JPH11182934A - Control method of heat insulating operation of hot-water supplier - Google Patents

Control method of heat insulating operation of hot-water supplier

Info

Publication number
JPH11182934A
JPH11182934A JP36607297A JP36607297A JPH11182934A JP H11182934 A JPH11182934 A JP H11182934A JP 36607297 A JP36607297 A JP 36607297A JP 36607297 A JP36607297 A JP 36607297A JP H11182934 A JPH11182934 A JP H11182934A
Authority
JP
Japan
Prior art keywords
water
thermistor
temperature
insulating operation
heat insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP36607297A
Other languages
Japanese (ja)
Inventor
Takashi Ikezawa
剛史 池澤
Makoto Hamada
誠 濱田
Katsuhiro Fujiwara
克博 藤原
Manabu Shimizu
学 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritz Corp
Original Assignee
Noritz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritz Corp filed Critical Noritz Corp
Priority to JP36607297A priority Critical patent/JPH11182934A/en
Publication of JPH11182934A publication Critical patent/JPH11182934A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To cool a thermistor and improve the durability of the thermistor by a method wherein heat insulating operation is not effected until a flow rate sensor detects the passing of water after deciding that there is no water in a boiler body through the thermistor while the heat insulating operation is started when the passing of water is detected. SOLUTION: A hot-water supplier 1 is provided with an inlet water temperature sensor 6 and a flow rate sensor 7, detecting the total passing amount of water, at the downstream side of the branched position of an inlet water pipe 3 from a bypass pipe 5 while a heat exchanger 2 is provided with a boiler body temperature sensor 8 consisting of thermistors. When an insulating operation switch is put ON, a high voltage is impressed on the boiler body temperature sensor 8 or the thermistor to generate self heat generation in the thermistor. The existence of water in the boiler body is decided at the temperature and when there is water, the heat insulating operation is started. When it is decided that there is no water, the operation is shifted into a waiting condition and after the flow rate sensor 7 has confirmed that the water passing signal is transmitted, the high voltage is impressed on the thermistor again to decide the existence of the water.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、機構的に保温機能を備
えていない給湯器であって、制御的に給湯器内の残水を
保温する機能を備えた給湯器の保温運転制御知方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the warming operation of a water heater which is not mechanically provided with a heat retaining function and which has a function of controlling and keeping the remaining water in the water heater hot. About.

【0002】[0002]

【従来の技術】従来の給湯器、例えば、バイパスミキシ
ング方式の給湯器においては、熱交換器から出湯される
高温の湯と、バイパス通路からの低温の水とを混合し
て、設定温度の湯をカラン等から給湯するもので、熱交
換器を加熱するバーナの燃焼量を能力制御弁でフィード
フォワード制御することによって熱交換器から出湯され
る湯を設定温度よりも高い温度に加熱し、バイパス通路
の通水量をバイパス弁でフィードバック制御することに
よって、熱交換器からの高温の湯とバイパス通路からの
低温の水との混合比を調整し、設定温度の給湯を行なっ
ている。一旦給湯を停止した後、給湯を再開する時に直
ちに温湯が供給されるように保温機能を構造的に備えた
給湯器が知られているが、このような保温機能(構造)
を備えていない給湯器においては、給湯器内の残水を加
熱する保温運転を行うものが知られている。上記保温運
転においては、一般にコンピュータにより制御され、給
湯器内に水があることをサーミスタで確認してからバー
ナに点火して小出力の燃焼を行って給湯器内の水を昇温
させることにより、再出湯時に冷水の供給を防ぎ、温湯
を供給するものである。
2. Description of the Related Art In a conventional hot water heater, for example, a hot water heater of a bypass mixing type, hot water discharged from a heat exchanger and low temperature water from a bypass passage are mixed to form a hot water at a set temperature. The hot water discharged from the heat exchanger is heated to a temperature higher than the set temperature by controlling the amount of combustion of the burner that heats the heat exchanger by feed-forward control with a capacity control valve, and bypassed. By controlling the amount of water passing through the passage by feedback control with a bypass valve, the mixing ratio of high-temperature hot water from the heat exchanger and low-temperature water from the bypass passage is adjusted, and hot water is supplied at a set temperature. There is known a water heater structurally provided with a heat retaining function so that hot water is supplied immediately after hot water supply is stopped and then restarted. However, such a heat retaining function (structure) is known.
There is known a water heater that does not include a water heater that performs a warming operation for heating residual water in the water heater. In the warming operation, generally controlled by a computer, it is confirmed that there is water in the water heater by using a thermistor, and then the burner is ignited to perform low output combustion to raise the temperature of the water in the water heater. In addition, the supply of cold water is prevented when hot water is supplied again, and hot water is supplied.

