JPH11179829A - Thermoplastic resin foam and manufacture thereof - Google Patents

Thermoplastic resin foam and manufacture thereof

Info

Publication number
JPH11179829A
JPH11179829A JP9349377A JP34937797A JPH11179829A JP H11179829 A JPH11179829 A JP H11179829A JP 9349377 A JP9349377 A JP 9349377A JP 34937797 A JP34937797 A JP 34937797A JP H11179829 A JPH11179829 A JP H11179829A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
foam
foaming
continuous
foamed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9349377A
Other languages
Japanese (ja)
Other versions
JP3369091B2 (en
Inventor
Satoyuki Kobayashi
智行 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP34937797A priority Critical patent/JP3369091B2/en
Publication of JPH11179829A publication Critical patent/JPH11179829A/en
Application granted granted Critical
Publication of JP3369091B2 publication Critical patent/JP3369091B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermoplastic resin foam which is almost free from irregularities in thickness precision and weight precision and has high shock- absorbing properties and compression strength and further, a low level of scattering of strength as well as a method for manufacturing the thermoplastic resin foam at a high productivity. SOLUTION: This thermoplastic resin foam 1 of a plate-like body comprises a continuous cell layer 2 formed of a thermoplastic sin, high-level foamed parts 3 formed of thermoplastic resin arranged on at least, one of the faces of the continuous cell layer 2 and low-level foamed thin coats 4 formed of the thermoplastic resin coating the outer faces of the high-level foamed parts 3 together with the continuous cell layer 2. In this case, when the foam 1 is projected onto a plane of projection which is orthogonal with the thickness direction, the projection is composed of a continuous area onto which only the continuous cell layer 2 is projected and a discontinuous area onto which the continuous cell layer 2, the low-level foamed thin coats 4 and the high-level foamed parts 3 are projected. Further, the region of the foam 1 corresponding to the discontinuous area is formed into a projecting shape with respect to the region of the foam 1 corresponding to the continuous area at least on one surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱可塑性樹脂発泡
体及びその製造方法に関し、より詳細には、厚み方向に
擬似的な一次元発泡を可能とする凹凸状熱可塑性樹脂発
泡体及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoplastic resin foam and a method for producing the same, and more particularly, to an uneven thermoplastic resin foam which enables pseudo one-dimensional foaming in a thickness direction and a method for producing the same. About the method.

【0002】なお、本明細書全体を通して、板状体、シ
ート状体とは、発泡体製造の前後における相対的な厚み
に基づき定義されるものであって、絶対的厚みに基づく
厳密な定義によるものを意味するのではなく、それぞれ
が通常シート、フィルムと呼ばれる比較的薄手のものも
含むこととする。
[0002] Throughout the present specification, a plate-like body and a sheet-like body are defined based on a relative thickness before and after production of a foam, and are strictly defined based on an absolute thickness. It does not mean a thing but a relatively thin thing usually called a sheet or a film, respectively.

【0003】[0003]

【従来の技術】熱可塑性樹脂発泡体は軽量であり、緩衝
性に優れているため、屋上断熱材、車両用天井材もしく
は床用断熱材などの各種断熱材、緩衝材、浮揚材又は異
形成形物等において幅広く用いられている。
2. Description of the Related Art Thermoplastic foams are lightweight and have excellent cushioning properties. Therefore, various types of heat insulating materials such as roof heat insulating materials, ceiling materials for vehicles or heat insulating materials for floors, cushioning materials, flotation materials, or irregularly shaped materials are used. Widely used in products.

【0004】上記のような熱可塑性樹脂発泡体の製造方
法として、従来、熱分解型発泡剤を含有している発泡性
熱可塑性樹脂組成物を該発泡剤の分解温度以上に加熱
し、発泡させることにより熱可塑性樹脂発泡体を得る方
法が広く用いられている。この発泡性熱可塑性樹脂組成
物の発泡に際しては、内部に含有されている発泡剤が分
解することにより発生するガスの圧力により発泡が行わ
れる。従って、発泡性熱可塑性樹脂は、通常、ほぼ三次
元的に均等に発泡・膨張するので、熱可塑性樹脂発泡体
の製造に際しては、特に連続的に長尺状の熱可塑性樹脂
発泡体を製造する場合は、幅方向及び長手方向の膨張に
よるしわの発生等に対応する必要がある。
As a method for producing a thermoplastic resin foam as described above, conventionally, a foamable thermoplastic resin composition containing a pyrolytic foaming agent is foamed by heating it to a temperature not lower than the decomposition temperature of the foaming agent. Thus, a method for obtaining a thermoplastic resin foam is widely used. When foaming the foamable thermoplastic resin composition, foaming is performed by the pressure of gas generated by the decomposition of the foaming agent contained therein. Therefore, since the expandable thermoplastic resin usually foams and expands almost three-dimensionally and evenly, when manufacturing the thermoplastic resin foam, particularly, continuously manufacture the long thermoplastic resin foam. In this case, it is necessary to cope with the occurrence of wrinkles due to expansion in the width direction and the longitudinal direction.

【0005】例えば、特公昭48−9955号公報に記
載の方法では、発泡剤を含有している連続した発泡性熱
可塑性樹脂シートを繰り出し、加熱・発泡させて熱可塑
性樹脂発泡体を得、該熱可塑性樹脂発泡体を巻き取るに
際し、発泡による長手方向による膨張分に応じて発泡性
熱可塑性樹脂シートの繰り出し速度に比べて巻取り速度
を速め、かつ幅方向の膨張分に応じて熱可塑性樹脂発泡
体を幅方向に拡幅し、それによって最終的に得られる熱
可塑性樹脂発泡体におけるしわの低減が図られている。
For example, according to the method described in Japanese Patent Publication No. 48-9955, a continuous foamable thermoplastic resin sheet containing a foaming agent is fed, heated and foamed to obtain a thermoplastic resin foam. When winding the thermoplastic resin foam, the winding speed is increased in accordance with the expansion rate in the longitudinal direction due to foaming, compared with the feeding speed of the expandable thermoplastic resin sheet, and the thermoplastic resin is expanded according to the expansion in the width direction. The foam is widened in the width direction, thereby reducing wrinkles in the thermoplastic resin foam finally obtained.

【0006】しかしながら、この方法では、加熱・発泡
時に連続的に生産されている熱可塑性樹脂発泡体を幅方
向に拡張するために複雑な治具及び工程を必要とする。
加えて、発泡後冷却する前に熱可塑性樹脂発泡体を拡幅
する必要があるため、得られた熱可塑性樹脂発泡体の幅
方向両端において品質が低下せざるを得なかった。その
結果、得られた熱可塑性樹脂発泡体において、幅方向両
端近傍部分を除去したりする必要があるため、熱可塑性
樹脂発泡体の生産性が低下するという問題があった。
However, this method requires complicated jigs and steps to expand the thermoplastic resin foam continuously produced during heating and foaming in the width direction.
In addition, since it is necessary to expand the thermoplastic resin foam after foaming and before cooling, the quality has to be reduced at both ends in the width direction of the obtained thermoplastic resin foam. As a result, in the obtained thermoplastic resin foam, it is necessary to remove portions in the vicinity of both ends in the width direction, so that there is a problem that productivity of the thermoplastic resin foam is reduced.

【0007】また、上記製造方法で用いられる発泡性熱
可塑性樹脂シートは、発泡・膨張に対応するため長手方
向および幅方向にテンションを付与する必要性から、そ
の形状が厚みが略均一なシートである必要があり、連続
した発泡性熱可塑性樹脂シートから熱可塑性樹脂発泡体
を成形するため、厚み精度、重量精度、表面平滑性に優
れた熱可塑性樹脂発泡体となるが、厚み方向に均質な熱
可塑性樹脂発泡体であるため、圧縮強度に欠けるという
問題点があった。
Further, the expandable thermoplastic resin sheet used in the above-mentioned manufacturing method is a sheet having a substantially uniform thickness because of the necessity of imparting tension in the longitudinal direction and the width direction in order to cope with expansion and expansion. It is necessary to form a thermoplastic resin foam from a continuous foamable thermoplastic resin sheet.Thus, the thermoplastic resin foam has excellent thickness accuracy, weight accuracy, and surface smoothness. Since it is a thermoplastic resin foam, there is a problem that it lacks compressive strength.

【0008】また、この問題を解決するため、異形のシ
ート状体を用いると発泡体にしわが発生する。従って得
られる熱可塑性発泡体は、平板状に限定され、凹凸を有
する熱可塑性樹脂発泡体を製造するには平板状熱可塑性
樹脂発泡体を凹凸状に変形させる後加工が必要となり、
生産性が低下するという問題点もあった。
[0008] In order to solve this problem, if a deformed sheet is used, wrinkles are generated in the foam. Therefore, the obtained thermoplastic foam is limited to a flat plate shape, and a post-process of deforming the flat thermoplastic resin foam into an uneven shape is required to produce a thermoplastic resin foam having irregularities,
There was also a problem that productivity dropped.

【0009】他方、特開平7−16856号公報には、
発泡剤を含有している発泡性熱可塑性樹脂よりなるペレ
ットもしくは環状物(以下、「ペレット等」と略す)を
搬送ベルト上に散布し、該発泡性熱可塑性樹脂ペレット
等を加熱により発泡・膨張させて融着一体化し、シート
状の熱可塑性樹脂発泡体を得る方法が開示されている。
On the other hand, JP-A-7-16856 discloses that
Pellets or cyclic materials (hereinafter abbreviated as “pellets”) made of a foaming thermoplastic resin containing a foaming agent are sprayed on a conveyor belt, and the foaming thermoplastic resin pellets and the like are foamed and expanded by heating. A method for obtaining a sheet-like thermoplastic resin foam by fusing and integrating the sheet is disclosed.

【0010】この方法では、搬送ベルト上に発泡性熱可
塑性樹脂ペレット等を散布し、予め搬送ベルトの上方を
熱可塑性樹脂シートや他の搬送ベルトで規制し、下方の
搬送ベルトと熱可塑性樹脂シートもしくは下方の搬送ベ
ルトとの間で熱可塑性樹脂ペレット等を加熱により発泡
させることにより、所望の厚みの熱可塑性樹脂発泡体を
形成するとともに、該シートの面内方向においては、発
泡性熱可塑性樹脂ペレット等間の空間を上記発泡性熱可
塑性樹脂ペレット等の膨張により満たすことにより、シ
ート状の熱可塑性樹脂発泡体を得ている。
In this method, foamable thermoplastic resin pellets or the like are sprayed on a conveyor belt, the upper part of the conveyor belt is regulated in advance by a thermoplastic resin sheet or another conveyor belt, and the lower conveyor belt and the thermoplastic resin sheet are regulated. Alternatively, a thermoplastic resin foam having a desired thickness is formed by heating and foaming a thermoplastic resin pellet or the like with a lower conveyor belt, and the foamable thermoplastic resin is formed in the in-plane direction of the sheet. By filling the space between the pellets and the like with the expansion of the foamable thermoplastic resin pellets and the like, a sheet-like thermoplastic resin foam is obtained.

【0011】この方法においても、発泡性熱可塑性樹脂
ペレット等は発泡に際して三次元的に膨張する。しかし
ながら、発泡性熱可塑性樹脂ペレット等は、搬送ベルト
上において二次元的には不連続に配置されており、発泡
性熱可塑性樹脂ペレット間の空間が発泡性熱可塑性樹脂
ペレット等の二次元的な膨張により充填される。すなわ
ち、厚み方向において疑似的な一次元発泡の形態で発泡
性熱可塑性樹脂が発泡することにより発泡体が得られる
ため、幅方向や長手方向に拡幅もしくは延伸する必要が
なく、直接凹凸状熱可塑性樹脂発泡体を得る事が出来る
可能性を有する。
Also in this method, foamable thermoplastic resin pellets and the like expand three-dimensionally during foaming. However, the expandable thermoplastic resin pellets and the like are two-dimensionally discontinuously arranged on the conveyor belt, and the space between the expandable thermoplastic resin pellets is two-dimensional such as the expandable thermoplastic resin pellet. Filled by expansion. That is, since the foam is obtained by foaming the foamable thermoplastic resin in a pseudo one-dimensional foam form in the thickness direction, it is not necessary to expand or stretch in the width direction or the longitudinal direction, and the uneven thermoplastic resin is directly formed. There is a possibility that a resin foam can be obtained.

【0012】しかしながら、この方法では、擬似的な一
次元的発泡の形態で発泡を行うために、発泡により生じ
る膨張分に対応する空間を予め設定する必要が有り、こ
の設定のために発泡性熱可塑性樹脂ペレット等の散布状
態を極めて精度よくコントロールする必要がある。すな
わち、発泡により生じる膨張分に対応する空間を大きく
しすぎると、連続しない発泡性熱可塑性樹脂ペレット等
を加熱により発泡・膨張させて融着一体化し、シート状
の熱可塑性樹脂発泡体を得るため、完全に融着一体化さ
れない部分が発生する可能性があり、発泡により生じる
膨張分に対応する空間を小さいと、凹凸状熱可塑性樹脂
発泡体が得られず、平板状の熱可塑性樹脂発泡体とな
る。また空間が小さすぎると疑似一次元的な発泡が行え
なくなり、発泡体の表面平滑性が低下する。
However, in this method, in order to perform foaming in the form of pseudo one-dimensional foaming, it is necessary to previously set a space corresponding to the expansion caused by foaming. It is necessary to control the dispersion state of the plastic resin pellets and the like with extremely high precision. That is, if the space corresponding to the expansion caused by foaming is too large, the foamable thermoplastic resin pellets and the like that are not continuous are foamed and expanded by heating and fused and integrated to obtain a sheet-like thermoplastic resin foam. There is a possibility that a portion that is not completely fused and integrated may occur, and if the space corresponding to the expansion caused by foaming is small, an uneven thermoplastic resin foam cannot be obtained, and a flat thermoplastic resin foam Becomes If the space is too small, pseudo one-dimensional foaming cannot be performed, and the surface smoothness of the foam decreases.

