JPH11188249A - Pressurized kneader - Google Patents

Pressurized kneader

Info

Publication number
JPH11188249A
JPH11188249A JP9360457A JP36045797A JPH11188249A JP H11188249 A JPH11188249 A JP H11188249A JP 9360457 A JP9360457 A JP 9360457A JP 36045797 A JP36045797 A JP 36045797A JP H11188249 A JPH11188249 A JP H11188249A
Authority
JP
Japan
Prior art keywords
rotor
kneading
kneading blade
stage
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9360457A
Other languages
Japanese (ja)
Inventor
Toshio Moriyama
俊夫 森山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KUSUNOKI KIKAI SEISAKUSHO KK
Original Assignee
KUSUNOKI KIKAI SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KUSUNOKI KIKAI SEISAKUSHO KK filed Critical KUSUNOKI KIKAI SEISAKUSHO KK
Priority to JP9360457A priority Critical patent/JPH11188249A/en
Publication of JPH11188249A publication Critical patent/JPH11188249A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • B29B7/06Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices
    • B29B7/10Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary
    • B29B7/18Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/183Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with more than one shaft having a casing closely surrounding the rotors, e.g. of Banbury type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • B29B7/06Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices
    • B29B7/10Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary
    • B29B7/18Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/183Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with more than one shaft having a casing closely surrounding the rotors, e.g. of Banbury type
    • B29B7/186Rotors therefor

Abstract

PROBLEM TO BE SOLVED: To provide a pressurized kneader exhibiting a high kneading effect irrespectively of the quality of the materials to be kneaded in the pressurized kneader for kneading the highly viscous materials such as rubber and plastic under pressure. SOLUTION: The shaft of a parallel two-shaft rotor pierces the opposed two side walls of a mixing tank to be charged with the materials to be kneaded, and a pressurizing lid for pressurizing the inside of the mixing tank is freely liftably furnished in this pressurized kneader. In this case, three kneading blades 12, 13 and 14 are so arranged that a clearance is not formed between the blades 12, 13 and 14 or between the blades 12, 13 and 14 and the end faces 10 and 11 of the rotor rotating direction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ゴム・プラスチッ
ク等の高粘性材料を加圧下でこね混ぜる加圧型ニーダに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressure type kneader for kneading a highly viscous material such as rubber and plastic under pressure.

【0002】[0002]

【従来の技術】加圧型ニーダは、分散型ニーダとも呼ば
れ、原料となる粉体または液体が混合槽内に仕込まれる
混合開始時から高粘性材料に練り上げる混練終了時ま
で、その容積変化に対応しながら常に所定圧力を混合槽
内に付勢続けるため、材料の分散効果に優れているとい
う利点がある。また、混練槽が反転するので内部の清掃
が容易であるなどの使い勝手の良さもある。一般に加圧
型ニーダは、バンバリーミキサー等に比べて容器の大き
さが小さく、しかも混合槽内のロータ羽根の占有容積比
が大きいため、従来は殆ど2枚羽根のロータが用いられ
ていた。
2. Description of the Related Art A pressure-type kneader is also called a dispersion-type kneader, and corresponds to a change in its volume from the start of mixing when powder or liquid as a raw material is charged into a mixing tank to the end of kneading where high-viscosity material is kneaded. However, since a predetermined pressure is constantly applied to the inside of the mixing tank, there is an advantage that the material is excellent in the effect of dispersing the material. In addition, the kneading tank is inverted, so that the inside can be easily cleaned. In general, a pressurized kneader has a smaller container size than a Banbury mixer or the like, and has a large occupied volume ratio of rotor blades in a mixing tank. Therefore, conventionally, almost two-bladed rotors have been used.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、2枚羽
根のロータでは、被混練材料の硬さ・粒度などのばらつ
きが大きい場合、あるいは粘性の高い液体の場合には、
混練後の成品品質の均質性が悪く、混練に長時間を要す
ることがあり、混練効果の向上が求められている。本発
明は、前記の点に鑑み、被混練材料の品質如何にかかわ
らず、高い混練効果を発揮する加圧型ニーダを提供する
ことを目的とする。
However, in the case of a two-bladed rotor, when the material to be kneaded has a large variation in hardness and particle size, or in the case of a highly viscous liquid,
The homogeneity of the product quality after kneading is poor, and it may take a long time for kneading, and there is a demand for improved kneading effects. In view of the above, an object of the present invention is to provide a pressurized kneader that exhibits a high kneading effect regardless of the quality of the material to be kneaded.

【0004】[0004]

【課題を解決するための手段】本発明の解決しようとす
る課題は以上の如くであり、次に該課題を解決するため
の手段を説明する。
The problem to be solved by the present invention is as described above. Next, means for solving the problem will be described.

【0005】即ち、混練すべき材料を収容する混合槽の
相対向する二側壁を平行二軸ロータの軸が貫通し、該混
合槽内を加圧する加圧蓋が昇降自在に設けられた加圧型
ニーダにおいて、前記平行二軸ロータは各々3枚の混練
羽根を有し、該混練羽根同士または該混練羽根とロータ
端面との間には、ロータ回転方向からみて隙間が無い構
成としたものである。
More specifically, a pressurizing type in which a shaft of a parallel twin-shaft rotor penetrates two opposing side walls of a mixing tank for accommodating materials to be kneaded, and a pressurizing lid for pressurizing the inside of the mixing tank is provided so as to be able to move up and down. In the kneader, each of the parallel biaxial rotors has three kneading blades, and there is no gap between the kneading blades or between the kneading blades and the rotor end face when viewed from the rotor rotation direction. .

