JPH11182940A - Heating/lighting apparatus using condensed/transmitted solar light - Google Patents

Heating/lighting apparatus using condensed/transmitted solar light

Info

Publication number
JPH11182940A
JPH11182940A JP9370553A JP37055397A JPH11182940A JP H11182940 A JPH11182940 A JP H11182940A JP 9370553 A JP9370553 A JP 9370553A JP 37055397 A JP37055397 A JP 37055397A JP H11182940 A JPH11182940 A JP H11182940A
Authority
JP
Japan
Prior art keywords
light
heat
heater
resistant
electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9370553A
Other languages
Japanese (ja)
Inventor
Nobuyoshi Ishida
信義 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP9370553A priority Critical patent/JPH11182940A/en
Publication of JPH11182940A publication Critical patent/JPH11182940A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heating/lighting apparatus using solar light which is, of good reflection and usage efficiency of solar light and heat, utilized indoor and changed to electric power when solar light is weak. SOLUTION: The solar light condensed with a condensing device 8 which is, comprising a paraboloid reflection pipe 12 and a conical surface reflection pipe 13, faced to the sun by a direction controlling device 15 and transferred through a photodetecting side light/transmission channel 16 is adjusted for splitting with a light quantity split control valve 17, which is projected on a fin t a lower surface of a black light-absorber 5 from a heater light-projecting nozzle 19 through a heater light-transmission channel 18 to heat a heating plate 4 over it. It is projected on a scattering reflector 28 from a lighting light- projection nozzle 26 through a lighting light-transmission channel 25, for scattering and lighting. It is projected to an inside surface of a black light absorbing pipe 35 in a heat-insulating water tank 34 from a tank light projection nozzle 33 through a water tank light-transmission channel 32 for heating water, and when solar light is weak, energization is controlled by a photo-switch 43, etc., to switch to an electric heater 37 or an electric lighting apparatus.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[本発明の概要]本発明は、集光して送光
した太陽光を用いて、加熱板の下面中央部に密着して設
けた光吸収体の下面を照射して加熱器としたり、照明用
の反射器とレンズで囲まれた空間内の散光用の反射器を
照射して散光して太陽光ランプとしたり、保温水槽の中
に壁面から離して設けた光吸収管の中を照射して温水器
とし、太陽光の弱い時には、フォトスイッチにより通電
して加熱作業や照明を続けられる様にした、太陽光を有
効にかつ安全に利用するようにした光熱器具である。
[Summary of the Invention] The present invention provides a heater by irradiating the lower surface of a light absorber provided in close contact with the center of the lower surface of a heating plate using sunlight that has been condensed and transmitted. Or illuminate a diffuser in a space surrounded by a reflector for illumination and a lens to scatter light to form a solar lamp, or a light absorbing tube installed in a warm water tank away from the wall surface. Is a water heater, and when the sunlight is weak, the photo switch is energized by a photo switch so that the heating operation and the lighting can be continued.

【0002】[従来の太陽光を用いる光熱器具]従来の
太陽光を用いる加熱器は、内面が放物面でなる椀形の反
射器で太陽光を反射して、放物面の焦点付近に太陽光を
集め、そこに設置した鍋などの底を加熱するものであっ
た。また従来の太陽光を用いる照明方法は、明かり取り
の窓か天窓の様なものであった。また従来の給湯用の太
陽光を用いる温水器は、水の入った管を巡らせた板状の
ものを太陽光が直接当たる屋外に設置したものであっ
た。
[Conventional Photothermal Appliances Using Sunlight] A conventional heater using solar light reflects sunlight with a bowl-shaped reflector having a parabolic inner surface, and is located near the focal point of the paraboloid. It was to collect sunlight and heat the bottom of a pot and the like installed there. In addition, the conventional lighting method using sunlight was like a lighting window or a skylight. Further, a conventional water heater using sunlight for hot water supply is a plate-like one having a pipe filled with water and installed outdoors where sunlight is directly applied.

【0003】[発明が解決しようとする課題]従来の太
陽光を用いる加熱器は、内面が放物面でなる椀形の底付
近の形をした反射器を用いたものであった。そのため直
射する太陽光線は、その進行方向と逆の方向へ反射され
た。反射面への入射角度が小さいため反射面に於けるエ
ネルギー損失が大きかった。また集光点が直射する太陽
光線の通路上にあるため、この点に鍋、鍋支持具などを
設けると、利用しようとする直射する太陽光線を遮るこ
とになり、鍋の底を加熱するには、かなり大きな椀形反
射器が必要になった。この様な構造であるため、太陽の
良く当たる屋外でしか用いることができず、そのため加
熱部付近から通風による放熱量も多く、熱の利用率も悪
かった。また、太陽光の弱い時には使えなかった。この
様な訳で一般家庭の台所の調理用加熱器としては、用い
ることが出来なかった。従来の太陽光を用いる照明方法
は、窓か天窓の様なものであったので、窓を取れない
室、奥まった室には用いることができなかった。窓面積
に比べて室面積が広かったり、周囲の環境によって室に
入ってくる太陽光が弱められると、室内は暗くなった。
また、室に入ってくる太陽光が強過ぎると、調光が難し
いので、暑かったり、まぶしかったりするので、日除け
をするしかなく、室内は暗くなった。天窓は、調光、雨
水の始末、暴風雨対策などが難しく、建築に採用されに
くかった。それで晴天で屋外がとても明るい時でも、電
気による照明が行われた。従来の給湯用の太陽光を用い
る温水器は、水の入った管を巡らせたものであるため重
くなり、設置場所への負担が心配された。また水の入っ
た管からの漏水があったり、水の入った管の中の清掃が
できず、飲用しにくかった。また、せっかく熱を蓄積し
ても、太陽光が当たらない時に、受光面から放熱されて
しまった。このような欠点があったので、太陽の光と熱
の反射効率、使用効率が良く、室内で利用出来る様に
し、また、太陽光の弱い時にも、加熱作業や照明を続け
られる様にした、太陽光を用いた加熱器やランプ、中を
清掃できて清潔で保温性の良い太陽光温水器などが待ち
望まれていた。
[Problems to be Solved by the Invention] A conventional heater using sunlight uses a reflector having a parabolic inner surface and having a shape near the bottom of a bowl. Therefore, the direct sunlight was reflected in the direction opposite to the traveling direction. Since the angle of incidence on the reflecting surface was small, the energy loss at the reflecting surface was large. In addition, since the focal point is on the path of direct sunlight, if a pot or pan support is provided at this point, the direct sunlight that is going to be used will be blocked, and the bottom of the pot will be heated. Needed a rather large bowl-shaped reflector. Because of such a structure, it can be used only outdoors where the sun is well exposed, so that a large amount of heat is radiated from the vicinity of the heating part by ventilation, and the heat utilization rate is poor. Also, it could not be used when the sunlight was weak. For this reason, it could not be used as a cooking heater in a general household kitchen. Since the conventional lighting method using sunlight was like a window or a skylight, it could not be used in a room where a window could not be taken or a room that was concealed. The room became darker if the room area was larger than the window area, or if the sunlight entering the room was weakened by the surrounding environment.
Also, if the sunlight entering the room was too strong, dimming was difficult, so it was hot or dazzling, so there was no choice but to shade and the room became dark. Skylights were difficult to use in construction, as it was difficult to control light, remove rainwater, and prevent storms. So even when the weather was fine and the outdoors were very bright, the lights were turned on by electricity. Conventional water heaters that use sunlight for hot water supply are heavy because they are wrapped around pipes containing water, and there is a concern about the burden on the installation location. In addition, water leaked from the tube containing water, and the inside of the tube containing water could not be cleaned, making it difficult to drink. Further, even if heat was accumulated, heat was radiated from the light receiving surface when sunlight did not shine. Due to these drawbacks, the solar light and heat reflection efficiency and use efficiency are good, so that it can be used indoors, and even when the sunlight is weak, heating work and lighting can be continued, There has been a long-awaited demand for heaters and lamps using sunlight, and solar water heaters that can clean the inside and are clean and have good heat retention.