【0003】ここで、サーミスタによる水の検知は次の
ように行うものである。まず、通常の湯温検知に用いる
場合は、サーミスタに低電圧(例えば、5V)をかけて
サーミスタの電圧を計測し、サーミスタの抵抗変化を検
知し、温度を検出する。これに対して、水の有無を検出
する場合は、水の有無判定作業開始時にサーミスタに高
電圧(例えば、15V)をかけてサーミスタ電圧の上昇
を計測し、水の有無を判定する。即ち、給湯器内に水が
ある場合は、サーミスタが水で冷却されるから、自己発
熱でサーミスタが温まりにくく、温度が低いため抵抗値
が大きく、サーミスタ電圧が高くなり、水が無い場合
は、サーミスタが空気中にあるために冷却されず、自己
発熱でサーミスタが温まり易く、温度が高いため抵抗値
が小さく、サーミスタ電圧が低くなる。
Here, detection of water by the thermistor is performed as follows. First, when used for normal hot water temperature detection, a low voltage (for example, 5 V) is applied to the thermistor, the voltage of the thermistor is measured, the resistance change of the thermistor is detected, and the temperature is detected. On the other hand, when detecting the presence or absence of water, a high voltage (for example, 15 V) is applied to the thermistor at the start of the water presence determination operation, and the rise of the thermistor voltage is measured to determine the presence or absence of water. In other words, when there is water in the water heater, the thermistor is cooled by water, so the thermistor is unlikely to be heated by self-heating, the resistance value is large because the temperature is low, the thermistor voltage is high, and when there is no water, Since the thermistor is not cooled because it is in the air, the thermistor is easily heated by self-heating, and the temperature is high, so that the resistance value is small and the thermistor voltage is low.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
給湯器の保温運転制御においては、図2のフローチャー
トに示すように、操作ボタンを押す(ステップA)と、
サーミスタに高電圧(例えば、15V)をかけて自己発
熱させ(ステップB)、サーミスタの温度上昇の差によ
るサーミスタ電圧の高低による水の有無を判定し(ステ
ップC)、水が有ると判定した時は、保温運転を開始し
(ステップD)、缶体内の水温を上昇させる(ステップ
E)ものであり、ステップCで水が無いと判定した時
は、操作ボタンを押す前(ステップAの前)の状態に戻
ることになるから、操作ボタンを再度オンするとサーミ
スタの自己発熱が再度行われるという問題があった。即
ち、上述の如く、サーミスタの自己発熱が繰り返される
と、サーミスタ自身が高温になり過ぎるために、サーミ
スタの劣化が進むことになって、サーミスタの耐久性が
低下するという問題があった。
However, in the conventional warming operation control of a water heater, as shown in a flowchart of FIG. 2, when an operation button is pressed (step A),
When a high voltage (for example, 15 V) is applied to the thermistor to cause self-heating (Step B), the presence or absence of water due to the level of the thermistor voltage due to the difference in temperature rise of the thermistor is determined (Step C). Starts the warming operation (Step D) and raises the water temperature in the can (Step E). When it is determined in Step C that there is no water, before pressing the operation button (before Step A) Therefore, when the operation button is turned on again, there is a problem that self-heating of the thermistor is performed again. That is, as described above, when the self-heating of the thermistor is repeated, the temperature of the thermistor itself becomes too high, so that the thermistor is deteriorated and the durability of the thermistor is reduced.