【0006】更に、前記3枚の混練羽根のうち、第1の
混練羽根は、その一端がロータの一端面に始まり、その
他端はロータの他端面側に向かって延設され、回転によ
り材料をロータの該一端面側から該他端面側へ移送可能
な一段若しくは多段からなる傾きを持ち、第2の混練羽
根は、その一端がロータの前記他端面に始まり、その他
端はロータの前記一端面側に向かって延設され、回転に
より材料をロータの該他端面側から該一端面側へ移送可
能な一段若しくは多段からなる傾きを持ち、第3の混練
羽根は、前記第1の混練羽根と前記第2の混練羽根との
間に配設され、その一端はロータの前記一端面と所定の
間隔を有し、その他端はロータの前記他端面と所定の間
隔を有し、一段若しくは多段からなる傾きを持たせたも
のである。
Further, among the three kneading blades, the first kneading blade has one end which starts at one end face of the rotor and the other end which extends toward the other end face of the rotor, and which rotates to remove material. The second kneading blade has a one-stage or multi-stage inclination that can be transferred from the one end surface side to the other end surface side of the rotor, and one end of the second kneading blade starts at the other end surface of the rotor, and the other end is the one end surface of the rotor. The third kneading blade has a one-stage or multi-stage inclination capable of transferring the material from the other end surface side of the rotor to the one end surface side by rotation, and the third kneading blade is provided with the first kneading blade. Disposed between the second kneading blade, one end of which has a predetermined interval with the one end surface of the rotor, the other end has a predetermined interval with the other end surface of the rotor, from one stage or multi-stage It has a certain inclination.

【0007】前記第3の混練羽根は一個の屈曲点を有す
る二段の部分からなり、該部分のうちの一段部は、前記
屈曲点を中心に、ロータ回転向きと逆方向を始点とし、
前記第2の混練羽根から離間する方向に90度回転させ
た位置を終点とする回転範囲内に設け、他段部は、前記
屈曲点を中心に、ロータ回転向きの方向を始点とし、前
記第2の混練羽根に平行になるまで接近させた位置を終
点とする回転範囲内に設け、更に、該他段部のロータ回
転軸方向に対する角度を前記一段部よりも大きくしたも
のである。
[0007] The third kneading blade comprises a two-stage portion having one bending point, and one of the portions has a starting point in the direction opposite to the rotor rotation direction around the bending point,
Provided in a rotation range having an end point at a position rotated by 90 degrees in a direction away from the second kneading blade, the other step portion having the bending point as a center and a rotor rotation direction as a start point, The second stage is provided within a rotation range ending at a position close to the kneading blade until it becomes parallel to the kneading blade, and the angle of the other stage with respect to the direction of the rotor rotation axis is larger than that of the first stage.

【0008】また、前記第3の混練羽根は一個の屈曲点
を有する二段の部分からなり、該部分のうちの一段部
は、前記屈曲点を中心に、ロータ回転向きと逆方向を始
点とし、前記第2の混練羽根から離間する方向に90度
回転させた位置を終点とする回転範囲内に設け、他段部
は、前記屈曲点を中心に、ロータ回転向きと逆方向を始
点とし、前記一段部から離間する方向に90度回転させ
た位置を終点とする回転範囲内に設け、更に、該一段部
と該他段部との内角を180度未満としたものである。
Further, the third kneading blade comprises a two-stage portion having one bending point, and one of the portions has a starting point in the direction opposite to the rotor rotation direction around the bending point. Provided in a rotation range having an end point at a position rotated by 90 degrees in a direction away from the second kneading blade, and the other step portion has the bending point as a center and a start point in a direction opposite to the rotor rotation direction, It is provided within a rotation range ending at a position rotated by 90 degrees in a direction away from the first step, and further, an inner angle between the first step and the other step is less than 180 degrees.

【0009】また、前記平行二軸ロータの回転速度を互
いに変えたもの、あるいは、前記平行二軸ロータの混練
羽根の稜の軌跡が互いに干渉するかみ合い型でもよい。
[0009] The rotation speed of the parallel twin-shaft rotor may be mutually changed, or a mesh type in which the trajectories of the ridges of the kneading blades of the parallel twin-shaft rotor interfere with each other.

【0010】[0010]

【発明の実施の形態】次に本発明の実施の形態を説明す
る。図1に本発明の実施例の正面図の部分断面図、図2
に図1の混合槽の平面図、図3は本発明の平行二軸ロー
タを共に展開して示す説明図、図4から図9は混合槽内
のロータの円周方向展開図、図10から図17は混合槽
内のロータによる材料流れの説明図、図18、図19は
本発明の二軸ロータのかみ合い状態の例を示す断面図、
図20、図21は本発明の二軸ロータのかみ合い関係を
一本ロータ上に重ねて表現して示す展開図である。
Next, an embodiment of the present invention will be described. FIG. 1 is a partial sectional view of a front view of an embodiment of the present invention, and FIG.
1 is a plan view of the mixing tank of FIG. 1, FIG. 3 is an explanatory view showing the parallel twin-screw rotor of the present invention together, FIG. 4 to FIG. 9 are circumferential development views of the rotor in the mixing tank, and FIG. FIG. 17 is an explanatory view of a material flow by a rotor in a mixing tank, FIGS. 18 and 19 are cross-sectional views showing an example of a meshed state of a two-shaft rotor of the present invention,
FIG. 20 and FIG. 21 are development views showing the meshing relationship of the two-shaft rotor of the present invention by superimposing it on one rotor.

【0011】まず、本発明に係わる加圧型ニーダの全体
構成を図1、図2、図3により説明する。被混練材料を
収容する混合槽1は上面の開口部が長方形であり、相対
向する二側壁2a、2bを平行二軸ロータ軸3、4が貫
通し、該平行二軸ロータ軸3、4上には各々混練羽根
5、6が設けられ、ロータ8、9を構成している。該混
練羽根5、6は、同一形状、同一配列のものを2本準備
しロータの一端と他端を互いに反対にしてロータ軸に装
着させたものである。なお、図3の矢印はロータの回転
方向を示す。また、混合槽1の上方には図示しないエア
ーシリンダにより昇降制御される加圧蓋7が設けられて
おり、材料投入後、加圧状態で混練が行われる。
First, the overall structure of the pressurized kneader according to the present invention will be described with reference to FIGS. The mixing tank 1 containing the material to be kneaded has a rectangular opening on the upper surface, and the parallel two-axis rotor shafts 3 and 4 penetrate the opposed two side walls 2a and 2b. Are provided with kneading blades 5 and 6, respectively, and constitute rotors 8 and 9. The kneading blades 5 and 6 have the same shape and the same arrangement, and are mounted on the rotor shaft with one end and the other end of the rotor being opposite to each other. The arrow in FIG. 3 indicates the rotation direction of the rotor. Further, a pressure lid 7 is provided above and below the mixing tank 1 and controlled to be lifted and lowered by an air cylinder (not shown). After the material is charged, kneading is performed in a pressurized state.