【0004】[課題を解決するための手段]本発明は、
これを解決するために考え出された、太陽光を用いる光
熱器具である。本発明の光熱器具を図面と共に説明すれ
ば、[図1][図2]のように、適当な高さの耐熱性の
筒を支持筒1として、支持筒1の上に煮こぼれなどを受
ける耐熱性の受け皿2を設け、受け皿2の中央部に円
形、四角形などの開口部を切り抜く。受け皿2の中央開
口部の周りの上面に耐熱性、断熱性の円形、四角形など
の断熱リング3を設け、その上に耐熱性、熱良導性の加
熱板4を設け、加熱板4の下面中央部に耐熱性で光と熱
の吸収率が良く熱良導性で、下面に狭い間隔で深い掘れ
込みのひだのある黒色の光吸収体5を密着して設ける。
受け皿2の中央開口部の周りの下面に接する様に、内面
を光を反射する面にした椀形、箱形などの耐熱性の加熱
器用反射器20を設ける。加熱器用反射器20の壁に、
用いるノズルの数だけの小さな穴を開けておき、細い管
またはその中に透明体またはレンズを設けた耐熱性の、
1個以上の加熱器用射光ノズル19を、その穴に通して
設ける。加熱器用射光ノズル19の中心軸を、光吸収体
5の下面中央またはその周りのひだに向け、そのひだの
稜線に垂直な面に平行で、かつひだの面に斜めになるよ
うに調節する。加熱器用射光ノズル19に、耐熱性の加
熱器用送光路18を接続して、加熱器用送光路18を、
支持筒1の下端の下を通すか、または支持筒1の側面に
穴または切り込みを開けて通す。支持筒1の下端付近の
何か所かに耐熱性の遮熱板支持具22を設けて、それら
で耐熱性の遮熱板21を加熱器用反射器20の下方に離
して支持する。支持筒1の下端の下面の何か所かに、耐
熱性の短い足または凸部23を設ける。以上の支持筒1
から光吸収体5までと加熱器用送光路18から短い足ま
たは凸部23までなどをまとめて室内式太陽光加熱器2
4とする。加熱器用送光路18に耐熱性の光量分岐制御
弁17と受光側送光路16を,その順に接続する。受光
側送光路16の入り口に、内面が円錐台の側面の形で光
を反射する円錐面反射管13の管径の小さい方の端を接
続する。円錐面反射管13の管径の大きい方の端の管径
及び面の傾きと、内面が放物面で光を反射する放物面反
射管12の管径の小さい方の端の管径及び面の傾きを、
それぞれ同じにして、それらを接続して集光装置8とす
る。放物面反射管12と円錐面反射管13の形、大きさ
は、[図3]に示す様に、それらの軸に平行な光を反射
した光が全部受光側送光路16の入り口に入射し、さら
に受光側送光路16の中を全反射して進むことができる
ようにする。放物面反射管12の管径の大きい方の端
に、それと同じ位の直径の、短い円筒を設けて支持枠7
とし、それに透明フィルムか透明板を設けて受光窓6と
する。集光装置8を支える集光装置支持具14の根元
に、受光窓6を太陽に向ける方向制御装置15を設け
る。光量分岐制御弁17に耐熱性の何本かの照明用送光
路25と耐熱性の何本かの水槽用送光路32を接続す
る。照明用送光路25に加熱器用射光ノズル19と同様
の照明用射光ノズル26を接続し、それを耐熱性の内面
が椀形の照明用反射器27の底に開けた穴に通して設け
る。照明用射光ノズル26の出口付近に、耐熱性の散光
用反射器28を、先を出口側に向けて中心軸をそろえて
設ける。散光用反射器28の形は、[図5]に示す様
に、その軸を含む平面で切った断面図上で、反射面を示
す曲線が、その軸に対称な二本の放物線の一部になり、
その軸に平行な光を反射した光が、さまざまな角度に進
んで散光される様にする。照明用反射器27の口に、耐
熱性の透明または半透明の照明用レンズ30を設け、照
明用送光路25から照明用レンズ30までをまとめて太
陽光ランプ31とする。水槽用送光路32に加熱器用射
光ノズル19と同様の水槽用射光ノズル33を接続し、
それを耐熱性の保温水槽34の壁に開けた穴に通して設
ける。水槽用射光ノズル33の先を、保温水槽34の中
に壁面から離して設けた内面が黒色の光吸収管35の内
面に向け、水槽用送光路32から光吸収管35までをま
とめて室内式太陽光温水器36とする。加熱板4の少し
離れた周りに、電気用ヒーター37を、その上面が加熱
板4の上面と同じほどの高さになるように設ける。電気
用ヒーター37に加熱器内電線38を接続する。受け皿
2に開けた穴または切り込みに耐熱性、熱絶縁性の電気
絶縁性リング39をはめ、その電気絶縁性リング39に
加熱器内電線38を通す。加熱器内電線38に加熱器側
電気コード40を接続する。支持筒1に開けた穴または
切り込みに耐熱性、熱絶縁性の電気絶縁性リング39を
はめ、その電気絶縁性リング39に加熱器側電気コード
40を通す。加熱器側電気コード40に加熱器用電気ス
イッチ41、電源側電気コード42,フォトスイッチ4
3を、その順に接続する。加熱器用電気スイッチ41と
電気照明器具用電気スイッチ44は、光量分岐制御弁1
7と連動させて、室内式太陽光加熱器24や太陽光ラン
プ31に送光する様に光量分岐制御弁17を調節すると
同時にそれらのスイッチが入る様にする。本発明は以上
のような構成でなっている、集光して送光路で送光した
太陽光を用いる光熱器具である。
[Means for Solving the Problems]
It is a photothermal appliance using sunlight that has been devised to solve this. The photothermal device of the present invention will be described with reference to the drawings. As shown in FIG. 1 and FIG. 2, a heat-resistant tube having an appropriate height is used as a support tube 1 to receive spills on the support tube 1. A heat-resistant tray 2 is provided, and a circular or square opening is cut out in the center of the tray 2. A heat-resistant, heat-insulating circular or square heat-insulating ring 3 is provided on the upper surface around the central opening of the tray 2, and a heat-resistant, heat-conductive heating plate 4 is provided thereon. A black light absorber 5 having heat resistance, good light and heat absorptivity, good thermal conductivity, and a deep cut-out fold at the lower surface is provided closely at the center.
A bowl-shaped, box-shaped or other heat-resistant heater reflector 20 having an inner surface that reflects light is provided so as to contact the lower surface around the central opening of the tray 2. On the wall of the heater reflector 20,
Drill holes as many as the number of nozzles used, heat-resistant thin tube or transparent body or lens provided in it,
One or more heater emitting nozzles 19 are provided through the holes. The central axis of the heater emitting nozzle 19 is directed toward the center of the lower surface of the light absorber 5 or around the fold, and is adjusted so as to be parallel to the plane perpendicular to the ridgeline of the fold and oblique to the plane of the fold. The light emitting nozzle 19 for the heater is connected to the light transmitting path 18 for the heat resistant heater, and the light transmitting path 18 for the heater is
Either pass under the lower end of the support cylinder 1 or make a hole or cut in the side surface of the support cylinder 1. A heat-resistant heat-shielding plate support 22 is provided at some position near the lower end of the support cylinder 1, and the heat-resistant heat-shielding plate 21 is supported therebelow by the heater reflector 20. In some places on the lower surface of the lower end of the support tube 1, short legs or convex portions 23 having heat resistance are provided. Support tube 1 above
From the light absorber 5 to the light transmitting path 18 for the heater to the short foot or the convex portion 23, and the like, and the indoor solar heater 2
4 is assumed. A heat-resistant branching control valve 17 and a light-receiving side light-transmitting path 16 are connected to a heater light-transmitting path 18 in that order. The smaller-diameter end of a conical-surface reflecting tube 13 that reflects light in the form of a frustoconical side surface is connected to the entrance of the light-receiving-side light-transmitting path 16. The tube diameter and the inclination of the surface of the larger diameter end of the conical surface reflection tube 13, the diameter of the smaller diameter end of the parabolic reflection tube 12 whose inner surface reflects light with a paraboloid, and The inclination of the surface,
In the same manner, they are connected to form a light collecting device 8. The shape and size of the parabolic reflector tube 12 and the conical reflector tube 13 are such that, as shown in FIG. 3, all light reflected parallel to their axes is incident on the entrance of the light receiving side light transmission path 16. Further, it is possible to proceed with total reflection in the light receiving side light transmission path 16. At the end of the larger diameter of the parabolic reflector tube 12, a short cylinder having the same diameter as that of the tube is provided, and
Then, a transparent film or a transparent plate is provided on the light receiving window 6. A direction control device 15 that directs the light receiving window 6 toward the sun is provided at the base of the light collecting device support 14 that supports the light collecting device 8. The light quantity branching control valve 17 is connected to some heat-resistant lighting light transmission paths 25 and some heat-resistant water tank light transmission paths 32. An illumination light emitting nozzle 26 similar to the heater light emitting nozzle 19 is connected to the illumination light transmission path 25, and is provided by passing a heat-resistant inner surface through a hole formed in the bottom of a bowl-shaped illumination reflector 27. In the vicinity of the exit of the illumination light emitting nozzle 26, a heat-resistant light scattering reflector 28 is provided with the center axis aligned with the tip facing the exit side. As shown in FIG. 5, the shape of the light scattering reflector 28 is such that, on a cross-sectional view taken along a plane including the axis, a curve indicating the reflecting surface is a part of two parabolas symmetrical to the axis. become,
The light reflected from the light parallel to the axis is scattered at various angles. A heat-resistant transparent or translucent illumination lens 30 is provided at the opening of the illumination reflector 27, and the sunlight lamp 31 is collectively formed from the illumination light transmission path 25 to the illumination lens 30. A water tank emission nozzle 33 similar to the heater emission nozzle 19 is connected to the water tank light transmission path 32,
It is provided through a hole formed in the wall of the heat-resistant heat retaining water tank 34. The tip of the water tank emitting nozzle 33 is directed toward the inner surface of the light absorbing tube 35 whose inner surface provided in the heat insulating water tank 34 is separated from the wall surface. The solar water heater 36 is used. An electric heater 37 is provided around the heating plate 4 so as to be slightly away from the heating plate 4 so that the upper surface thereof is almost as high as the upper surface of the heating plate 4. The heater inner wire 38 is connected to the electric heater 37. A heat-insulating and heat-insulating electric insulating ring 39 is fitted into the hole or notch formed in the receiving pan 2, and the electric wire 38 inside the heater is passed through the electric insulating ring 39. The heater side electric cord 40 is connected to the heater inner wire 38. A heat-resistant and heat-insulating electric insulating ring 39 is fitted into the hole or cut formed in the support cylinder 1, and the heater-side electric cord 40 is passed through the electric insulating ring 39. An electric switch 41 for a heater, an electric cord 42 for a power source, and a photo switch 4
3 are connected in that order. The electric switch 41 for the heater and the electric switch 44 for the electric lighting fixture are provided with the light amount branching control valve 1.
In conjunction with 7, the light amount branching control valve 17 is adjusted so as to transmit light to the indoor solar heater 24 and the solar lamp 31, and at the same time, those switches are turned on. The present invention is a photothermal appliance configured as described above and using sunlight condensed and transmitted through a light transmission path.