【0013】従って発泡性熱可塑性樹脂ペレット等を非
常に精度よく散布する散布装置が必要となり、且つ、任
意形状の凹凸を設計することも困難であるため、異形状
熱可塑性樹脂発泡体を得る製造方法としては適している
とはいえない。加えて、目的とする熱可塑性樹脂発泡体
の厚みを増大させた場合には、用いる発泡性熱可塑性樹
脂ペレット等の寸法を大きくしなければならず、その場
合には、大きなペレットを均一に加熱する必要があり、
発泡に時間がかかるため、生産性が低下しがちであっ
た。
Therefore, a spraying device for spraying foaming thermoplastic resin pellets or the like with very high accuracy is required, and it is difficult to design irregularities of an arbitrary shape. It is not suitable as a method. In addition, if the thickness of the target thermoplastic resin foam is increased, the dimensions of the expandable thermoplastic resin pellets to be used must be increased, in which case the large pellets are heated uniformly. Need to
Since foaming takes time, productivity tends to decrease.

【0014】また、上記製造方法で得られた熱可塑性樹
脂発泡体は、発泡時に個々の発泡性熱可塑性樹脂ペレッ
ト等の表面に低発泡倍率のスキン層が形成され、熱可塑
性樹脂よりなる低発泡薄膜に全外周面が被覆された熱可
塑性樹脂よりなる高発泡体が該低発泡薄膜を介して熱融
着した熱可塑性樹脂発泡体となるため、高い圧縮強度を
有するが、発泡性熱可塑性樹脂ペレット等の散布状況に
より、得られる発泡体の厚み精度、重量精度及び表面平
滑性等の品質が左右され易く、圧縮強度のばらつきも大
きくなるという問題点があった。
The foamed thermoplastic resin obtained by the above-mentioned method has a low foaming ratio skin layer formed on the surface of each foamable thermoplastic resin pellet at the time of foaming. Since a high foam made of a thermoplastic resin whose entire outer peripheral surface is coated on a thin film is a thermoplastic resin foam which is thermally fused through the low foam thin film, it has a high compressive strength, but has a high foaming thermoplastic resin. The quality of the obtained foam, such as thickness accuracy, weight accuracy, surface smoothness, and the like, is likely to be affected by the distribution of the pellets and the like, and there is a problem in that the dispersion of the compressive strength increases.

【0015】[0015]

【発明が解決しようとする課題】本発明は上記の課題を
解決し、厚み精度及び重量精度のばらつきが少なく、高
い緩衝性と圧縮強度を有し、且つ強度のばらつきが小さ
な熱可塑性樹脂発泡体と、該熱可塑性樹脂発泡体を高い
生産性をもって製造する方法を提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems, and has a small variation in thickness accuracy and weight accuracy, a high cushioning property and a compressive strength, and a small variation in strength. And a method for producing the thermoplastic resin foam with high productivity.

【0016】[0016]

【課題を解決するための手段】請求項1に記載の発明
は、熱可塑性樹脂よりなる連続発泡層と、該連続発泡層
の少なくとも片面上に複数配置される熱可塑性樹脂より
なる高発泡部と、上記連続発泡層とともに高発泡部の外
表面を被覆する熱可塑性樹脂よりなる低発泡薄膜とを備
えた熱可塑性樹脂発泡体からなる板状体であって、該発
泡体を厚み方向に直交する投影面に投影したときに、連
続発泡層のみ、又は連続発泡層と低発泡薄膜のみが投影
される連続面と、連続発泡層、低発泡薄膜及び高発泡部
が投影される不連続面とからなり、上記不連続面に対応
する発泡体の部位が、連続面に対応する発泡体の部位に
対して、少なくとも一方の表面が凸状に形成されている
ことを特徴とする。
According to a first aspect of the present invention, there is provided a continuous foamed layer made of a thermoplastic resin, and a plurality of highly foamed portions made of a thermoplastic resin disposed on at least one surface of the continuous foamed layer. A low-foaming thin film made of a thermoplastic resin covering the outer surface of the high-foaming portion together with the continuous foaming layer, and a plate-like body made of a thermoplastic resin foam, the foam being orthogonal to the thickness direction. When projected on the projection surface, only the continuous foam layer, or a continuous surface on which only the continuous foam layer and the low foam thin film are projected, and a discontinuous surface on which the continuous foam layer, the low foam thin film and the high foam portion are projected In this case, at least one surface of the foam corresponding to the discontinuous surface is formed in a convex shape with respect to the portion of the foam corresponding to the continuous surface.

【0017】請求項2に記載の発明は、熱可塑性樹脂よ
りなる連続発泡層と、該連続発泡層の少なくとも片面上
に複数配置される熱可塑性樹脂よりなる高発泡部と、上
記連続発泡層とともに高発泡部の外表面を被覆する熱可
塑性樹脂よりなる低発泡薄膜とを備えた熱可塑性樹脂発
泡体からなる板状体であって、該発泡体を厚み方向に直
交する投影面に投影したときに、連続発泡層のみ、又は
連続発泡層と低発泡薄膜のみが投影される連続面と、連
続発泡層、低発泡薄膜及び高発泡部が投影される不連続
面とからなり、上記不連続面に対応する発泡体の部位
が、連続面に対応する発泡体の部位に対して、少なくと
も一方の表面が凸状に形成され、他方の表面は凹状に形
成されていることを特徴とする。
According to a second aspect of the present invention, there is provided a continuous foamed layer made of a thermoplastic resin, a high foamed portion made of a thermoplastic resin disposed on at least one side of the continuous foamed layer, and the continuous foamed layer. A plate-shaped body made of a thermoplastic resin foam having a low-foamed thin film made of a thermoplastic resin covering the outer surface of the high-foamed portion, when the foam is projected on a projection surface orthogonal to the thickness direction. A continuous surface on which only the continuous foamed layer or the continuous foamed layer and the low-foamed thin film are projected; and a discontinuous surface on which the continuous foamed layer, the low-foamed thin film and the high-foamed portion are projected. Is characterized in that at least one surface is formed in a convex shape and the other surface is formed in a concave shape with respect to the foam portion corresponding to the continuous surface.

【0018】請求項1及び2に記載の発明において、投
影とは、投影面に直交する方向より平行光線を照射した
ときに生じる陰影を指し、透明、不透明に係わらず、層
の界面により生じる陰影をいう。
In the first and second aspects of the present invention, the term "projection" refers to a shadow generated when a parallel light beam is irradiated from a direction perpendicular to a projection plane, and is a shadow generated by an interface between layers regardless of transparency or opacity. Say.

【0019】請求項1又は2に記載の発明に係る熱可塑
性樹脂発泡体においては、好ましくは、請求項3に記載
のように、上記熱可塑性樹脂よりなる複数の高発泡部
は、格子状に配置されており、あるいは請求項4に記載
のように千鳥状に配置されている。
In the thermoplastic resin foam according to the first or second aspect of the present invention, preferably, as described in the third aspect, the plurality of high-foamed portions made of the thermoplastic resin are formed in a lattice shape. They are arranged or arranged in a staggered manner as described in claim 4.

【0020】また、好ましくは、請求項1〜4に記載の
発明に係る熱可塑性樹脂発泡体においては、前記高発泡
部の凸状に形成された部分の高さが連続面に対して1m
m以上である。
Preferably, in the thermoplastic resin foam according to the first to fourth aspects of the present invention, the height of the convex portion of the highly foamed portion is 1 m with respect to the continuous surface.
m or more.

【0021】さらに好ましくは、請求項1〜5に記載の
発明に係る熱可塑性樹脂発泡体において、熱可塑性樹脂
発泡体の体積が、熱可塑性樹脂発泡体を外接しうる最小
の直方体の体積に対して50〜90%である(以下、こ
の比率を「充填率」という)。
More preferably, in the thermoplastic resin foam according to the first to fifth aspects of the present invention, the volume of the thermoplastic resin foam is smaller than the volume of the smallest rectangular parallelepiped that can circumscribe the thermoplastic resin foam. (The ratio is hereinafter referred to as “filling ratio”).

【0022】さらに好ましくは、請求項1〜6に記載の
発明に係る熱可塑性樹脂発泡体において、前記複数の高
発泡部が互いに低発泡薄膜を介して熱融着されているも
のである。
More preferably, in the thermoplastic resin foam according to the first to sixth aspects of the present invention, the plurality of high foaming portions are heat-sealed to each other via a low foaming thin film.

【0023】請求項8に記載の発明は、本発明の熱可塑
性樹脂発泡体を簡便に製造する方法を提供するものであ
り、発泡剤を含有している発泡性熱可塑性樹脂粒状体が
平面的に略均一に配置されており、かつ前記発泡性熱可
塑性樹脂粒状体が発泡性熱可塑性樹脂薄膜を介して一体
的に連結されている発泡性熱可塑性樹脂シート状体を、
上記発泡剤の分解温度以上に加熱し発泡させる工程と、
発泡して得られる発泡体が完全充填される以上の空隙を
有する冷却型内で冷却することにより凹凸を形成する工
程とを備えることを特徴とする。
The invention described in claim 8 provides a method for easily producing the thermoplastic resin foam of the present invention, wherein the foamable thermoplastic resin granules containing a foaming agent are planar. Are arranged substantially uniformly, and the expandable thermoplastic resin sheet-like body in which the expandable thermoplastic resin particles are integrally connected via an expandable thermoplastic resin thin film,
Heating and foaming above the decomposition temperature of the foaming agent,
Cooling in a cooling mold having voids more than the foam obtained by foaming is completely filled, thereby forming irregularities.

【0024】〔熱可塑性樹脂発泡体〕請求項1〜7に記
載の発明における熱可塑性樹脂発泡体は、熱可塑性樹脂
よりなる連続発泡層と、該連続発泡層の少なくとも片面
上に複数配置される熱可塑性樹脂よりなる高発泡部と、
上記連続発泡層とともに高発泡部の外表面を被覆する熱
可塑性樹脂よりなる低発泡薄膜とを備えた熱可塑性樹脂
発泡体からなる板状体であって、該発泡体を厚み方向に
直交する投影面に投影したときに、連続発泡層のみ、又
は連続発泡層と低発泡薄膜のみが投影される連続面と、
連続発泡層、低発泡薄膜及び高発泡部が投影される不連
続面とからなり、上記不連続面に対応する発泡体の部位
が、連続面に対応する発泡体の部位に対して、少なくと
も一方の表面が凸状に形成されているものである。
[Thermoplastic resin foam] The thermoplastic resin foam according to any one of the first to seventh aspects of the present invention is provided with a continuous foam layer made of a thermoplastic resin and a plurality of the foams disposed on at least one surface of the continuous foam layer. A highly foamed portion made of a thermoplastic resin,
A plate-like body made of a thermoplastic resin foam having a low-foaming thin film made of a thermoplastic resin covering the outer surface of the high-foaming portion together with the continuous foaming layer, wherein the foam is projected in a direction orthogonal to the thickness direction. When projected onto a surface, only the continuous foam layer, or a continuous surface on which only the continuous foam layer and the low foam thin film are projected,
A continuous foam layer, a low-foam thin film, and a discontinuous surface on which the high-foamed portion is projected, and a portion of the foam corresponding to the discontinuous surface is at least one of a portion of the foam corresponding to the continuous surface. Is formed in a convex shape.

【0025】熱可塑性樹脂発泡体に用いられる熱可塑性
樹脂 請求項1〜7に記載の発明の熱可塑性樹脂発泡体を構成
する連続発泡層、低発泡薄膜及び高発泡部に用いられる
熱可塑性樹脂としては、特に限定されるものではない。
このような熱可塑性樹脂としては、例えば、低密度ポリ
エチレン、高密度ポリエチレン、直鎖状低密度ポリエチ
レン(以下、「ポリエチレン」とは、低密度ポリエチレ
ン、高密度ポリエチレン、直鎖状低密度ポリエチレン、
又はこれらの混合物をいう。)、ランダムポリプロピレ
ン、ホモポリプロピレン、ブロック状ポリプロピレン
(以下、「ポリプロピレン」とは、ランダムポリプロピ
レン、ホモポリプロピレン、ブロック状ポリプロピレ
ン、又はこれらの混合物をいう。)等のオレフィン系樹
脂及びこれらの共重合体;ポリエチレンビニルアセテー
ト、ポリ塩化ビニル、塩素化ポリ塩化ビニル、ABS樹
脂、ポリスチレン、ポリカーボネート、ポリアミド、ポ
リフッ化ビニリデン、ポフェニレンサルファイド、ポリ
スルホン、ポリエーテルケトン、及びこれらの共重合体
等が挙げられ、これらは、単独で用いられても、併用さ
れてもよい。
Thermoplastic used for thermoplastic resin foam
The thermoplastic resin used for the continuous foamed layer, the low foamed thin film, and the high foamed portion constituting the thermoplastic resin foam according to the first to seventh aspects of the present invention is not particularly limited.
As such a thermoplastic resin, for example, low-density polyethylene, high-density polyethylene, linear low-density polyethylene (hereinafter, “polyethylene” refers to low-density polyethylene, high-density polyethylene, linear low-density polyethylene,
Or a mixture thereof. Olefin resins such as random polypropylene, homopolypropylene, block polypropylene (hereinafter, “polypropylene” refers to random polypropylene, homopolypropylene, block polypropylene, or a mixture thereof) and copolymers thereof; Polyethylene vinyl acetate, polyvinyl chloride, chlorinated polyvinyl chloride, ABS resin, polystyrene, polycarbonate, polyamide, polyvinylidene fluoride, pophenylene sulfide, polysulfone, polyether ketone, and copolymers thereof, and the like. May be used alone or in combination.

【0026】上記熱可塑性樹脂の中でも、凹凸形状を形
成しやすい、ポリエチレン、ポリプロピレン等のオレフ
ィン系樹脂又はこれらの混合物が好ましく、高い圧縮強
度を発現できる高密度ポリエチレン、ホモポリプロピレ
ン又はこれらの少なくとも一方を含む混合物が特に好ま
しい。
Among the above-mentioned thermoplastic resins, olefin resins such as polyethylene and polypropylene, which are easy to form irregularities, and mixtures thereof are preferable, and high-density polyethylene, homopolypropylene, or at least one of these, which can exhibit high compressive strength, is preferred. Mixtures containing are particularly preferred.

