JPH11181434A - Coke for blast furnace - Google Patents

Coke for blast furnace

Info

Publication number
JPH11181434A
JPH11181434A JP34957597A JP34957597A JPH11181434A JP H11181434 A JPH11181434 A JP H11181434A JP 34957597 A JP34957597 A JP 34957597A JP 34957597 A JP34957597 A JP 34957597A JP H11181434 A JPH11181434 A JP H11181434A
Authority
JP
Japan
Prior art keywords
coke
porosity
strength
drum strength
blast furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34957597A
Other languages
Japanese (ja)
Inventor
Izumi Shimoyama
泉 下山
Shozo Itagaki
省三 板垣
Kiyoshi Fukada
喜代志 深田
Hidenori Sumiya
秀紀 角谷
Masatoshi Shinagawa
昌俊 品川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP34957597A priority Critical patent/JPH11181434A/en
Publication of JPH11181434A publication Critical patent/JPH11181434A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coke Industry (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a coke used for blast furnaces, suitable for the highly fine coal particle-blowing operations of the blast furnaces, having a strength of a constant level or larger, and having a high porosity and a small apparent specific gravity. SOLUTION: This coke for blast furnaces has the following relations between the porosity of the coke and its drum strength (DI 30/15): a porosity of >=58% and a drum strength of >=92 wherein the drum strength of the coke is >=94, >=93.5, >=93 or >=92, when the porosity of the coke is >=58%, >=60%, >=62% or >=63%, respectively.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、高炉における高
微粉炭吹込み操業に適した高炉用コークスに関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a blast furnace coke suitable for a high pulverized coal injection operation in a blast furnace.

【0002】[0002]

【従来の技術】近年、高炉操業においてコークス比を低
減するために、高炉内に多量の微粉炭を吹き込む高微粉
炭吹込み操業が行われている。このような高微粉炭吹込
み操業の場合には、高炉内へのコークスの装入量が減少
してore/cokeが上昇し且つ高炉内におけるコー
クススリットの厚さが減少する上、コークスの強度低下
による粉化の増大や微粉炭の燃焼性が悪いことにより、
高炉内における通気性が低下する問題が生ずる。
2. Description of the Related Art In recent years, in order to reduce a coke ratio in a blast furnace operation, a high-pulverized coal injection operation in which a large amount of pulverized coal is blown into a blast furnace has been performed. In the case of such a high pulverized coal injection operation, the amount of coke charged into the blast furnace is reduced, the ore / coke is increased, the thickness of the coke slit in the blast furnace is reduced, and the coke strength is reduced. Due to increased pulverization due to lowering and poor pulverized coal flammability,
There is a problem that air permeability in the blast furnace is reduced.

【0003】[0003]

【発明が解決しようとする課題】高炉内における通気性
を高めるために、炉内に装入するコークス塊の気孔率を
高め、その見掛け比重を小さくすると、高炉の上部およ
び中部における通気抵抗が減少する。一方、コークス塊
の強度を高めると、高炉下部における通気抵抗が減少す
る。
When the porosity of the coke lump to be charged into the furnace is increased and its apparent specific gravity is reduced in order to increase the permeability in the blast furnace, the ventilation resistance in the upper and middle parts of the blast furnace decreases. I do. On the other hand, when the strength of the coke mass is increased, the ventilation resistance in the lower part of the blast furnace decreases.

【0004】従って、単にコークス塊の気孔率を高めた
だけでは、高炉全体の通気性を向上させることはできな
い。従来のコークスの気孔率はほぼ一定であるために強
度が大きく影響し、高微粉炭吹込み操業においては、特
に高炉下部の通気抵抗が高くなる問題が生ずる。
[0004] Therefore, simply increasing the porosity of the coke mass cannot improve the permeability of the entire blast furnace. Since the porosity of the conventional coke is substantially constant, the strength of the coke is greatly affected. In the operation of injecting high-pulverized coal, there is a problem that the ventilation resistance particularly at the lower part of the blast furnace is increased.