【0005】[使用方法]本発明は、以上の様な構成で
あるから、これを使うには、第一、受光窓6から方向制
御装置15までの受光集光装置部分を直射太陽光47が
良く当たる所に設置する。室内式太陽光加熱器24を台
所など加熱作業をする室内などに設置する。太陽光ラン
プ31を室内に設けた電気照明器具ケースの中などに取
り付ける。室内式太陽光温水器36を温水を使う所の近
くの室内などに設置する。集光装置8を受光側送光路1
6に接続し、受光側送光路16、加熱器用送光路18、
照明用送光路25、水槽用送光路32を光量分岐制御弁
17に接続する。第二、フォトスイッチ43を電源に接
続し、電気照明器具も光量分岐制御弁17に連動した電
気照明器具用電気スイッチ44やフォトスイッチなどを
介して電源に接続する。これらのフォトスイッチは、電
気容量と使用状況などにより、共用しても良いし、別々
でも良い。第三、方向制御装置15を作動させて、受光
窓6の面が直射太陽光47に垂直になるように調節す
る。受光窓6から取り入れた直射太陽光47は集光装置
8で集光される。第四、光量分岐制御弁17を調節し
て、集光送光した太陽光48を全部、一旦、水槽用送光
路32から保温水槽34へ送光し、その中の光吸収管3
5を照射して加熱し、水を温めるようにする。第五、加
熱器を用いる時は、光量分岐制御弁17を調節して、適
量の太陽光を加熱器用送光路18、加熱器用射光ノズル
19から、光吸収体5の下面に向けて、そのひだの稜線
に垂直な面に平行で、かつひだの面に斜めに照射する。
光吸収体5に吸収された熱は、加熱板4に伝わり、それ
を高温に加熱する。加熱板4の上に鍋、やかんなどを置
けば、その中の煮物や水を加熱することができる。光量
分岐制御弁17を調節することにより加熱温度を調節す
ることができる。光量分岐制御弁17と連動して加熱器
用電気スイッチ41が入っているので、直射太陽光47
が弱くなれば、即座にフォトスイッチ43が働き通電さ
れ、加熱作業を続けられる。また、太陽光ランプ31を
用いる時は、光量分岐制御弁17を調節して、適量の太
陽光を照明用送光路25へ通す。それを照明用射光ノズ
ル26から、散光用反射器28に照射すると、集光され
ている太陽光が散光されて、照明用レンズ30を通して
室内を照明する。光量分岐制御弁17と連動して電気照
明器具用電気スイッチ44が入っているので、直射太陽
光47が弱くなれば、即座にフォトスイッチが働き通電
され、照明を続けられる。第六、室内式太陽光加熱器2
4も太陽光ランプ31も使わない時や、使っていても光
が余る時は、光量分岐制御弁17を調節して、余った太
陽光を水槽用送光路32から保温水槽34へ送光し、水
を温め温水を得ることができる。直射太陽光47が弱く
なっても、保温された温水を使うことができる。
[Usage Method] Since the present invention is configured as described above, in order to use the present invention, first, the direct sunlight 47 passes through the light receiving and condensing device portion from the light receiving window 6 to the direction control device 15. Install it in a well-known place. The indoor solar heater 24 is installed in a heating room such as a kitchen. The solar lamp 31 is mounted inside an electric lighting fixture case provided indoors. The indoor solar water heater 36 is installed in a room near a place where hot water is used. The light condensing device 8 is connected to the light receiving side light transmitting path 1
6, the light-receiving side light-transmitting path 16, the heater light-transmitting path 18,
The illumination light transmission path 25 and the water tank light transmission path 32 are connected to the light quantity branching control valve 17. Second, the photo switch 43 is connected to a power supply, and the electric lighting equipment is also connected to a power supply via an electric lighting equipment electric switch 44 and a photo switch that are linked to the light amount branching control valve 17. These photo switches may be shared or may be separated depending on the electric capacity and the use condition. Third, the direction control device 15 is operated so that the surface of the light receiving window 6 is adjusted to be perpendicular to the direct sunlight 47. The direct sunlight 47 taken in from the light receiving window 6 is collected by the light collecting device 8. Fourth, by adjusting the light amount branching control valve 17, all the condensed and transmitted sunlight 48 is once transmitted from the water tank light transmission path 32 to the warm water tank 34, and the light absorbing tube 3 therein is transmitted.
Irradiate 5 and heat to warm the water. Fifth, when the heater is used, the light amount branching control valve 17 is adjusted so that an appropriate amount of sunlight is directed from the light transmitting path 18 for the heater and the light emitting nozzle 19 for the heater toward the lower surface of the light absorber 5 so as to be folded. Irradiate parallel to the plane perpendicular to the ridgeline and obliquely to the fold surface.
The heat absorbed by the light absorber 5 is transmitted to the heating plate 4 and heats it to a high temperature. If a pot, a kettle or the like is placed on the heating plate 4, the boiled food and water therein can be heated. The heating temperature can be adjusted by adjusting the light amount branching control valve 17. Since the electric switch 41 for the heater is turned on in conjunction with the light quantity branching control valve 17, the direct sunlight 47
Becomes weaker, the photo switch 43 is immediately activated and energized, and the heating operation can be continued. When the sunlight lamp 31 is used, the light quantity branching control valve 17 is adjusted so that an appropriate amount of sunlight passes through the illumination light transmission path 25. When the light is emitted from the illumination light emitting nozzle 26 to the light scattering reflector 28, the collected sunlight is scattered and illuminates the room through the illumination lens 30. Since the electric switch 44 for electric lighting equipment is turned on in conjunction with the light quantity branching control valve 17, when the direct sunlight 47 becomes weak, the photo switch is immediately activated and energized to continue lighting. Sixth, indoor solar heater 2
When neither 4 nor the solar lamp 31 is used, or when there is excess light even when it is used, the light quantity branching control valve 17 is adjusted to send the excess sunlight from the water tank light transmission path 32 to the warm water tank 34. Warm the water and get hot water. Even if the direct sunlight 47 becomes weak, warm water kept warm can be used.