【0005】本発明の目的は、水の有無を検出するサー
ミスタの耐久性を向上させることのできる給湯器の保温
運転制御方法を提供することである。
[0005] It is an object of the present invention to provide a method for controlling the operation of keeping a hot water heater warm, which can improve the durability of a thermistor for detecting the presence or absence of water.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明の給湯器の保温運転制御方法は、通水を検知す
る流量センサと、缶体温度を検出するサーミスタを有
し、制御動作に保温運転機能を備えた給湯器において、
サーミスタにより缶体内の水の有無を判定するものであ
って、水が無いものと判定した後は、流量センサが通水
を検知すると保温運転を行わず、通水を検知すると保温
運転を開始することにより、通水により水があることを
確認してからサーミスタに通電することで、サーミスタ
を冷却し、サーミスタの耐久性を向上させることができ
る。
In order to achieve the above object, a method for controlling the temperature of a water heater according to the present invention comprises a flow rate sensor for detecting water flow and a thermistor for detecting the temperature of a can body. In a water heater with a warming operation function,
The presence or absence of water in the can body is determined by the thermistor, and after it is determined that there is no water, the heat insulation operation is not performed when the flow sensor detects water flow, and the heat insulation operation is started when water flow is detected. Thus, it is possible to cool the thermistor and improve the durability of the thermistor by energizing the thermistor after confirming that there is water by passing water.

【0007】[0007]

【発明の実施の形態】本発明を適用する給湯器の一例を
図3に基づいて概略構成を説明すると、給湯器1は、熱
交換器2と、熱交換器2の入口側に接続された入水管3
と、出口側に接続された出湯管4と、熱交換器2をバイ
パスするバイパス管5と、入水管3のバイパス管5の分
岐位置よりも下流側の位置に設けられた入水温度Tc を
検出するサーミスタから成る入水温度センサ6及び全通
水量Qを検出する流量センサ7と、サーミスタから成
り、熱交換器2に設けられて缶体温度Th を検出する缶
体温度センサ8と、バイパス管5の分岐位置の下流側の
出湯管4に設けられて熱交換器2からの湯とバイパス管
5からの水との混合湯出湯温度Tm を検出する混合出湯
温度センサ10と、バイパス管5に設けられたバイパス
弁9と、熱交換器2を加熱するバーナ12と、ガス管1
3に設けられてバーナ12へのガス量を調節する比例制
御弁14及びガス元栓15と、送風機16と、マイクロ
コンピュータ等から成る制御部17とを備えている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An example of a water heater to which the present invention is applied will be schematically described with reference to FIG. 3. A water heater 1 is connected to a heat exchanger 2 and an inlet side of the heat exchanger 2. Water inlet 3
And a tap water pipe T connected to the outlet side, a bypass pipe 5 for bypassing the heat exchanger 2, and a water inlet temperature Tc provided at a position downstream of the branch point of the bypass pipe 5 of the water inlet pipe 3. Inlet temperature sensor 6 comprising a thermistor and a flow sensor 7 for detecting the total water flow Q; a canister temperature sensor 8 provided in the heat exchanger 2 for detecting the canister temperature Th; A mixed tapping temperature sensor 10 for detecting a mixed tapping temperature Tm of the hot water from the heat exchanger 2 and the water from the bypass pipe 5 provided in the tapping pipe 4 on the downstream side of the branch position of A bypass valve 9, a burner 12 for heating the heat exchanger 2, and a gas pipe 1.
3 is provided with a proportional control valve 14 and a gas source plug 15 for adjusting the amount of gas to the burner 12, a blower 16, and a control unit 17 including a microcomputer and the like.

【0008】給湯器1においては、予め設定された設定
温度Ts 、入水温度Tc 、全通水量Q及び湯水分配比
(バイパス比)に基づいて、バイパス管5からの水と混
合された時に設定温度Ts に等しい混合湯出湯温度Tm
の出湯が得られるような缶体設定温度Thsを算出し、熱
交換器2からの出湯温度である缶体温度Th が缶体設定
温度Thsに等しくなるように比例制御弁14を駆動して
フィードフォワード(FF)制御する一方、混合湯出湯
温度Tm が設定温度Ts に合致するように比例制御弁1
3をフィードバック(FB)制御する。
In the water heater 1, based on a preset set temperature Ts, an incoming water temperature Tc, a total water flow rate Q and a hot water distribution ratio (bypass ratio), the set temperature when mixed with water from the bypass pipe 5 is set. Mixed tapping temperature Tm equal to Ts
The can body setting temperature Ths at which the hot water is obtained is calculated, and the proportional control valve 14 is driven so that the can body temperature Th, which is the hot water temperature from the heat exchanger 2, becomes equal to the can body setting temperature Ths. While performing the forward (FF) control, the proportional control valve 1 is controlled so that the mixed tapping temperature Tm matches the set temperature Ts.
3 is subjected to feedback (FB) control.