【0005】また、図3に示すように、コークス炉内へ
の石炭装入密度を低め、低嵩密度装入を行った場合に
は、製品コークスのドラム強度が低下し、また、図4に
示すように、揮発分の高い石炭を使用した場合でも、製
品コークスのドラム強度は低下する。
[0005] Further, as shown in FIG. 3, when the charging density of coal into the coke oven is lowered and low bulk density charging is performed, the drum strength of the product coke is reduced. As shown, even when coal having a high volatile content is used, the drum strength of the product coke decreases.

【0006】従って、この発明の目的は、上述した問題
を解決し、一定レベル以上の強度を有し、しかも気孔率
が高く且つ見掛け比重が小さく、高炉全体の通気抵抗を
減少させて安定した微粉炭吹込み操業を行うことができ
る高炉用コークスを提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve the above-mentioned problems, to provide a fine powder having strength not less than a certain level, high porosity, small apparent specific gravity, and reduced air flow resistance of the entire blast furnace. It is an object of the present invention to provide blast furnace coke capable of performing a coal injection operation.

【0007】[0007]

【課題を解決するための手段】本発明者等は、上述した
観点から、安定した微粉炭吹込み操業を行うことができ
る高炉用コークスを開発すべく鋭意研究を重ねた。その
結果、安定した高微粉炭吹込み操業を行うためには、コ
ークスの気孔率を上げることにより、高炉上部および中
部の通気抵抗を低下させれば炉内全体の通気抵抗を減少
させることができること、および、炉内に装入するコー
クスの強度と通気抵抗との間に、一定の関係があること
を知見した。
SUMMARY OF THE INVENTION From the above-mentioned viewpoints, the present inventors have intensively studied to develop a blast furnace coke capable of performing a stable pulverized coal injection operation. As a result, in order to perform a stable high pulverized coal injection operation, by increasing the porosity of the coke, if the airflow resistance in the upper and middle parts of the blast furnace is reduced, the airflow resistance in the entire furnace can be reduced. And that there is a certain relationship between the strength of the coke charged into the furnace and the ventilation resistance.

【0008】この発明は、上記知見に基づいてなされた
ものであって、コークスの気孔率とそのドラム強度(DI
30/15)との関係が、前記気孔率58%以上、前記ドラム
強度92以上の範囲内であって、しかも、気孔率が58
%以上の場合のドラム強度は94以上、気孔率が60%
以上の場合のドラム強度は93.5以上、気孔率が62
%以上の場合のドラム強度は93以上、そして、気孔率
が63%以上の場合のドラム強度は92以上のコークス
であることに特徴を有するものである。
[0008] The present invention has been made based on the above findings, and has been made based on the porosity of coke and its drum strength (DI
30/15) is within the range of the porosity of 58% or more and the drum strength of 92 or more, and the porosity is 58% or more.
%, The drum strength is 94 or more, and the porosity is 60%.
In the above case, the drum strength was 93.5 or more, and the porosity was 62.
%, The drum strength is 93 or more, and the porosity is 63% or more, the drum strength is 92 or more.

【0009】[0009]

【発明の実施の形態】高炉における高微粉炭吹込み操業
を、高炉内における通気性が低下することなく安定して
行うことができる装入コークスの強度と気孔率との関係
を調べたところ、両者の間には、次のような関係のある
ことがわかった。
BEST MODE FOR CARRYING OUT THE INVENTION The relationship between the strength and porosity of charged coke capable of stably performing a pulverized coal injection operation in a blast furnace without a decrease in air permeability in the blast furnace was investigated. The following relationship was found between the two.

【0010】図1は、高微粉炭吹込み操業に際して一般
的に行われている、溶銑1t当たり200〜300Kg
の微粉炭を高炉内に吹き込んで操業したときの高炉内に
おける全通気抵抗と、装入コークスのドラム強度(DI30
/15)および気孔率との関係を示した図である。
FIG. 1 shows 200 to 300 Kg per ton of hot metal commonly used in a high pulverized coal injection operation.
Resistance and total coke drum strength (DI30) when the pulverized coal is blown into the blast furnace and operated.
FIG. 15 is a diagram showing a relationship between the porosity and the porosity.

