JPH11183647A - Watch and its manufacturing method - Google Patents

Watch and its manufacturing method

Info

Publication number
JPH11183647A
JPH11183647A JP35831397A JP35831397A JPH11183647A JP H11183647 A JPH11183647 A JP H11183647A JP 35831397 A JP35831397 A JP 35831397A JP 35831397 A JP35831397 A JP 35831397A JP H11183647 A JPH11183647 A JP H11183647A
Authority
JP
Japan
Prior art keywords
approximately
alumina
raw material
diameter
material powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35831397A
Other languages
Japanese (ja)
Inventor
Masahiro Nakahara
正博 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP35831397A priority Critical patent/JPH11183647A/en
Publication of JPH11183647A publication Critical patent/JPH11183647A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To impart an improve strength and a gloss of high-class feeling by forming a dial mode of alumina ceramic that has a crystal diameter in a specified range and a specified void diameter. SOLUTION: The average grain diameter of an alumina raw material powder is set to approximately 0.1-0.5μm, and a grain size distribution is set to shape range. Water is added to a raw material power to form a slurry, which is injected into a forming mold in a specific shaped. The then forming mold is rotated and a raw material powder is formed by a centrifugal force of approximately 3,000 G or higher, and the forming body is backed at a relatively low temperature of approximately 1,200-1,300 deg.C. A sintered body thus obtained becomes a fine crystal with a crystal particle diameter of approximately 1.0 μm or less, thus reducing an average void diameter to approximately 0.5 μm or less and hence achieving a bending resistance of approximately 700 MPa or higher and a glass with high-class feeling. As a result, crackes due to a shock when the watch is dropped or hit against a hard object can be prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は時計用文字盤をアル
ミナセラミックスにより作製した時計ならびにその製造
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a timepiece having a timepiece dial made of alumina ceramics and a method of manufacturing the timepiece.

【0002】[0002]

【従来の技術】従来、太陽電池を駆動源にした時計で
は、太陽電池が光を吸収して発電をおこなう関係上、風
防の下の文字盤面に、外から見えるような構造で使用す
るのが一般的であるが、そのため、この構成では太陽電
池が独特の濃紫の色を有し、文字盤の色やデザインが大
きな制約を受けていた。
2. Description of the Related Art Conventionally, in a timepiece using a solar cell as a driving source, since the solar cell absorbs light to generate power, it is used in a structure that can be seen from the outside on a dial face under a windshield. Generally, however, in this configuration, the solar cell has a unique dark purple color, and the color and design of the dial are greatly restricted.

【0003】そこで、太陽電池の受光面側に被覆部材兼
文字盤を配置し、これによって太陽電池が外から見えな
いようにすることが提案されているが、太陽電池の起電
力を確保するために、被覆部材兼文字盤の光透過率を大
きくする必要がある。この被覆部材兼文字盤の光透過率
は厚みと関係にあり、厚みが薄いほど透過率が上昇す
る。
Therefore, it has been proposed to dispose a covering member and a dial on the light receiving surface side of the solar cell so that the solar cell is not visible from the outside. However, in order to secure the electromotive force of the solar cell, it has been proposed. In addition, it is necessary to increase the light transmittance of the cover and the dial. The light transmittance of the cover member and the dial is related to the thickness, and the transmittance increases as the thickness decreases.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記被
覆部材兼文字盤を通常のアルミナセラミックスにより構
成した場合、透過率を上げるために厚みを薄くすると、
機械的強度が低いために割れ等の問題がある。しかも、
ボイドが多く存在するので、光沢が得られず、高級感を
もたすことができなかった。
However, when the cover member and the dial are made of ordinary alumina ceramics, if the thickness is reduced to increase the transmittance,
There are problems such as cracking due to low mechanical strength. Moreover,
Due to the presence of many voids, gloss was not obtained, and luxury was not obtained.

【0005】また、上記被覆部材兼文字盤については、
非常に装飾性の高いものであることから、光透過性に優
れるとともに、顔料を入れて所望の色彩が得られる材質
であることが望まれている。
Further, regarding the above-mentioned covering member and dial,
It is desired that the material be excellent in light transmittance and be capable of obtaining a desired color by adding a pigment, since it is very decorative.