【0027】上記連続発泡層と、低発泡薄膜及び高発泡
部に用いられる熱可塑性樹脂とは、同一の樹脂である必
要性はないが、同種の樹脂を用いると熱可塑性樹脂発泡
体の融着力が高く、圧縮荷重付与時の破壊が起こりにく
いことから、同種の樹脂を用いることが好ましい。
It is not necessary that the continuous foamed layer and the thermoplastic resin used for the low foamed thin film and the high foamed portion are the same resin. However, if the same type of resin is used, the fusion force of the thermoplastic resin foam can be improved. It is preferable to use the same type of resin because the resin is high and breakage during application of a compressive load hardly occurs.

【0028】低発泡薄膜と高発泡部に用いられる熱可塑
性樹脂は、同一樹脂であることが好ましい。後述する請
求項8において用いられる熱可塑性樹脂シート状体を発
泡させて製造する場合には同一の樹脂となる。
The thermoplastic resin used for the low foamed thin film and the high foamed portion is preferably the same resin. The same resin is used when the thermoplastic resin sheet used in claim 8 described later is manufactured by foaming.

【0029】上記熱可塑性樹脂発泡体に用いられる熱可
塑性樹脂は、必要に応じて、架橋されたものであっても
よく、架橋されたものを用いることは、熱可塑性樹脂発
泡体の発泡倍率が増加し、緩衝性・軽量性が向上するた
め好適である。
The thermoplastic resin used for the above-mentioned thermoplastic resin foam may be cross-linked, if necessary. The use of a cross-linked resin is effective in reducing the expansion ratio of the thermoplastic resin foam. This is preferable because the number of the components increases and the cushioning property and the lightness are improved.

【0030】上記熱可塑性樹脂発泡体に用いられる熱可
塑性樹脂が、後述する互いに殆ど相溶性を有さない、高
架橋熱可塑性樹脂と低架橋叉は無架橋熱可塑性樹脂の混
合物である場合、発泡時に低架橋樹脂組成が流動でき、
低発泡膜を介して高発泡部同士が熱融着しやすくなり、
得られた熱可塑性樹脂発泡体に荷重を負荷したとき、破
壊を起こしにくくなり、好適である。
In the case where the thermoplastic resin used in the thermoplastic resin foam is a mixture of a highly crosslinked thermoplastic resin and a low crosslinked or non-crosslinked thermoplastic resin having almost no compatibility with each other as described later, Low cross-linking resin composition can flow,
Highly foamed parts are easily heat-sealed with each other via the low foamed film,
When a load is applied to the obtained thermoplastic resin foam, it hardly breaks, which is preferable.

【0031】上記熱可塑性樹脂発泡体に用いられる熱可
塑性樹脂には、熱可塑性樹脂発泡体の圧縮強度の向上の
ため、必要に応じて、ガラス短繊維、炭素短繊維、ポリ
エステル短繊維等の補強剤;炭酸カルシウム、水酸化ア
ルミニウム、ガラスパウダー等の充填剤等を添加しても
よい。
The thermoplastic resin used in the above-mentioned thermoplastic resin foam may, if necessary, be reinforced with short glass fibers, short carbon fibers, short polyester fibers, etc., in order to improve the compressive strength of the thermoplastic resin foam. Agents; fillers such as calcium carbonate, aluminum hydroxide, and glass powder may be added.

【0032】熱可塑性樹脂発泡体の形状 本発明の熱可塑性樹脂発泡体の形態は、発泡体を厚み方
向に直交する投影面に投影したときに、連続発泡層の
み、又は連続発泡層と低発泡薄膜のみが投影される連続
面と、連続発泡層、低発泡薄膜及び高発泡部が投影され
る不連続面とからなり、上記不連続面とからなり、上記
不連続面に対応する発泡体の部位が、連続面に対応する
発泡体の部位に対して、少なくとも一方の表面が凸状に
形成されているものである。この場合において不連続面
に相当する発泡体の部位の他方の表面は凹状に形成され
ているのが、緩衝性がさらに向上するので好ましい。
Shape of Thermoplastic Resin Foam The form of the thermoplastic resin foam of the present invention is such that when the foam is projected on a projection plane perpendicular to the thickness direction, only the continuous foam layer or the continuous foam layer and the low foam A continuous surface on which only the thin film is projected, a continuous foamed layer, a discontinuous surface on which the low-foaming thin film and the high-foamed portion are projected, and the discontinuous surface, and a foam corresponding to the discontinuous surface. The portion has at least one surface formed in a convex shape with respect to the portion of the foam corresponding to the continuous surface. In this case, it is preferable that the other surface of the portion of the foam corresponding to the discontinuous surface is formed in a concave shape because the cushioning property is further improved.

【0033】熱可塑性樹脂発泡体の発泡倍率は、低すぎ
ると軽量性を損ない、高すぎると圧縮強度が低下するの
で、2〜30倍が好ましく、より好ましくは3〜20
倍、さらに好ましくは5〜10倍である。
The expansion ratio of the thermoplastic resin foam is preferably from 2 to 30 times, more preferably from 3 to 20 because if it is too low, the lightness is impaired, and if it is too high, the compressive strength decreases.
And more preferably 5 to 10 times.

【0034】熱可塑性樹脂発泡体の厚みは、3〜50m
mが好ましく、より好ましくは3〜30mm、さらに好
ましくは5〜20mmである。
The thickness of the thermoplastic resin foam is 3 to 50 m
m is preferred, more preferably 3 to 30 mm, and still more preferably 5 to 20 mm.

【0035】低発泡薄膜の発泡倍率は、低すぎると、熱
可塑性樹脂発泡体の緩衝性が低下し、高すぎると、高い
圧縮強度を有する熱可塑性樹脂発泡体が得られないの
で、1.1〜10倍が好ましく、より好ましくは1.2
〜7倍、さらに好ましくは1.2〜5倍である。
If the foaming ratio of the low-foaming thin film is too low, the cushioning property of the thermoplastic resin foam decreases, and if it is too high, a thermoplastic resin foam having high compressive strength cannot be obtained. -10 times, more preferably 1.2 times
~ 7 times, more preferably 1.2 ~ 5 times.

【0036】低発泡薄膜の厚みは、厚すぎると、熱可塑
性樹脂発泡体の軽量化が図れず、また、薄すぎると、高
い圧縮強度を有する熱可塑性樹脂発泡体が得られないの
で、30〜500μmが好ましく、より好ましくは40
〜400μm、さらに好ましくは50〜400μmであ
る。なお、低発泡薄膜の厚みは、均一である必要はな
く、不均一であってもよい。ここで、低発泡薄膜の厚み
とは、熱可塑性樹脂発泡体の横断面方向の低発泡薄膜の
平均厚さをいう。
If the thickness of the low-foamed thin film is too large, the weight of the thermoplastic resin foam cannot be reduced, and if it is too thin, a thermoplastic resin foam having high compressive strength cannot be obtained. 500 μm is preferred, and more preferably 40 μm.
To 400 μm, more preferably 50 to 400 μm. The thickness of the low-foaming thin film does not need to be uniform, and may be non-uniform. Here, the thickness of the low-foaming thin film refers to the average thickness of the low-foaming thin film in the cross-sectional direction of the thermoplastic resin foam.

【0037】上記低発泡薄膜の発泡倍率が1.1〜10
倍、厚みが30〜500μmのとき、熱可塑性樹脂発泡
体の圧縮強度と軽量化が、両立されるため好ましく、よ
り好ましくは1.2倍〜7倍、40〜400μm、さら
に好ましくは1.2倍〜5倍、50〜400μmであ
る。
The foaming ratio of the low foamed thin film is 1.1 to 10
When the thickness is 30 to 500 μm, the compressive strength and the weight reduction of the thermoplastic resin foam are both compatible, which is preferable, more preferably 1.2 to 7 times, and 40 to 400 μm, further preferably 1.2. Times to 5 times, 50 to 400 μm.

【0038】高発泡部の発泡倍率は、低すぎると、軽量
化が困難となり、また、高すぎると、高い圧縮強度を有
する熱可塑性樹脂発泡体が得られないので、2〜100
倍が好ましく、より好ましくは5〜50倍、さらに好ま
しくは10〜35倍である。
If the expansion ratio of the high-foamed portion is too low, it is difficult to reduce the weight, and if it is too high, a thermoplastic resin foam having high compressive strength cannot be obtained.
The ratio is preferably 5 times, more preferably 5 times to 50 times, and still more preferably 10 times to 35 times.

【0039】高発泡部の大きさは、大きすぎると、得ら
れる熱可塑性樹脂発泡体の圧縮強度が低下し、また、小
さすぎると、軽量化が困難となるので、3〜50mmが
好ましく、より好ましくは5〜30mmである。なお、
高発泡部の大きさは、均一である必要はなく、不均一で
あってもよい。ここで、高発泡部の大きさとは、横断面
方向の大きさの最大値をいう。
When the size of the highly foamed portion is too large, the compressive strength of the obtained thermoplastic resin foam decreases, and when it is too small, it becomes difficult to reduce the weight. Therefore, the size is preferably 3 to 50 mm. Preferably it is 5 to 30 mm. In addition,
The size of the highly foamed portion does not need to be uniform, and may be non-uniform. Here, the size of the highly foamed portion refers to the maximum value of the size in the cross-sectional direction.

【0040】連続発泡層の発泡倍率は、低すぎると、軽
量化が困難となり、また、高すぎると、融着力が低下
し、高い圧縮強度を有する熱可塑性樹脂発泡体が得られ
ないので、1.1〜10倍が好ましく、より好ましくは
2〜8倍、さらに好ましくは2〜7倍である。
If the expansion ratio of the continuous foam layer is too low, it is difficult to reduce the weight, and if it is too high, the fusion force decreases, and a thermoplastic resin foam having high compressive strength cannot be obtained. It is preferably 1 to 10 times, more preferably 2 to 8 times, and still more preferably 2 to 7 times.

【0041】連続発泡層の厚みは、厚すぎると、熱可塑
性樹脂発泡体の軽量化が図れず、また、薄すぎると、高
い圧縮強度を有する熱可塑性樹脂発泡体が得られないの
で、100μm〜5mmが好ましく、より好ましくは3
00μm〜3mm、さらに好ましくは500μm〜2m
mである。なお、連続発泡層の厚みは、均一である必要
はなく、不均一であっても良い。また、連続発泡層は、
完全な平板である必要はなく、多少の凹凸があってもよ
い。ここで、連続発泡層の厚みとは、熱可塑性樹脂発泡
体の横断面方向の連続発泡層平均厚さをいう。連続発泡
層の厚みが不均一な場合、又は凹凸がある場合、上記投
影面は、連続発泡層が完全に平面であると仮定したとき
の最尤面を指す。
If the thickness of the continuous foam layer is too large, the weight of the thermoplastic resin foam cannot be reduced, and if it is too thin, a thermoplastic resin foam having high compressive strength cannot be obtained. 5 mm is preferable, and more preferably 3 mm
00 μm to 3 mm, more preferably 500 μm to 2 m
m. The thickness of the continuous foam layer does not need to be uniform, and may be non-uniform. In addition, the continuous foam layer
It need not be a perfect flat plate, and may have some irregularities. Here, the thickness of the continuous foam layer refers to the average thickness of the continuous foam layer in the cross-sectional direction of the thermoplastic resin foam. When the thickness of the continuous foam layer is uneven or uneven, the projection plane refers to the maximum likelihood plane when the continuous foam layer is assumed to be completely flat.

【0042】本発明の熱可塑性樹脂発泡体は、連続発泡
層に接合し、接合部を除いた外表面を低発泡薄膜が被覆
している、複数の高発泡部が、互いに低発泡薄膜を介し
て接合されている構造を含み、その接合方法は、熱融着
によりなされたものである。
The thermoplastic resin foam of the present invention is joined to a continuous foam layer, and a plurality of highly foamed portions having a low foamed thin film covering the outer surface except for a joint portion are formed by a low foamed thin film. The joining method is performed by heat fusion.

【0043】熱可塑性樹脂発泡体の厚み精度、重量精度
の向上及び圧縮強度のバラツキの低減のためには、複数
の高発泡体が発泡体横断面方向において平面的に略均一
に配置されることが好ましい。もっとも、複数の高発泡
体を平面的に略均一に配置する態様としては、特に限定
されるものではなく、格子状に配置されていてもよく、
千鳥状に配置されていてもよい。
In order to improve the thickness accuracy and weight accuracy of the thermoplastic resin foam and reduce the variation in compressive strength, a plurality of high foams should be arranged substantially uniformly in a plane in the cross-sectional direction of the foam. Is preferred. However, the mode of arranging the plurality of high foams substantially uniformly in a plane is not particularly limited, and may be arranged in a lattice.
They may be arranged in a staggered manner.

【0044】複数高発泡体が格子状に配置されている場
合には、個々の高発泡体が四角柱の形状となり、熱可塑
性樹脂発泡体の表面平滑性が良好となり、かつ圧縮強度
も十分な値とされるため、発泡性熱可塑性樹脂粒状体は
格子状に配置されることが好ましい。
When a plurality of high foams are arranged in a lattice, each high foam has a square pillar shape, and the surface smoothness of the thermoplastic resin foam is good and the compressive strength is sufficient. Therefore, the expandable thermoplastic resin particles are preferably arranged in a lattice shape.

【0045】また、複数の高発泡体が、千鳥配置されて
いる場合、複数の六角柱状の高発泡体が低発泡薄膜を介
して熱融着されている構造となり、全体としてハニカム
状の熱可塑性樹脂発泡体が得られることになり、圧縮強
度が特に優れた熱可塑性樹脂発泡体となるため特に好ま
しい。
When a plurality of high foams are arranged in a staggered manner, a structure in which a plurality of hexagonal column-shaped high foams are heat-sealed through a low-foaming thin film is formed. This is particularly preferable because a resin foam is obtained, and a thermoplastic resin foam having particularly excellent compressive strength is obtained.