【0011】図1において、縦軸は炉内の全通気抵抗を
示し、横軸は装入コークスのドラム強度を示す。斜線A
は気孔率63%のコークス、斜線Bは気孔率58%のコ
ークス、斜線Cは気孔率50%のコークスを使用した場
合の、各コークスのドラム強度(DI30/15)と炉内全通気
抵抗との関係を示している。また、線a−aは、炉内に
おける通気抵抗の観点からの安定操業限界であって、安
定操業のためには、高炉内における全通気抵抗を、線a
−a以下の範囲とすることが必要である。
In FIG. 1, the vertical axis indicates the total ventilation resistance in the furnace, and the horizontal axis indicates the drum strength of the charged coke. Oblique line A
Is the coke with a porosity of 63%, the hatched line B is the coke with a porosity of 58%, and the hatched line C is the drum strength (DI30 / 15) and the total ventilation resistance in the furnace of each coke when coke with a porosity of 50% is used. Shows the relationship. The line aa is a stable operation limit from the viewpoint of airflow resistance in the furnace. For stable operation, the total airflow resistance in the blast furnace is represented by a line aa.
-A It is necessary to be within the range.

【0012】図1からわかるように、高炉内における全
通気抵抗を、線a−a以下の安定操業限界内とするため
には、装入コークスの性状を、気孔率63%以上でドラ
ム強度92以上とし、そして、気孔率58%以上でドラ
ム強度94以上とすることが必要である。なお、気孔率
50%のコークスの場合には、そのドラム強度を98以
上としなければならず、このような高強度のコークス
は、実操業上ほとんど製造不可能であるため本発明範囲
から除外した。
As can be seen from FIG. 1, in order to keep the total ventilation resistance in the blast furnace within the stable operation limit below the line a-a, the properties of the charged coke must be a porosity of 63% or more and a drum strength of 92%. It is necessary that the porosity is 58% or more and the drum strength is 94 or more. In the case of coke having a porosity of 50%, the drum strength must be 98 or more, and such a high-strength coke is excluded from the scope of the present invention since it is almost impossible to produce it in practical operation. .

【0013】気孔率とドラム強度との関係が上記範囲内
のコークスについて、安定操業のための条件を更に詳細
に調べた。その結果、両者間には、図2に示すような関
係のあることがわかった。図2は、安定操業のために、
上記気孔率63%以上でドラム強度92以上、そして、
気孔率58%以上でドラム強度94以上の範囲内を更に
特定した図であって、縦軸はドラム強度を示し、横軸は
気孔率を示す。
The conditions for stable operation of coke in which the relationship between the porosity and the drum strength was within the above range were examined in more detail. As a result, it was found that there was a relationship as shown in FIG. Figure 2 shows that for stable operation,
With a porosity of 63% or more, a drum strength of 92 or more, and
FIG. 4 is a diagram further specifying a range of a porosity of 58% or more and a drum strength of 94 or more, in which the vertical axis indicates the drum strength and the horizontal axis indicates the porosity.

【0014】即ち、図1に示した安定操業限界内とする
ための装入コークスの性状は、図2に示すコークスの気
孔率とそのドラム強度(DI30/15)との関係において、気
孔率が58%以上の場合にはドラム強度を94以上と
し、気孔率が60%以上の場合にはドラム強度を93.
5以上とし、気孔率が62%以上の場合にはドラム強度
を93以上とし、そして、気孔率が63%以上の場合に
はドラム強度を92以上とすることが必要である。
That is, the properties of the coke charged to keep within the stable operation limit shown in FIG. 1 are based on the relationship between the porosity of the coke and the drum strength (DI30 / 15) shown in FIG. When the porosity is 60% or more, the drum strength is set to 93.
When the porosity is 62% or more, the drum strength needs to be 93 or more, and when the porosity is 63% or more, the drum strength needs to be 92 or more.

【0015】図2において、■印、●印および○印は、
従来のコークスのドラム強度と気孔率であって、本発明
においては、従来のコークスよりも気孔率を高めること
によって、高炉内全体の通気抵抗を適正レベルに保つこ
とができる。従って、この発明においては、装入コーク
スの気孔率とドラム強度との関係を上記範囲内に特定し
た。
In FIG. 2, the symbols Δ, ● and ○ represent
With respect to the drum strength and porosity of the conventional coke, in the present invention, by increasing the porosity as compared with the conventional coke, it is possible to keep the airflow resistance in the entire blast furnace at an appropriate level. Therefore, in the present invention, the relationship between the porosity of the charged coke and the drum strength was specified within the above range.