【0012】以上のような全体構成から成る加圧型ニー
ダにおける混練羽根の配置について、図4から図9を用
いて説明する。なお、いずれも、混合槽1内のロータを
円周方向に展開した図であり、混練羽根の稜線のみを示
し、その周りに形成される斜面は省いている。図4は、
混練羽根が3枚の場合を示す。混練羽根12と14とは
12a−12c(14a−14c)で重なり、混練羽根
13と14とは13a−13b(14a−14b)で重
なり、さらに各混練羽根12、13、14の一端はロー
タ端面と接するように配置することにより、混練羽根同
士または混練羽根とロータ端面との間には、ロータ回転
方向からみて隙間が無いような構成としている。
The arrangement of the kneading blades in the pressurized kneader having the above-described overall configuration will be described with reference to FIGS. Each of the drawings is a view in which the rotor in the mixing tank 1 is developed in the circumferential direction, shows only the ridge line of the kneading blade, and omits a slope formed therearound. FIG.
The case where three kneading blades are used is shown. The kneading blades 12 and 14 overlap at 12a-12c (14a-14c), the kneading blades 13 and 14 overlap at 13a-13b (14a-14b), and one end of each kneading blade 12, 13, and 14 is a rotor end face. The configuration is such that there is no gap between the kneading blades or between the kneading blades and the rotor end face when viewed from the rotor rotation direction.

【0013】図5は、前記のような3枚羽根型ロータに
おいて、より混練効果を高めた場合の配置を示す。即
ち、第1の混練羽根15は、その一端15aがロータの
一端面10に始まり、その他端15bはロータの他端面
11に向かって延設され、ロータの回転により材料をロ
ータの一端面10からロータの他端面側11へ矢印15
cにそって移送する向きの一段若しくは多段(本実施例
では一段)からなる傾きを持っている。第2の混練羽根
16は、その一端16aがロータの他端面11に始ま
り、その他端16bはロータの一端面10に向かって延
設され、ロータの回転により材料をロータの他端面11
からロータの一端面側10へ矢印16cにそって移送す
る向きの一段若しくは多段(本実施例では一段)からな
る傾きを持っている。第3の混練羽根17は、前記第1
の混練羽根15と前記第2の混練羽根16との間に配設
され、その稜線の一端17aがロータの他端面11と所
定の間隔17dを隔てて始まり、ロータの中央を越えて
伸び、その稜線の他端17bがロータの一端面10と所
定の間隔17eを隔てて終わり、ロータの回転により材
料をロータの他端面11側より一端面10側へ矢印17
cにそって移送する向きの一段若しくは多段(本実施例
では一段)からなる傾きを持っている。
FIG. 5 shows an arrangement in which the kneading effect is further enhanced in the three-blade rotor as described above. That is, the first kneading blade 15 has one end 15a that starts at the one end face 10 of the rotor and the other end 15b that extends toward the other end face 11 of the rotor. Arrow 15 toward the other end surface 11 of the rotor
It has a single-stage or multi-stage (one-stage in this embodiment) inclination for transport along c. The second kneading blade 16 has one end 16a which starts at the other end face 11 of the rotor, and the other end 16b which extends toward the one end face 10 of the rotor, and rotates the rotor to rotate the other end face 11 of the rotor.
From one to the one end surface 10 of the rotor along the arrow 16c. The third kneading blade 17 is connected to the first kneading blade 17.
Is arranged between the kneading blade 15 and the second kneading blade 16, and one end 17a of the ridge line starts at a predetermined interval 17d from the other end surface 11 of the rotor and extends beyond the center of the rotor. The other end 17b of the ridge line ends at a predetermined interval 17e from the one end face 10 of the rotor, and the material is moved from the other end face 11 side of the rotor to the one end face 10 by the rotation of the rotor.
It has a single-stage or multi-stage (one-stage in this embodiment) inclination for transport along c.

【0014】更に、混練状況に及ぼす前記第3の混練羽
根の形状の影響を、該第3の混練羽根が二段の部分から
なる場合について詳細に調査した結果、材料の破砕・分
断に優れる「高破砕タイプ」とロータ回転軸の軸受けに
かかるスラスト力を軽減可能な「負荷軽減タイプ」に分
類できることが判明した。そこで、まず「高破砕タイ
プ」について、図6、図7により説明する。図6中の第
3の混練羽根20は、一個の屈曲点20aを有する二段
の部分からなる。このうちの一段部20a−20bは、
前記屈曲点20aを中心に、ロータ回転向きと逆方向2
0eを始点とし、第2の混練羽根から離間する方向に9
0度回転させた位置を終点とする回転範囲20X内に設
ける。一方、他段部20a−20cは、前記屈曲点20
aを中心に、ロータ回転向きの方向20dを始点とし、
前記第2の混練羽根に平行になるまで接近させた位置を
終点とする回転範囲20Y内に設ける。更に、他段部2
0a−20cのロータ回転軸方向20fに対する角度2
0Zを、一段部20a−20bのロータ回転軸方向20
fに対する角度20Wよりも大きくする。なお、図6で
は一段部20a−20bの傾きを第2の混練羽根19と
同じ、すなわち平行に設定しているが、前記の条件下で
あれば被混練材料の品質に応じた種々の組み合わせが可
能であり、図7の21のように一段部21a−21bの
傾きを第2の混練羽根26と異なるものに変え、更に他
段部21a−21cの傾きも変化させてもよい。
Further, the effect of the shape of the third kneading blade on the kneading condition was examined in detail in the case where the third kneading blade had a two-stage portion, and as a result, the material was excellent in crushing and cutting of the material. It became clear that it can be classified into "high crush type" and "load reduction type" which can reduce the thrust force applied to the bearing of the rotor rotating shaft. Therefore, the “high crush type” will be described first with reference to FIGS. The third kneading blade 20 in FIG. 6 includes a two-stage portion having one bending point 20a. One of the steps 20a-20b is
A direction opposite to the rotor rotation direction around the bending point 20a.
0e as a starting point, and 9e in a direction away from the second kneading blade.
It is provided within a rotation range 20X whose end point is a position rotated by 0 degrees. On the other hand, the other steps 20a-20c
centering on a, the starting point is the direction 20d in the direction of rotor rotation,
It is provided within a rotation range 20Y whose end point is a position approached until it is parallel to the second kneading blade. Further, another step portion 2
Angle 2 of 0a-20c with respect to rotor rotation axis direction 20f
0Z, the rotor rotation axis direction 20 of the one-step portions 20a-20b.
The angle is larger than 20 W with respect to f. In FIG. 6, the inclination of the one-stage portions 20 a-20 b is set to be the same as that of the second kneading blade 19, that is, parallel to the second kneading blade 19, but under the above-mentioned conditions, various combinations according to the quality of the material to be kneaded may be made. It is possible to change the inclination of the first step 21a-21b to be different from that of the second kneading blade 26 as shown at 21 in FIG. 7, and also change the inclination of the other steps 21a-21c.

