛のフッ素含有率をXPSに
より定量した結果、フッ素含有率は20%であった。こ
れらの結果を表1に示す。
Reference Example 4 Method for Producing Fluorinated Zinc Oxide 100 g of ultrafine zinc oxide (specific surface area: 40 m 2 / g, primary particle diameter: 40 nm) was charged into an atmospheric pressure gas-phase flow reactor, and the pressure was reduced to 200 ° C. at 200 ° C. 1 hour firing and pre-treatment
After cooling to 50 ° C., a gas obtained by diluting a fluorine gas with a nitrogen gas was fed into this reactor for 15 minutes to perform a fluorination treatment. The specific surface area of the fluorinated surface-treated fine particle zinc oxide was 40 m 2 / g, and the high specific surface area was maintained. Further, as a result of quantifying the fluorine content of the ultrafine zinc oxide by XPS, the fluorine content was 20%. Table 1 shows the results.

【0033】[0033]

【表1】 [Table 1]

【0034】実施例1:木材処理剤調製及び木材処理物
製造 参考例1から4で製造したフッ素化半導体微粒子A〜D
の5gを蒸留水100mlにそれぞれ懸濁し、木材処理
剤溶液を得た(処理剤溶液A〜D)。この処理剤溶液を
用いて、スギ木片(2cm×2cm×1cm、木口が2
cm×2cm、辺材)に対する含浸処理を行なった。な
お、含浸操作は、処理液中にスギ木片を浸漬した後に6
50〜700mmHgでの減圧を30分間実施し、さら
に浸漬したまま常圧に30分間置くことで行なった。こ
の含浸操作により、充分量の処理液(3.0から3.4g量)
が注入されていることを、含浸操作の前後の木片重量の
測定により確認した。さらに1週間の室温における養生
を行なった。次に、処理木片に水40mlを加え、水面
下に木片を沈めた状態で、マグネチックスターラーを用
いて回転子を回転させ、25±3℃で8時間の撹拌を行
なった後60℃の乾燥器中に48時間置き、さらに30
分間デシケータ中に置くことで十分に乾燥させ、処理木
片(木片A〜D)を得た。なお対照としてフッ素化され
ていない酸化チタン及び酸化亜鉛も同様の処理を行な
い、処理木片(木片E,F)を得た。この含浸操作によ
る処理液の注入量を算出したところ、両木片とも1g前
後であり酸化チタン及び酸化亜鉛の注入性の悪さが確認
された。
Example 1 Preparation of Wood Treatment Agent and Wood Treatment
Fluorinated semiconductor fine particles A to D produced in Production Reference Examples 1 to 4
Was suspended in 100 ml of distilled water to obtain wood treating agent solutions (treating agent solutions A to D). Using this treating agent solution, cedar wood chips (2 cm x 2 cm x 1 cm,
cm × 2 cm, sapwood). The impregnation operation was performed after immersing the cedar wood pieces in the treatment liquid.
Decompression at 50 to 700 mmHg was performed for 30 minutes, and furthermore, it was performed by placing the device at normal pressure for 30 minutes while immersed. By this impregnation operation, a sufficient amount of processing solution (3.0 to 3.4 g)
Was confirmed by measuring the weight of the wood pieces before and after the impregnation operation. Further curing was performed at room temperature for one week. Next, 40 ml of water was added to the treated pieces of wood, and the rotor was rotated with a magnetic stirrer under the condition that the pieces of wood were submerged under water. Place in the container for 48 hours, then 30
It was dried sufficiently by placing it in a desiccator for minutes, and treated wood pieces (wood pieces A to D) were obtained. As a control, unfluorinated titanium oxide and zinc oxide were subjected to the same treatment to obtain treated wood pieces (wood pieces E and F). When the injection amount of the treatment liquid by this impregnation operation was calculated, both wood pieces were around 1 g, and poor injection properties of titanium oxide and zinc oxide were confirmed.