【0046】上記高発泡部の凸状に形成された部分の高
さは、低すぎると高い緩衝性を得られないため、連続面
に対して1mm以上が好ましく、より好ましくは2mm
以上、さらに好ましくは3mm以上である。
The height of the protruding portion of the high foaming portion is preferably 1 mm or more, more preferably 2 mm, with respect to the continuous surface, because if the height is too low, a high cushioning property cannot be obtained.
It is more preferably 3 mm or more.

【0047】不連続面に相当する発泡体の部分の他方の
表面が凹状に形成されている場合、熱可塑性樹脂発泡体
の凹部の深さは、大きすぎると高い圧縮強度を発現する
ことが困難となり、低すぎると緩衝性の向上の効果が得
られないため、1〜5mmが好ましく、より好ましくは
1〜3mmである。
When the other surface of the foam portion corresponding to the discontinuous surface is formed in a concave shape, it is difficult to exhibit high compressive strength if the depth of the concave portion of the thermoplastic resin foam is too large. When it is too low, the effect of improving the buffering property cannot be obtained, so that the thickness is preferably 1 to 5 mm, more preferably 1 to 3 mm.

【0048】また、本発明の熱可塑性樹脂発泡体の充填
率は、大きすぎると高い圧縮強度を示す事ができず、小
さすぎると緩衝性が低下することから、30〜95%が
好ましく、50〜90%が特に好ましい。
If the filling rate of the thermoplastic resin foam of the present invention is too large, high compressive strength cannot be exhibited, and if it is too small, the buffering property is reduced. ~ 90% is particularly preferred.

【0049】上記熱可塑性樹脂発泡体には、曲げ強度の
向上のために、必要に応じて、ガラスペーパー、チョッ
プドストランドマット等の無機繊維の織布あるいは不織
布;ポリプロピレン、ポリエステル等の有機繊維の織布
あるいは不織布;熱可塑性樹脂もしくは熱硬化性樹脂か
らなるシート;繊維強化熱可塑性樹脂シート;金属から
なるシートが積層されてもよい。
In order to improve the bending strength, the thermoplastic resin foam may be woven or non-woven with inorganic fibers such as glass paper or chopped strand mat, or woven with organic fibers such as polypropylene or polyester, if necessary. Cloth or nonwoven fabric; sheet made of thermoplastic resin or thermosetting resin; fiber reinforced thermoplastic resin sheet; sheet made of metal may be laminated.

【0050】〔熱可塑性樹脂発泡体の製造方法〕請求項
1〜7に記載の発明の熱可塑性樹脂発泡体の製造方法と
しては、特に限定されるものではなく、例えば、発泡剤
を含有した発泡性熱可塑性樹脂ペレットを発泡させ融着
面を除いた外表面を熱可塑性樹脂よりなる低発泡薄膜が
被覆している、熱可塑性樹脂よりなる複数の高発泡部を
成形し、これを互いに低発泡薄膜を介して熱融着した
後、別工程で成形した熱可塑性樹脂よりなる連続発泡層
を熱融着させた後、熱プレス等で凹凸状に成形する方法
等が挙げられるが、後述する、発泡剤を含有している発
泡性熱可塑性樹脂粒状体が平面的に略均一に配置されて
おり、かつ前記発泡性熱可塑性樹脂粒状体が発泡性熱可
塑性樹脂薄膜を介して一体的に連結されている発泡性熱
可塑性樹脂シート状体を、前記発泡剤の分解温度以上に
加熱し発泡させる工程と、発泡して得られる発泡体が完
全充填される以上の空隙を有する冷却型内で冷却する工
程とを備える方法が最も好ましい。
[Method for Producing Thermoplastic Resin Foam] The method for producing the thermoplastic resin foam according to the first to seventh aspects of the present invention is not particularly limited. The thermoplastic resin pellets are foamed to form a plurality of high-foamed portions made of thermoplastic resin, which are covered with a low-foamed thin film made of thermoplastic resin on the outer surface excluding the fusion surface. After heat-sealing through a thin film, after heat-sealing a continuous foamed layer made of a thermoplastic resin formed in a separate step, a method of forming into a concavo-convex shape by a hot press or the like, for example, Foamable thermoplastic resin granules containing a foaming agent are arranged substantially uniformly in a plane, and the foamable thermoplastic resin granules are integrally connected via a foamable thermoplastic resin thin film. Expandable thermoplastic resin sheet , It said a step of blowing agent is heated to a temperature higher than the decomposition temperature of the foaming process and a step of cooling in the cooling mold foam obtained by foaming has more voids are completely filled is most preferred.

【0051】請求項8に記載の発明の熱可塑性樹脂発泡
体の製造方法では、発泡剤を含有している発泡性熱可塑
性樹脂粒状体が平面的に略均一に配置されており、かつ
前記発泡性熱可塑性樹脂粒状体が発泡性熱可塑性樹脂薄
膜を介して一体的に連結されている発泡性熱可塑性樹脂
シート状体を、上記発泡剤の分解温度以上に加熱し発泡
させる工程と、発泡して得られる発泡体が完全充填され
る以上の空隙を有する冷却型内で冷却することにより凹
凸を形成する工程とを備える。
In the method for producing a thermoplastic resin foam according to the present invention, the foamable thermoplastic resin granules containing a foaming agent are arranged substantially uniformly in a plane, and A step of heating and foaming the foamable thermoplastic resin sheet body in which the thermoplastic thermoplastic granules are integrally connected via a foamable thermoplastic resin thin film at or above the decomposition temperature of the foaming agent; And forming the unevenness by cooling in a cooling mold having voids larger than or equal to the foam completely filled.

【0052】発泡性熱可塑性樹脂シート状体を発泡させ
ると、発泡性熱可塑性樹脂粒状体の部分が発泡するが、
このとき、熱可塑性樹脂粒状体の外表面は発泡により生
じる気泡を保持し難いため、内部に比べ発泡倍率が低く
なり、低発泡薄膜となる。この結果、粒状体の内部の高
い発泡倍率の高発泡部の外表面を低発泡薄膜が被覆した
状態となる。また発泡性熱可塑性樹脂シート状体の粒状
体を連結している発泡性熱可塑性樹脂薄膜は、連続発泡
層となり、この連続発泡層の上に高発泡部が複数配置さ
れた状態となる。なお、連続発泡層も厚みが薄く、気泡
保持が困難になるため低発泡になる。このような低発泡
薄膜は、粒状体の内部の発泡により、隣接する粒状体の
低発泡薄膜と近接し熱融着するわけであるが、発泡後冷
却する冷却装置の隙間を、発泡膨張する熱可塑性樹脂シ
ート状体が完全充填される以上に設定する事で融着が一
部分のみ進行し、完全充填でない凹凸状の熱可塑性樹脂
発泡体が得られる。
When the foamable thermoplastic resin sheet is foamed, a portion of the foamable thermoplastic resin granule foams.
At this time, since the outer surface of the thermoplastic resin particles hardly retains bubbles generated by foaming, the foaming ratio becomes lower than that of the inside, resulting in a low foamed thin film. As a result, the outer surface of the high foaming portion having a high foaming ratio inside the granular material is covered with the low foaming thin film. Further, the foamable thermoplastic resin thin film connecting the granules of the foamable thermoplastic resin sheet becomes a continuous foam layer, and a plurality of high foam portions are arranged on the continuous foam layer. Note that the continuous foam layer also has a small thickness, and it is difficult to hold air bubbles, so that low foaming occurs. Such a low-foaming thin film is closely fused with the low-foaming thin film of an adjacent granular material due to foaming inside the granular material. If the setting is made so that the plastic resin sheet is completely filled, the fusion proceeds only partially, and an uneven thermoplastic resin foam that is not completely filled can be obtained.

【0053】発泡性熱可塑性樹脂シート状体に用いられ
る熱可塑性樹脂 上記発泡性熱可塑性樹脂シート状体を構成する発泡性熱
可塑性樹脂粒状体および発泡性熱可塑性樹脂薄膜に用い
られる熱可塑性樹脂としては、発泡可能な熱可塑性樹脂
であれば、特に限定されるものではなく、前記熱可塑性
樹脂発泡体を構成する樹脂で挙げたものと同様な熱可塑
性樹脂が挙げられる。
Used for a foamable thermoplastic resin sheet.
As the thermoplastic resin used for the expandable thermoplastic resin granules and the expandable thermoplastic resin thin film constituting the expandable thermoplastic resin sheet, the foamable thermoplastic resin is particularly preferable. There is no limitation, and the same thermoplastic resins as those described for the resin constituting the thermoplastic resin foam may be used.

【0054】上記発泡性熱可塑性樹脂粒状体に用いられ
る熱可塑性樹脂と、発泡性熱可塑性樹脂薄膜に用いられ
る熱可塑性樹脂とは、同一の樹脂である必要性はない
が、発泡性及び接着性等の観点から、同種の樹脂を用い
ることが好ましい。
The thermoplastic resin used for the foamable thermoplastic resin granules and the thermoplastic resin used for the foamable thermoplastic resin thin film do not need to be the same resin. From the viewpoint of the above, it is preferable to use the same type of resin.

【0055】上記発泡性熱可塑性樹脂シート状体に用い
られる熱可塑性樹脂は必要に応じて架橋されていてもよ
い。架橋された熱可塑性樹脂を用いることにより、発泡
倍率の向上及び得られる凹凸状熱可塑性樹脂発泡体の軽
量化を図り得るため、架橋されたものを用いることが好
ましい。架橋方法としては、特に限定されず、例えば、
1)シラングラフト重合体を熱可塑性樹脂に溶融混練
後、水処理を行い、架橋する方法、2)熱可塑性樹脂に
過酸化物を該過酸化物の分解温度より低い温度で溶融混
練後、過酸化物の分解温度以上に加熱して架橋する方
法、3)放射線を照射して架橋する方法等が挙げられ
る。
The thermoplastic resin used for the foamable thermoplastic resin sheet may be cross-linked if necessary. It is preferable to use a crosslinked thermoplastic resin because the use of the crosslinked thermoplastic resin can improve the expansion ratio and reduce the weight of the obtained uneven thermoplastic resin foam. The crosslinking method is not particularly limited, for example,
1) A method in which a silane graft polymer is melt-kneaded with a thermoplastic resin, followed by water treatment and crosslinking. 2) A peroxide is melt-kneaded with the thermoplastic resin at a temperature lower than the decomposition temperature of the peroxide. A method of crosslinking by heating to a temperature equal to or higher than the decomposition temperature of the oxide, and 3) a method of crosslinking by irradiating radiation.

【0056】上記1)のシラングラフト重合体を用いた
架橋方法を説明する。上記シラングラフト重合体として
は、特に限定されず、例えば、シラングラフトポリエチ
レンやシラングラフトポリプロピレン等を例示すること
ができる。なお、上記シラングラフト重合体は、例え
ば、重合体を不飽和シラン化合物でグラフト変性するこ
とにより得ることができる。
The crosslinking method using the silane graft polymer of the above 1) will be described. The silane-grafted polymer is not particularly limited, and examples thereof include silane-grafted polyethylene and silane-grafted polypropylene. The silane graft polymer can be obtained by, for example, graft-modifying the polymer with an unsaturated silane compound.

【0057】上記不飽和シラン化合物とは、一般式R1
SiR2 m3-mで表される化合物をいう。但し、mは
0、1、又は2である。式中、上記R1はビニル基、ア
リル基、プロペニル基、シクロヘキセニル基等のアルケ
ニル基;グリシジル基;アミノ基;メタクリル基;γ−
クロロエチル基、γ−ブロモエチル基等のハロゲン化ア
ルキル基等の有機官能基である。
The unsaturated silane compound is represented by the general formula R 1
Refers to a compound represented by SiR 2 m Y 3-m . Here, m is 0, 1, or 2. In the formula, R 1 is an alkenyl group such as a vinyl group, an allyl group, a propenyl group, a cyclohexenyl group; a glycidyl group; an amino group; a methacryl group;
Organic functional groups such as halogenated alkyl groups such as chloroethyl group and γ-bromoethyl group.

【0058】式中、R2は脂肪族飽和炭化水素基又は芳
香族炭化水素基を示し、例えば、メチル基、エチル基、
プロピル基、デシル基、フェニル基等が挙げられる。式
中、Yは加水分解可能な有機官能基を示し、例えば、メ
トキシ基、エトキシ基、ホルミルオキシ基、アセトキシ
基、プロピオノキシアリールアミノ基等が挙げられ、m
が0又は1のとき、Y同士は同一であっても、異なって
いてもよい。
In the formula, R 2 represents an aliphatic saturated hydrocarbon group or an aromatic hydrocarbon group, for example, a methyl group, an ethyl group,
Examples thereof include a propyl group, a decyl group, and a phenyl group. In the formula, Y represents a hydrolyzable organic functional group, for example, a methoxy group, an ethoxy group, a formyloxy group, an acetoxy group, a propionoxyarylamino group, and the like.
Is 0 or 1, Y may be the same or different.

【0059】架橋反応速度向上のためには、上記不飽和
シラン化合物としては、一般式CH 2=CHSi(O
A)3で表されるものが好ましい。式中、Aは好ましく
は、炭素数1〜8、さらに好ましくは炭素数1〜4の脂
肪族飽和炭化水素基である。CH 2=CHSi(OA)3
で表される好ましい不飽和シラン化合物としては、例え
ば、ビニルトリメトキシシラン、ビニルトリエトキシシ
ラン、ビニルトリアセトキシシラン等が挙げられる。
To increase the rate of the crosslinking reaction, the above unsaturated
As the silane compound, the general formula CH Two= CHSi (O
A)ThreeIs preferably represented by Wherein A is preferably
Is a fatty acid having 1 to 8 carbon atoms, more preferably 1 to 4 carbon atoms.
It is an aliphatic saturated hydrocarbon group. CH Two= CHSi (OA)Three
Examples of preferred unsaturated silane compounds represented by
For example, vinyl trimethoxysilane, vinyl triethoxy
Orchid and vinyltriacetoxysilane.