【0015】次に、「負荷軽減タイプ」について、図
8、図9により説明する。図8中の第3の混練羽根24
は、一個の屈曲点24aを有する二段の部分からなる。
このうちの一段部24a−24bは、前記屈曲点24a
を中心に、ロータ回転向きと逆方向24eを始点とし、
前記第2の混練羽根23から離間する方向に90度回転
させた位置を終点とする回転範囲24X内に設ける。他
段部24a−24cは、前記屈曲点24aを中心に、ロ
ータ回転向きと逆方向を始点24eとし、前記一段部2
4a−24bから離間する方向に90度回転させた位置
を終点とする回転範囲24Y内に設ける。更に、一段部
24a−24bと他段部24a−24cとの内角24Z
を180度未満とする。なお、図8では一段部24a−
24bの傾きを第2の混練羽根23と同じ、すなわち平
行に設定しているが、前記の条件下であれば被混練材料
の品質に応じた種々の組み合わせが可能であり、図9の
25のように屈曲点25aを中心に第2の混練羽根25
全体を回転させてもよく、特に限定されるものではな
い。また、図6、図7、図8、図9においては、第3の
混練羽根20・21・24・25は、屈曲点20a・2
1a・24a・25aを一個としているが、それらを複
数個設定し、その折り曲げ方向をロータ回転向きと同じ
側または逆側に設定し、多段からなる傾きを有する第3
の混練羽根として形成してもよい。
Next, the "load reduction type" will be described with reference to FIGS. The third kneading blade 24 in FIG.
Consists of a two-stage portion having one bending point 24a.
One of the steps 24a-24b is provided at the bending point 24a.
Centered on the rotation direction 24e and the reverse direction 24e as a starting point,
It is provided in a rotation range 24X whose end point is a position rotated 90 degrees in a direction away from the second kneading blade 23. The other step portions 24a to 24c have a starting point 24e in a direction opposite to the rotor rotation direction around the bending point 24a, and
It is provided in a rotation range 24Y whose end point is a position rotated by 90 degrees in a direction away from 4a-24b. Further, the inner angle 24Z between the first step 24a-24b and the other step 24a-24c.
Is less than 180 degrees. In FIG. 8, the one-stage portion 24a-
Although the inclination of 24b is set to be the same as that of the second kneading blade 23, that is, parallel to the second kneading blade 23, various combinations according to the quality of the material to be kneaded are possible under the above-described conditions. The second kneading blade 25 around the bending point 25a
The whole may be rotated, and there is no particular limitation. 6, 7, 8, and 9, the third kneading blades 20, 21, 24, and 25 have bending points 20a and 2
1a, 24a, and 25a are set to one, but a plurality of them are set, and the bending direction is set to the same side or the opposite side to the rotor rotation direction, and a third step having a multi-step inclination is set.
May be formed as a kneading blade.

【0016】次に、混練羽根を前記のように配置した場
合の材料の流れおよび混練効果について、図10から図
17を用いて説明する。なお、材料の流れは矢印にて示
す。図10に本発明の3枚羽根型ロータによる材料の流
れを、図16には従来の2枚羽根型ロータによる材料の
流れを、更に、図17には3枚羽根型ロータでもロータ
回転方向からみて隙間を有する場合の材料の流れを示
す。
Next, the flow of material and the effect of kneading when the kneading blades are arranged as described above will be described with reference to FIGS. The flow of the material is indicated by arrows. FIG. 10 shows the material flow by the three-blade rotor of the present invention, FIG. 16 shows the material flow by the conventional two-blade rotor, and FIG. 17 also shows the three-blade rotor from the rotor rotation direction. The flow of the material when there is a gap is shown.

【0017】混練羽根の枚数を2枚から3枚に増やすこ
とにより、図10、図16のように材料が混練羽根に衝
突、破砕される頻度も増えるため、材料の均質化も促進
される。しかしながら、図17のように前記ロータの他
端面11と混練羽根との間に一箇所にでも全周に渡る隙
間を有すると、材料流れに対する抵抗の小さい該隙間周
辺のみに粗大、あるいは高粘性の未混練材料が集中し、
混練羽根による破砕・分配作用が十分発揮できないので
ある。
By increasing the number of kneading blades from two to three, as shown in FIGS. 10 and 16, the frequency at which the material collides with and crushes the kneading blades is increased, and the homogenization of the material is promoted. However, as shown in FIG. 17, if there is a gap over the entire circumference even at one place between the other end face 11 of the rotor and the kneading blade, a coarse or high-viscosity material is formed only around the gap having low resistance to material flow. Unmixed ingredients are concentrated,
The crushing and distributing effects of the kneading blades cannot be sufficiently exhibited.