【0035】実施例2:木材処理剤調製及び木材処理物
製造 100mlの蒸留水にピロガロール0.63gを溶解させ、
水酸化ナトリウムでpHを9.0に調整した後、参考例1
で製造したフッ素化半導体微粒子Aの5gを懸濁し、木
材処理剤溶液を得た(処理剤溶液G)。次に同じく10
0mlの蒸留水にピロガロール0.63g及び硫酸銅5水和
物1.25gを溶解させ、水酸化ナトリウムでpHを9.0に
調整した後、参考例1で製造したフッ素化半導体微粒子
Aの5gを懸濁し、木材処理剤溶液を得た(処理剤溶液
H)。なお対照として同様の組成でフッ素化半導体微粒
子Aだけを含まない処理剤溶液を調整した(処理剤溶液
G’及びH’)。この処理剤溶液を用いて実施例1と同
様の含浸操作、耐候操作を行ない、処理木片(処理木片
G、G’、H、H’)を得た。
Example 2 Preparation of Wood Treatment Agent and Wood Treatment
Production Dissolve 0.63 g of pyrogallol in 100 ml of distilled water,
Reference Example 1 after adjusting the pH to 9.0 with sodium hydroxide
5 g of the fluorinated semiconductor fine particles A produced in the above was suspended to obtain a wood treatment agent solution (treatment agent solution G). Next, 10
After dissolving 0.63 g of pyrogallol and 1.25 g of copper sulfate pentahydrate in 0 ml of distilled water and adjusting the pH to 9.0 with sodium hydroxide, 5 g of the fluorinated semiconductor fine particles A produced in Reference Example 1 was suspended, A wood treating agent solution was obtained (treating agent solution H). As a control, a processing solution having the same composition but not containing only the fluorinated semiconductor fine particles A was prepared (processing solutions G ′ and H ′). Using this treating agent solution, the same impregnation operation and weathering operation as in Example 1 were performed to obtain treated wood chips (treated wood chips G, G ′, H, H ′).

【0036】試験例:木材処理物の防腐性試験 実施例1及び2において調製された木片の抗菌試験を、
JIS A 9201(木材防腐剤の性能基準及び試験方法 1991
)に従って、オオウズラタケ(Tyromyces palustris)
FEPRI 0507(農林水産省森林総合研究所より入手)を用
いて実施した。ただし本試験は蛍光灯照射下において実
施した。抗菌操作後に木片を培養瓶から取り出し、木片
表面の菌糸を十分に取り除き、約24時間風乾した後、
前記と同様に、乾燥器とデシケータを用いて十分に乾燥
させてから重量を測定し、木片重量の減少率を算出し
た。その結果、本発明の木材処理方法により効果的に抗
菌性の付与が可能であることが示された。これらの詳細
な結果を表2に示す。
Test Example: Antiseptic test of treated wood The antibacterial test of the wood pieces prepared in Examples 1 and 2 was carried out.
JIS A 9201 (Wood preservative performance standards and test methods 1991
), According to the Japanese quail (Tyromyces palustris)
The test was performed using FEPRI 0507 (obtained from Forest Research Institute, Ministry of Agriculture, Forestry and Fisheries). However, this test was performed under fluorescent lamp irradiation. After the antibacterial operation, remove the wood chips from the culture bottle, sufficiently remove the mycelium on the wood chip surface, and air-dry for about 24 hours.
In the same manner as described above, the weight was measured after sufficiently drying using a drier and a desiccator, and the reduction rate of the weight of the wood piece was calculated. As a result, it was shown that the wood treatment method of the present invention can effectively impart antibacterial properties. Table 2 shows these detailed results.

【0037】[0037]

【表2】 [Table 2]

【0038】[0038]

【発明の効果】フッ素化処理した光触媒作用を有する半
導体微粒子を含有する本発明の処理剤を用いる多孔質物
品処理物の製造方法により、半導体微粒子の光触媒活
性、分散性が改善され、長期間有効な抗生物性、非環境
汚染性等の有用な効果を有する多孔質物品処理物を得る
ことが出来る。
According to the method for producing a treated article of porous article using the treating agent of the present invention containing a fluorinated semiconductor fine particle having a photocatalytic action, the photocatalytic activity and dispersibility of the semiconductor fine particle are improved, and the semiconductor fine particle is effective for a long time. It is possible to obtain a processed porous article having useful effects such as excellent antibiotic properties and non-environmental pollution.