【0060】上記シラングラフト重合体の製造方法とし
ては、一般的な製法が用いられ、特に限定されるもので
はない。例えば、ポリエチレンに、上記R1SiR2
3-mで表される不飽和シラン化合物及び有機過酸化物を
反応させ、シラン変性ポリエチレンを得る方法が挙げら
れる。
As the method for producing the silane graft polymer, a general production method is used and is not particularly limited. For example, the above R 1 SiR 2 Y is added to polyethylene.
A method of reacting an unsaturated silane compound represented by 3-m and an organic peroxide to obtain a silane-modified polyethylene.

【0061】シリル基を有する上記シラングラフト重合
体は、例えば、Yがメトキシ基である場合には、これが
水と接触することにより、加水分解して水酸基となり、
異なる分子の水酸基同士が反応し、Si−O−Si結合
を形成して、シラングラフト重合体同士が架橋する。
For example, when Y is a methoxy group, the above silane graft polymer having a silyl group is hydrolyzed to a hydroxyl group by contact with water,
Hydroxyl groups of different molecules react with each other to form a Si—O—Si bond, and the silane graft polymers are crosslinked.

【0062】シラングラフト重合体を混合する方法は、
均一に混合し得る方法であれば、特に限定されない。例
えば、熱可塑性樹脂及びシラングラフト重合体を1軸又
は2軸押出機に供給し、溶融混練する方法、ロールを用
いて溶融混練する方法、ニーダーを用いて溶融混練する
方法等が挙げられる。
The method of mixing the silane graft polymer is as follows:
There is no particular limitation on the method as long as it can be uniformly mixed. For example, a method in which a thermoplastic resin and a silane graft polymer are supplied to a single-screw or twin-screw extruder and melt-kneaded, a method of melt-kneading using a roll, a method of melt-kneading using a kneader, and the like are exemplified.

【0063】前述の水処理方法は、水中に浸漬する方法
のほか、水蒸気にさらす方法も含まれ、かかる場合、1
00℃より高い温度で処理する場合には、加圧下におい
て行えばよい。
The water treatment method described above includes a method of immersion in water and a method of exposure to water vapor.
When the treatment is performed at a temperature higher than 00 ° C., the treatment may be performed under pressure.

【0064】上記水処理の際の水及び水蒸気の温度が低
いと、架橋反応速度が低下し、また、高すぎると発泡性
熱可塑性樹脂シート状体が熱でくっついてしまうので、
50〜130℃が好ましく、より好ましくは90〜12
0℃である。また、水処理する際の時間が短いと、架橋
反応が完全に進行しない場合があるので、水処理時間は
0.5〜12時間の範囲とすることが好ましい。
If the temperature of water and water vapor in the above water treatment is low, the rate of the crosslinking reaction decreases, and if the temperature is too high, the foamable thermoplastic resin sheet sticks to the heat.
50-130 ° C is preferred, and more preferably 90-12 ° C.
0 ° C. In addition, if the time for water treatment is short, the crosslinking reaction may not proceed completely, so the water treatment time is preferably set in the range of 0.5 to 12 hours.

【0065】シラングラフト重合体の添加量が多すぎる
と、架橋がかかりすぎ、得られる凹凸状熱可塑性樹脂発
泡体の発泡倍率が低下し、また、少なすぎると、セルが
破泡し、均一な発泡セルが得られなくなるので、シラン
グラフト重合体の添加量は、熱可塑性樹脂100重量部
に対して5〜50重量部が好ましく、より好ましくは2
0〜35重量部である。
If the addition amount of the silane graft polymer is too large, crosslinking is excessively performed, and the expansion ratio of the obtained irregular thermoplastic resin foam is reduced. If the addition amount is too small, cells are broken and uniform foam is formed. Since foam cells cannot be obtained, the addition amount of the silane graft polymer is preferably 5 to 50 parts by weight, more preferably 2 to 50 parts by weight, based on 100 parts by weight of the thermoplastic resin.
0 to 35 parts by weight.

【0066】また、シラングラフト重合体を用いてシラ
ン架橋する場合には、必要に応じてシラン架橋触媒を用
いてもよい。シラン架橋触媒は、シラングラフト重合体
同士の架橋反応を促進するものであれば、特に限定され
ず、例えば、ジブチル錫ジアセテート、ジブチル錫ジラ
ウレート、ジオクチル錫ジラウレート、オクタン酸錫、
オレイン酸錫、オクタン錫鉛、2−エチルヘキサン酸亜
鉛、オクタン酸コバルト、ナフテン酸鉛、カブリル酸亜
鉛、ステアリン酸亜鉛等が挙げられる。
When silane crosslinking is performed using a silane graft polymer, a silane crosslinking catalyst may be used if necessary. The silane crosslinking catalyst is not particularly limited as long as it promotes a crosslinking reaction between the silane graft polymers.For example, dibutyltin diacetate, dibutyltin dilaurate, dioctyltin dilaurate, tin octoate,
Examples include tin oleate, lead octane, zinc 2-ethylhexanoate, cobalt octoate, lead naphthenate, zinc cabrate, and zinc stearate.

【0067】上記シラン架橋触媒の添加量が多くなる
と、得られる凹凸状熱可塑性樹脂発泡体の発泡倍率が低
下し、また、少なくなると、架橋反応速度が低下し、水
処理に時間を要するので、上記熱可塑性樹脂100重量
部に対して、シラン架橋触媒の添加量は、0.001〜
10重量部の範囲が好ましく、より好ましは0.01〜
0.1重量部である。
When the addition amount of the silane crosslinking catalyst increases, the expansion ratio of the obtained irregular thermoplastic resin foam decreases, and when the addition amount decreases, the crosslinking reaction speed decreases and time is required for water treatment. The amount of the silane crosslinking catalyst added is 0.001 to 100 parts by weight of the thermoplastic resin.
A range of 10 parts by weight is preferred, more preferably 0.01 to
0.1 parts by weight.

【0068】前述した2)の上記過酸化物により熱可塑
性樹脂を架橋する方法について述べる。本方法において
用いられる過酸化物は特に限定されず、例えば、ジブチ
ルパーオキサイド、ジクミルパーオキサイド、ターシャ
ルブチルクミルパーオキサイド、ジイソプロピルパーオ
キサイド等が挙げられ、樹脂融点と分解温度が近いの
で、ジクミルパーオキサイド、ターシャルブチルクミル
パーオキサイドが好ましく、ジクミルパーオキサイドが
特に好ましい。
The method 2) for crosslinking a thermoplastic resin with the above-mentioned peroxide will be described. The peroxide used in the present method is not particularly limited, and includes, for example, dibutyl peroxide, dicumyl peroxide, tert-butyl cumyl peroxide, diisopropyl peroxide, and the like. Mil peroxide and tertiary butyl cumyl peroxide are preferred, and dicumyl peroxide is particularly preferred.

【0069】過酸化物の添加量が、多すぎると、樹脂分
解反応が進行しやすくなり、得られる凹凸状熱可塑性樹
脂発泡体が着色し、また、少なすぎると、熱可塑性樹脂
の架橋が不十分となることがあるので、熱可塑性樹脂1
00重量部に対して、過酸化物の添加量は0.5〜5重
量部が好ましく、より好ましくは1〜3重量部である。
If the amount of the peroxide is too large, the decomposition reaction of the resin tends to proceed, and the resulting irregular thermoplastic resin foam is colored. If the amount is too small, the crosslinking of the thermoplastic resin is not successful. In some cases, thermoplastic resin 1
The amount of the peroxide is preferably 0.5 to 5 parts by weight, more preferably 1 to 3 parts by weight, per 100 parts by weight.

【0070】上記3)の放射線を照射し、熱可塑性樹脂
を架橋する方法について述べる。放射線の照射量が多す
ぎると、架橋が掛かりすぎ、得られる凹凸状熱可塑性樹
脂発泡体の発泡倍率が低下し、また、少なすぎると発泡
セルが破泡し、均一な発泡セルが得られないので、放射
線照射量は、1〜20Mradが好ましく、より好まし
くは3〜10Mradである。
The method 3) of irradiating radiation to crosslink the thermoplastic resin will be described. If the irradiation amount of the radiation is too large, crosslinking is excessively applied, and the expansion ratio of the obtained irregular thermoplastic resin foam is reduced.If the amount is too small, the foamed cells are broken, and uniform foamed cells cannot be obtained. Therefore, the radiation dose is preferably 1 to 20 Mrad, more preferably 3 to 10 Mrad.

【0071】放射線を照射する方法は、特に限定され
ず、例えば、2台の電子線発生装置を用い、その間を熱
可塑性樹脂シート状体を通過させ、熱可塑性樹脂に電子
線を照射する方法等が挙げられる。
The method of irradiating radiation is not particularly limited. For example, a method of using two electron beam generators, passing a thermoplastic resin sheet between them, and irradiating the thermoplastic resin with an electron beam. Is mentioned.

【0072】上記発泡性熱可塑性樹脂は、上述したよう
に特に限定されないが、発泡剤と、互いにほとんど相溶
性を有しない高架橋熱可塑性樹脂と低架橋もしくは無架
橋熱可塑性樹脂との混合物よりなる。この場合、発泡時
には低架橋もしくは無架橋樹脂が流動し易いので、得ら
れる凹凸状熱可塑性樹脂発泡体の凹凸部が形成しやすい
ので特に好ましい。
The foamable thermoplastic resin is not particularly limited as described above, but comprises a mixture of a foaming agent, a highly crosslinked thermoplastic resin having little compatibility with each other, and a low crosslinked or non-crosslinked thermoplastic resin. In this case, since the low-crosslinking or non-crosslinking resin easily flows at the time of foaming, the uneven portion of the obtained uneven thermoplastic resin foam is easily formed, which is particularly preferable.

【0073】高架橋熱可塑性樹脂と低架橋又は無架橋熱
可塑性樹脂における高架橋及び低架橋とは、双方の架橋
度の大小により決定される相対的な表現であり、2つの
架橋樹脂組成のうち、相対的に高架橋の熱可塑性樹脂を
高架橋熱可塑性樹脂といい、他方を低架橋又は無架橋熱
可塑性樹脂という。
The terms “highly crosslinked” and “lowly crosslinked” in the highly crosslinked thermoplastic resin and the lowly crosslinked or non-crosslinked thermoplastic resin are relative expressions determined by the magnitude of the degree of crosslinking of both, and the relative A highly crosslinked thermoplastic resin is referred to as a highly crosslinked thermoplastic resin, and the other is referred to as a low crosslinked or non-crosslinked thermoplastic resin.

【0074】上記互いにほとんど相溶性を有さない上記
2種の熱可塑性樹脂に使用される熱可塑性樹脂(架橋
前)としては、前述した熱可塑性樹脂のうち2種類(以
下、樹脂そのものの架橋性能ではなく、高架橋熱可塑性
樹脂を形成する樹脂を「高架橋性樹脂」、低架橋あるい
は無架橋熱可塑性樹脂を形成する樹脂を「低(無)架橋
性樹脂」という)を適宜選択して用いることができる
が、上記高架橋熱可塑性樹脂と、低架橋もしくは無架橋
熱可塑性樹脂が互いに相溶せずに均一微細に分散するた
めには、高架橋性樹脂と低(無)架橋性樹脂の熱可塑性
樹脂の溶解度パラメーターの差が0.1〜2.0である
ことが好ましく、0.2〜1.5であることがさらに好
ましい。
As the thermoplastic resin (before crosslinking) used for the two types of thermoplastic resins having almost no compatibility with each other, two types of the thermoplastic resins described above (hereinafter referred to as crosslinking performance of the resin itself) are used. Rather, a resin that forms a highly crosslinked thermoplastic resin is referred to as a “highly crosslinkable resin”, and a resin that forms a low crosslinked or non-crosslinked thermoplastic resin is referred to as a “low (no) crosslinked resin”. Although it is possible, in order to uniformly and finely disperse the highly crosslinked thermoplastic resin and the low crosslinked or non-crosslinked thermoplastic resin without being compatible with each other, the thermoplastic resin of the highly crosslinked resin and the low (non) crosslinked resin is used. The difference in solubility parameter is preferably from 0.1 to 2.0, and more preferably from 0.2 to 1.5.

【0075】溶解度パラメーターの差が2.0を超える
と、架橋して得られる高架橋熱可塑性樹脂と、低架橋あ
るいは無架橋熱可塑性樹脂が非常に粗く分散するため、
得られる凹凸状熱可塑性樹脂発泡体の発泡倍率が低下す
る。他方、溶解性パラメーターの差が0.1より小さい
と、架橋して得られる高架橋熱可塑性樹脂と、低架橋あ
るいは無架橋熱可塑性樹脂の相溶性が高くなり、得られ
る凹凸状熱可塑性樹脂発泡体の表面平滑性が低下する。
If the difference in the solubility parameter exceeds 2.0, the highly crosslinked thermoplastic resin obtained by crosslinking and the low crosslinked or non-crosslinked thermoplastic resin are very coarsely dispersed.
The expansion ratio of the obtained uneven thermoplastic resin foam decreases. On the other hand, if the difference in the solubility parameter is less than 0.1, the compatibility of the highly crosslinked thermoplastic resin obtained by crosslinking and the low crosslinked or non-crosslinked thermoplastic resin becomes high, and the obtained uneven thermoplastic resin foam is obtained. Has a reduced surface smoothness.

【0076】上記溶解性パラメーターは、σ=ρΣFi
/Mにより求めた値をいう。なお、ρは樹脂成分の密
度、Mは樹脂成分を構成するモノマーの分子量、Fi
は、モノマーの構成グループのモル吸引数である。
The solubility parameter is σ = ρΣFi
/ M. Here, ρ is the density of the resin component, M is the molecular weight of the monomer constituting the resin component, Fi
Is the number of moles of the monomer group.