【0006】[発明のいろいろな実施例]本発明の構成
の各部分について、詳しく説明し、いろいろな実施例を
述べる。(A.光吸収体5について)(A−1)光吸収
体5の形状は,下面に狭い間隔で深い掘れ込みのひだの
ある形にすると、ひだの中に受光した光が、そのひだと
ひだの間を何度も繰り返して反射して、ひだの奥の方へ
進みながらだんだん熱になって吸収されていき、容易に
は外へ出て行かず、光を効率的に吸収して熱にすること
が出来る。この様に、受けた光を何度も中で反射して熱
にして吸収できれば、色々の変形をしても良い。(A−
2)光吸収体5は、表面の色を黒色にしておくと、光の
反射が少なく、受けた太陽光から光を吸収しやすく、加
熱板4を加熱するのに有効である。(B.加熱器用反射
器20について)(B−1)加熱器用反射器20を設け
ることにより、光吸収体5のひだから漏れた光と光吸収
体5からでる赤外線などを反射して出来る限り光吸収体
5へ戻しエネルギーを熱として有効利用するのに役立
つ。(C.光系統について)(C−1)受光窓6と集光
装置8は、透明なフィルム、透明板、放物面の一部の形
をした管、円錐台の側面の形をした管、レンズなどを組
み合わすことにより様々な形のものをつくることができ
る。(C−2)[図1][図2][図3]に示すもの
は、放物面と円錐面を利用して、レンズを用いない場合
である。この様な集光装置は、その軸に平行な太陽光が
反射面に当たる時の入射角度が大きいので、反射しやす
く、反射面でのエネルギー損失が少なくなる。また、反
射光を直射太陽光47の進行方向へ前進させながら集光
し、細い送光路へ入射させることができるので、直射太
陽光47を遮ることなく、集光や送光がし易くなる。ま
た、大きなレンズを用いないので、それだけ簡単な構造
になり、安価に作ることができる。(C−3)集光装置
8は、もちろんレンズを用いたものにしてもよい。[図
4]は,円錐台の側面の形をした管10の管径の小さい
方の端に,ちょうどはまる位の大きさの集光装置用凹レ
ンズ11を設け、その管径の大きい方の端に、ちょうど
はまる位の大きさの集光装置用凸レンズ9を設けて集光
装置8とし、集光装置用凹レンズ11を受光側送光路1
6の入り口に接続し、さらに集光装置用凸レンズ9に、
集光装置用凸レンズの口径と同じ位の直径の,短い円筒
を設けて支持枠7とし、それに透明フィルムか透明板を
設けて受光窓6としたものである。この様な構造である
から、受光窓6の面に垂直に入射してきた直射太陽光4
7を、集光装置用凸レンズ9で集光し、集光装置用凹レ
ンズ11で、もう一度受光側送光路16の入り口付近の
軸に平行な平行光線に直して、受光側送光路16の入り
口に送り込む様にすることができる。散乱光が混じって
いるとしても、受けた大部分の直射太陽光47を受光側
送光路16の中を進み易くして、送光中のエネルギー損
失を少なくすることができる。また円錐台の側面の形を
した管10の内面を、光を反射する面にしておくと、集
光装置用凸レンズ9の軸に平行に入射して来なかった光
を反射して、少しでも多くの光を、受光側送光路16の
入り口に導くことができる。(C−4)どちらの場合
も、1個の集光装置8の受光面積を大きくすると集光装
置8が長くなり、1個の集光装置8の受光面積を小さく
すると集光装置8は短くなる。必要な光量に応じて、1
個当たりの集光装置8の受光面積を大きくしたり、集光
装置8の数を多く設ける必要がある。(C−5)また受
光窓6の透明フィルムや透明板は、短期間の使用中は無
いほうが、光の損失が無くてよいが、長期間の使用中
は、反射面や受光側送光路16の入り口あるいはレンズ
が、虫やほこりで汚れたり傷ついたりつまったりするの
を防ぎ、掃除し易くし、受光後、送光中のエネルギーの
損失を減少するのに役立つ。(C−6)受光窓6と支持
枠7は、もちろんいくつかの集光装置8に、ひとまとめ
にして設けても良い。(C−7)集光装置8を支える集
光装置指示具14の根元に方向制御装置15を取り付け
て、必要性と状況により手動で、あるいは、半自動また
は自動的に、受光窓6の受光面に垂直に直射太陽光47
が入射するようにして、できる限り受光量を多くするこ
とができる。集光装置8を定位置に設置した場合、受光
地点から見た太陽の運行は、一日の内では、ほぼ受光地
点を中心とする円運動と見ることができる。従って一定
の仰角を保って、日の出頃から日の入り頃まで時速15
度の角速度で回転させて、夜の内に元の姿勢に復帰させ
れば良い。例えば、この速度で回転するモーターをタイ
マーで日の出頃始動させ、日の入り頃停止させ、同じモ
ーターを変速逆転させるか、別のモーターを設けて復帰
させても良い。さらに別のモーターとタイマーによって
春分秋分の太陽高度90度−緯度を基準にして、三か月
で±23.4度の範囲、つまり13週で23.4度の角
速度で、冬至から夏至まで上に向けていき、夏至から冬
至まで下に向けていく。この様に、太陽の見かけの動き
を2方向に分けて考え、2方向に別々に追従させて方向
制御すれば、複雑な構造にしなくても制御できる。極小
さな装置で、一時的な使用の場合は、ゼンマイ式のタイ
マーなどを使っても良いし、高度な制御をしたり、移動
体の上での使用などの場合は、ポールの回りに設けたい
くつかのフォトセンサーによって、太陽光の影を感知し
て、太陽の動きにしたがって制御用モーターを作動させ
て制御しても良い。またコンピューターによって日時と
太陽の方向関係の記憶と計算をさせ、集光装置8を定位
置に設置した場合は、設置方向の初期設定値から最適方
向を計算させて制御用モーターを作動させて制御しても
良いし、移動体の上などでの使用の場合は、衛星からの
電波を受けたナビゲーション装置によって、集光装置の
方向を感知して最適方向を計算させて制御用モーターを
作動させて制御しても良い。(C−8)受光側送光路1
6、加熱器用送光路18、照明用送光路25、水槽用送
光路32として、細い光ファイバーを多数束にしたも
の、棒状透明体または管状透明体またはそれらを何本か
束にしたもの、あるいは送光管を用いても良い。送光管
は、その管の内面が光を反射する面になっていて全反射
し易ければ、ガラス、プラスチック、セラミック、金属
などいろいろの材質を用いることができる。管を曲げる
時は、光が全反射して進める範囲内で曲げることができ
る。(C−9)受光窓6から光吸収体5や散光用反射器
28や光吸収管35などの一つに至る光伝送経路は、必
要に応じた本数にすれば良く、各部によって一本にまと
めたり、複数本に分割しても良い。分割本数が多い程、
構造が複雑になるが、1本の光伝送経路で伝送する光量
を少なくし易くなるので、用いる材質の耐熱温度を低く
設計することができ、分割本数が少ない程、構造は簡単
になるが、用いる材質の耐熱温度を高く設計しなければ
ならない。いくつかの光伝送経路を設ける場合、光量調
節は、光量分岐制御弁17を調節して、いくつかの光伝
送経路の通光量を等しく調節しても良いし、通光本数を
調節しても良い。(C−10)射光ノズルは耐熱性の円
筒形、円錐台の側面形などいろいろの形状をした管にし
ても良く、また、その管の中や入口出口に光ファイバー
を通したり透明体やレンズをはめても良い。そのレンズ
を調節することにより、何本もの送光路の光を一本にま
とめても良く、また、集光、散光などして射光する状態
を調節しても良い。いくつかの射光ノズルを設ける場
合、それらの取り付け角度を調節することにより、射光
する状態を調節することもできる。(C−11)射光ノ
ズルの中に空間を設けて断熱性、保温性をたかめること
ができる。(C−12)集光密度の大きい光が通る部分
とそれに接続する周辺部分は、耐熱温度の高い材質を用
いる。(D.加熱部分について)遮熱板支持具22と短
い足または凸部23により、遮熱板21の上下周囲と支
持筒1の下に空間を設けて、加熱器下部の空気の流通、
放熱を良くし、過熱の危険を防止することができる。ま
た屋内で使用するために、加熱板4や光吸収体5など加
熱部分およびその周囲の物は、耐熱性の物にして、火災
の危険防止に注意する必要がある。(E.太陽光ランプ
31について)(E−1)散光用反射器28はレンズを
用いないので、それだけ安価に作れる。もちろん、その
代わりに耐熱性の散光用凹レンズ29を中心軸をそろえ
て設けても良い。そのレンズの凹面は、両面共球面でも
良いし、[図6]に示す様に照明用射光ノズル26に向
かった面は放物面で、反対側が球面になったものでも良
い。(E−2)いろいろな所で反射して後退した光は照
明用反射器27で反射して照明用レンズ30を通して室
内を照明する。(E−3)必要に応じて照明用レンズ3
0の内側、外側、外側前方や電気照明器具の照明用カバ
ーの内側や外側などに、紫外線を除くフィルターを設け
て、肌の日焼けを防いだり、赤外線など太陽光に含まれ
る太陽からの放射線の一部を除くフィルターを設けて、
光やその他の放射線を和らげたり、いろいろ調光をして
も良い。(F.保温水槽34について)上面を蓋にし
て、底に排水栓を設けておけば、水槽の中の清掃ができ
る。フロート式などの給水弁を設けて給水管に接続する
様にし、あふれたり膨脹した水の排水のために上水面排
水管を設け、安全のために圧力弁を設け、給湯用水栓を
設けておけば、温水を安全で便利に使うことができる。
(G.太陽光が得られない時について)室内式太陽光加
熱器24や太陽光ランプ31を使っている時に、太陽光
が弱くなれば、フォトスイッチ43や電気照明器具とそ
の電源との間に設けたフォトスイッチによって、電気用
ヒーター37や電気照明器具に通電され、加熱作業や照
明を続けられる。太陽光が強くなる毎に、電気から太陽
光に切り替えられ、電気の節約ができ、高い電気、ガス
の経費が削減される。また晴れの日に加熱作業を多くし
て、太陽光が得られない時の加熱作業を減らすなどの生
活や仕事の調整ができる場合は一層有利になる。室内式
太陽光温水器36の温水を使っていて、ぬるくなった時
は、加熱器や照明器具の場合と同様に、保温水槽34に
電気やガスのヒーターやフォトスイッチなどを併設して
働かせてもよい。(H.太陽光が余った時について)
(H−1)加熱器とランプと温水器の機能を、必ずしも
全部備えなければならないことはない。しかし、加熱器
を使わない時に、光吸収体5を射光し続けると過熱して
危険である。それで光量分岐制御弁17を調節して、不
要な太陽光を止めれば、今度は、光量分岐制御弁17が
加熱して危険になる。ところが、不要な太陽光を、散乱
しないで、逃がそうとして、周囲の物を照射すること
は、集光した太陽光はエネルギー密度が高いので、大変
危険である。また、集光した太陽光は、反射光でも遮光
フィルターなしで直視することは、目を損なうので決し
てしてはならない。従って、不要な太陽光を、安易に逃
がして捨てずに、調理、暖房、給湯などの熱源や光源や
またはそれらに併用して出来る限り積極的に有効利用し
たほうが、安全で有利である。そのため、出来る限りい
ろいろの機能を備える様にしたほうが良い。(H−2)
余裕をもって設計しておいても、何らかの状況によっ
て、保温水槽34内の水温が上がり過ぎて、100℃を
越えると危険である。保温水槽34内に、その水温を感
知する温度センサーを設けて、100℃より低い一定の
温度になれば保温水槽34と予備水槽との堺の上下二つ
の仕切り弁を開ける様にして、余分の熱を予備水槽の水
に吸収させても良い。(H−3)保温水槽34内の温度
が、100℃より低い一定の温度を越えた時は、水温を
感知する温度センサーに方向制御装置15を連動させた
り、または、全く太陽光を使わない時は、光量分岐制御
弁17の所で方向制御装置15を遠隔操作し、その自動
方向制御回路を切って、停止回路を作動させて直射太陽
光47を受光しない方向に向けても良い。この場合は、
再始動する時に、方向制御装置15が、フォトセンサー
によって太陽の方向を知ったり、コンピューターによっ
て日時と太陽の方向関係の記憶や計算をして、初期設定
値やナビゲーション装置からの情報と照合して太陽の方
向を知って、制御モーターによって自動的に最適方向に
復帰するものでなければ、最適方向に復帰させなければ
ならない。あるいは方向制御装置15を動かす代わり
に、受光窓6の付近に設けたシャッターを作動させるモ
ーターの作動回路を遠隔操作して、それを作動させて受
光面を閉じても良い。(I.光量分岐制御弁17につい
て)光量分岐制御弁17の一例としては、[図7]に示
す様に、受光側送光路16から他の送光路への分岐点に
光量分岐調節反射板46を設け、それに接続した回転軸
に光量分岐調節レバー45を接続する。光量分岐調節レ
バー45を回して光量分岐調節反射板46をいくらか回
転すると、受光側送光路16から水槽用送光路32へ進
む太陽光の内のいくらかが、直接あるいは光量分岐調節
反射板46に当たって反射されて、加熱器用送光路18
あるいは照明用送光路25へ送光される。また、回転軸
に加熱器用電気スイッチ41や電気照明器具用電気スイ
ッチ44の接点を接続しておくことにより、光量分岐調
節レバー45の回転と同時に、それらのスイッチが入る
ようにしておく。この様な構成にしても良い。光伝送経
路が複数の場合は、これを連結したものにしても良い。
同じ機能をすれば、様々な変形をしても良く、どのよう
な構成にしても良い。
[Various Embodiments of the Invention] Each part of the configuration of the present invention will be described in detail, and various embodiments will be described. (A. Regarding Light Absorber 5) (A-1) If the shape of the light absorber 5 is formed such that the lower surface has a deeply dug fold at a small interval, the light received in the fold is Reflected repeatedly between the folds, it gradually absorbs the heat as it progresses toward the back of the folds, does not go out easily, absorbs light efficiently and heats It can be. In this way, various deformations may be made as long as the received light can be reflected many times and converted into heat and absorbed. (A-
2) If the surface color of the light absorber 5 is black, light reflection is small, light is easily absorbed from received sunlight, and it is effective to heat the heating plate 4. (B. Regarding the reflector 20 for the heater) (B-1) By providing the reflector 20 for the heater, as much as possible by reflecting the light leaked from the light absorber 5 and the infrared ray emitted from the light absorber 5 Returning to the light absorber 5 is useful for effectively utilizing the energy as heat. (C. Regarding Optical System) (C-1) The light receiving window 6 and the light condensing device 8 are made of a transparent film, a transparent plate, a tube having a part of a paraboloid, or a tube having a truncated cone. Various shapes can be made by combining the lens and the like. (C-2) [FIG. 1] [FIG. 2] [FIG. 3] shows a case where a parabolic surface and a conical surface are used and no lens is used. In such a light condensing device, since the incident angle when sunlight parallel to the axis hits the reflecting surface is large, the light is easily reflected and energy loss on the reflecting surface is reduced. In addition, since the reflected light can be condensed while advancing in the traveling direction of the direct sunlight 47 and can be made incident on a narrow light transmission path, it is easy to condense and transmit the light without blocking the direct sunlight 47. In addition, since a large lens is not used, the structure becomes simpler and the cost can be reduced. (C-3) The light collecting device 8 may of course use a lens. [FIG. 4] shows a concave lens 11 for a light collecting device having a size just fitted to the smaller end of a tube 10 having the shape of a frustoconical side, and the larger end of the tube. In addition, a converging device convex lens 9 having a size that fits exactly is provided as a condensing device 8, and the condensing device concave lens 11 is connected to the light receiving side light transmission path 1.
6 and connected to the converging device convex lens 9,
A short cylinder having the same diameter as the diameter of the convex lens for the light collector is provided as a support frame 7, and a transparent film or a transparent plate is provided thereon to form a light receiving window 6. With such a structure, the direct sunlight 4 which is perpendicularly incident on the surface of the light receiving window 6
7 is condensed by the condensing device convex lens 9, and is again converted by the condensing device concave lens 11 into a parallel ray parallel to an axis near the entrance of the light receiving side light transmission path 16, at the entrance of the light receiving side light transmission path 16. It can be sent. Even if scattered light is mixed, most of the received direct sunlight 47 can easily travel through the light receiving side light transmission path 16 and energy loss during light transmission can be reduced. If the inner surface of the tube 10 in the shape of the side surface of the truncated cone is made a light reflecting surface, light which has not been incident parallel to the axis of the convex lens 9 for the light condensing device is reflected, and even a little. A lot of light can be guided to the entrance of the light receiving side light transmission path 16. (C-4) In either case, if the light receiving area of one light collecting device 8 is increased, the light collecting device 8 becomes long, and if the light receiving area of one light collecting device 8 is reduced, the light collecting device 8 becomes short. Become. 1 depending on the amount of light required
It is necessary to increase the light receiving area of the light collecting device 8 per unit or to provide a large number of light collecting devices 8. (C-5) The transparent film and the transparent plate of the light receiving window 6 need not lose light if they are not used for a short period of time. Prevents the entrance or lens from becoming dirty, scratched, or jammed by insects or dust, facilitates cleaning, and helps reduce energy loss during transmission after receiving light. (C-6) The light receiving window 6 and the support frame 7 may of course be collectively provided in some light collecting devices 8. (C-7) The direction control device 15 is attached to the base of the light-collecting device indicator 14 that supports the light-collecting device 8, and the light-receiving surface of the light-receiving window 6 is manually, semi-automatically, or automatically depending on necessity and circumstances. Direct sunlight 47 vertically
Is incident, so that the amount of received light can be increased as much as possible. When the light collecting device 8 is installed at a fixed position, the operation of the sun viewed from the light receiving point can be regarded as a circular motion about the light receiving point within a day. Therefore, keeping a constant elevation angle, the speed of 15 h / h from sunrise to sunset