【0018】図11には、本発明の3枚羽根型ロータに
おいて、更に混練効果を高めた場合の材料の流れを示
す。第1の混練羽根15の回転により材料はロータの一
端10から他端の11の方へ送られ、その後、第3の混
練羽根17の回転により再び一端10の方へ戻されるも
の17Fと、第3の混練羽根17の一端17aとロータ
の他端11の間を通り抜け第2の混練羽根16の回転に
よりロータの一端10の方へ戻されるもの16Fに分流
し、この分流したものが第1の混練羽根15の回転によ
り合流するのである。このようにして、被混練材料の破
砕と分配が効果的に行われるので均質化が早く進み、被
混練材料に対しての熱の伝わり方も均一化して速くなる
ため、練り時間が短縮し生産性が向上する。
FIG. 11 shows the flow of materials when the kneading effect is further enhanced in the three-blade rotor of the present invention. The material is sent from one end 10 of the rotor to the other end 11 by the rotation of the first kneading blade 15, and then returned to the one end 10 by the rotation of the third kneading blade 17. 3 passes between one end 17a of the kneading blade 17 and the other end 11 of the rotor, and is diverted to the one 16F which is returned toward the one end 10 of the rotor by the rotation of the second kneading blade 16, and the diverted portion is the first. This is because the kneading blades 15 are joined by rotation. In this way, the material to be kneaded is effectively crushed and distributed, so that the homogenization proceeds quickly, and the heat transfer to the material to be kneaded is also uniformized and accelerated, so that the kneading time is shortened and the production is shortened. The performance is improved.

【0019】図12に、前記高破砕タイプにおける材料
の流れを示す。材料は、第1の混練羽根18の回転によ
りロータの一端10から他端の11の方へ送られた後、
該材料の流れに対向して配置された第3の混練羽根20
の一端20cにより、効果的に破砕・分断される。その
後は、図11の場合と同様に、第3の混練羽根20の回
転により再び一端10の方へ戻されるもの20Fと、第
3の混練羽根20の屈曲点20aとロータの他端11の
間を通り抜け第2の混練羽根19の回転によりロータの
一端10の方へ戻されるもの19Fに分流し、この分流
したものが第1の混練羽根18の回転により合流するの
である。このようにして、被混練材料の破砕・分断をよ
り効果的に達成することが可能となり、特に混練後の材
料の均質化を著しく促進することができる。図13に
は、前記一段部の傾きが第2の混練羽根と異なり、しか
も前記他段部の傾きも図12とは異なる場合の材料の流
れを示すが、この場合の第3の混練羽根21は全体が材
料の流れに対し図12の場合よりも鋭角に切り込む形で
配置されているため、混練による材料の均質化は更に向
上する。
FIG. 12 shows the flow of materials in the high crush type. After the material is sent from one end 10 of the rotor to the other end 11 by the rotation of the first kneading blade 18,
Third kneading blades 20 arranged opposite to the material flow
Is effectively crushed and divided by the one end 20c. Thereafter, as in the case of FIG. 11, the second kneading blade 20 is returned to the one end 10 again by the rotation of the third kneading blade 20, between the bending point 20 a of the third kneading blade 20 and the other end 11 of the rotor. , And is diverted to the one 19F which is returned toward the one end 10 of the rotor by the rotation of the second kneading blade 19, and the diverted one is joined by the rotation of the first kneading blade 18. In this way, it is possible to more effectively achieve the crushing and cutting of the material to be kneaded, and it is possible to remarkably promote the homogenization of the material after kneading. FIG. 13 shows the flow of the material when the inclination of the one step portion is different from that of the second kneading blade and the inclination of the other step portion is also different from that of FIG. 12. Are arranged so as to be cut at an acute angle to the flow of the material as compared with the case of FIG. 12, so that the homogenization of the material by kneading is further improved.

【0020】図14には、前記負荷軽減タイプにおける
材料の流れを示す。材料は、第1の混練羽根22の回転
によりロータの一端10から他端の11の方へ送られた
後、該材料の流れは他段部24a−24cと一段部24
a−24bに沿い、左右の流れの24Gと24Fとに振
り分けられる。これにより、該一段部24a−24bの
みから負荷されていたスラスト力が、該他段部24a−
24cから負荷されるスラスト力によってかなり相殺さ
れるため、軸受けにかかる負担を軽減できるのである。
その後は、図11の場合と同様に、第3の混練羽根24
の回転により再び一端10の方へ戻される前記24F
と、第3の混練羽根24の屈曲点24aとロータの他端
11の間を通り抜け第2の混練羽根23の回転によりロ
ータの一端10の方へ戻されるもの23Fに分流し、こ
の分流したものが第1の混練羽根22の回転により合流
するのである。図15には、第3の混練羽根を屈曲点を
中心に回転させた場合を示す。材料の流れに対する第3
の混練羽根25の抵抗は、図14の場合に比べ、大面積
の一段部25a−25bでは減少し、小面積の他段部2
5a−25cでは増加するため、スラスト力の相殺がい
っそう進み軸受けにかかる負担も更に減少する。
FIG. 14 shows the flow of materials in the load reduction type. After the material is sent from one end 10 of the rotor to the other 11 by the rotation of the first kneading blade 22, the flow of the material is changed to the other steps 24a-24c and the one step 24.
It is divided into 24G and 24F of left and right flows along a-24b. As a result, the thrust force applied from only one of the steps 24a-24b is reduced.
This is largely offset by the thrust force applied from 24c, so that the load on the bearing can be reduced.
Thereafter, as in the case of FIG.
24F returned to one end 10 again by the rotation of
, Which passes between the bending point 24a of the third kneading blade 24 and the other end 11 of the rotor and is returned toward the one end 10 of the rotor by the rotation of the second kneading blade 23, and is diverted to the diverted portion 23F. Are joined by the rotation of the first kneading blade 22. FIG. 15 shows a case where the third kneading blade is rotated about a bending point. Third for material flow
The resistance of the kneading blade 25 is smaller in the large-area one-stage sections 25a-25b than in the case of FIG.
In the case of 5a-25c, the thrust force is offset more, and the load on the bearing is further reduced.