【0006】本発明者は上記事情に鑑みて鋭意研究に努
めた結果、従来のアルミナセラミックスは焼結温度が1
500〜1750℃と高くしているので、結晶粒径が2
〜15μmと非常に大きく、さらにボイドの径および数
が多く、これにより、強度が200〜400MPaとい
う低い値であり、これに対し、本発明では原料粉末の選
定、成形方法、焼結温度等を検討したところ、ボイドが
きわめて少なく、強度も高いアルミナセラミックスが得
られ、このアルミナセラミックスであれば、優れた光透
過性および色彩が達成でき、さらにボイド径と結晶粒径
を規定することで、時計用文字盤にもっとも適している
ことを見出した。
In view of the above circumstances, the present inventor has made intensive studies, and as a result, conventional alumina ceramics have a sintering temperature of 1
Since the temperature is as high as 500 to 1750 ° C, the crystal grain size is 2
1515 μm, which is very large, and the diameter and number of the voids are large, and as a result, the strength is a low value of 200 to 400 MPa. As a result of investigation, it was found that alumina ceramics with very few voids and high strength were obtained, and with this alumina ceramics, excellent light transmittance and color could be achieved, and furthermore, by specifying the void diameter and crystal grain size, a watch We found that it was most suitable for a clock face.

【0007】したがって本発明は上記知見により完成さ
れたものであり、その目的は優れた強度を達成し、さら
に高級感に富んだ光沢を有する時計用文字盤を備えた時
計を提供することにある。
Accordingly, the present invention has been accomplished based on the above findings, and an object of the present invention is to provide a timepiece having a timepiece dial that achieves excellent strength and has a high-grade gloss. .

【0008】また、本発明の他の目的は光透過性を高め
て、太陽電池の受光面側に時計用文字盤を配設した時計
を提供することにある。
Another object of the present invention is to provide a timepiece having a timepiece dial arranged on the light receiving surface side of a solar cell with improved light transmittance.

【0009】本発明のさらに他の目的は所要どおりに着
色して、さまざまな色彩が得られる時計用文字盤を備え
た時計を提供することにある。
Still another object of the present invention is to provide a timepiece provided with a timepiece dial that can be colored as required to obtain various colors.

【0010】さらに本発明の目的は、本発明の時計に用
いたかかる時計用文字盤の製造方法を提供することにあ
る。
It is a further object of the present invention to provide a method for manufacturing such a timepiece dial used in the timepiece of the present invention.

【0011】[0011]

【課題を解決するための手段】本発明の時計は、ボイド
径0.5μm以下、結晶粒径1μm以下のアルミナセラ
ミックスからなる文字盤を用いたことを特徴とする。
A timepiece according to the present invention is characterized by using a dial made of alumina ceramics having a void diameter of 0.5 μm or less and a crystal grain size of 1 μm or less.

【0012】本発明の他の時計は、上記アルミナセラミ
ックスにCr、Co、Ni等の金属酸化物を0.01〜
3重量%の範囲で添加して着色セラミックスとしたこと
を特徴とする。
Another timepiece according to the present invention is characterized in that the alumina ceramic contains metal oxides such as Cr, Co, and Ni in an amount of 0.01 to 0.01%.
It is characterized by being added in a range of 3% by weight to obtain a colored ceramic.

【0013】本発明のさらに他の時計は、上記アルミナ
セラミックスもしくは着色セラミックスをHIPして、
結晶粒径を3〜5μmに粒成長させたことを特徴とす
る。
[0013] Still another timepiece of the present invention is that the above-mentioned alumina ceramic or colored ceramic is HIPed,
It is characterized in that grains are grown to a crystal grain size of 3 to 5 μm.