【0009】出湯を一旦停止すると、図示を略した主電
源スイッチをオンしている限り、保温運転に移行する。
保温運転においては、缶体温度センサ8で検出した缶体
温度Th が保温燃焼開始温度To を下回ると保温燃焼を
開始し、保温燃焼開始後、上記缶体温度Th が上昇し
て、保温燃焼開始温度To より高く定められた保温燃焼
停止温度Te を上回れば、保温燃焼を停止する。前記保
温燃焼開始温度To は入水温度センサ6で検出した入水
温度Tc の変化に対応して変化させるものであり、入水
温度Tc が高いときは保温燃焼停止から次の保温燃焼開
始までの保温インターバルを、入水温度Tc が高い時
(例えば、夏季)には長く、入水温度Tc が低い時(例
えば、冬季)には短くなようにしている。
Once the tapping is stopped, as long as the main power switch (not shown) is turned on, the operation shifts to the warming operation.
In the warming operation, when the can body temperature Th detected by the can body temperature sensor 8 falls below the warming combustion start temperature To, the warming combustion is started. After the warming combustion starts, the can body temperature Th rises and the warming combustion starts. If the temperature exceeds the warming stop temperature Te that is higher than the temperature To, the warming stop is stopped. The warming combustion start temperature To is changed in accordance with a change in the incoming water temperature Tc detected by the incoming water temperature sensor 6. When the incoming water temperature Tc is high, the warming interval from the stop of the warming combustion to the start of the next warming combustion is set. When the incoming water temperature Tc is high (for example, in summer), it is long, and when the incoming water temperature Tc is low (for example, in winter), it is short.

【0010】ここで、保温燃焼開始温度To は、設定温
度Ts 、入水温度Tc 、係数a,bから次式で算出す
る。 To =Ts +α なお、α=a/Ts +b また、空焚きを防止するため、上記保温燃焼を開始する
前に、缶体即ち熱交換器2内の水の有無を検出する必要
があり、水の有無判定作業開始時にサーミスタに高電圧
(例えば、15V)をかけてサーミスタの両端子間に発
生する電圧の上昇を計測し、水の有無を判定する。
Here, the warm combustion start temperature To is calculated by the following equation from the set temperature Ts, the incoming water temperature Tc, and the coefficients a and b. To = Ts + α Note that α = a / Ts + b It is necessary to detect the presence / absence of water in the can body, that is, the heat exchanger 2 before starting the above-mentioned insulated combustion, in order to prevent dry burning. When a high voltage (for example, 15 V) is applied to the thermistor at the start of the work to determine the presence or absence of water, the rise in the voltage generated between both terminals of the thermistor is measured to determine the presence or absence of water.

【0011】保温運転制御について図1のフローチャー
トを参照して説明する。ステップS1において、保温運
転スイッチの押しボタンを押すと、水の有無の判定動作
を開始し、ステップS2において、缶体温度センサ8で
あるサーミスタに高電圧(例えば、15V)をかけてサ
ーミスタに自己発熱を生じさせる。ステップS3におい
て、サーミスタ(缶体温度センサ8)が自己発熱で高温
になると、その温度で缶体内の水の有無を判定し、水が
有ると判定した場合は保温運転を開始して(ステップS
4)、缶体内の水の温度を上昇させる(ステップS
5)。
The warming operation control will be described with reference to the flowchart of FIG. In step S1, when the push button of the heat retention operation switch is pressed, the operation of judging the presence or absence of water is started. In step S2, a high voltage (for example, 15 V) is applied to the thermistor, which is the can body temperature sensor 8, and the thermistor is self-determined. This produces an exotherm. In step S3, when the thermistor (can body temperature sensor 8) becomes high in temperature due to self-heating, the presence or absence of water in the can is determined at that temperature, and if it is determined that there is water, the warming operation is started (step S3).
4) Raise the temperature of the water in the can (Step S)
5).