It may be rotated at an angular velocity of degrees to return to the original posture within the night. For example, a motor rotating at this speed may be started by a timer at sunrise and stopped at sunset, and the same motor may be reversed in speed change or returned by providing another motor. With another motor and a timer, the sun's altitude at 90 degrees-latitude is set to ± 23.4 degrees in three months, that is, 23.4 degrees in 13 weeks from the spring solstice to the summer solstice. And from the summer solstice to the winter solstice. In this way, if the apparent movement of the sun is divided into two directions and the direction is controlled by following the two directions separately, the control can be performed without a complicated structure. A very small device.For temporary use, a mainspring timer may be used, or for advanced control or use on a moving object, it is installed around a pole. Some photo sensors may detect the shadow of sunlight and operate the control motor in accordance with the movement of the sun to perform control. When the computer is used to store and calculate the relationship between the date and time and the direction of the sun, and when the light-collecting device 8 is installed at a fixed position, the optimal direction is calculated from the initial setting value of the installation direction, and the control motor is operated to operate. Or, when using on a moving object, the navigation device that receives the radio wave from the satellite detects the direction of the light collecting device, calculates the optimal direction, and activates the control motor. May be controlled. (C-8) Light receiving side light transmission path 1
6. The light transmitting path 18 for the heater, the light transmitting path 25 for the illumination, and the light transmitting path 32 for the water tank, a bundle of a large number of thin optical fibers, a rod-shaped transparent body or a tubular transparent body, or a bundle of several of them, or A light tube may be used. Various materials such as glass, plastic, ceramic, and metal can be used for the light transmitting tube as long as the inner surface of the tube is a surface that reflects light and easily reflects the light. When bending the tube, it can be bent within a range where light is totally reflected and advancing. (C-9) The number of optical transmission paths from the light receiving window 6 to one of the light absorber 5, the light scattering reflector 28, the light absorbing tube 35, and the like may be any number as required, and each part may be one. They may be put together or divided into a plurality of pieces. The greater the number of divisions,
Although the structure is complicated, the amount of light transmitted through one optical transmission path can be easily reduced, so that the heat-resistant temperature of the material used can be designed to be low. The material must be designed to have a high heat-resistant temperature. When some light transmission paths are provided, the light quantity can be adjusted by adjusting the light quantity branching control valve 17 so that the light transmission quantity of some light transmission paths is adjusted to be equal or the number of light transmission paths is adjusted. good. (C-10) The light emitting nozzle may be a tube having various shapes such as a heat-resistant cylindrical shape or a frusto-conical side surface shape, and an optical fiber may be passed through the inside of the tube or the inlet / outlet, or a transparent body or lens may be inserted. You can put it on. By adjusting the lens, light from a number of light transmission paths may be combined into one, or the state of light emission by condensing, scattering, or the like may be adjusted. When several light emitting nozzles are provided, the state of light emission can be adjusted by adjusting their mounting angles. (C-11) A space is provided in the light emitting nozzle to enhance heat insulation and heat retention. (C-12) A material having a high heat-resistant temperature is used for a portion through which light having a high light-condensing density passes and a peripheral portion connected to the portion. (D. Regarding Heating Part) A space is provided between the upper and lower peripheries of the heat shield plate 21 and the lower part of the support cylinder 1 by the heat shield plate support 22 and the short legs or the convex portions 23 to allow air to flow under the heater.
The heat radiation can be improved and the danger of overheating can be prevented. In addition, for use indoors, it is necessary to make the heating part such as the heating plate 4 and the light absorber 5 and its surroundings heat-resistant and pay attention to prevent fire danger. (E. Regarding Sunlight Lamp 31) (E-1) Since the light-scattering reflector 28 does not use a lens, it can be made cheaper. Of course, instead of this, the heat-resistant concave lens 29 for light scattering may be provided with the central axis aligned. The concave surface of the lens may have a spherical surface on both sides, or may have a parabolic surface facing the illumination light emitting nozzle 26 and a spherical surface on the opposite side as shown in FIG. (E-2) The light reflected and receded at various places is reflected by the illumination reflector 27 and illuminates the room through the illumination lens 30. (E-3) The illumination lens 3 if necessary
A filter that eliminates UV rays is provided inside, outside, outside, and inside and outside of the lighting cover of electric lighting equipment to prevent sunburn on the skin and to prevent radiation from the sun, such as infrared rays, contained in sunlight. By installing a filter excluding a part,
Light or other radiation may be softened or various dimming may be performed. (F. Regarding the Insulated Water Tank 34) If the upper surface is used as a lid and a drain plug is provided at the bottom, the inside of the water tank can be cleaned. Provide a water supply valve such as a float type to connect to the water supply pipe, provide a water surface drain pipe for draining overflowing and expanded water, provide a pressure valve for safety, and provide a hot water tap. If it is, you can use hot water safely and conveniently.
(G. About when sunlight cannot be obtained) When the sunlight weakens while using the indoor solar heater 24 or the solar lamp 31, if the photo switch 43 or the electric lighting equipment and its power supply are used. The power is supplied to the electric heater 37 and the electric lighting equipment by the photo switch provided in the, so that the heating operation and the lighting can be continued. Each time the sunlight gets stronger, it is switched from electricity to sunlight, which saves electricity and reduces high electricity and gas costs. Further, it is more advantageous when the living and work can be adjusted such that the number of heating operations is increased on a sunny day to reduce the number of heating operations when sunlight cannot be obtained. When using the warm water from the indoor solar water heater 36 and it gets warm, use an electric or gas heater or a photo switch in the insulated water tank 34 in the same manner as in the case of the heater or the lighting equipment. Is also good. (H. About when there is excess sunlight)
(H-1) It is not always necessary to provide all functions of the heater, the lamp, and the water heater. However, when the light absorber 5 is continuously irradiated when the heater is not used, the light absorber 5 may be overheated and dangerous. Therefore, if the light quantity branching control valve 17 is adjusted to stop unnecessary sunlight, the light quantity branching control valve 17 is heated, which is dangerous. However, it is very dangerous to irradiate surrounding objects in an attempt to escape unnecessary sunlight without scattering it, because the concentrated sunlight has a high energy density. Never look directly at condensed sunlight even with reflected light without a light-blocking filter, as this will damage your eyes. Therefore, it is safer and more advantageous to effectively use unnecessary sunlight as much as possible, without escaping and discarding unnecessary sunlight, and as much as possible in combination with a heat source or a light source for cooking, heating, hot water supply, or the like. Therefore, it is better to provide various functions as much as possible. (H-2)
Even if it is designed with a margin, it is dangerous if the temperature of the water in the heat retaining water tank 34 rises excessively and exceeds 100 ° C. due to some circumstances. A temperature sensor for detecting the water temperature is provided in the insulated water tank 34, and when a constant temperature lower than 100 ° C. is reached, the two upper and lower gate valves of the insulated water tank 34 and the spare water tank are opened so that an extra The heat may be absorbed by the water in the reserve tank. (H-3) When the temperature in the insulated water tank 34 exceeds a certain temperature lower than 100 ° C., the direction control device 15 is linked to a temperature sensor for detecting the water temperature, or no sunlight is used. At this time, the direction control device 15 may be remotely operated at the light quantity branching control valve 17 to cut off the automatic direction control circuit and activate the stop circuit to direct the direct sunlight 47 in a direction in which the direct sunlight 47 is not received. in this case,
At the time of restart, the direction control device 15 knows the direction of the sun by a photo sensor, stores and calculates the date and time and the relationship of the direction of the sun by a computer, and compares it with an initial set value and information from a navigation device. If the direction of the sun is not known and the control motor does not automatically return to the optimal direction, it must return to the optimal direction. Alternatively, instead of moving the direction control device 15, an operation circuit of a motor for operating a shutter provided near the light receiving window 6 may be remotely operated to operate the circuit to close the light receiving surface. (I. Regarding the light amount branching control valve 17) As an example of the light amount branching control valve 17, as shown in FIG. 7, a light amount branching adjusting reflection plate 46 is provided at a branch point from the light receiving side light transmitting path 16 to another light transmitting path. And a light amount branching adjustment lever 45 is connected to the rotating shaft connected thereto. When the light amount branching adjustment lever 45 is rotated to rotate the light amount branching adjustment reflection plate 46 somewhat, some of the sunlight traveling from the light receiving side light transmission path 16 to the water tank light transmission path 32 is reflected directly or on the light amount branching adjustment reflection plate 46. The light transmission path 18 for the heater is
Alternatively, the light is transmitted to the illumination light transmission path 25. In addition, by connecting the contacts of the electric switch 41 for the heater and the electric switch 44 for the electric lighting fixture to the rotating shaft, these switches are turned on simultaneously with the rotation of the light amount branching adjustment lever 45. Such a configuration may be adopted. If there are a plurality of optical transmission paths, they may be connected.
Various modifications may be made as long as the same function is performed, and any configuration may be adopted.