【0014】また、本発明の時計の製造方法は、アルミ
ナ原料粉末を分散させたスラリーを所定形状の成形型に
注入し、この成形型を回転させることによって発生する
遠心力で上記原料粉末を成形し、得られた成形体を焼成
する工程からなることを特徴とする。
Further, in the method of manufacturing a timepiece according to the present invention, a slurry in which alumina raw material powder is dispersed is poured into a mold having a predetermined shape, and the raw material powder is formed by centrifugal force generated by rotating the mold. And firing the obtained molded body.

【0015】[0015]

【発明の実施の形態】本発明の時計は一般の時計用文字
盤、もしくは太陽電池を備えた時計用文字盤を用いてい
る。図1は本発明の時計1の一例であって、風防2を備
える外装3の内部にムーブメント4を配設し、このムー
ブメント4の上に太陽電池5と文字盤6とを設けてい
る。また、7はムーブメント4によって駆動される指針
である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The timepiece of the present invention uses a general timepiece dial or a timepiece dial equipped with a solar cell. FIG. 1 shows an example of a timepiece 1 according to the present invention, in which a movement 4 is arranged inside an exterior 3 having a windshield 2, and a solar cell 5 and a dial 6 are provided on the movement 4. Reference numeral 7 denotes a pointer driven by the movement 4.

【0016】そして、本発明においては、文字盤6を上
述したとおりのアルミナセラミックスで構成する。すな
わち、焼結体の結晶粒径を小さくするために、焼結温度
を極力低くするが、そのために、アルミナ原料粉末を微
粒にし、成形体の充填密度を高めている。実際には原料
粉末平均粒径を0.1〜0.5μm(マイクロトラック
による測定)とし、その粒度分布もシャープな範囲とし
た。この範囲から外れると粒度分布がブロードとなり、
つぎの成形工程において遠心力による粒子の沈降速度の
差が大きくなり、その結果、粒子配向が起こり、良好な
焼結体を得ることができない。
In the present invention, the dial 6 is made of alumina ceramics as described above. That is, in order to reduce the crystal grain size of the sintered body, the sintering temperature is reduced as much as possible. For this purpose, the alumina raw material powder is made finer to increase the packing density of the compact. In practice, the raw material powder has an average particle size of 0.1 to 0.5 μm (measured by a microtrack), and its particle size distribution is also in a sharp range. Outside this range, the particle size distribution becomes broad,
In the next molding step, the difference in the sedimentation speed of the particles due to the centrifugal force increases, and as a result, the particles are oriented, and a good sintered body cannot be obtained.

【0017】つぎの成形工程においては、アルミナ原料
粉末に水を加えてスラリーとし、その後、スラリーを所
定形状の成形型に注入し、この成形型を回転させること
によって発生する遠心力で上記原料粉末を成形する。こ
の遠心力を3000G以上、好適には5000G以上に
して成形すると、きわめて高密度な成形体を得ることが
でき、これにより、その成形体を1200〜1300℃
というきわめて低温で焼成(常圧焼結)することができ
た。
In the next molding step, water is added to the alumina raw material powder to form a slurry, and then the slurry is poured into a molding die having a predetermined shape, and the raw material powder is subjected to centrifugal force generated by rotating the molding die. Is molded. When the centrifugal force is set to 3000 G or more, preferably 5000 G or more, an extremely high-density molded article can be obtained.
(Sintering under normal pressure).

【0018】かかる焼成により得られた焼結体は、結晶
粒径1.0μm以下、好適には0.5〜1.0μmとい
う微細な結晶になり、さらに平均ボイド径が0.5μm
以下というきわめて小さくでき、これにより、抗折強度
700MPa以上という非常に高い強度と高級感に富ん
だ光沢を得ることができ、その結果、時計を落とした
り、ぶつけたときの衝撃による割れを防止することがで
きた。
The sintered body obtained by the sintering becomes fine crystals having a crystal grain size of 1.0 μm or less, preferably 0.5 to 1.0 μm, and further has an average void diameter of 0.5 μm.
It is possible to obtain a very high strength with a transverse rupture strength of 700 MPa or more and a luxurious luster, and as a result, to prevent cracking due to impact when the watch is dropped or hit. I was able to.