【0016】[0016]

【実施例】次に、上記範囲の気孔率とドラム強度を有す
るコークスの一例を、その製造方法と共に説明する。
Next, an example of coke having a porosity and a drum strength in the above ranges will be described together with a method for producing the same.

【0017】(1) 配合炭に、380〜550℃でガス
化する有機物質例えばプラスチックを添加し、コークス
炉において乾留した。その結果、下記ドラム強度(DI30
/15)および気孔率を有するコークスが得られた。
(1) An organic substance gasified at 380 to 550 ° C., for example, plastic was added to the blended coal, and the mixture was carbonized in a coke oven. As a result, the following drum strength (DI30
/ 15) and porosity was obtained.

【0018】 ドラム強度:94.4 気孔率:58%、 ドラム強度:94.8 気孔率:62%、 ドラム強度:94.6 気孔率:59%、 ドラム強度:94.0 気孔率:63%。Drum strength: 94.4 Porosity: 58%, Drum strength: 94.8 Porosity: 62%, Drum strength: 94.6 Porosity: 59%, Drum strength: 94.0 Porosity: 63% .

【0019】(2) 従来の、ドラム強度93.7、気孔率
59%のコークスを製造し得る配合炭をコークス炉内に
装入して乾留するに際し、乾留末期に炭化室内にコーク
ス重量に対し5重量%のピッチを吹き込んで、コークス
に熱分解炭素を析出させた。このような熱分解炭素の析
出によって、製品コークスのドラム強度を94.1に高
めることができた。また、上記ピッチの吹込み量を10
重量%とした場合には、製品コークスのドラム強度を9
4.5まで高めることができた。なお、熱分解炭素は、
コークスの気孔表面に薄く付着するだけであるため、気
孔率はほとんど変化せず、ピッチの吹込み量を10重量
%とした場合であっても、気孔率は58%であった。
(2) When a conventional coal blend capable of producing coke having a drum strength of 93.7 and a porosity of 59% is charged into a coke oven and carbonized, the weight of the coke in the carbonization chamber is reduced at the end of carbonization. By blowing a pitch of 5% by weight, pyrolytic carbon was deposited on coke. By such deposition of pyrolytic carbon, the drum strength of the product coke could be increased to 94.1. In addition, the blowing amount of the pitch is 10
Weight percent, the product coke drum strength is 9
It was able to be raised to 4.5. The pyrolytic carbon is
The porosity was hardly changed because the porosity was only slightly attached to the surface of the pores of the coke, and the porosity was 58% even when the amount of pitch injected was 10% by weight.

【0020】下記に、上記方法によって処理した場合の
コークスのドラム強度(DI30/15)と気孔率の変化を示
す。 強度93.3、気孔率61% → 強度93.7、気孔
率61% 強度93.3、気孔率61% → 強度94.0、気孔
率60% 強度92.6、気孔率63% → 強度93.0、気孔
率62% 強度92.6、気孔率63% → 強度93.4、気孔
率62% 強度91.7、気孔率65% → 強度92.1、気孔
率64% 強度91.7、気孔率65% → 強度92.5、気孔
率63% (3) 従来の方法によって、ドラム強度94.5、気孔率
56%のコークスを製造し、このコークスを900℃の
温度で10分間、水蒸気と反応させた。このような水蒸
気との反応によって、ドラム強度94.3、気孔率58
%のコークスが得られた。また、上記反応温度を20℃
上げることによって、ドラム強度94.0、気孔率60
%のコークスが得られた。
The changes in the coke drum strength (DI30 / 15) and porosity when treated by the above method are shown below. Strength 93.3, porosity 61% → strength 93.7, porosity 61% strength 93.3, porosity 61% → strength 94.0, porosity 60% strength 92.6, porosity 63% → strength 93 2.0, porosity 62% strength 92.6, porosity 63% → strength 93.4, porosity 62% strength 91.7, porosity 65% → strength 92.1, porosity 64% strength 91.7, Porosity 65% → strength 92.5, porosity 63% (3) A coke having a drum strength of 94.5 and a porosity of 56% is produced by a conventional method, and the coke is steamed at a temperature of 900 ° C. for 10 minutes. And reacted. Due to such a reaction with water vapor, the drum strength is 94.3 and the porosity is 58.
% Coke was obtained. In addition, the reaction temperature is set to 20 ° C.
As a result, the drum strength is 94.0 and the porosity is 60.
% Coke was obtained.