【0021】本発明は、二軸ロータの軸間距離の設定に
より、図18に示すように、混練羽根の稜の軌跡27、
28が互いに干渉するかみ合い型と、図19に示すよう
に互いに干渉しない非かみ合い型のいずれによっても実
施することができる。図19に示す非かみ合い型の場
合、二軸ロータの回転速度が互いに異なるよう回転駆動
することができる。
According to the present invention, as shown in FIG. 18, the trajectory 27 of the ridge of the kneading blade,
The present invention can be implemented by either a meshing type in which the 28s interfere with each other or a non-meshing type in which they do not interfere with each other as shown in FIG. In the case of the non-meshing type shown in FIG. 19, the two-shaft rotor can be rotationally driven so that the rotational speeds thereof are different from each other.

【0022】図20、図21に、二軸のロータが互いに
同速度で回転する場合の両ロータのかみ合い関係を展開
図により示す。一方のロータの一端面10が他方のロー
タの他端面に対応し、一方のロータの他端面11が他方
のロータの一端面に対応している。
FIGS. 20 and 21 are exploded views showing the meshing relationship between the two shafts when the two shafts rotate at the same speed. One end face 10 of one rotor corresponds to the other end face of the other rotor, and the other end face 11 of one rotor corresponds to one end face of the other rotor.

【0023】[0023]

【発明の効果】本発明によれば、材料対流性に優れてい
るため、効率的で迅速な材料の破砕と混合、および熱の
均一な伝播が行われ、その結果、被混練材料の品質如何
にかかわらず、練り材料の均質化、高分散、短時間混練
が可能となる。更に、前記第3の混練羽根の形状を制御
することにより、材料の破砕・分断効果を更に高めるこ
とができ、また、長時間使用時の軸受けにかかる負担も
軽減することができる。
According to the present invention, since the material has excellent convection, efficient and rapid crushing and mixing of the material and uniform transmission of heat are performed, and as a result, the quality of the material to be kneaded is determined. Irrespective of this, homogenization, high dispersion, and short-time kneading of the kneaded material are possible. Further, by controlling the shape of the third kneading blade, the effect of crushing and separating the material can be further enhanced, and the load on the bearing during long-time use can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の正面図の部分断面図である。FIG. 1 is a partial sectional view of a front view of an embodiment of the present invention.

【図2】図1の混合槽1の平面図である。FIG. 2 is a plan view of the mixing tank 1 of FIG.

【図3】本発明の平行二軸ロータを共に展開して示す作
用説明図である。
FIG. 3 is an operation explanatory view showing the parallel twin-shaft rotor of the present invention in a developed state.

【図4】本発明のロータの円周方向展開図である。FIG. 4 is a circumferential development view of the rotor of the present invention.

【図5】同じく混練効果を高めたものの円周方向展開図
である。
FIG. 5 is a circumferential development of the same kneading effect.

【図6】同じく更に高破砕タイプの円周方向展開図の一
例である。
FIG. 6 is an example of a circumferentially expanded view of a further high crush type.

【図7】同じく高破砕タイプの円周方向展開図の他の例
である。
FIG. 7 is another example of a circumferentially developed view of the high crushing type.

【図8】同じく負荷軽減タイプの円周方向展開図の一例
である。
FIG. 8 is an example of a circumferentially expanded view of the load reduction type.

【図9】同じく負荷軽減タイプの円周方向展開図の他の
例である。
FIG. 9 is another example of a circumferential development of the load reduction type.

【図10】本発明のロータによる材料流れの説明図であ
る。
FIG. 10 is an explanatory diagram of a material flow by the rotor of the present invention.

【図11】同じく混練効果を高めたものの材料流れの説
明図である。
FIG. 11 is an explanatory diagram of a material flow of the same kneading effect.

【図12】同じく更に高破砕タイプの材料流れの一例の
説明図である。
FIG. 12 is an explanatory diagram of an example of a material flow of a further high crush type.

【図13】同じく高破砕タイプの材料流れの他の例の説
明図である。
FIG. 13 is an explanatory view of another example of the material flow of the high crushing type.

【図14】同じく負荷軽減タイプの材料流れの一例の説
明図である。
FIG. 14 is an explanatory diagram of an example of a material flow of a load reduction type.

【図15】同じく負荷軽減タイプの材料流れの他の例の
説明図である。
FIG. 15 is an explanatory diagram of another example of the material flow of the load reduction type.

【図16】従来の2枚羽根型ロータでの材料流れの説明
図である。
FIG. 16 is an explanatory diagram of a material flow in a conventional two-bladed rotor.

【図17】本発明以外の3枚羽根型ロータでの材料流れ
の説明図である。
FIG. 17 is an explanatory diagram of a material flow in a three-blade rotor other than the present invention.

【図18】本発明の二軸ロータのかみ合い状態の一例を
示す断面図である。
FIG. 18 is a cross-sectional view showing an example of an engaged state of the two-shaft rotor of the present invention.

【図19】同じくかみ合い状態の他の例を示す断面図で
ある。
FIG. 19 is a cross-sectional view showing another example of the meshing state.

【図20】本発明の二軸ロータのかみ合い関係の一例を
一本ロータ上に重ねて表現して示す展開図である。
FIG. 20 is a developed view showing an example of the meshing relationship of the two-shaft rotor according to the present invention, which is superimposed on a single rotor.

【図21】本発明の二軸ロータのかみ合い関係の他の例
を一本ロータ上に重ねて表現して示す展開図である。
FIG. 21 is an exploded view showing another example of the meshing relationship of the two-shaft rotor of the present invention by superimposing it on a single rotor.