【0019】また、本発明のアルミナセラミックスにお
いては、装飾性を高めるために顔料としてのCr、C
o、Ni等の金属酸化物を単独でもしくは組み合わせて
合計して0.01〜3重量%の範囲で添加し、これによ
って所望どおりに着色することができる。0.01重量
%未満の場合、着色が不十分で良好な着色体は得られ
ず、3重量%を越えると強度が劣化する。
In the alumina ceramics of the present invention, Cr and C are used as pigments in order to enhance decorativeness.
Metal oxides such as o and Ni are added alone or in combination in a total amount of 0.01 to 3% by weight, whereby coloring can be performed as desired. If the amount is less than 0.01% by weight, good coloring is not obtained due to insufficient coloring, and if it exceeds 3% by weight, the strength is deteriorated.

【0020】さらにまた、上述したアルミナセラミック
スもしくは上記着色アルミナセラミックスに対しHIP
等をおこなうことで優れた透光性が達成できる。
Further, the above-mentioned alumina ceramics or the above-mentioned colored alumina ceramics may be HIP-coated.
By performing the above, excellent translucency can be achieved.

【0021】すなわち、前記焼結体に対し1200〜1
500℃でHIPをおこなうと、結晶粒径は3〜5μm
に粒成長するが、ボイド径が0.1μm以下となり、こ
れによって強度が大きくなるとともに、透光性が得ら
れ、その結果、太陽電池を備えた時計の文字盤としても
十分に使用できる。
That is, 1200 to 1 with respect to the sintered body
When HIP is performed at 500 ° C., the crystal grain size is 3 to 5 μm.
However, the void diameter becomes 0.1 μm or less, whereby the strength is increased and the translucency is obtained. As a result, the watch can be sufficiently used as a clock face provided with a solar cell.

【0022】そして、製品化に際して、かかるボイドが
非常に少ないアルミナセラミックスに対し、研磨するこ
とで、表面粗さRaが10nm以下という優れた表面平
滑性と高級感に富んだ光沢を得られた。
Then, upon commercialization, by polishing the alumina ceramic having such a small amount of voids, it was possible to obtain excellent surface smoothness having a surface roughness Ra of 10 nm or less and a high-grade gloss.

【0023】かくして本発明によれば、製造上原料や成
形、焼成などを工夫することで時計用文字盤をボイド径
0.5μm以下、結晶粒径1μm以下のアルミナセラミ
ックスで構成することができ、これにより、抗折強度7
00MPa以上の高強度が達成でき、そして、ある程度
にまで薄くすることができ、さらに優れた光沢が得られ
た。その上、着色化したり、透明化することもでき、こ
れによって優れた装飾感および高級感をもたすことがで
きた。また、このような時計用文字盤であれば、太陽電
池の受光面側に配置する被覆部材兼文字盤として用いる
ことができた。
Thus, according to the present invention, the watch face can be made of alumina ceramics having a void diameter of 0.5 μm or less and a crystal grain diameter of 1 μm or less by devising the raw materials, molding, firing and the like in production. Thereby, bending strength 7
High strength of 00 MPa or more could be achieved, and the thickness could be reduced to a certain extent, and further excellent gloss was obtained. In addition, it can be colored or made transparent, thereby giving an excellent decorative and luxurious feeling. In addition, such a timepiece dial could be used as both a covering member and a dial to be disposed on the light receiving surface side of the solar cell.

【0024】[0024]

【実施例】平均粒径0.2μmで粒度分布がシャープ
(0.15〜0.3μmの範囲)なアルミナ粉末100
%に対し、イオン交換水を30%と分散剤を1%加え
て、ポットミルにて24時間調合し、これによってスラ
リーを作製した。さらに着色剤として酸化クロムを適量
添加したものを作製した。これに対する比較材として、
平均粒径0.7μmで粒度分布がブロード(0.1〜
2.6μmの範囲)な易焼結アルミナ材を用意した。
EXAMPLE Alumina powder 100 having an average particle size of 0.2 μm and a sharp particle size distribution (in the range of 0.15 to 0.3 μm)
%, 30% of ion-exchanged water and 1% of a dispersant were added, and the mixture was blended in a pot mill for 24 hours to prepare a slurry. Further, a material to which a suitable amount of chromium oxide was added as a coloring agent was produced. As a comparative material for this,
The average particle size is 0.7 μm and the particle size distribution is broad (0.1 to
(A range of 2.6 μm) was prepared.