【0012】ステップS3において、水が無いと判定し
た場合は待機状態に移行し(ステップS6)、流量セン
サ7から通水信号(例えば、流量センサ7のロータの回
転により発生するパルス)が発信されたことを確認して
(ステップS7)から、ステップS2に移行して再度サ
ーミスタ(缶体温度センサ8)に高電圧(15V)をか
けてサーミスタ(缶体温度センサ8)に自己発熱を生じ
させ、水の有無の判定を行う(ステップ3)。流量セン
サ7から通水信号が発信された時は、給湯器1(熱交換
器2)に水が供給されたと判定して上記動作に移行す
る。
If it is determined in step S3 that there is no water, the flow shifts to a standby state (step S6), and a flow signal (for example, a pulse generated by rotation of the rotor of the flow sensor 7) is transmitted from the flow sensor 7. After confirming this (step S7), the process proceeds to step S2, where a high voltage (15V) is applied again to the thermistor (can body temperature sensor 8) to cause self-heating of the thermistor (can body temperature sensor 8). Then, the presence or absence of water is determined (step 3). When a flow signal is transmitted from the flow rate sensor 7, it is determined that water has been supplied to the water heater 1 (heat exchanger 2), and the operation shifts to the above operation.

【0013】流量センサ7からの通水信号が確認できな
い場合は、ステップ6の待機状態に移行する。待機状態
においては、保温運転スイッチの押しボタンを押して
も、サーミスタ(缶体温度センサ8)に高電圧(15
V)を印加することが無い。
If the flow signal from the flow rate sensor 7 cannot be confirmed, the flow shifts to the standby state of step 6. In the standby state, even if the push button of the warming operation switch is pressed, the high voltage (15 V) is applied to the thermistor (can body temperature sensor 8).
V) is not applied.

【0014】空気中でサーミスタに自己発熱させると、
高温になり過ぎてサーミスタを傷めるから、この構成に
より、通水により水があることを確認してからサーミス
タに通電することで、サーミスタを冷却し、サーミスタ
の耐久性を向上させることができる。
When the thermistor self-heats in air,
Since the temperature of the thermistor becomes too high and damages the thermistor, this configuration makes it possible to cool the thermistor and to improve the durability of the thermistor by energizing the thermistor after confirming that there is water by passing water.

【0015】なお、図3のフローチャートを参照して異
なる実施例について説明すると、待機状態に移行し(ス
テップS8)、流量センサ7から通水信号が発信された
ことを確認して(ステップS7)から、保温運転の指示
をキャンセルし(ステップS8)、保温運転の指示をキ
ャンセルしたことを表示し(ステップS9)、その後ス
テップS1に復帰し、保温運転スイッチの押しボタンを
押圧操作することにより、保温運転を再開する。
Referring to a different embodiment with reference to the flowchart of FIG. 3, the process shifts to a standby state (step S8), and it is confirmed that a flow signal has been transmitted from the flow rate sensor 7 (step S7). Then, the instruction of the warming operation is canceled (step S8), the fact that the instruction of the warming operation is canceled is displayed (step S9), and thereafter, the process returns to step S1 and the push button of the warming operation switch is pressed to operate. Restart the warm-up operation.

【0016】この構成によると、缶体内に水が無い場合
は、保温運転の指示を一旦キャンセルすることにより、
確実に燃焼を停止させ、その後保温運転スイッチの押し
ボタンを押圧操作しなければ保温運転を再開できないも
のであるから、缶体内に水があることを確認してから保
温燃焼を開始することになり、確実に空焚きを防止する
ことができる。
According to this configuration, when there is no water in the can body, the instruction of the warming operation is temporarily canceled, so that
Since it is impossible to restart the warming operation without stopping the combustion without pressing the push button of the warming operation switch after that, it is necessary to confirm that there is water in the can body before starting the warming combustion. In addition, it is possible to reliably prevent empty burning.

【0017】[0017]

【発明の効果】本発明は、上述のとおり構成されている
から、次のような効果を奏する。空気中でサーミスタに
自己発熱させると、高温になり過ぎてサーミスタを傷め
るから、通水により水があることを確認してからサーミ
スタに通電することで、サーミスタを冷却し、サーミス
タの耐久性を向上させることができる。
Since the present invention is configured as described above, it has the following effects. If the thermistor self-heats in the air, it will become too hot and damage it. Can be done.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に係る給湯性能曲線図である。FIG. 1 is a hot water supply performance curve diagram according to an embodiment of the present invention.