【0077】上記、高架橋性樹脂と、低(無)架橋性樹
脂のメルトインデックス(MI)の差が、大きくなる
と、架橋して得られる高架橋熱可塑性樹脂と、低架橋あ
るいは無架橋熱可塑性樹脂とが非常に粗く分散するた
め、得られる凹凸状熱可塑性樹脂発泡体の発泡倍率が低
下し、小さくなると、架橋して得られる高架橋熱可塑性
樹脂と低架橋あるいは無架橋熱可塑性樹脂の相溶性が高
くなり、得られる凹凸状熱可塑性樹脂発泡体の凹凸を形
成することが困難になることがあるため、高架橋熱可塑
性樹脂と、低架橋あるいは無架橋熱可塑性樹脂とが互い
に相溶せずに均一微細に分散し、かつ高発泡倍率の熱可
塑性樹脂発泡体を得るには、MIの差は5〜13g/1
0分が好ましく、7〜11g/10分がより好ましい。
When the difference in the melt index (MI) between the highly crosslinkable resin and the low (non) crosslinkable resin becomes large, the high crosslinkable thermoplastic resin obtained by crosslinking and the low crosslinkable or noncrosslinkable thermoplastic resin become Because it is very coarsely dispersed, the expansion ratio of the obtained uneven thermoplastic resin foam is reduced and becomes smaller, and the compatibility of the highly crosslinked thermoplastic resin obtained by crosslinking and the low crosslinked or non-crosslinked thermoplastic resin is high. Because it may be difficult to form the irregularities of the resulting irregular thermoplastic resin foam, the highly crosslinked thermoplastic resin and the low crosslinked or non-crosslinked thermoplastic resin are finely divided without being compatible with each other. In order to obtain a thermoplastic resin foam having a high expansion ratio and a high expansion ratio, the MI difference is 5 to 13 g / 1.
0 minutes is preferable, and 7-11 g / 10 minutes is more preferable.

【0078】なお、本明細書におけるMIは、JIS
K7210に従って、測定された値である。架橋して得
られる高架橋熱可塑性樹脂と、低架橋あるいは無架橋熱
可塑性樹脂とが均一微細に分散し、かつ表面平滑性に優
れた高発泡倍率の熱可塑性樹脂発泡体を得るためには、
高架橋性樹脂と、低(無)架橋性樹脂との混合比率は重
量比で、2:8〜8:2であることが望ましく、4:6
〜6:4がより好ましい。
Note that MI in this specification refers to JIS
It is a value measured according to K7210. In order to obtain a highly crosslinked thermoplastic resin obtained by crosslinking, a low crosslinked or non-crosslinked thermoplastic resin is uniformly and finely dispersed, and to obtain a thermoplastic resin foam having a high expansion ratio with excellent surface smoothness,
The mixing ratio between the highly crosslinkable resin and the low (non-) crosslinkable resin is desirably 2: 8 to 8: 2 by weight, and 4: 6.
~ 6: 4 is more preferable.

【0079】高架橋熱可塑性樹脂の架橋度が高すぎる
と、架橋がかかりすぎ、得られる凹凸状熱可塑性樹脂発
泡体の発泡倍率が低下し、逆に、低すぎると発泡時にセ
ルが破泡し、均一なセルが得られないことがあるので、
架橋度の指標となるゲル分率で5〜40重量%が好まし
く、10〜30重量%がより好ましい。
If the degree of cross-linking of the highly cross-linked thermoplastic resin is too high, cross-linking is excessively applied, and the expansion ratio of the obtained irregular thermoplastic resin foam decreases. Conversely, if it is too low, the cells break during foaming. Since a uniform cell may not be obtained,
The gel fraction serving as an index of the degree of crosslinking is preferably 5 to 40% by weight, more preferably 10 to 30% by weight.

【0080】低架橋又は無架橋熱可塑性樹脂の架橋度が
高いと、架橋がかかりすぎ、得られる凹凸状熱可塑性樹
脂発泡体の流動性が低下し、凹凸を形成しにくくなるこ
とがあるので、架橋度の指標となるゲル分率で5重量%
以下が好ましく、3重量%以下がより好ましい。
If the degree of crosslinking of the low-crosslinking or non-crosslinking thermoplastic resin is too high, crosslinking may be excessive, and the fluidity of the resulting irregular thermoplastic resin foam may decrease, making it difficult to form irregularities. 5% by weight of gel fraction which is an indicator of the degree of crosslinking
Or less, more preferably 3% by weight or less.

【0081】なお、本明細書におけるゲル分率とは、架
橋樹脂成分を120℃のキシレン中に24時間浸漬した
後の残渣重量のキシレン浸漬前の架橋樹脂成分の重量に
対する重量百分率をいう。
The gel fraction in this specification refers to the percentage by weight of the residue weight after immersing the crosslinked resin component in xylene at 120 ° C. for 24 hours with respect to the weight of the crosslinked resin component before immersion in xylene.

【0082】互いにほとんど相溶性を有さない、高架橋
熱可塑性樹脂と、低架橋又は無架橋熱可塑性樹脂の混合
物を調製する方法としては、上記2種類の熱可塑性樹脂
を混合し、高架橋性樹脂のみを、又は低(無)架橋性樹
脂より高架橋性樹脂を優先的に架橋することにより達成
される。
As a method for preparing a mixture of a highly crosslinked thermoplastic resin and a low crosslinked or non-crosslinked thermoplastic resin having almost no compatibility with each other, the above two kinds of thermoplastic resins are mixed, and only the highly crosslinked resin is mixed. Or by cross-linking a highly crosslinkable resin preferentially over a low (no) crosslinkable resin.

【0083】高架橋性樹脂のみを、又は低(無)架橋性
樹脂より高架橋性樹脂を優先的に架橋する方法として
は、例えば、高架橋性樹脂のみを、又は低(無)架橋
性樹脂より高架橋性樹脂を優先的に架橋する架橋剤を用
いて架橋する方法、第1段階で、架橋性官能基を有す
る、高架橋性樹脂と同種の架橋性樹脂とを混合して架橋
して、高架橋熱可塑性樹脂を形成させた後、第2段階
で、これを無架橋性樹脂と混合する方法等が挙げられ
る。
Examples of a method of preferentially crosslinking a highly crosslinkable resin only or a highly crosslinkable resin over a low (non) crosslinkable resin include, for example, only a highly crosslinkable resin or a highly crosslinkable resin than a low (non) crosslinkable resin. A method of crosslinking using a crosslinking agent that preferentially crosslinks a resin. In the first step, a highly crosslinkable resin having a crosslinkable functional group is mixed with the same kind of crosslinkable resin to form a crosslinkable thermoplastic resin. Is formed, and in a second step, this is mixed with a non-crosslinkable resin.

【0084】もっとも、高架橋熱可塑性樹脂と、低架橋
あるいは無架橋熱可塑性樹脂とが均一微細に分散できる
こと、高架橋性樹脂を優先的に架橋し易いこと、並びに
熱可塑性樹脂を容易に調製し得ることから、高架橋性樹
脂とほとんど同じメルトインデックスを有し、かつ架橋
性官能基を有する、高架橋性樹脂と同種の架橋性樹脂
を、高架橋性樹脂及び低架橋性樹脂と共に混合した後、
架橋させる方法が最も好ましい。
It should be noted that the highly crosslinked thermoplastic resin and the low crosslinked or non-crosslinked thermoplastic resin can be uniformly and finely dispersed, that the highly crosslinked resin can be preferentially crosslinked, and that the thermoplastic resin can be easily prepared. From, having almost the same melt index as the highly crosslinkable resin, and having a crosslinkable functional group, after mixing the same type of crosslinkable resin with the high crosslinkable resin, together with the high crosslinkable resin and the low crosslinkable resin,
The method of crosslinking is most preferred.

【0085】高架橋性樹脂とほとんど同じメルトインデ
ックスを有した架橋性官能基を有する高架橋性樹脂と同
種の架橋性樹脂としては、反応性官能基を有し、架橋す
ることができる熱可塑性樹脂であれば特に限定されな
い。このような官能基としては、例えば、ビニル基、ア
リル基、プロペニル基等の不飽和基、水酸基、カルボキ
シル基、エポキシ基、アミノ基、シラノール基、シラネ
ート基等を有する前述した熱可塑性樹脂が挙げられる。
The crosslinkable resin of the same type as the highly crosslinkable resin having a crosslinkable functional group having almost the same melt index as the highly crosslinkable resin may be a thermoplastic resin having a reactive functional group and capable of being crosslinked. It is not particularly limited. Examples of such a functional group include the above-described thermoplastic resins having an unsaturated group such as a vinyl group, an allyl group, and a propenyl group, a hydroxyl group, a carboxyl group, an epoxy group, an amino group, a silanol group, and a silanate group. Can be

【0086】上記架橋性樹脂の具体的な例としては、マ
レイン酸変性ポリエチレン、マレイン酸変性ポリプロピ
レン、シラン変性ポリエチレン、シラン変性ポリプロピ
レン等が挙げられる。高架橋性樹脂のみに、又は低
(無)架橋性樹脂より高架橋性樹脂を優先的に架橋する
ことが容易なこと、及び混合後の架橋が容易なことか
ら、シラン変性ポリエチレン、シラン変性ポリプロピレ
ンが最も好ましい。
Specific examples of the crosslinkable resin include maleic acid-modified polyethylene, maleic acid-modified polypropylene, silane-modified polyethylene, and silane-modified polypropylene. Silane-modified polyethylene and silane-modified polypropylene are the most preferred because it is easy to crosslink highly crosslinkable resin only with high crosslinkability resin or preferentially crosslink high crosslinkability resin than low (no) crosslinkability resin, and easy to crosslink after mixing. preferable.

【0087】高架橋性樹脂と架橋性樹脂のメルトインデ
ックスの差が、大きいと高架橋性樹脂のみに、又は低
(無)架橋樹脂より高架橋性樹脂を優先的に架橋するこ
とが困難になるため、上記メルトインデックスの差は2
g/10分以下が好ましく、1g/10分以下がさらに
好ましい。
If the difference in melt index between the highly crosslinkable resin and the crosslinkable resin is large, it becomes difficult to crosslink only the highly crosslinkable resin or to preferentially crosslink the highly crosslinkable resin over the low (no) crosslinkable resin. Melt index difference is 2
g / 10 minutes or less, preferably 1 g / 10 minutes or less.

【0088】上記架橋性官能基を有する架橋性樹脂を架
橋する方法としては、過酸化物を用いて架橋する方法、
イソシアネートを用いて架橋する方法、アミンを用いて
架橋する方法、反応性官能基を加水分解した後、水架橋
する方法等が挙げられる。
Examples of the method of crosslinking the crosslinkable resin having a crosslinkable functional group include a method of crosslinking with a peroxide,
Examples of the method include a method of crosslinking with an isocyanate, a method of crosslinking with an amine, and a method of hydrolyzing a reactive functional group followed by water crosslinking.

【0089】混合後の架橋が容易なことから、反応性官
能基を加水分解した後水架橋する方法が最も好ましい。
The method of crosslinking with water after hydrolyzing the reactive functional group is most preferable because the crosslinking after mixing is easy.

【0090】発泡剤 請求項8記載の発明において、上記発泡性熱可塑性樹脂
粒状体及び発泡性熱可塑性樹脂薄膜に含有される発泡剤
として熱分解型発泡剤が用いられる。
Blowing agent In the eighth aspect of the present invention, a pyrolytic foaming agent is used as a blowing agent contained in the expandable thermoplastic resin granules and the expandable thermoplastic resin thin film.

【0091】上記熱分解型発泡剤としては、用いられる
熱可塑性樹脂の溶融温度より高い分解温度を有するもの
であれば、特に限定されず、例えば、重炭酸ナトリウ
ム、炭酸アンモニウム、重炭酸アンモニウム、アジド化
合物、ほう水素化ナトリウム等の無機系熱分解型発泡
剤;アゾジカルボンアミド、アゾビスホルムアミド、ア
ゾビスイソブチロニトリル、アゾジカルボン酸バリウ
ム、ジアゾアミノベンゼン、N,N´−ジニトロソペン
タメチレンテトラミン、Pートルエンスルホニルヒドラ
ジド、P,P´−オキシビスベンゼンスルホニルヒドラ
ジド、トリヒドラジノトリアジン等が挙げられ、分解温
度や分解速度の調整が容易でガス発生量が多く、衛生上
優れているアゾジカルボンアミドが好ましい。
The pyrolytic foaming agent is not particularly limited as long as it has a decomposition temperature higher than the melting temperature of the thermoplastic resin used. Examples thereof include sodium bicarbonate, ammonium carbonate, ammonium bicarbonate and azide. Compounds, inorganic pyrolytic blowing agents such as sodium borohydride; azodicarbonamide, azobisformamide, azobisisobutyronitrile, barium azodicarboxylate, diazoaminobenzene, N, N'-dinitrosopentamethylenetetramine , P-toluenesulfonyl hydrazide, P, P'-oxybisbenzenesulfonyl hydrazide, trihydrazinotriazine, etc., which are easy to adjust the decomposition temperature and decomposition rate, generate a large amount of gas, and are excellent in hygiene. Amides are preferred.

【0092】上記熱分解型発泡剤の添加量が多すぎる
と、破泡し、均一なセルが形成されず、逆に少なすぎる
と十分に発泡しなくなることがあるため、熱分解型発泡
剤は、熱可塑性樹脂100重量部に対し、1〜25重量
部の割合で含有させることが好ましい。
If the amount of the thermal decomposition type foaming agent is too large, bubbles may be broken and uniform cells may not be formed. On the other hand, if the amount is too small, foaming may not be sufficiently performed. It is preferable that the content be contained in a proportion of 1 to 25 parts by weight based on 100 parts by weight of the thermoplastic resin.

【0093】他に添加し得る成分 発泡体の強度を高めるために、上記発泡性熱可塑性樹脂
粒状体及び発泡性熱可塑性樹脂薄膜に用いられる上記熱
可塑性樹脂には、必要に応じて、ガラス短繊維、炭素短
繊維、ポリエステル短繊維等の補強材;炭酸カルシウ
ム、水酸化アルミニウム、ガラスパウダー等の充填材等
を添加してもよい。
In order to increase the strength of the component foam which can be added , the above-mentioned thermoplastic resin used for the above-mentioned foamable thermoplastic resin granules and the foamable thermoplastic resin thin film may, if necessary, be made of glass. Reinforcing materials such as fibers, short carbon fibers, and short polyester fibers; fillers such as calcium carbonate, aluminum hydroxide, and glass powder may be added.