【0007】[発明の効果] (効果1)本発明の集光装置8を用いると、直射太陽光
47をその進行方向へ前進させながら集光し、細い送光
路に入射させることができるので、直射太陽光47を遮
ることなく集光や送光がし易くなる。また、[図1]
[図2][図3]に示すものは、大きなレンズを用いな
いので、それだけ簡単な構造になり、安価に作ることが
できる。従って必要な太陽光を受光するための集光装置
8または多数の集光装置8からなる集光装置群が、形状
面と価格面で作り易くなり、太陽光を受光し、集光し、
送光することが容易にできるようになる。これによって
大切なものでありながら、制御しつつ有効に利用するこ
とが難しかった太陽光を、有効利用し易くなる。(効果
2)集光装置8または多数の集光装置8からなる集光装
置群を屋外に設置し、室内式太陽光加熱器24、太陽光
ランプ31、室内式太陽光温水器36などを、それを使
用する室内に設置することができ、利用し易くなる。
(効果3)加熱器用射光ノズル19から照射した、集光
送光した太陽光48は、黒色の光吸収体5の下面にある
狭い間隔で深い掘れ込みのひだに当たり、ひだとひだの
間を何度も反射して、ひだの奥の方へ進み、少しづつひ
だの面に吸収されて熱に変わり、他の方向へ進んだ太陽
光と赤外線を加熱器用反射器20で光吸収体5へ戻すの
で、太陽光を大変効率良く熱として用いることができ
る。(効果4)[図5]に示す太陽光ランプ31は散光
用反射器28を用いてレンズを用いないので、それだけ
安価に作れる。また後退した光を照明用反射器27で反
射して照明に用いるので、光の使用効率が良い。さらに
紫外線フィルターなどを併用すると、日焼けなどを防げ
る。また、太陽光の入らない室や届かない場所に太陽光
を照射することができるので、植物に光合成をさせて、
炭酸ガスの吸収と成長をさせることができ、空間、空き
地の新たな利用ができる。また、洗濯物の殺菌乾燥、日
光浴による殺菌療養など、普通の電灯ではできないこと
が、容易にできる。太陽光の当たる所にある植物でも、
北側から射光することにより、北面と南面で偏ることな
く一層成長をさせることができる。(効果5)保温水槽
34の蓋を開けて中を清掃することができ、きれいな温
水を飲食に使える。日没後も長時間保温しておけるの
で、太陽光の利用効率が大変良くなる。(効果6)加熱
器とランプと温水器の機能を持つので、一つの用途に使
わずに余った太陽光を、積極的に他の用途に使うことが
できる。清潔、安全、永続性のあるエネルギー源である
太陽光を、一層有効利用することができる。この様にし
て、従来の太陽光を用いる光熱器具の持つ問題点を解決
でき、住宅用にも産業用にも用いることができる。(利
用例1)受光時間と受光面積と取得熱量の関係を数値的
に見てみる。水1gを1℃上昇する熱量が1calであ
る。故に水1gを0℃から100℃まで100℃上昇す
る熱量は100calである。故に水1lを0℃から1
00℃まで100℃上昇する熱量は100kcalであ
る。また太陽光の持つ熱量は、太陽常数によると、1分
間に1cm当たり約1.95calである。これは1
分間に1cm当たり約19.5kcalになる。従っ
て6分間に1cm当たり約117kcalになる。こ
れは、いくらかの損失を差し引くと、水1lを0℃から
100℃まで100℃上昇する熱量100kcalにほ
ぼ等しい。(利用例2)例えば直径10cmの受光窓6
を持つ放物面反射管12と円錐面反射管13からなる集
光装置8の長さは、約30cmであり、これを約130
個並べると集光装置設置面積は約1.3mになり、受
光面積が約1mになる。この集光装置によって得た太
陽光を用いて、6分間、光吸収体5を照射し、加熱板4
を加熱すると、約117kcalを得ることができ、水
1lを0℃から100℃まで100℃上昇することが出
来る。電気に換算すると、6分間使用で電力量0.13
5kW時に相当し、1時間使用すると電力量1.35k
W時,電力約1.35kWに相当する。一つ一つは小さ
い様でも、一国全体、世界全体では、何千万、何億の数
になり、一つ1kWの出力で計算しても、全体で何千万
kW、何億kWにもなる。(利用例3)またこの集光装
置によると、1時間に水10lを0℃から100℃まで
100℃上昇することが出来るから、14時間に水14
0lを0℃から100℃まで100℃上昇することが出
来る。従って14時間に水210lを約67℃上昇する
ことが出来る。例えば、奥行き22cm,横巾1m、高
さ1m,内容量220lの保温水槽34を備えて、真夏
に30℃の水を210l入れておけば、朝から夕方ま
で、加熱器もランプも使わず、集光した太陽光を全部保
温水槽34に通したとして、97℃になる。通常の日照
時間と照度から考えると、100℃以下にしておくこと
ができ、安全面でも使用面でもちょうど良い。(利用例
4)直射太陽光47が弱くなった時も、フォトスイッチ
43や電気照明器具とその電源との間に設けたフォトス
イッチによって通電され、加熱作業や照明を続けること
ができる。また、保温された温水を使うことができる。
直射太陽光47が強くなる毎に、電気から太陽光に切り
替えられるので、電気の節約ができる。太陽光は、晴れ
の時しか得られないが、一年間には晴れの日は沢山ある
し、また晴れの多い地域も沢山あり、限りなく大量に、
いつまでも得ることができる。本発明を現在使われてい
る、一般的な光熱器具と組み合わせたり併用するだけで
も、膨大な量の化石燃料を節約することができ、経費と
炭酸ガスの削減ができる。また、本発明と本発明の元で
ある光水エンジンや、さらに風力、水力、潮力などとを
組み合わせて併用することにより、いろいろの天候や条
件に対する新たな対応の道が数多く考えられ、本発明の
担う役割は大きい。
[Effects of the Invention] (Effect 1) When the light condensing device 8 of the present invention is used, the direct sunlight 47 can be condensed while advancing in the traveling direction, and can be incident on a narrow light transmission path. Concentration and light transmission can be easily performed without blocking the direct sunlight 47. [Fig.1]
Since the lens shown in FIGS. 2 and 3 does not use a large lens, it has a simple structure and can be manufactured at low cost. Therefore, a light-collecting device 8 for receiving necessary sunlight or a light-collecting device group including a large number of light-collecting devices 8 can be easily formed in terms of shape and cost, and can receive and collect sunlight.
Light can be easily transmitted. This facilitates effective use of sunlight, which is important but difficult to control and use effectively. (Effect 2) The light collecting device 8 or a light collecting device group including a large number of light collecting devices 8 is installed outdoors, and the indoor solar heater 24, the solar lamp 31, the indoor solar water heater 36, and the like are installed. It can be installed in the room where it is used, making it easier to use.
(Effect 3) The condensed and transmitted sunlight 48 radiated from the heater emitting nozzle 19 hits deep digging folds at a small interval on the lower surface of the black light absorber 5 and what is between the folds and folds. The light is also reflected and travels toward the back of the fold, and is gradually absorbed by the fold surface to change into heat, and the sunlight and infrared rays that have traveled in other directions are returned to the light absorber 5 by the heater reflector 20. Therefore, sunlight can be used as heat very efficiently. (Effect 4) Since the solar lamp 31 shown in FIG. 5 uses the diffuser reflector 28 and does not use a lens, it can be manufactured at a lower cost. Further, since the receded light is reflected by the illumination reflector 27 and used for illumination, the light use efficiency is high. Furthermore, sunburn can be prevented by using an ultraviolet filter. In addition, we can irradiate sunlight to a room where sunlight does not enter or a place that does not reach, letting plants photosynthesize,
It can absorb and grow carbon dioxide, and can make new use of space and vacant lots. In addition, it is possible to easily perform things such as sterilization drying of laundry and sterilization treatment by sunbathing, which cannot be performed with ordinary electric lights. Even plants that are exposed to sunlight
By irradiating from the north side, growth can be further increased without deviation between the north and south sides. (Effect 5) It is possible to open the lid of the warm water tank 34 and clean the inside thereof, and clean hot water can be used for eating and drinking. Because it can be kept warm for a long time after sunset, the efficiency of using sunlight is very good. (Effect 6) Since it has the functions of a heater, a lamp, and a water heater, surplus sunlight that has not been used for one application can be actively used for another application. Sunlight, which is a clean, safe and permanent energy source, can be more effectively used. In this manner, the problems of the conventional photothermographic appliance using sunlight can be solved, and it can be used for both home use and industrial use. (Usage Example 1) The relationship between the light receiving time, the light receiving area, and the obtained heat amount will be numerically examined. The calorific value for raising 1 g of water by 1 ° C. is 1 cal. Therefore, the calorific value for raising 1 g of water from 0 ° C. to 100 ° C. by 100 ° C. is 100 cal. Therefore, 1 liter of water should be
The amount of heat that rises by 100 ° C. to 00 ° C. is 100 kcal. According to the solar constant, the amount of heat of sunlight is about 1.95 cal / cm 2 per minute. This is 1
Approximately 19.5 kcal / cm 2 per minute. Therefore, it is about 117 kcal / cm 2 in 6 minutes. This is approximately equivalent to a calorific value of 100 kcal, which, with some losses, will raise 1 liter of water 100 ° C. from 0 ° C. to 100 ° C. (Usage example 2) For example, a light receiving window 6 having a diameter of 10 cm
The length of the condensing device 8 composed of the parabolic reflector tube 12 and the conical reflector tube 13 having a length of about 30 cm and about 130 cm
When arranged, the light collecting device installation area becomes about 1.3 m 2 and the light receiving area becomes about 1 m 2 . The light absorber 5 is irradiated for 6 minutes using the sunlight obtained by the light collecting device,
When heating is performed, about 117 kcal can be obtained, and 1 liter of water can be raised by 100 ° C. from 0 ° C. to 100 ° C. When converted to electricity, the electric energy is 0.13 in 6 minutes of use
Equivalent to 5 kW, and 1.35 kW when used for 1 hour
At W hours, it corresponds to an electric power of about 1.35 kW. Even if each one seems small, it will be tens of millions and hundreds of millions in the whole country and the whole world, and even if it is calculated with 1 kW output, it will be tens of millions and hundreds of million kW in total Also. (Usage Example 3) According to this light condensing device, 10 l of water can be raised 100 ° C. from 0 ° C. to 100 ° C. in one hour.
0l can be increased by 100 ° C from 0 ° C to 100 ° C. Therefore, it is possible to raise 210 l of water by about 67 ° C. in 14 hours. For example, if a warm water tank 34 having a depth of 22 cm, a width of 1 m, a height of 1 m, and a capacity of 220 l is provided and 210 l of water at 30 ° C. is put in the middle of summer, from the morning to the evening, no heater or lamp is used. Assuming that all the condensed sunlight passes through the warm water tank 34, the temperature will be 97 ° C. Considering the normal sunshine duration and illuminance, the temperature can be kept at 100 ° C. or lower, which is good in terms of both safety and use. (Usage Example 4) Even when the direct sunlight 47 becomes weak, electricity is supplied by the photo switch 43 or the photo switch provided between the electric lighting device and its power supply, so that the heating operation and lighting can be continued. Also, warm water that has been kept warm can be used.
Every time the direct sunlight 47 becomes stronger, the electricity is switched from electricity to sunlight, so that electricity can be saved. Sunlight can only be obtained when it is sunny, but there are many sunny days in a year, and there are many sunny areas,
You can get it forever. The combination and use of the present invention with common light and heat appliances currently in use can save enormous amounts of fossil fuels and reduce costs and carbon dioxide. Also, by using the present invention and the optical water engine that is the source of the present invention in combination with wind power, hydraulic power, tidal power, etc., many new ways of responding to various weather and conditions can be considered, The role played by the invention is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】加熱板4の中心付近を通る平面で室内式太陽光
加熱器24を切り,また、保温水槽34の外壁の一部を
切り取って、それぞれの内部の様子が見える様に描いた
本発明の斜視図である。
FIG. 1 is a book in which the indoor solar heater 24 is cut in a plane passing near the center of a heating plate 4 and a part of an outer wall of a heat retaining water tank 34 is cut out so that the inside of each can be seen. It is a perspective view of an invention.