フロントページの続き (51)Int.Cl.6 識別記号 FI B01J 35/02 B01J 35/02 J B27K 3/32 BBA B27K 3/32 BBA 3/52 BBA 3/52 BBAA C01G 9/04 C01G 9/04 17/04 17/04 23/02 23/02 A 45/00 45/00 55/00 55/00 (72)発明者 門田 隆二 千葉県千葉市緑区大野台1丁目1番1号 昭和電工株式会社総合研究所内Continued on the front page (51) Int.Cl. 6 Identification symbol FI B01J 35/02 B01J 35/02 J B27K 3/32 BBA B27K 3/32 BBA 3/52 BBA 3/52 BBAA C01G 9/04 C01G 9/04 17/04 17/04 23/02 23/02 A 45/00 45/00 55/00 55/00 (72) Inventor Ryuji Kadota 1-1-1 Ohnodai, Midori-ku, Chiba City, Chiba Prefecture Showa Denko KK In the laboratory

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 フッ素化処理した光触媒作用を有する半
導体微粒子を含有する処理剤を多孔質物品に塗布及び/
または含浸することを特徴とする多孔質物品処理物の製
造方法。
1. A method for coating a porous article with a treating agent containing fluorinated semiconductor fine particles having photocatalytic activity and / or
Alternatively, a method for producing a treated porous article characterized by impregnation.
【請求項2】 半導体微粒子が、TiO2、MnO2、Z
nO、RuO2、GeO2、Cs3Sb、InAs、In
Sb及びGaAsから選択される請求項1に記載の多孔
質物品処理物の製造方法。
2. The method according to claim 1, wherein the semiconductor fine particles are TiO 2 , MnO 2 , Z
nO, RuO 2 , GeO 2 , Cs 3 Sb, InAs, In
The method for producing a treated porous article according to claim 1, wherein the article is selected from Sb and GaAs.
【請求項3】 半導体微粒子がTiO2である請求項1
または2に記載の多孔質物品処理物の製造方法。
3. The method according to claim 1, wherein the semiconductor fine particles are TiO 2.
Or the method for producing a treated porous article according to item 2.
【請求項4】 半導体粒子の粒径が100μm以下であ
る請求項1乃至3のいずれかに記載の多孔質物品処理物
の製造方法。
4. The method for producing a treated porous article according to claim 1, wherein the particle size of the semiconductor particles is 100 μm or less.
【請求項5】 半導体粒子の粒径が1μm以下である請
求項4に記載の多孔質物品処理物の製造方法。
5. The method according to claim 4, wherein the semiconductor particles have a particle size of 1 μm or less.
【請求項6】 フッ素ガスによりフッ素化処理した半導
体粒子を使用する請求項1に記載の多孔質物品処理物の
製造方法。
6. The method according to claim 1, wherein semiconductor particles fluorinated with fluorine gas are used.
【請求項7】 処理剤が、さらにフェノール性化合物及
び/または金属化合物を含有する請求項1に記載の多孔
質物品処理物の製造方法。
7. The method according to claim 1, wherein the treating agent further contains a phenolic compound and / or a metal compound.
【請求項8】 フェノール性化合物及び/または金属化
合物を含有する処理剤による前処理、同時処理、あるい
は後処理を行なうことを特徴とする請求項1乃至6のい
ずれかに記載の多孔質物品処理物の製造方法。
8. The porous article treatment according to claim 1, wherein a pretreatment, a simultaneous treatment, or a post-treatment with a treatment agent containing a phenolic compound and / or a metal compound is performed. Method of manufacturing a product.
【請求項9】 フェノール性化合物がピロカテコール、
ハイドロキノン、ピロガロール、没食子酸、タンニン
酸、フェルラ酸、リグニン、リグニンスルホン酸及びこ
れらの誘導体から選ばれる少なくとも1種の化合物であ
る請求項7または8に記載の多孔質物品処理物の製造方
法。
9. The phenolic compound is pyrocatechol,
The method for producing a treated porous article according to claim 7 or 8, wherein the method is at least one compound selected from hydroquinone, pyrogallol, gallic acid, tannic acid, ferulic acid, lignin, ligninsulfonic acid, and derivatives thereof.
【請求項10】 金属化合物がジルコニウム、チタニウ
ム、バナジウム、モリブデン、マンガン、鉄、コバル
ト、ニッケル、パラジウム、銅、銀、亜鉛、カドミウ
ム、アルミニウム、錫、鉛、アンチモン、カルシウム、
マグネシウム及びバリウムから選ばれる少なくとも1種
の金属元素を含有する化合物である請求項7または8に
記載の多孔質物品処理物の製造方法。
10. The method according to claim 1, wherein the metal compound is zirconium, titanium, vanadium, molybdenum, manganese, iron, cobalt, nickel, palladium, copper, silver, zinc, cadmium, aluminum, tin, lead, antimony, calcium,
The method for producing a treated porous article according to claim 7 or 8, wherein the compound is a compound containing at least one metal element selected from magnesium and barium.
【請求項11】 多孔質物品への処理剤の含浸を加圧及
び/または減圧により行なう請求項1乃至10のいずれ
かに記載の多孔質物品処理物の製造方法。
11. The process for producing a treated porous article according to claim 1, wherein the impregnation of the treating agent into the porous article is performed by applying pressure and / or pressure.
【請求項12】 加圧を1〜20気圧で実施する請求項
11に記載の多孔質物品処理物の製造方法。
12. The method for producing a treated porous article according to claim 11, wherein the pressurization is performed at 1 to 20 atm.
【請求項13】 多孔質物品が植物由来の多孔質物品で
ある請求項1乃至12のいずれかに記載の多孔質物品処
理物の製造方法。
13. The method for producing a treated porous article according to claim 1, wherein the porous article is a plant-derived porous article.
【請求項14】 植物由来の多孔質物品が木材、木片、
木粉、木質加工品、モミ、藺草、藁、竹材、植物繊維、
または植物繊維加工品であることを特徴とする請求項1
3に記載の多孔質物品処理物の製造方法。
14. The plant-derived porous article is made of wood, wood chips,
Wood flour, wood products, fir, rush, straw, bamboo, plant fiber,
Or a processed vegetable fiber product.
4. The method for producing a treated porous article according to 3.
【請求項15】 請求項1乃至14のいずれかに記載の
製造方法で得られる多孔質物品処理物。
15. A treated porous article obtained by the production method according to claim 1. Description:
JP9358876A 1997-12-26 1997-12-26 Porous article treated product and its manufacture Pending JPH11188703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9358876A JPH11188703A (en) 1997-12-26 1997-12-26 Porous article treated product and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9358876A JPH11188703A (en) 1997-12-26 1997-12-26 Porous article treated product and its manufacture