【0094】補強材として、上記短繊維を添加する場
合、補強材の添加割合が多すぎると、発泡時にセルが破
壊し、高発泡倍率の発泡体を得ることができず、逆に少
なすぎると、得られる発泡体を補強する効果が十分に得
られなくなる。従って、上記短繊維を添加する場合に
は、その配合割合は、熱可塑性樹脂100重量部に対し
1〜20重量部が好ましく、3〜10重量部が特に好ま
しい。
When the above-mentioned short fibers are added as a reinforcing material, if the addition ratio of the reinforcing material is too large, the cells are broken at the time of foaming, and a foam having a high expansion ratio cannot be obtained. In addition, the effect of reinforcing the obtained foam cannot be sufficiently obtained. Therefore, when the short fibers are added, the mixing ratio is preferably 1 to 20 parts by weight, particularly preferably 3 to 10 parts by weight, per 100 parts by weight of the thermoplastic resin.

【0095】短繊維の長さが長すぎると、発泡時にセル
が破壊し、高発泡倍率の発泡体を得ることができず、短
すぎると、得られる発泡体を補強する効果が十分に得ら
れなくなることがあるため、短繊維の長さは、1〜20
mmが好ましく、3〜5mmが特に好ましい。
If the length of the short fibers is too long, the cells are broken during foaming, and a foam having a high expansion ratio cannot be obtained. If the length is too short, the effect of reinforcing the obtained foam is sufficiently obtained. The length of the short fibers may be 1 to 20
mm is preferred, and 3-5 mm is particularly preferred.

【0096】また、上記充填剤を添加する場合、添加量
が多いと、発泡時にセルが破壊し、高発泡倍率の発泡体
を得ることができず、また、少ないと、得られる発泡体
を補強する効果が充分に得られないことがある。従っ
て、充填剤の添加量は、熱可塑性樹脂100重量部に対
して、10〜100重量部が好ましく、30〜50重量
部が特に好ましい。
In addition, when the above-mentioned filler is added, if the amount is large, the cells are broken at the time of foaming and a foam having a high expansion ratio cannot be obtained. If the amount is small, the obtained foam is reinforced. Effect may not be obtained sufficiently. Therefore, the addition amount of the filler is preferably 10 to 100 parts by weight, particularly preferably 30 to 50 parts by weight, based on 100 parts by weight of the thermoplastic resin.

【0097】発泡性熱可塑性樹脂粒状体 上記発泡性熱可塑性樹脂粒状体の形状は、特に限定され
ず、例えば、六方体状、円柱状、球状体などが挙げられ
るが、発泡性熱可塑性樹脂粒状体が発泡する際に、発泡
を均一に行わせるには、円柱状が最も好ましい。
[0097] The shape of expandable thermoplastic resin granular materials the expandable thermoplastic resin granular materials is not particularly limited, for example, hexagonal-shaped, cylindrical, although such spheroids and the like, expandable thermoplastic resin granular When the body foams, the column shape is most preferable in order to perform foaming uniformly.

【0098】発泡性熱可塑性樹脂粒状体が円柱状の場
合、その径は、目的とする凹凸状熱可塑性樹脂発泡体の
発泡倍率や厚さ等によっても異なるため特に限定される
ものではないが、大きすぎると発泡速度が低下し、小さ
すぎると発泡時の加熱で円柱が溶融・変形し、変形しや
すく一次発泡性を発現できなくなり、厚み精度、重量精
度のばらつきが大きくなる。従って、発泡性熱可塑性樹
脂粒状体が円柱の場合、その径は、1〜30mmが好ま
しく、2〜20mmの範囲が特に好ましい。
When the expandable thermoplastic resin particles are cylindrical, the diameter thereof is not particularly limited because it varies depending on the expansion ratio, thickness, etc. of the target uneven thermoplastic resin foam. If it is too large, the foaming speed will be reduced, and if it is too small, the column will melt and deform due to heating during foaming, it will be easily deformed, and it will not be possible to express primary foaming, and the thickness accuracy and weight accuracy will have large variations. Therefore, when the expandable thermoplastic resin particles are cylindrical, the diameter is preferably 1 to 30 mm, and particularly preferably 2 to 20 mm.

【0099】発泡性熱可塑性樹脂粒状体が円柱状の場
合、その高さは、目的とする熱可塑性樹脂発泡体の発泡
倍率や厚さ等によっても異なるため特に限定されるもの
ではないが、高すぎると発泡速度が低下し、低すぎると
発泡性熱可塑性樹脂薄膜と同時に発泡するため、幅方向
及び長手方向において大きく膨張することになる。従っ
て、円柱状の発泡性熱可塑性樹脂粒状体の高さは1〜3
0mmが好ましく、より好ましくは2〜20mmであ
る。
When the expandable thermoplastic resin particles are cylindrical, the height thereof is not particularly limited because it varies depending on the expansion ratio and thickness of the target thermoplastic resin foam. If it is too high, the foaming speed will decrease, and if it is too low, it will foam simultaneously with the foamable thermoplastic resin thin film, so that it will expand greatly in the width direction and the longitudinal direction. Therefore, the height of the columnar foamable thermoplastic resin granules is 1 to 3
It is preferably 0 mm, more preferably 2 to 20 mm.

【0100】発泡性熱可塑性樹脂粒状体間の距離は、目
的とする熱可塑性樹脂発泡体の発泡倍率や厚さ等によっ
ても異なるため、特に限定されるものではないが、上記
距離が長すぎると発泡性熱可塑性樹脂粒状体が発泡した
時に充填不足が大きく発生する可能性があり、短すぎる
と完全充填してしまう。従って、発泡性熱可塑性樹脂粒
状体間の中心間距離は、2〜50mmが好ましく、より
好ましくは3〜30mmである。
The distance between the expandable thermoplastic resin granules is not particularly limited since it varies depending on the expansion ratio, thickness, etc. of the target thermoplastic resin foam, but if the distance is too long. When the expandable thermoplastic resin granules foam, there is a possibility that a large amount of insufficient filling occurs. If the amount is too short, complete filling occurs. Therefore, the center-to-center distance between the expandable thermoplastic resin particles is preferably 2 to 50 mm, more preferably 3 to 30 mm.

【0101】最終的に得られる熱可塑性樹脂発泡体の厚
み精度、重量精度を向上し、凹凸形状と発泡倍率を均一
化するには、上記発泡性熱可塑性樹脂粒状体は、発泡性
熱可塑性樹脂シート状体において平面的に略均一に配置
されることが必要である。もっとも、熱可塑性樹脂粒状
体を平面的に略均一に配置する態様としては、特に限定
されるものではなく、格子状に配置されていてもよく、
千鳥状に配置されていてもよい。発泡性熱可塑性樹脂粒
状体が格子状に配置されている場合には、個々の発泡性
熱可塑性樹脂粒状体が発泡して得られる高発泡部が四角
柱の形状となり、凹凸状熱可塑性樹脂発泡体の緩衝性が
均一となり、かつ圧縮強度も十分な値とされるため、発
泡性熱可塑性樹脂粒状体は格子状に配置されることが好
ましい。
In order to improve the thickness accuracy and weight accuracy of the finally obtained thermoplastic resin foam, and to make the unevenness and the expansion ratio uniform, the foamable thermoplastic resin granules are formed from the foamable thermoplastic resin. It is necessary to arrange the sheet-like body substantially uniformly in a plane. However, the mode in which the thermoplastic resin granules are arranged substantially uniformly in a plane is not particularly limited, and may be arranged in a lattice.
They may be arranged in a staggered manner. When the foamable thermoplastic resin granules are arranged in a lattice, the high foaming portions obtained by foaming the individual foamable thermoplastic resin granules have a square pillar shape, and the irregular thermoplastic resin foam is formed. The foamable thermoplastic resin granules are preferably arranged in a lattice shape so that the body has a uniform buffering property and a sufficient compressive strength.

【0102】また、発泡性熱可塑性樹脂粒状体が千鳥状
に配置されている場合には、個々の発泡性熱可塑性樹脂
粒状体が発泡して得られる高発泡部が六角柱の形状とな
るため、擬似的なハニカム構造を構成することになる。
そのため、得られる凹凸状熱可塑性樹脂発泡体の緩衝性
が均一となり、圧縮強度も十分なものとなる。従って、
好ましくは、発泡性熱可塑性樹脂粒状体は、千鳥状に配
置される。
Further, when the expandable thermoplastic resin particles are arranged in a staggered manner, the highly foamed portions obtained by foaming the individual expandable thermoplastic resin particles have a hexagonal column shape. Thus, a pseudo honeycomb structure is formed.
Therefore, the cushioning property of the obtained irregular thermoplastic resin foam becomes uniform, and the compressive strength becomes sufficient. Therefore,
Preferably, the foamable thermoplastic resin granules are arranged in a staggered manner.

【0103】発泡性熱可塑性樹脂薄膜 発泡性熱可塑性樹脂薄膜の厚みは、目的とする熱可塑性
樹脂発泡体の発泡倍率や厚み等によっても異なるため、
特に限定されるものではないが、厚くなりすぎると、発
泡時に発泡性熱可塑性樹脂粒状体を移動させ、幅方向及
び長手方向における膨張が大きくなり、薄すぎると発泡
性熱可塑性樹脂粒状体を保持できなくなる。従って、発
泡性熱可塑性樹脂薄膜の厚みは、0.05〜3mmが好
ましく、より好ましくは0.1〜2mmである。
[0103] expandable thermoplastic resin film expandable thermoplastic resin film of thickness is different depending on the expansion ratio and thickness, and the like of the thermoplastic resin foam of interest,
Although not particularly limited, if the thickness is too large, the expandable thermoplastic resin particles move during foaming, and the expansion in the width direction and the longitudinal direction increases.If the thickness is too thin, the expandable thermoplastic resin particles are held. become unable. Therefore, the thickness of the foamable thermoplastic resin thin film is preferably from 0.05 to 3 mm, more preferably from 0.1 to 2 mm.

【0104】発泡性熱可塑性樹脂シート状体の製造方法 上記発泡性熱可塑性樹脂シート状体の製造方法として
は、特に限定されるものではなく、例えば、1)発泡性
熱可塑性樹脂シートを構成する熱可塑性樹脂及び発泡剤
などを射出成形機に供給し、熱分解型発泡剤の分解温度
より低い温度で溶融混練し、発泡性熱可塑性樹脂粒状体
の形状に応じた凹部を有する金型に射出した後冷却する
方法等が挙げられるが、2)発泡性熱可塑性樹脂シート
状体を構成する熱可塑性樹脂及び発泡剤などを押出機に
供給し、熱分解型発泡剤の分解温度より低い温度で溶融
混練した後、軟化状態のシート状発泡性熱可塑性樹脂
を、該シート状発泡性熱可塑性樹脂の厚みより狭いクリ
アランスを有し、少なくとも一方の外周面に多数の凹部
が均一に配設された異方向に回転する一対の賦形ロール
に導入し、前記凹部に軟化状態のシート状発泡性熱可塑
性樹脂の一部を圧入した後、冷却、離型する方法が最も
好ましい。
Method for Producing a Foamable Thermoplastic Resin Sheet The method for producing the above foamable thermoplastic resin sheet is not particularly limited. For example, 1) constituting a foamable thermoplastic resin sheet The thermoplastic resin and the foaming agent are supplied to the injection molding machine, melt-kneaded at a temperature lower than the decomposition temperature of the pyrolytic foaming agent, and injected into a mold having a concave portion corresponding to the shape of the foamable thermoplastic resin granules. 2) The thermoplastic resin and the foaming agent constituting the foamable thermoplastic resin sheet are supplied to an extruder and cooled at a temperature lower than the decomposition temperature of the pyrolytic foaming agent. After melt-kneading, the sheet-like foamable thermoplastic resin in a softened state has a clearance smaller than the thickness of the sheet-like foamable thermoplastic resin, and a large number of recesses are uniformly arranged on at least one outer peripheral surface. Different Introduced to a pair of forming roll that rotates in direction, after the press-fitted portion of the sheet-shaped foamable thermoplastic resin softened state into the recess, cooling method for releasing being most preferred.

【0105】上記2)の方法をさらに詳しく説明する。
先ず、軟化状態のシート状発泡性熱可塑性樹脂を得るに
は、通常、押出機により発泡性熱可塑性樹脂を溶融混練
押出しする方法やカレンダーロールを用いて溶融化する
方法が挙げられ、押出機を用いた溶融化が連続重量精
度、定量性の点から最も好ましい。
The method 2) will be described in more detail.
First, in order to obtain a sheet-shaped foamable thermoplastic resin in a softened state, a method of melt-kneading and extruding the foamable thermoplastic resin with an extruder or a method of melting using a calender roll is usually used. The melting used is most preferable from the viewpoint of continuous weight accuracy and quantitativeness.

【0106】軟化状態の発泡性熱可塑性樹脂の形態は、
連続的に成形できる形態であれば特に限定されず、シー
ト形態、多数のストランド形態等が挙げられるが、流れ
直角方向(幅方向)の定量性の点からシート形態が最も
好ましい。
The foamed thermoplastic resin in the softened state has the form
The form is not particularly limited as long as it can be continuously formed, and includes a sheet form, a large number of strand forms, and the like. The sheet form is most preferable from the viewpoint of quantitativeness in the direction perpendicular to the flow (width direction).

【0107】賦形ロールの外周面の凹部の配設は、得ら
れる発泡性熱可塑性樹脂シート状体の重量精度、厚み精
度の向上の為、略均一的に配置されることが好ましい。
賦形ロールの外周面の凹部の配設は、賦形ロール外周面
全体で均一的にあれば特に限定されないが、より均一で
あることから、格子又は千鳥に配設されていることが最
も好ましい。
The recesses on the outer peripheral surface of the shaping roll are preferably arranged substantially uniformly in order to improve the weight accuracy and the thickness accuracy of the foamable thermoplastic resin sheet obtained.
The arrangement of the concave portions on the outer peripheral surface of the shaping roll is not particularly limited as long as it is uniform over the entire outer peripheral surface of the shaping roll, but since it is more uniform, it is most preferably arranged in a lattice or staggered manner. .