【図2】光伝送経路をいくつか設け、照明用送光路25
を途中で分岐する様にした場合の、加熱板4の中心付近
を通る平面で室内式太陽光加熱器24を切り,その断面
と内部の様子が見える様に描いた本発明の実施例を示す
斜視図である。
FIG. 2 shows some light transmission paths, and a light transmission path 25 for illumination.
An embodiment of the present invention is shown in which the indoor solar heater 24 is cut off on a plane passing near the center of the heating plate 4 and the cross section and the state of the inside are visible when the light is branched in the middle. It is a perspective view.

【図3】放物面反射管12と円錐面反射管13でなる集
光装置8を用いた、受光窓6から受光側送光路16の入
り口までの部分の、軸を含む平面で切った断面の図に、
軸に平行な入射光線の進路を,何本かの矢印で示した図
である。
FIG. 3 is a cross section of a portion from the light receiving window 6 to the entrance of the light receiving side light transmitting path 16 cut by a plane including an axis, using a light condensing device 8 including a parabolic reflecting tube 12 and a conical reflecting tube 13; In the figure,
FIG. 3 is a diagram showing the path of an incident light beam parallel to an axis by several arrows.

【図4】円錐台の側面の形をした管10の両端に集光装
置用凸レンズ9と集光装置用凹レンズ11を設けた集光
装置8を用いた、受光窓6から受光側送光路16の入り
口までの部分の、軸を含む平面で切った断面の図に、軸
に平行な入射光線の進路を、何本かの矢印で示した図で
ある。
FIG. 4 shows a light-transmitting light path 16 through a light-receiving window 6 using a light-collecting device 8 in which a convex lens 9 for a light-collecting device and a concave lens 11 for a light-collecting device are provided at both ends of a tube 10 shaped like a truncated cone. FIG. 4 is a diagram showing a cross section taken along a plane including an axis of a portion up to an entrance, and showing paths of incident light rays parallel to the axis by several arrows.

【図5】散光用反射器28を用いた太陽光ランプ31
の、軸を含む平面で切った断面の図に、集光送光した太
陽光48の内の軸に平行な光線の進路を、何本かの矢印
で示した図である。
FIG. 5 shows a solar lamp 31 using a light scattering reflector 28.
FIG. 5 is a diagram of a cross section taken along a plane including an axis, showing paths of light rays parallel to the axis in sunlight 48 condensed and transmitted by several arrows.

【図6】照明用射光ノズル26に向かった面は放物面
で、反対側が球面になった散光用凹レンズ29を用いた
太陽光ランプ31の、軸を含む平面で切った断面の図
に、集光送光した太陽光48の内の軸に平行な光線の進
路を、何本かの矢印で示した図である。
FIG. 6 is a cross-sectional view of a solar lamp 31 using a light diffusing concave lens 29 having a spherical surface on the opposite side to a surface facing the illumination light emitting nozzle 26, which is cut by a plane including an axis. It is the figure which showed the course of the light ray parallel to the axis | shaft among the sunlight 48 which condensed and transmitted by several arrows.

【図7】光量分岐調節レバー45と光量分岐調節反射板
46を設けた場合の、分岐点付近の送光路の上面を切り
取り、外箱などを取り除いて、内部が見える様に描いた
光量分岐制御弁17の実施例の一つを示す透視斜視図で
あり、光の入口付近の軸に平行に進入した光線が分岐さ
れて進む様子を、何本かの矢印で示した図である。
FIG. 7 shows a light amount branching control in which a light amount branching adjustment lever 45 and a light amount branching adjustment reflecting plate 46 are provided, the upper surface of a light transmission path near a branch point is cut out, an outer box is removed, and the inside is visible. FIG. 4 is a perspective view showing one embodiment of the valve 17, in which a light beam that has entered parallel to an axis near the light entrance is branched and travels with some arrows.

【符号の説明】[Explanation of symbols]

1 支持筒 2 受け皿 3 断熱リング 4 加熱板 5 光吸収体 6 受光窓 7 支持枠 8 集光装置 9 集光装置用凸レンズ 10 円錐台の側面の形をした管 11 集光装置用凹レンズ 12 放物面反射管 13 円錐面反射管 14 集光装置支持具 15 方向制御装置 16 受光側送光路 17 光量分岐制御弁 18 加熱器用送光路 19 加熱器用射光ノズル 20 加熱器用反射器 21 遮熱板 22 遮熱板支持具 23 短い足または凸部 24 室内式太陽光加熱器 25 照明用送光路 26 照明用射光ノズル 27 照明用反射器 28 散光用反射器 29 散光用凹レンズ 30 照明用レンズ 31 太陽光ランプ 32 水槽用送光路 33 水槽用射光ノズル 34 保温水槽 35 光吸収管 36 室内式太陽光温水器 37 電気用ヒーター 38 加熱器内電線 39 電気絶縁性リング 40 加熱器側電気コード 41 加熱器用電気スイッチ 42 電源側電気コード 43 フォトスイッチ 44 電気照明器具用電気スイッチ 45 光量分岐調節レバー 46 光量分岐調節反射板 47 直射太陽光 48 集光送光した太陽光 DESCRIPTION OF SYMBOLS 1 Support cylinder 2 Receiving tray 3 Insulating ring 4 Heating plate 5 Light absorber 6 Light receiving window 7 Support frame 8 Condensing device 9 Convex lens for condensing device 10 Tube shaped like a truncated cone side 11 Concave lens for condensing device 12 Parabolic Surface reflection tube 13 Conical surface reflection tube 14 Light collecting device support 15 Direction control device 16 Light receiving side light transmission path 17 Light amount branching control valve 18 Light transmission path for heater 19 Light emission nozzle for heater 20 Reflector for heater 21 Heat shield plate 22 Heat shield Plate support 23 Short legs or projections 24 Indoor solar heater 25 Light transmission path for illumination 26 Lighting nozzle for illumination 27 Reflector for illumination 28 Reflector for diffuser 29 Concave lens for diffuser 30 Lighting lens 31 Solar lamp 32 Water tank Light transmission path 33 Irradiation nozzle for water tank 34 Warm water tank 35 Light absorption tube 36 Indoor solar water heater 37 Electric heater 38 Electric wire in heater 39 Electrical insulation Ring 40 heating-side electrical cord 41 for heater electrical switch 42 power-side electric cord 43 photo switch 44 Electrical lighting equipment for electric switch 45 amount branched adjustment lever 46 amount branch regulatory reflector 47 direct sunlight 48 focused sending sunlight