【0025】ついで、上記アルミナスラリーを成形型に
注入し、成形型を遠心機内のロ−タにセットし、ロータ
を回転させることで、15000Gの遠心加速度をか
け、これにより、スラリー中のアルミナ粒子は遠心分離
作用により成形型の底部に堆積し、その堆積物が成形体
となる。この方法によれば、スラリー中の空気は外部に
効果的に排出され、そして、遠心力の作用によりアルミ
ナ粒子が最密充填され、きわめて高密度の成形体が得ら
れた。
Next, the alumina slurry is poured into a mold, the mold is set on a rotor in a centrifuge, and a centrifugal acceleration of 15000 G is applied by rotating the rotor. Accumulates on the bottom of the mold by the centrifugal action, and the deposit becomes a compact. According to this method, the air in the slurry was effectively discharged to the outside, and the alumina particles were closest packed by the action of the centrifugal force to obtain a very high-density compact.

【0026】このように最密充填された成形体を得るた
めには、遠心加速度がもっとも密接に関係しており、少
なくとも3000G以上必要である。3000G未満の
場合には遠心分離による成形体の緻密化が十分におこな
われず、そのため、本発明のような焼成温度の低温化に
ともなう結晶の微粒化および低ボイド化が達成できな
い。
In order to obtain a compact that is most closely packed in this way, the centrifugal acceleration is most closely related and requires at least 3000 G. If it is less than 3000 G, the compact is not sufficiently densified by centrifugation, and therefore, it is not possible to achieve the reduction in the size of crystals and the reduction in voids due to the lowering of the firing temperature as in the present invention.

【0027】本発明者は相対密度99%以上となるよう
な焼成温度と、そのために要する遠心加速度との関係を
表1に示す。
The present inventor shows in Table 1 the relationship between the sintering temperature at which the relative density is 99% or more and the required centrifugal acceleration.

【0028】[0028]

【表1】 [Table 1]

【0029】同表から明らかなとおり、遠心加速度を3
000Gにすると、焼成温度を1270℃にまで下げる
ことができた。なお、遠心力の大きさは遠心分離に要す
る時間に関係し、生産効率を考慮すると高遠心力が望ま
しい。
As is clear from the table, the centrifugal acceleration was 3
At 000 G, the firing temperature could be reduced to 1270 ° C. The magnitude of the centrifugal force is related to the time required for centrifugal separation, and a high centrifugal force is desirable in consideration of production efficiency.

【0030】かくして得られた成形体に対し、カンタル
スーパー炉を用いて1200〜1300℃の温度で焼成
し、表2に示すような試料No.1〜試料No.8を得
た。また、試料No.11〜試料No.16は着色剤で
ある酸化クロムを同表中の数値に示す量でもって添加し
た場合であり、試料No.9、10、15、16では、
同表中の数値の焼成温度によりHIPしている。ただ
し、焼成温度をさまざまに変えることで、幾とおりもの
結晶粒径の焼結体を得た。
The thus obtained molded body was fired at a temperature of 1200 to 1300 ° C. using a Kanthal super furnace. No. 1 to No. 1 8 was obtained. In addition, the sample No. 11 to sample no. Sample No. 16 shows a case where chromium oxide as a coloring agent was added in an amount shown in the table. In 9, 10, 15, 16
HIP is performed according to the firing temperature indicated in the table. However, by changing the firing temperature in various ways, sintered bodies having various crystal grain sizes were obtained.

【0031】[0031]

【表2】 [Table 2]

【0032】そして、上記各焼結体に対し強度および透
過率を測定した。
Then, the strength and transmittance of each of the above sintered bodies were measured.