【符号の説明】[Explanation of symbols]

1 混合槽 2a、2b 混合槽の側壁 3、4 ロータ軸 5、6 混練羽根 7 加圧蓋 8、9 ロータ 10 ロータの一端面 11 ロータの他端面 12、13、14 混練羽根 15 第1の混練羽根 16 第2の混練羽根 17 第3の混練羽根 20、21 高破砕タイプの第3の混練羽根 24、25 負荷軽減タイプの第3の混練羽根 DESCRIPTION OF SYMBOLS 1 Mixing tank 2a, 2b Side wall of mixing tank 3, 4 Rotor shaft 5, 6 Kneading blade 7 Pressure lid 8, 9 Rotor 10 One end face of rotor 11 The other end face of rotor 12, 13, 14 Kneading blade 15 First kneading Blade 16 Second kneading blade 17 Third kneading blade 20, 21 High crushing type third kneading blade 24, 25 Load reducing type third kneading blade

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 混練すべき材料を収容する混合槽の相対
向する二側壁を平行二軸ロータの軸が貫通し、該混合槽
内を加圧する加圧蓋が昇降自在に設けられた加圧型ニー
ダにおいて、前記平行二軸ロータは各々3枚の混練羽根
を有し、該混練羽根同士または該混練羽根とロータ端面
との間には、ロータ回転方向からみて隙間が無い構成と
したことを特徴とする加圧型ニーダ。
1. A pressure type in which a shaft of a parallel twin-screw rotor penetrates two opposite side walls of a mixing vessel containing materials to be kneaded, and a pressure lid for pressurizing the inside of the mixing vessel is provided so as to be movable up and down. In the kneader, each of the parallel biaxial rotors has three kneading blades, and there is no gap between the kneading blades or between the kneading blades and the rotor end face when viewed from the rotor rotation direction. Pressurized kneader.
【請求項2】 前記3枚の混練羽根のうち、第1の混練
羽根は、その一端がロータの一端面に始まり、その他端
はロータの他端面側に向かって延設され、回転により材
料をロータの該一端面側から該他端面側へ移送可能な一
段若しくは多段からなる傾きを持ち、第2の混練羽根
は、その一端がロータの前記他端面に始まり、その他端
はロータの前記一端面側に向かって延設され、回転によ
り材料をロータの該他端面側から該一端面側へ移送可能
な一段若しくは多段からなる傾きを持ち、第3の混練羽
根は、前記第1の混練羽根と前記第2の混練羽根との間
に配設され、その一端はロータの前記一端面と所定の間
隔を有し、その他端はロータの前記他端面と所定の間隔
を有し、一段若しくは多段からなる傾きを持たせたこと
を特徴とする請求項1記載の加圧型ニーダ。
2. The first kneading blade of the three kneading blades has one end starting at one end of the rotor and the other end extending toward the other end of the rotor. The second kneading blade has a one-stage or multi-stage inclination that can be transferred from the one end surface side to the other end surface side of the rotor, and one end of the second kneading blade starts at the other end surface of the rotor, and the other end is the one end surface of the rotor. The third kneading blade has a one-stage or multi-stage inclination capable of transferring the material from the other end surface side of the rotor to the one end surface side by rotation, and the third kneading blade is provided with the first kneading blade. Disposed between the second kneading blade, one end of which has a predetermined interval with the one end surface of the rotor, the other end has a predetermined interval with the other end surface of the rotor, from one stage or multi-stage 2. The device according to claim 1, wherein: A pressurized kneader as described.
【請求項3】 前記第3の混練羽根は一個の屈曲点を有
する二段の部分からなり、該部分のうちの一段部は、前
記屈曲点を中心に、ロータ回転向きと逆方向を始点と
し、前記第2の混練羽根から離間する方向に90度回転
させた位置を終点とする回転範囲内に設け、他段部は、
前記屈曲点を中心に、ロータ回転向きの方向を始点と
し、前記第2の混練羽根に平行になるまで接近させた位
置を終点とする回転範囲内に設け、更に、該他段部のロ
ータ回転軸方向に対する角度を前記一段部よりも大きく
したことを特徴とする請求項2記載の加圧型ニーダ。
3. The third kneading blade comprises a two-stage portion having one bending point, and one of the portions has a starting point in the direction opposite to the rotor rotation direction around the bending point. , Provided in a rotation range ending at a position rotated 90 degrees in a direction away from the second kneading blade, the other step portion,
Provided within a rotation range centering on the bending point, starting from the direction of rotor rotation, and ending at a position close to the second kneading blade until it is parallel to the second kneading blade. 3. The pressure-type kneader according to claim 2, wherein the angle with respect to the axial direction is larger than the one-step portion.
【請求項4】 前記第3の混練羽根は一個の屈曲点を有
する二段の部分からなり、該部分のうちの一段部は、前
記屈曲点を中心に、ロータ回転向きと逆方向を始点と
し、前記第2の混練羽根から離間する方向に90度回転
させた位置を終点とする回転範囲内に設け、他段部は、
前記屈曲点を中心に、ロータ回転向きと逆方向を始点と
し、前記一段部から離間する方向に90度回転させた位
置を終点とする回転範囲内に設け、更に、該一段部と該
他段部との内角を180度未満としたことを特徴とする
請求項2記載の加圧型ニーダ。
4. The third kneading blade comprises a two-stage portion having one bending point, and one of the portions has a starting point in a direction opposite to the rotor rotation direction around the bending point. , Provided in a rotation range ending at a position rotated 90 degrees in a direction away from the second kneading blade, the other step portion,
With the bending point as the center, the rotation direction is set as a starting point in a direction opposite to the rotor rotation direction, and provided in a rotation range having a position rotated by 90 degrees in a direction away from the one-step part as an end point. 3. The pressurized kneader according to claim 2, wherein the inner angle with the portion is less than 180 degrees.
【請求項5】 前記平行二軸ロータの回転速度が互いに
異なることを特徴とする請求項1記載の加圧型ニーダ。
5. The pressurized kneader according to claim 1, wherein the rotation speeds of the parallel two-axis rotors are different from each other.
【請求項6】 前記平行二軸ロータの混練羽根の稜の軌
跡が互いに干渉するかみ合い型であることを特徴とする
請求項1記載の加圧型ニーダ。
6. The pressure-type kneader according to claim 1, wherein the trajectories of the ridges of the kneading blades of the parallel twin-shaft rotor are interlocking types that interfere with each other.
JP9360457A 1997-12-26 1997-12-26 Pressurized kneader Pending JPH11188249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9360457A JPH11188249A (en) 1997-12-26 1997-12-26 Pressurized kneader