Publications (1)

Publication Number Publication Date
JPH11188703A true JPH11188703A (en) 1999-07-13

Family

ID=18461565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9358876A Pending JPH11188703A (en) 1997-12-26 1997-12-26 Porous article treated product and its manufacture

Country Status (1)

Country Link
JP (1) JPH11188703A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001062309A (en) * 1999-08-30 2001-03-13 Akira Fujishima Photocatalyst membrane excellent in soil resistance and building exterior material utilizing the same and building exterior
JP2002136878A (en) * 2000-10-31 2002-05-14 Japan Atom Energy Res Inst Nonmetallic impurity-added photocatalytic material and its manufacturing method
WO2008132824A1 (en) * 2007-04-18 2008-11-06 Panasonic Corporation Titanium oxide photocatalyst and method for producing the same
WO2008132823A1 (en) * 2007-04-18 2008-11-06 Panasonic Corporation Photocatalytic material, photocatalytic member using the same, and purification device
JP2009297664A (en) * 2008-06-13 2009-12-24 Panasonic Corp Photocatalytic member and air cleaner
JP2010222266A (en) * 2009-03-19 2010-10-07 Panasonic Corp Antibacterial agent composition
JP2016538131A (en) * 2013-11-07 2016-12-08 チャイナ ペトロレウム アンド ケミカル コーポレーションChina Petroleum & Chemical Corporation Supported catalyst, process for producing the same and use thereof, and process for producing isobutylene from halomethane