【0033】強度の測定は3×4×40mmの抗折片を
切り出し、JISR1601に準拠して3点曲げ強度測
定をおこなった。
For the measurement of strength, a bending piece of 3 × 4 × 40 mm was cut out, and a three-point bending strength was measured in accordance with JISR1601.

【0034】また、透過率については、試料No.9、
10、15、16のように各焼結体を1200〜150
0℃の温度でHIP処理し、その後、両面を鏡面加工
し、厚み0.5mmに仕上げ、下記の方法でもって太陽
電池の起電力を得るのに十分かどうかの判断をした。す
なわち、500ルクスの昼白色光を太陽電池に照射した
時に得られる電流値をI0 とし、その昼白色光の光源と
太陽電池の間に上記焼結体をセットしたときに太陽電池
から得られる電流値をI1 とし、この比率〔I1
0 〕が30%以上であれば、十分な起電力を得ること
ができた。なお、本発明のアルミナセラミックスにおい
ては、試料No.4に示すようにHIP処理を施さなく
ても30%以上の透過率を得ることができた。
For the transmittance, the sample No. 9,
Each sintered body as in 10, 15, 16 is 1200 to 150
After HIP treatment at a temperature of 0 ° C., both surfaces were mirror-finished and finished to a thickness of 0.5 mm, and it was determined whether or not it was sufficient to obtain an electromotive force of the solar cell by the following method. That is, the current value obtained when the solar cell is irradiated with 500 lux of neutral white light is defined as I 0, and is obtained from the solar cell when the sintered body is set between the solar white cell and the light source of the neutral white light. The current value is defined as I 1 and this ratio [I 1 /
If I 0 ] is 30% or more, a sufficient electromotive force can be obtained. In the alumina ceramics of the present invention, the sample No. As shown in FIG. 4, a transmittance of 30% or more could be obtained without performing the HIP treatment.

【0035】かくして本発明の試料では、700〜12
60MPaの強度が得られたが、このように強度に幅が
あるのは、焼結温度の差に起因する結晶粒径の差が影響
しており、焼結温度を高く設定すると、結晶、ボイドは
大きくなり、強度が低下していた。
Thus, in the sample of the present invention, 700 to 12
The strength of 60 MPa was obtained, but the reason for the wide range of strength was the difference in crystal grain size caused by the difference in sintering temperature. Had increased and the strength had decreased.

【0036】また、本発明によれば、700MPaの強
度を達成した焼結体の結晶粒径は1.0μm程度であ
り、1000MPaを超える強度の焼結体の結晶粒径は
0.5〜0.8μm程度の範囲であった。そして、透光
性を向上させるためにHIPを1200〜1500℃で
実施した場合、結晶粒径は3〜5μmにまで粒成長した
が、ボイド径が0.1μm以下と非常に小さくなってい
るために、依然として700MPa以上の強度が得ら
れ、これにより、強度と透光性の両特性を兼ね備えたア
ルミナセラミックスが得られ、その結果、太陽電池を備
えた時計の文字盤として使用できた。
According to the present invention, the crystal grain size of the sintered body achieving the strength of 700 MPa is about 1.0 μm, and the crystal grain size of the sintered body having the strength exceeding 1000 MPa is 0.5 to 0. The range was about 0.8 μm. When HIP is performed at 1200 to 1500 ° C. in order to improve light transmission, the crystal grain size grows to 3 to 5 μm, but the void size is very small, 0.1 μm or less. In addition, a strength of 700 MPa or more was still obtained, whereby an alumina ceramic having both strength and light-transmitting properties was obtained, and as a result, it could be used as a clock face provided with a solar cell.

【0037】また、比較材である易焼結アルミナについ
ては、1450〜1600℃にて焼成をおこなったとこ
ろ、遠心力方向に対し、内周側は焼結しているが、外周
側にいくにしたがって焼結が十分でなく、最外周部では
未焼結となっており、良好な焼結体が得られなかった。
その理由は、成形体を仮焼し、粉末の粒子観察をおこな
ったところ、最外周ほど粒子が粗く、最内周ほど粒子が
細かくなっており、そのような遠心力による粒子配向が
生じているためである。
In addition, the easily sintered alumina, which is a comparative material, was sintered at 1450 to 1600 ° C., and the inner peripheral side was sintered in the direction of the centrifugal force. Therefore, sintering was not sufficient, and the outermost peripheral portion was unsintered, and a good sintered body could not be obtained.
The reason is that when the molded body is calcined and the particles of the powder are observed, the particles are coarser at the outermost periphery and finer at the innermost periphery, and the particle orientation due to such centrifugal force is occurring. That's why.