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ア 耐熱性の筒を支持筒1として、支持筒
1の上に耐熱性の受け皿2を設け、受け皿2の中央部に
開口部を切り抜く。 イ 受け皿2の中央開口部の周りの上面に耐熱性、断熱
性の断熱リング3を設け、断熱リング3の上に耐熱性、
熱良導性の加熱板4を設け、加熱板4の下面中央部に耐
熱性で光と熱の吸収率が良く熱良導性で、下面に狭い間
隔で深い掘れ込みのひだのある黒色の光吸収体5を密着
して設ける。 ウ 受け皿2の中央開口部の周りの下面に接する様に、
内面を光を反射する面にした椀形、箱形などの耐熱性の
加熱器用反射器20を設ける。 エ 加熱器用反射器20の壁に、用いるノズルの数だけ
の小さな穴を開けておき、細い管またはその中に透明体
又はレンズを設けた耐熱性の、1個以上の加熱器用射光
ノズル19を、その穴に通して設ける。 オ 加熱器用射光ノズル19の中心軸を、光吸収体5の
下面中央またはその周りのひだに向け、そのひだの稜線
に垂直な面に平行で、かつひだの面に斜めになるように
調節する。 カ 加熱器用射光ノズル19に、耐熱性の加熱器用送光
路18を接続して、加熱器用送光路18を、支持筒1の
下端の下を通すか、または支持筒1の側面に穴または切
り込みを開けて通す。 キ 支持筒1の下端付近の何か所かに耐熱性の遮熱板支
持具22を設けて、それらで耐熱性の遮熱板21を加熱
器用反射器20の下方に離して支持する。 ク 支持筒1の下端の下面の何か所かに、耐熱性の短い
足又は凸部23を設ける。 ケ 以上の支持筒1から光吸収体5までと加熱器用送光
路18から短い足又は凸部23などをまとめて室内式太
陽光加熱器24とする。 コ 加熱器用送光路18に耐熱性の光量分岐制御弁17
と受光側送光路16を,その順に接続する。 サ 受光側送光路16の入り口に、内面が円錐台の側面
の形で光を反射する円錐面反射管13の管径の小さい方
の端を接続する。 シ 円錐面反射管13の管径の大きい方の端の管径及び
面の傾きと、内面が放物面で光を反射する放物面反射管
12の管径の小さい方の端の管径及び面の傾きを、それ
ぞれ同じにして、それらを接続して集光装置8とする。 ス 放物面反射管12と円錐面反射管13の形、大きさ
は、それらの軸に平行な光を反射した光が全部受光側送
光路16の入り口に入射し、さらに受光側送光路16の
中を全反射して進むことができるようにする。 セ 放物面反射管12の管径の大きい方の端に、それと
同じ位の直径の、短い円筒を設けて支持枠7とし、それ
に透明フィルムか透明板を設けて受光窓6とする。 ソ 集光装置8を支える集光装置支持具14の根元に、
受光窓6を太陽に向ける方向制御装置15を設ける。 タ 光量分岐制御弁17に耐熱性の何本かの照明用送光
路25と耐熱性の何本かの水槽用送光路32を接続す
る。 チ 照明用送光路25に加熱器用射光ノズル19と同様
の照明用射光ノズル26を接続し、それを耐熱性の内面
が椀形の照明用反射器27の底に開けた穴に通して設け
る。 ツ 照明用射光ノズル26の出口付近に、耐熱性の散光
用反射器28を、先を出口側に向けて中心軸をそろえて
設ける。散光用反射器28の形は、その軸を含む平面で
切った断面図上で、反射面を示す曲線が、その軸に対称
な二本の放物線の一部になり、その軸に平行な光を反射
した光が、さまざまな角度に進んで散光される様にす
る。 テ 照明用反射器27の口に、耐熱性の透明または半透
明の照明用レンズ30を設け、照明用送光路25から照
明用レンズ30までをまとめて太陽光ランプ31とす
る。 ト 水槽用送光路32に加熱器用射光ノズル19と同様
の水槽用射光ノズル33を接続し、それを耐熱性の保温
水槽34の壁に開けた穴に通して設ける。 ナ 水槽用射光ノズル33の先を、保温水槽34の中に
壁面から離して設けた内面が黒色の光吸収管35の内面
に向け、水槽用送光路32から光吸収管35までをまと
めて室内式太陽光温水器36とする。 ニ 加熱板4の少し離れた周りに、電気用ヒーター37
を、その上面が加熱板4の上面と同じほどの高さになる
ように設ける。 ヌ 電気用ヒーター37に加熱器内電線38を接続す
る。 ネ 受け皿2に開けた穴または切り込みに耐熱性、熱絶
縁性の電気絶縁性リング39をはめ、その電気絶縁性リ
ング39に加熱器内電線38を通す。 ノ 加熱器内電線38に加熱器側電気コード40を接続
する。 ハ 支持筒1に開けた穴または切り込みに耐熱性、熱絶
縁性の電気絶縁性リング39をはめ、その電気絶縁性リ
ング39に加熱器側電気コード40を通す。 ヒ 加熱器側電気コード40に加熱器用電気スイッチ4
1、電源側電気コード42,フォトスイッチ43を、そ
の順に接続する。 フ 加熱器用電気スイッチ41と電気照明器具用電気ス
イッチ44は、光量分岐制御弁17と連動させて、室内
式太陽光加熱器24や太陽光ランプ31に送光する様に
光量分岐制御弁17を調節すると同時にそれらのスイッ
チが入る様にする。 以上の如く構成された、集光送光した太陽光を用いる光
熱器具である。
A heat-resistant cylinder is used as a support cylinder, a heat-resistant tray is provided on the support cylinder, and an opening is cut out at the center of the tray. A heat-insulating and heat-insulating ring 3 is provided on the upper surface around the central opening of the tray 2, and heat-insulating ring 3 is provided on the heat-insulating ring 3.
A heating plate 4 having good thermal conductivity is provided. A heat-resistant, light and heat absorptivity is good at the center of the lower surface of the heating plate 4 and the heat conductivity is good. The light absorber 5 is provided in close contact. C so that it contacts the lower surface around the central opening of
A heat-resistant heater reflector 20 such as a bowl shape or a box shape having an inner surface that reflects light is provided. D. In the wall of the heater reflector 20, small holes as many as the number of nozzles to be used are made, and a heat-resistant one or more heater nozzles 19 having a thin tube or a transparent body or a lens provided therein are provided. , Through the hole. The center axis of the heater emitting nozzle 19 is directed toward the center of the lower surface of the light absorber 5 or the fold around the lower surface of the light absorber 5, and is adjusted so as to be parallel to the plane perpendicular to the ridge line of the fold and oblique to the plane of the fold. . A heat-resistant heater light-transmitting path 18 is connected to the heater light-emitting nozzle 19, and the heater light-transmitting path 18 is passed under the lower end of the support cylinder 1, or a hole or cut is made in the side surface of the support cylinder 1. Open and let through. A heat-resistant heat-shielding plate support 22 is provided at some position near the lower end of the support tube 1, and supports the heat-resistant heat-shielding plate 21 at a distance below the heater reflector 20. (C) At some point on the lower surface of the lower end of the support cylinder 1, a short heat-resistant foot or convex portion 23 is provided. G. The indoor solar heater 24 is composed of the above support tube 1 to the light absorber 5 and the short legs or convex portions 23 from the heater light transmission path 18. A heat-resistant light amount branching control valve 17 is provided in the heater light transmission path 18.
And the light transmitting path 16 on the light receiving side are connected in that order. (C) The smaller-diameter end of the conical-surface reflecting tube 13 that reflects light in the form of a frustoconical side surface is connected to the entrance of the light-receiving-side light-transmitting path 16. (C) The diameter of the end of the conical surface reflection tube 13 having the larger diameter and the inclination of the surface, and the diameter of the end of the smaller diameter of the parabolic reflection tube 12 whose inner surface reflects light with a paraboloid. And the inclination of the surface is the same, and they are connected to form a light-collecting device 8. The shape and size of the parabolic reflector tube 12 and the conical reflector tube 13 are such that all the light reflected parallel to their axes enters the entrance of the light receiving side light transmitting path 16, and further the light receiving side light transmitting path 16. To be able to proceed with total internal reflection. At the end of the larger diameter of the parabolic reflective tube 12, a short cylinder having the same diameter as that of the tube is provided as a support frame 7, and a transparent film or a transparent plate is provided thereon to form a light receiving window 6. S At the base of the light collector support 14 that supports the light collector 8,
A direction control device 15 for directing the light receiving window 6 toward the sun is provided. The light quantity branching control valve 17 is connected to several heat-resistant light transmission paths 25 and some heat-resistant water tank light transmission paths 32. (H) An illumination light emitting nozzle 26 similar to the heater light emitting nozzle 19 is connected to the illumination light transmission path 25, and is provided through a hole formed in the bottom of a bowl-shaped illumination reflector 27 having a heat-resistant inner surface. In the vicinity of the exit of the illumination light emitting nozzle 26, a heat-resistant light scattering reflector 28 is provided with the center axis aligned with the tip facing the exit side. The shape of the light-scattering reflector 28 is such that, on a cross-sectional view taken along a plane including the axis, the curve indicating the reflecting surface becomes a part of two parabolas symmetrical to the axis, and the light parallel to the axis The light reflected from the lens is scattered at various angles. (E) A heat-resistant transparent or translucent illumination lens 30 is provided at the opening of the illumination reflector 27, and the solar light lamp 31 is formed from the illumination light transmission path 25 to the illumination lens 30. (G) A water tank light emitting nozzle 33 similar to the heater light nozzle 19 is connected to the water tank light transmitting path 32, and is provided through a hole formed in the wall of the heat-resistant heat retaining water tank. (D) The tip of the water tank emitting nozzle 33 is directed toward the inner surface of the light absorbing tube 35 whose inner surface provided in the heat insulating water tank 34 is separated from the wall surface. It is assumed that the solar water heater 36. (D) Around the heating plate 4 at a distance, an electric heater 37 is provided.
Is provided such that the upper surface thereof is almost as high as the upper surface of the heating plate 4. Connect the heater inner wire 38 to the electric heater 37. D) A heat-resistant and heat-insulating electric insulating ring 39 is fitted into the hole or cut formed in the receiving tray 2, and the electric wire 38 inside the heater is passed through the electric insulating ring 39. No. Connect the heater side electric cord 40 to the heater inner wire 38. (C) A heat-resistant and heat-insulating electric insulating ring 39 is fitted into a hole or notch formed in the support cylinder 1, and a heater-side electric cord 40 is passed through the electric insulating ring 39. H. The electric switch 4 for the heater
1. The power cord 42 and the photo switch 43 are connected in that order. (F) The electric switch 41 for the heater and the electric switch 44 for the electric luminaire operate the light amount branching control valve 17 so as to transmit light to the indoor solar heater 24 and the solar lamp 31 in conjunction with the light amount branching control valve 17. Adjust them and switch them on at the same time. This is a photothermal appliance configured as described above, using condensed and transmitted sunlight.
JP9370553A 1997-12-22 1997-12-22 Heating/lighting apparatus using condensed/transmitted solar light Pending JPH11182940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9370553A JPH11182940A (en) 1997-12-22 1997-12-22 Heating/lighting apparatus using condensed/transmitted solar light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9370553A JPH11182940A (en) 1997-12-22 1997-12-22 Heating/lighting apparatus using condensed/transmitted solar light

Publications (1)

Publication Number Publication Date
JPH11182940A true JPH11182940A (en) 1999-07-06

Family

ID=18497207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9370553A Pending JPH11182940A (en) 1997-12-22 1997-12-22 Heating/lighting apparatus using condensed/transmitted solar light

Country Status (1)

Country Link
JP (1) JPH11182940A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1174658A3 (en) * 2000-07-21 2004-06-16 iGUZZINI ILLUMINAZIONE S.R.L. Light carrier system for natural light
US7298053B2 (en) * 2003-05-15 2007-11-20 Sprint Communications Company L.P. Power system for a telecommunication facility
US7629708B1 (en) 2007-10-19 2009-12-08 Sprint Communications Company L.P. Redundant power system having a photovoltaic array
KR101090156B1 (en) 2010-07-13 2011-12-06 (주)에이비엠그린텍 Plate type day-light device tracking of solar position
KR200459001Y1 (en) * 2010-05-25 2012-03-21 김혜림 A solar ray device for illumination
WO2012108693A2 (en) * 2011-02-11 2012-08-16 Choi Jae Su Solar lighting assembly
JP2013072578A (en) * 2011-09-27 2013-04-22 Wakasawan Energ Kenkyu Center Solar furnace having heating temperature adjustment function
KR200467447Y1 (en) * 2011-04-25 2013-06-13 주식회사 휠코리아 Natural lighting apparatus
KR101422170B1 (en) * 2012-11-29 2014-07-22 윤지영 Device for dollecting and distributing sunlight
WO2023022669A1 (en) * 2021-08-19 2023-02-23 Muanchart Mankaew Light intensifier in fisheries

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1174658A3 (en) * 2000-07-21 2004-06-16 iGUZZINI ILLUMINAZIONE S.R.L. Light carrier system for natural light
US7298053B2 (en) * 2003-05-15 2007-11-20 Sprint Communications Company L.P. Power system for a telecommunication facility
US7629708B1 (en) 2007-10-19 2009-12-08 Sprint Communications Company L.P. Redundant power system having a photovoltaic array
KR200459001Y1 (en) * 2010-05-25 2012-03-21 김혜림 A solar ray device for illumination
KR101090156B1 (en) 2010-07-13 2011-12-06 (주)에이비엠그린텍 Plate type day-light device tracking of solar position
WO2012108693A2 (en) * 2011-02-11 2012-08-16 Choi Jae Su Solar lighting assembly
WO2012108693A3 (en) * 2011-02-11 2012-11-22 Choi Jae Su Solar lighting assembly
KR200467447Y1 (en) * 2011-04-25 2013-06-13 주식회사 휠코리아 Natural lighting apparatus
JP2013072578A (en) * 2011-09-27 2013-04-22 Wakasawan Energ Kenkyu Center Solar furnace having heating temperature adjustment function
KR101422170B1 (en) * 2012-11-29 2014-07-22 윤지영 Device for dollecting and distributing sunlight
WO2023022669A1 (en) * 2021-08-19 2023-02-23 Muanchart Mankaew Light intensifier in fisheries

Similar Documents

Publication Publication Date Title
US6178707B1 (en) Small skylight with non-tracking solar collector
US4355628A (en) Illuminated solar energy collector
JPH11182940A (en) Heating/lighting apparatus using condensed/transmitted solar light
KR100713802B1 (en) Apparatus for natural lighting of independence type
US4344418A (en) Solar collector
EP1071317B1 (en) Greenhouse
FR2535032A1 (en) VERTICAL ANGULAR ABSORBER INSOLATOR
CN2392984Y (en) Solar lighting apparatus
JP2002327962A (en) Solar heat storage system
CN102393082A (en) Solar water boiler
KR20140018064A (en) Solar heating system
KR20160135062A (en) Device for ventilation and natural lightings
CN102725593B (en) Solar dish collector system and associated methods
CN102200348B (en) A kind of skyscraper solar energy optical-thermal collection and utilization system
KR0181200B1 (en) Solar concentration collector
RU2569423C1 (en) Solar heater with protection against precipitation
GB2435107A (en) Solar collector with receiver, spherical internally reflective chamber and emitter
EP1931925B8 (en) Solar collector with integrated heat storage
KR100592426B1 (en) Apparatus for collecting of solar light
JP6627018B2 (en) Solar lighting equipment
KR900005963B1 (en) Water heater using solar heat
KR810000061B1 (en) Water heating apparatus using solar energy
KR100235454B1 (en) Light-converging optical system converged light utilizing devices and installation method thereof
JP2022102351A (en) Agricultural greenhouse structure
US20180209151A1 (en) Skylight