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001062309A (en) * 1999-08-30 2001-03-13 Akira Fujishima Photocatalyst membrane excellent in soil resistance and building exterior material utilizing the same and building exterior
JP2002136878A (en) * 2000-10-31 2002-05-14 Japan Atom Energy Res Inst Nonmetallic impurity-added photocatalytic material and its manufacturing method
JP5156009B2 (en) * 2007-04-18 2013-03-06 パナソニック株式会社 Titanium oxide photocatalyst and method for producing the same
WO2008132823A1 (en) * 2007-04-18 2008-11-06 Panasonic Corporation Photocatalytic material, photocatalytic member using the same, and purification device
JPWO2008132824A1 (en) * 2007-04-18 2010-07-22 パナソニック株式会社 Titanium oxide photocatalyst and method for producing the same
US8148289B2 (en) 2007-04-18 2012-04-03 Panasonic Corporation Titanium oxide photocatalyst and method for producing the same
US8367050B2 (en) 2007-04-18 2013-02-05 Panasonic Corporation Photocatalytic material and photocatalytic member and purification device using the photocatalytic material
WO2008132824A1 (en) * 2007-04-18 2008-11-06 Panasonic Corporation Titanium oxide photocatalyst and method for producing the same
US8518848B2 (en) 2007-04-18 2013-08-27 Panasonic Corporation Titanium oxide photocatalyst and method for producing the same
JP5398525B2 (en) * 2007-04-18 2014-01-29 パナソニック株式会社 Photocatalytic material, photocatalytic member and purification apparatus using the same
JP2009297664A (en) * 2008-06-13 2009-12-24 Panasonic Corp Photocatalytic member and air cleaner
JP2010222266A (en) * 2009-03-19 2010-10-07 Panasonic Corp Antibacterial agent composition
JP2016538131A (en) * 2013-11-07 2016-12-08 チャイナ ペトロレウム アンド ケミカル コーポレーションChina Petroleum & Chemical Corporation Supported catalyst, process for producing the same and use thereof, and process for producing isobutylene from halomethane

Similar Documents

Publication Publication Date Title
Klemenčič et al. Biodegradation of silver functionalised cellulose fibres
Tomšič et al. Antimicrobial activity of AgCl embedded in a silica matrix on cotton fabric
Montazer et al. Functionality of nano titanium dioxide on textiles with future aspects: Focus on wool
CN105478792B (en) A kind of environment-friendly preparation method thereof of modification of chitosan nano silver colloidal sol
Syafiuddin Toward a comprehensive understanding of textiles functionalized with silver nanoparticles
Milošević et al. In situ photoreduction of Ag+-ions by TiO 2 nanoparticles deposited on cotton and cotton/PET fabrics
US20140370422A1 (en) Nanoparticles, Nanosponges, Methods of Synthesis, and Methods of Use
CN105038438B (en) A kind of preparation method of visible light catalytic coating
EP2192146A1 (en) A process for producing porous polymer masterbatch and fiber thereof having anti-bacterial and odor eliminating functions
CN106003309A (en) Preparing method for antibacterial and ultraviolet-resisting wood and obtained product
JPH11188703A (en) Porous article treated product and its manufacture
CN115652611B (en) Antibacterial medical textile and preparation method thereof
Joseph et al. Synthesis of silver nanoparticles by microwave irradiation and investigation of their catalytic activity
Ansari et al. Photocatalytic and antibacterial activity of silver/titanium dioxide/zinc oxide nanoparticles coated on cotton fabrics
CN105906723A (en) Preparation method for citric acid-modified carboxylated nanocrystalline cellulose
El-Bisi et al. Honey bee for eco-friendly green synthesis of silver nanoparticles and application to cotton textile
Abdelhamid Self-decontaminating antimicrobial textiles
El-Sheikh et al. Photosynthesis of Carboxymethyl Starch‐Stabilized Silver Nanoparticles and Utilization to Impart Antibacterial Finishing for Wool and Acrylic Fabrics
Xie et al. Anti-mildew properties of copper cured heat-treated wood
RU2256675C2 (en) Method of manufacturing silver-containing cellulose materials
CN110938230B (en) Multifunctional foamed natural rubber with high catalytic performance and antibacterial performance and preparation method thereof
CN110128739B (en) EVA (ethylene-vinyl acetate) foam material with surface loaded with modified titanium dioxide photocatalyst and preparation method thereof
Huang et al. Preparation and characterization of bamboo strips impregnation treated by silver-loaded thermo-sensitive nanogels
Nisansala et al. Zinc Oxide Nanostructures in the Textile Industry
CN114318948B (en) Antibacterial impregnated paper and preparation method and application thereof