【0038】つぎに発明品の試料No.3と、従来の加
圧プレスで作った易焼結アルミナに対し、それぞれポリ
ッシング仕上げをおこない、さらに走査型電子顕微鏡
(SEM:1500倍、10000倍)を用いて任意の
数カ所で測定面積540μm2にわたってボイドの個数
をカウントしたところ、表3に示すような結果が得られ
た。
Next, a sample No. of the invention was prepared. 3 and the easily sinterable alumina produced by the conventional pressure press are each polished, and furthermore, using a scanning electron microscope (SEM: 1500 ×, 10000 ×) at an arbitrary number of places over a measurement area of 540 μm 2. When the number of voids was counted, the results shown in Table 3 were obtained.

【0039】[0039]

【表3】 [Table 3]

【0040】同表から明らかなとおり、本発明のセラミ
ックスでは、ボイド欠陥で0.5μmを超えるボイドは
まったく見あたらず、しかも、表面粗さをAFM(原子
間力顕微鏡)で測定すると表面粗さが9nmであり、高
級感に富んだ光沢があったが、従来品では表面粗さが2
3nmであり、ボイドが多く、面粗さが劣化していた。
As is clear from the table, in the ceramics of the present invention, no void exceeding 0.5 μm was found due to void defects, and the surface roughness was measured by AFM (atomic force microscope). 9 nm, and had a high-grade gloss.
3 nm, many voids, and surface roughness was deteriorated.

【0041】[0041]

【発明の効果】以上のとおり、本発明の時計において
は、時計用文字盤をボイド径0.5μm以下、結晶粒径
1μm以下のアルミナセラミックスで構成して、抗折強
度700MPa以上にでき、そして、ある程度にまで薄
くすることができ、さらに優れた光沢が得られた。
As described above, in the timepiece of the present invention, the timepiece dial is made of alumina ceramic having a void diameter of 0.5 μm or less and a crystal grain size of 1 μm or less, and can have a bending strength of 700 MPa or more. , To a certain extent, and further excellent gloss was obtained.

【0042】また、本発明によれば、上記アルミナセラ
ミックスにCr、Co、Ni等の金属酸化物を0.01
〜3重量%の範囲で添加してさまざまな色彩が得られ、
さらに装飾性を高めることができた。
Further, according to the present invention, a metal oxide such as Cr, Co, Ni or the like is added to the alumina ceramics in an amount of 0.01%.
~ 3% by weight to obtain various colors
Furthermore, the decorativeness could be improved.

【0043】さらにまた、アルミナセラミックスもしく
は着色セラミックスをHIPしたことで、光透過性を高
めて、太陽電池の受光面側に配設し得る時計用文字盤が
提供できた。
Furthermore, by using HIP of alumina ceramics or colored ceramics, it is possible to provide a timepiece dial that can be disposed on the light receiving surface side of the solar cell with increased light transmittance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の時計の断面図である。FIG. 1 is a sectional view of a timepiece according to the present invention.

【符号の説明】[Explanation of symbols]