【0021】(4) 従来の方法によって、ドラム強度9
3.8、気孔率58%のコークスを製造し、このコーク
スを950℃の温度で10分間、CO2ガスと反応させ
た。このようなコークスとCO2ガスとの反応によっ
て、気孔率が増大しドラム強度が低下する傾向が生じ、
ドラム強度93.6、気孔率60%のコークスが得られ
た。また、上記反応時間を15分にすることによって、
ドラム強度93.2、気孔率62%のコークスが得られ
た。
(4) Drum strength 9
3.8, a coke having a porosity of 58% was produced, and the coke was reacted with CO2 gas at a temperature of 950 ° C. for 10 minutes. Due to such a reaction between coke and CO2 gas, the porosity increases and the drum strength tends to decrease,
Coke having a drum strength of 93.6 and a porosity of 60% was obtained. Also, by setting the reaction time to 15 minutes,
Coke having a drum strength of 93.2 and a porosity of 62% was obtained.

【0022】なお、上記(3) および(4) の方法におい
て、反応温度を上げすぎると、気孔の拡大よりも表面反
応が進行して強度の低下を招くため好ましくない。 (5) 従来のドラム強度94.5、気孔率56%のコーク
スを製造し得る配合炭をコークス炉内で乾留し、次い
で、CDQにより冷却するに際し、CDQのプレチャン
バー部に、コークス1t当たり40Nm3 の空気および
コークス1t当たり5Nm3 の水蒸気を吹込んで、コー
クスの温度を900℃に保った。その結果、ドラム強度
94.0、気孔率59%のコークスを製造することがで
きた。
In the above methods (3) and (4), if the reaction temperature is too high, the surface reaction proceeds more than the expansion of the pores and the strength is lowered, which is not preferable. (5) A conventional coal blend capable of producing coke having a drum strength of 94.5 and a porosity of 56% is carbonized in a coke oven, and then cooled by CDQ. by blowing a third air and water vapor coke 1t per 5 Nm 3, keeping the temperature of the coke to 900 ° C.. As a result, coke having a drum strength of 94.0 and a porosity of 59% could be produced.

【0023】[0023]

【発明の効果】以上述べたように、この発明の高炉用コ
ークスによれば、一定レベル以上の強度を有し、しかも
気孔率が高く且つ見掛け比重が小さいことにより、高炉
全体の通気抵抗を減少させて安定した微粉炭吹込み操業
を行うことができる、工業上有用な効果がもたらされ
る。
As described above, according to the blast furnace coke of the present invention, the blast furnace coke has a strength not lower than a certain level, and has a high porosity and a small apparent specific gravity, so that the ventilation resistance of the entire blast furnace is reduced. As a result, a pulverized coal injection operation can be stably performed, which brings about an industrially useful effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】微粉炭吹込み操業の際の、高炉内における全通
気抵抗と、炉内に装入したコークスのドラム強度および
気孔率との関係を示す図である。
FIG. 1 is a diagram showing the relationship between the total ventilation resistance in a blast furnace and the drum strength and porosity of coke charged in the furnace during the pulverized coal injection operation.

【図2】本発明コークスの気孔率とドラム強度との関係
を示す図である。
FIG. 2 is a diagram showing the relationship between the porosity of the coke of the present invention and the drum strength.

【図3】コークス炉内への石炭装入密度と製品コークス
のドラム強度との関係を示す図である。
FIG. 3 is a diagram showing the relationship between the density of coal charged into a coke oven and the drum strength of product coke.