【図2】本発明の他の実施例に係る給湯性能曲線図であ
る。
FIG. 2 is a hot water supply performance curve diagram according to another embodiment of the present invention.

【図3】従来の保温動作を示すフローチャートである。FIG. 3 is a flowchart showing a conventional heat retaining operation.

【図4】本発明を適用する給湯器の一例を示す概略構成
図である。
FIG. 4 is a schematic configuration diagram showing an example of a water heater to which the present invention is applied.

【符号の説明】[Explanation of symbols]

1 給湯器、2 熱交換器、3 給水管、4 出湯管、
5 バイパス管 6 入水温度センサ、7 流量センサ、8 缶体温度セ
ンサ 9 バイパス弁、11 混合出湯温度センサ、17 制
御部
1 water heater, 2 heat exchanger, 3 water supply pipe, 4 tap water pipe,
Reference Signs List 5 bypass pipe 6 inlet water temperature sensor, 7 flow rate sensor, 8 can body temperature sensor 9 bypass valve, 11 mixed hot water temperature sensor, 17 control unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 清水 学 兵庫県神戸市中央区江戸町93番地 株式会 社ノーリツ内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Manabu Shimizu 93, Edo-cho, Chuo-ku, Kobe-shi, Hyogo Pref.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 通水を検知する流量センサと、缶体温度
を検出するサーミスタを有し、制御動作に保温運転機能
を備えた給湯器において、サーミスタにより缶体内の水
の有無を判定するものであって、水が無いものと判定し
た後は、流量センサが通水を検知すると保温運転を行わ
ず、通水を検知すると保温運転を開始することを特徴と
する給湯器の保温運転制御方法。
1. A water heater having a flow rate sensor for detecting water flow and a thermistor for detecting a temperature of a can body and having a control operation having a warming operation function, wherein the presence or absence of water in the can body is determined by the thermistor. And after judging that there is no water, does not perform the warming operation when the flow sensor detects the passage of water, and starts the warming operation when the passage of water is detected. .
JP36607297A 1997-12-24 1997-12-24 Control method of heat insulating operation of hot-water supplier Pending JPH11182934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36607297A JPH11182934A (en) 1997-12-24 1997-12-24 Control method of heat insulating operation of hot-water supplier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36607297A JPH11182934A (en) 1997-12-24 1997-12-24 Control method of heat insulating operation of hot-water supplier

Publications (1)

Publication Number Publication Date
JPH11182934A true JPH11182934A (en) 1999-07-06

Family

ID=18485860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36607297A Pending JPH11182934A (en) 1997-12-24 1997-12-24 Control method of heat insulating operation of hot-water supplier

Country Status (1)

Country Link
JP (1) JPH11182934A (en)

Similar Documents

Publication Publication Date Title
KR100598548B1 (en) Complex heat source machine with one fan
JPH01118068A (en) Hot water supplying device
JPH07234014A (en) Hot water supplying apparatus
JPH11182934A (en) Control method of heat insulating operation of hot-water supplier
JP2003194404A (en) Flow type water heater
JP3442280B2 (en) Water heater with reheating function
JPH0252946A (en) Preventing device for freezing of bath boiler
JP2001248911A (en) Method for controlling hot water supply temperature and hot water supply apparatus
JP2001033099A (en) Bath system provided with hot water supply apparatus
JP3800724B2 (en) Heating device
JP3273005B2 (en) Water heater
JP3273004B2 (en) Water heater
JP3144729B2 (en) Circulating warm water heater
JP3118949B2 (en) Water heater control device
JP3077895B2 (en) Slow ignition method for hot water heater
JPH09318085A (en) Frost prevention method and frost prevention apparatus for hot water supplying and heating apparatus
JPH11132451A (en) Water heater with bath function
JPH02213645A (en) Instantaneous hot water boiler
JP2992467B2 (en) Water heater
JP3773706B2 (en) Water heater
JPH0438987B2 (en)
JPH02254230A (en) Hot water space heater
JP2003106659A (en) Heat recovery system
JP2001041567A (en) Hot-water supplier equipped with bath boiler
JPH09303862A (en) Hot water supplier

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040316

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040831