1 時計 2 風防 3 外装 4 ムーブメント 5 太陽電池 6 文字盤 7 指針 DESCRIPTION OF SYMBOLS 1 Watch 2 Windshield 3 Exterior 4 Movement 5 Solar cell 6 Dial 7 Pointer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】ボイド径0.5μm以下、結晶粒径1μm
以下のアルミナセラミックスからなる文字盤を用いた時
計。
1. A void diameter of 0.5 μm or less and a crystal grain diameter of 1 μm.
A watch using a dial made of the following alumina ceramics.
【請求項2】前記アルミナセラミックスにCr、Co、
Ni等の金属酸化物を0.01〜3重量%の範囲で添加
して着色セラミックスとした請求項1の時計。
2. The method according to claim 2, wherein the alumina ceramic is Cr, Co,
The timepiece according to claim 1, wherein a colored ceramic is obtained by adding a metal oxide such as Ni in a range of 0.01 to 3% by weight.
【請求項3】前記アルミナセラミックスもしくは着色セ
ラミックスをHIPして、結晶粒径を3〜5μmに粒成
長させたことを特徴とする請求項1または請求項2の時
計。
3. The timepiece according to claim 1, wherein the alumina ceramic or the colored ceramic is HIP-grown to a grain size of 3 to 5 μm.
【請求項4】アルミナ原料粉末を分散させたスラリーを
所定形状の成形型に注入し、この成形型を回転させるこ
とによって発生する遠心力で上記原料粉末を成形し、得
られた成形体を焼成する工程からなる時計の製造方法。
4. A slurry in which alumina raw material powder is dispersed is poured into a molding die having a predetermined shape, and the raw material powder is molded by centrifugal force generated by rotating the molding die. Watch manufacturing method comprising the steps of:
JP35831397A 1997-12-25 1997-12-25 Watch and its manufacturing method Pending JPH11183647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35831397A JPH11183647A (en) 1997-12-25 1997-12-25 Watch and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35831397A JPH11183647A (en) 1997-12-25 1997-12-25 Watch and its manufacturing method

Publications (1)

Publication Number Publication Date
JPH11183647A true JPH11183647A (en) 1999-07-09

Family

ID=18458656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35831397A Pending JPH11183647A (en) 1997-12-25 1997-12-25 Watch and its manufacturing method

Country Status (1)

Country Link
JP (1) JPH11183647A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011509411A (en) * 2008-01-11 2011-03-24 アット・ホールディング・ソシエテ・ア・レスポンサビリテ・リミテ Watch with a barrel machined from a block of super hard material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011509411A (en) * 2008-01-11 2011-03-24 アット・ホールディング・ソシエテ・ア・レスポンサビリテ・リミテ Watch with a barrel machined from a block of super hard material

Similar Documents

Publication Publication Date Title
EP0329565B1 (en) Fastening device for an orthodontic wire arch
CN108640672A (en) A kind of preparation method of light-weight magnesite-alumina spinel refractories
GB2132600A (en) Zirconia type black decorative article and process for production thereof
JPS59105055A (en) Zirconia coloring material
JP6492631B2 (en) Zirconia sintered body and use thereof
DE19730770C2 (en) Non-porous sintered bodies based on silicon carbide, process for their production and their use as substrates for hard disk storage
JPH11183647A (en) Watch and its manufacturing method
Theng et al. Development of translucent zirconia for dental crown applications
JP6878950B2 (en) Blue zirconia sintered body and its manufacturing method
CN112225564B (en) Aluminum oxynitride transparent ceramic and preparation method thereof
CN111511700B (en) Fused alumina grain, method for producing fused alumina grain, grindstone, abrasive cloth, and abrasive paper
JP3078413B2 (en) Manufacturing method of ceramic sintered body
KR920006807B1 (en) Preparation method of calcined body made by al2o3-ticx
JP2021042119A (en) Zirconia sintered body and manufacturing method of the same
JP2021042117A (en) Zirconia sintered body and manufacturing method of the same
JPH0610101B2 (en) Colored ceramic decorative material
KR101308887B1 (en) Manufacturing method of translucent alumina composite
JP2000070745A (en) Member for pulverizer
US20040009867A1 (en) Porous oxide ceramics and production thereof
KR20190056494A (en) Method for fabricating the Punchong porcelain used Muan Clay and Punchong porcelain produced by the method
EP4438027A1 (en) Alumina workable body for dental use
JP2000128626A (en) Aluminum oxide matrix sintered compact and its production
JPH07266675A (en) Seal member
JP2002293613A (en) Green, translucent alumina polycrystal body and method of producing the same
JPH0712978B2 (en) Black zirconia ceramics and manufacturing method thereof