【図4】石炭の揮発分と製品コークスのドラム強度との
関係を示す図である。
FIG. 4 is a diagram showing a relationship between volatile matter of coal and drum strength of product coke.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 角谷 秀紀 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 品川 昌俊 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hideki Tsunoya 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Japan Nippon Kokan Co., Ltd. (72) Inventor Masatoshi Shinagawa 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Sun Honko Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 コークスの気孔率とそのドラム強度(DI
30/15)との関係が、前記気孔率58%以上、前記ドラム
強度92以上の範囲内であって、しかも、気孔率が58
%以上の場合のドラム強度は94以上、気孔率が60%
以上の場合のドラム強度は93.5以上、気孔率が62
%以上の場合のドラム強度は93以上、そして、気孔率
が63%以上の場合のドラム強度は92以上であること
を特徴とする高炉用コークス。
1. The porosity of coke and its drum strength (DI
30/15) is within the range of the porosity of 58% or more and the drum strength of 92 or more, and the porosity is 58% or more.
%, The drum strength is 94 or more, and the porosity is 60%.
In the above case, the drum strength was 93.5 or more, and the porosity was 62.
% When the porosity is 63% or more, and the drum strength when the porosity is 63% or more is 92 or more.
JP34957597A 1997-12-18 1997-12-18 Coke for blast furnace Pending JPH11181434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34957597A JPH11181434A (en) 1997-12-18 1997-12-18 Coke for blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34957597A JPH11181434A (en) 1997-12-18 1997-12-18 Coke for blast furnace

Publications (1)

Publication Number Publication Date
JPH11181434A true JPH11181434A (en) 1999-07-06

Family

ID=18404647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34957597A Pending JPH11181434A (en) 1997-12-18 1997-12-18 Coke for blast furnace

Country Status (1)

Country Link
JP (1) JPH11181434A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100742914B1 (en) 2006-07-31 2007-07-25 주식회사 포스코 A method for predicting coke strength
US7752908B2 (en) 2001-07-18 2010-07-13 Hitachi, Ltd. Equipment for measuring gas flow rate having an adjacent external surface protrusion

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7752908B2 (en) 2001-07-18 2010-07-13 Hitachi, Ltd. Equipment for measuring gas flow rate having an adjacent external surface protrusion
KR100742914B1 (en) 2006-07-31 2007-07-25 주식회사 포스코 A method for predicting coke strength

Similar Documents

Publication Publication Date Title
CN108676947A (en) A kind of mixing coal for blast furnace blowing Powder Particle Size determines method
JP4182787B2 (en) Method for producing metallurgical furnace raw materials
JPH11181434A (en) Coke for blast furnace
US2808370A (en) Metallurgical coke
US2473987A (en) Process of coking high volatile coal involving incorporation therein of a limited amount of blast furnace flue dust
JPH1161284A (en) Evaluation test method of reduction degradation characteristic of sintered ore
KR101597716B1 (en) Method for preparation of mixing powdered coal
US3151974A (en) Process for the operation of blast furnaces
JP4099920B2 (en) Method for producing highly reactive coke
JP7310858B2 (en) Blast furnace operation method
JP2004263256A (en) Method for charging raw material into blast furnace
JPH0259196B2 (en)
KR102288801B1 (en) Method of manufacturing coke
US2808326A (en) Method of melting ferrous metals
JP2889093B2 (en) Hot metal composition control method for blast furnace
JP3651443B2 (en) Blast furnace operation method
JP3042393B2 (en) Method of injecting synthetic resin into vertical furnace
KR100356156B1 (en) A method for promoting combustibility in balst furnace
JPH11241072A (en) Production of metallurgical coke
JPH11236573A (en) Production of metallugical coke
JPS6023479A (en) Production of metallurgical coke mainly aiming by- production of coke powder
US4159905A (en) Method of manufacturing green hot briquettes from fine coal for use in shaft furnaces
KR100352604B1 (en) Coke Blending Method to Coal in Molten Iron Manufacturing Process Using Coal
KR20230161680A (en) Method of iron making used coal briquette to improve slag discharge
JPS6220586A (en) Production of coke for blast furnace