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9360457A JPH11188249A (en) 1997-12-26 1997-12-26 Pressurized kneader

Publications (1)

Publication Number Publication Date
JPH11188249A true JPH11188249A (en) 1999-07-13

Family

ID=18469492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9360457A Pending JPH11188249A (en) 1997-12-26 1997-12-26 Pressurized kneader

Country Status (1)

Country Link
JP (1) JPH11188249A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1649995A2 (en) * 2004-10-19 2006-04-26 Harburg-Freundenberger Maschinenbau GmbH Internal mixer for kneading plastic materials
US20110222364A1 (en) * 2009-01-19 2011-09-15 Kabushiki Kaisha Kobe Seiko Sho(kobe) Steel (LTD) Kneading rotor, batch kneader and method of kneading materials
US20120014206A1 (en) * 2009-04-15 2012-01-19 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Closed kneading machine and kneading rotor
WO2014103783A1 (en) * 2012-12-26 2014-07-03 株式会社ブリヂストン Kneading device
US20140369843A1 (en) * 2012-01-31 2014-12-18 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Mixing rotor and internal mixer
JP2017013469A (en) * 2015-07-06 2017-01-19 日本スピンドル製造株式会社 Sealed type kneader
EP3037232A4 (en) * 2013-08-20 2017-04-12 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Sealed kneading machine
FR3108865A1 (en) * 2020-04-03 2021-10-08 Lescuyer Et Villeneuve Rotor for rubber mixer and mixer using such a rotor.
CN114248360A (en) * 2021-12-10 2022-03-29 青岛科技大学 Meshing type rotor structure of high-fluidity internal mixer

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1649995A3 (en) * 2004-10-19 2006-05-17 Harburg-Freundenberger Maschinenbau GmbH Internal mixer for kneading plastic materials
US7556420B2 (en) * 2004-10-19 2009-07-07 Harburg-Freudenberger Maschinenbau Gmbh Internal mixer for kneading plastic materials
EP1649995A2 (en) * 2004-10-19 2006-04-26 Harburg-Freundenberger Maschinenbau GmbH Internal mixer for kneading plastic materials
US20110222364A1 (en) * 2009-01-19 2011-09-15 Kabushiki Kaisha Kobe Seiko Sho(kobe) Steel (LTD) Kneading rotor, batch kneader and method of kneading materials
US8926166B2 (en) * 2009-01-19 2015-01-06 Kobe Steel, Ltd. Kneading rotor, batch kneader and method of kneading materials
US8882337B2 (en) * 2009-04-15 2014-11-11 Kobe Steel, Ltd. Closed kneading machine and kneading rotor
US20120014206A1 (en) * 2009-04-15 2012-01-19 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Closed kneading machine and kneading rotor
US20140369843A1 (en) * 2012-01-31 2014-12-18 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Mixing rotor and internal mixer
US9033570B2 (en) * 2012-01-31 2015-05-19 Kobe Steel, Ltd. Mixing rotor and internal mixer
JP2014124589A (en) * 2012-12-26 2014-07-07 Bridgestone Corp Kneading device
WO2014103783A1 (en) * 2012-12-26 2014-07-03 株式会社ブリヂストン Kneading device
US9687797B2 (en) 2012-12-26 2017-06-27 Bridgestone Corporation Kneading device
EP3037232A4 (en) * 2013-08-20 2017-04-12 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Sealed kneading machine
JP2017013469A (en) * 2015-07-06 2017-01-19 日本スピンドル製造株式会社 Sealed type kneader
FR3108865A1 (en) * 2020-04-03 2021-10-08 Lescuyer Et Villeneuve Rotor for rubber mixer and mixer using such a rotor.
CN114248360A (en) * 2021-12-10 2022-03-29 青岛科技大学 Meshing type rotor structure of high-fluidity internal mixer

Similar Documents

Publication Publication Date Title
AU2017225809B2 (en) Mixer, system for applying a building material and method for producing a structure from building material
JP5192814B2 (en) Kneading granulator
JPH11188249A (en) Pressurized kneader
US4560281A (en) Foundry apparatus for mixing sand with binder
CN101721940A (en) Planetary stirring machine
EP3450007A1 (en) Stirrer comprising two rotating shafts having intersecting stirring blades capable of rotating symmetrically and rotating in identical direction and stirring method
JPH0729294B2 (en) Rubber-like material kneading device
EP1033217A2 (en) Rotor for a mixer and mixer having the same
JP2015120099A (en) Extrusion granulator
WO2014147791A1 (en) Biaxial extrusion kneading device and production method for electrode mixture, using same
CN208497377U (en) Mixer
US4183678A (en) Agitating mixing apparatus
JP2015166063A (en) Kneader or granulator for powder material
JPS60154030A (en) Cone-type extruder
CN214051230U (en) Production is glued with horizontal many spiral shell area mixer to benzene board
WO1998016305A1 (en) Helical ribbon mixer
JPH08108429A (en) Method and device for eliminating gel contained in polymer
CN217144456U (en) Thermoplastic elastomer material raw materials compounding processing apparatus
CN210159754U (en) Feed hopper and powder material production equipment
CN210631962U (en) Glass feeding device
CN218901655U (en) Premixing device for stirring high-strength hardener
CN212632565U (en) High-effect defoaming agent raw material mixing device
CN210252137U (en) Multifunctional gravity-free mixer
KR200381920Y1 (en) Mixing device
WO2021219257A1 (en) Blender comprising a balanced rotating tool