【0108】賦形ロールの外周面の凹部の形状は、特に
限定されず、例えば、六方体状、円柱状、球状体等が挙
げられるが、凹部を成形し易い点、発泡性熱可塑性樹脂
粒状体を均一に成形しやすい点、冷却後の離型が行い易
い点から円柱状が最も好ましい。
The shape of the concave portion on the outer peripheral surface of the shaping roll is not particularly limited, and examples thereof include a hexagonal shape, a columnar shape, a spherical shape, and the like. The column shape is most preferable because the body can be easily molded uniformly and the mold can be easily released after cooling.

【0109】賦形ロールの外周面の凹部の形状が円柱状
であるとき、円柱の径は、目的とする発泡性熱可塑性樹
脂シート状体の形状により変化するため、特に限定され
ないが、大きすぎると冷却後の離型が行い難く、発泡性
熱可塑性樹脂薄膜が破れ、小さすぎると冷却後の離型時
に発泡性熱可塑性樹脂粒状体が破壊するため、1〜30
mmが好ましく、より好ましくは2〜20mmである。
When the shape of the concave portion on the outer peripheral surface of the shaping roll is cylindrical, the diameter of the cylindrical column is not particularly limited because it varies depending on the shape of the target foamable thermoplastic resin sheet, but is too large. And the mold release after cooling is difficult to perform, the foamable thermoplastic resin thin film is broken, and if too small, the foamable thermoplastic resin granules are broken at the time of mold release after cooling.
mm, more preferably 2 to 20 mm.

【0110】賦形ロールの外周面の凹部の形状が円柱状
であるとき、円柱の高さは、目的とする発泡性熱可塑性
樹脂シート状体の形状により変化するため、特に限定さ
れないが、高すぎると冷却後の離型が行い難く、発泡性
熱可塑性樹脂薄膜が破れ、低すぎると1次元発泡をおこ
なえる発泡性熱可塑性樹脂シート状体が形成できないた
め、1〜30mmが好ましく、より好ましくは2〜20
mmである。
When the shape of the concave portion on the outer peripheral surface of the shaping roll is cylindrical, the height of the cylinder is not particularly limited because it varies depending on the shape of the target foamable thermoplastic resin sheet. If the temperature is too high, the mold release after cooling is difficult to perform, and the foamable thermoplastic resin thin film is broken. If the temperature is too low, a foamable thermoplastic resin sheet that can perform one-dimensional foaming cannot be formed. 2-20
mm.

【0111】賦形ロールのクリアランスは、軟化状態の
シート状発泡性熱可塑性樹脂の厚みより狭いことが必要
である。よって、この範囲であれば、目的とする発泡性
熱可塑性樹脂シート状体の形状により変化するため、特
に限定されないが、厚すぎると、1次元発泡をおこなえ
る発泡性熱可塑性樹脂シート状体が形成できなくなり、
薄すぎると冷却後の離型時に発泡性熱可塑性樹脂薄膜が
破れ易いため、0.05〜3mmが好ましく、より好ま
しくは0.1〜2mmである。
The clearance of the shaping roll must be smaller than the thickness of the softened sheet-like foamable thermoplastic resin. Therefore, within this range, there is no particular limitation because the shape changes according to the shape of the target foamable thermoplastic resin sheet, but if it is too thick, a foamable thermoplastic resin sheet capable of performing one-dimensional foaming is formed. No longer,
If the thickness is too thin, the foamable thermoplastic resin thin film is easily broken at the time of release after cooling, so that the thickness is preferably 0.05 to 3 mm, more preferably 0.1 to 2 mm.

【0112】軟化状態のシート状発泡性熱可塑性樹脂の
一部を凹部へ圧入する方法は、1対の賦形ロールのクリ
アランスを変化させないことにより、軟化状態のシート
状発泡性熱可塑性樹脂に賦形ロールからの圧力が付与さ
れて成し遂げられる。
The method of press-fitting a part of the softened sheet-like foamable thermoplastic resin into the concave portion is performed by applying the pressure to the softened sheet-like foamable thermoplastic resin by keeping the clearance of the pair of shaping rolls unchanged. This is achieved by applying pressure from a form roll.

【0113】一部を圧入された賦形された軟化状態のシ
ート状発泡性熱可塑性樹脂の冷却方法は、発泡性熱可塑
性樹脂の融点以下に下げることができれば、特に限定さ
れず、例えば賦形ロール内部に冷却水を流すなどの方法
がある。
The method of cooling the partially formed sheet-shaped foamable thermoplastic resin in a softened state is not particularly limited as long as it can be lowered to the melting point of the foamable thermoplastic resin or lower. There are methods such as flowing cooling water inside the roll.

【0114】熱可塑性樹脂発泡体の製造方法 請求項8に記載の発明では、上記発泡性熱可塑性樹脂シ
ート状体を、発泡剤の分解温度以上に加熱して発泡させ
た後、発泡膨張する熱可塑性樹脂シート状体が完全充填
される以上の隙間を有する冷却装置により冷却する。こ
の場合、加熱により発泡させる工程については、発泡性
熱可塑性樹脂粒状体に含有されている熱分解型発泡剤の
分解温度以上に発泡性熱可塑性樹脂シートを加熱し得る
適宜の方法を用いることができ、例えば、電気ヒータ
ー、遠赤外線ヒーター、加熱された油や空気等の加熱媒
体を循環させてなる加熱装置などを用いて加熱する方法
を挙げることができる。
In the method according to the eighth aspect of the present invention, the foamable thermoplastic resin sheet is heated to a temperature not lower than the decomposition temperature of the foaming agent and foamed. Cooling is carried out by a cooling device having a gap larger than the plastic resin sheet is completely filled. In this case, for the step of foaming by heating, it is possible to use an appropriate method capable of heating the foamable thermoplastic resin sheet to a temperature equal to or higher than the decomposition temperature of the pyrolytic foaming agent contained in the foamable thermoplastic resin granules. Examples thereof include a method of heating using an electric heater, a far-infrared heater, a heating device that circulates a heating medium such as heated oil or air, or the like.

【0115】熱可塑性樹脂発泡体の冷却装置について
も、発泡膨張する熱可塑性樹脂シート状体が完全充填さ
れる以上の隙間を有していれば特に限定されず、発泡体
を構成する樹脂の軟化点以下の温度に冷却し得る適宜の
方法を採用することができ、例えば、冷却された水や空
気などの冷却媒体を循環させる形式の冷却装置などを用
いて冷却する方法を採用することができる。
The cooling device for the thermoplastic resin foam is not particularly limited as long as it has a gap larger than the space where the thermoplastic resin sheet which expands and expands is completely filled, and the softening of the resin constituting the foam is performed. An appropriate method capable of cooling to a temperature equal to or lower than the point can be adopted.For example, a method of cooling using a cooling device or the like that circulates a cooling medium such as cooled water or air can be adopted. .

【0116】発泡膨張する熱可塑性樹脂シート状体が完
全充填される以上の隙間は、発泡性熱可塑性樹脂シート
状体の発泡倍率、重量等から計算される大きさである
が、隙間が大きすぎると熱可塑性樹脂発泡体全体が大き
く波打つため、発泡性熱可塑性樹脂シート状体の発泡倍
率、重量等から計算される完全充填の隙間より10mm
以下広いことが好ましく、より好ましくは5mm以下、
さらに好ましくは3mm以下である。
The gap beyond which the expandable thermoplastic resin sheet is completely filled is a size calculated from the expansion ratio, weight, etc. of the expandable thermoplastic resin sheet, but the gap is too large. And the entire thermoplastic resin foam is greatly wavy, so that it is 10 mm from the completely filled gap calculated from the expansion ratio, weight, etc. of the foamable thermoplastic resin sheet.
It is preferable that the width is equal to or less than 5 mm, more preferably 5 mm or less.
More preferably, it is 3 mm or less.

【0117】[0117]

【発明の実施の形態】以下、本発明の実施の形態を、図
面に基づいて説明する。図1は、請求項1又は3記載の
発明の熱可塑性樹脂発泡体の一例を示す断面図、図2
は、図1の熱可塑性樹脂発泡体を厚み方向に直交する投
影面に投影した仮想投影図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view showing an example of the thermoplastic resin foam according to the first or third aspect of the present invention.
FIG. 2 is a virtual projection view in which the thermoplastic resin foam of FIG. 1 is projected on a projection plane orthogonal to the thickness direction.

【0118】図1において1は熱可塑性樹脂発泡体、2
は連続発泡層、3は高発泡部、4は低発泡薄膜である。
図1に示すように、請求項1記載の発明の熱可塑性樹脂
発泡体1は、熱可塑性樹脂よりなる連続発泡層2と、連
続発泡層2の片面上に複数、略均一に配置される熱可塑
性樹脂よりなる高発泡部3と、連続発泡層2とともに高
発泡部3の外表面を被覆する熱可塑性樹脂よりなる低発
泡薄膜4とからなる、板状の熱可塑性樹脂発泡体であ
る。
In FIG. 1, 1 is a thermoplastic resin foam, 2
Is a continuous foam layer, 3 is a high foam portion, and 4 is a low foam thin film.
As shown in FIG. 1, a thermoplastic resin foam 1 according to the first aspect of the present invention has a continuous foam layer 2 made of a thermoplastic resin, and a plurality of thermo foams arranged substantially uniformly on one surface of the continuous foam layer 2. It is a plate-shaped thermoplastic resin foam comprising a highly foamed portion 3 made of a thermoplastic resin and a low foamed thin film 4 made of a thermoplastic resin covering the outer surface of the highly foamed portion 3 together with the continuous foamed layer 2.

【0119】さらに、図2に示すように、該発泡体を厚
み方向に直交する投影面に投影したときに、連続発泡層
2と低発泡薄膜4のみが投影されてできる連続面5と、
連続発泡層2と低発泡薄膜4のみが投影されてできる不
連続面7と、連続発泡層2と低発泡薄膜4と高発泡部3
とが投影されてできる不連続面6とからなり、上記不連
続面6に対応する発泡体の部分が、連続面5に対応する
発泡体の部分に対して、一方の表面が凸状に形成されて
いる(図1)。また、高発泡部3が投影されてできる不
連続面6は略格子状に配置されている。
Further, as shown in FIG. 2, when the foam is projected on a projection surface orthogonal to the thickness direction, a continuous surface 5 formed by projecting only the continuous foam layer 2 and the low-foam thin film 4;
A discontinuous surface 7 formed by projecting only the continuous foam layer 2 and the low foam thin film 4, the continuous foam layer 2, the low foam thin film 4, and the high foam portion 3
Is formed by projecting the discontinuous surface 6, and a portion of the foam corresponding to the discontinuous surface 6 is formed to have a convex shape on one surface with respect to a portion of the foam corresponding to the continuous surface 5. (FIG. 1). The discontinuous surfaces 6 formed by projecting the highly foamed portions 3 are arranged in a substantially lattice shape.

【0120】すなわち、少なくとも一方の面が凸状に形
成された複数の高発泡部3は、その側面で、隣接する高
発泡体3と低発泡薄膜4を介して接合されることなく互
いに一定間隔を保持して離れており、図1における底部
が凸状に形成されている。
That is, the plurality of high-foamed portions 3 having at least one surface formed in a convex shape are spaced apart from each other by a predetermined distance without being joined to the adjacent high-foamed body 3 via the low-foamed thin film 4 on the side surface. Are held apart, and the bottom in FIG. 1 is formed in a convex shape.

【0121】図3は、請求項7記載の発明の熱可塑性樹
脂発泡体の一例を示す断面図、図4は、図3の熱可塑性
樹脂発泡体を厚み方向に直交する投影面に投影した仮想
投影図である。
FIG. 3 is a cross-sectional view showing an example of the thermoplastic resin foam of the invention according to claim 7, and FIG. 4 is a virtual projection of the thermoplastic resin foam of FIG. 3 onto a projection plane orthogonal to the thickness direction. It is a projection view.

【0122】図3において31は熱可塑性樹脂発泡体、
32は連続発泡層、33は高発泡部、34は低発泡薄膜
である。図3に示すように、請求項7記載の発明の熱可
塑性樹脂発泡体31は、熱可塑性樹脂よりなる連続発泡
層32と、連続発泡層32の片面上に複数、略均一に配
置される熱可塑性樹脂よりなる高発泡部33と、連続発
泡層32とともに高発泡部33の外表面を被覆する熱可
塑性樹脂よりなる低発泡薄膜34とからなる点で上記熱
可塑性樹脂発泡体1と共通するが、複数の高発泡部33
が互いに低発泡薄膜34を介して熱融着されている熱可
塑性樹脂発泡体からなる板状体である点で熱可塑性樹脂
発泡体1と異なる。
In FIG. 3, 31 is a thermoplastic resin foam,
32 is a continuous foam layer, 33 is a high foam part, and 34 is a low foam thin film. As shown in FIG. 3, the thermoplastic resin foam 31 according to the seventh aspect of the present invention includes a continuous foam layer 32 made of a thermoplastic resin, and a plurality of substantially uniform thermal foams disposed on one surface of the continuous foam layer 32. It is common to the thermoplastic resin foam 1 in that it comprises a high foaming portion 33 made of a thermoplastic resin and a low foaming thin film 34 made of a thermoplastic resin covering the outer surface of the high foaming portion 33 together with the continuous foaming layer 32. , A plurality of high foaming parts 33
Are different from the thermoplastic resin foam 1 in that they are plate-like bodies made of a thermoplastic resin foam which are thermally fused to each other via a low foaming thin film 34.

【0123】さらに、図4に示すように、該発泡体を厚
み方向に直交する投影面に投影したときに、連続発泡層
32と低発泡薄膜34のみが投影されてできる連続面3
5と、連続発泡層32と低発泡薄膜34と高発泡部33
とが投影されてできる不連続面36とからなり、上記不
連続面36に対応する発泡体の部分が、連続面35に対
応する発泡体の部分に対して、一方の表面が凸状に形成
されている(図3)。また、高発泡部33が投影されて
できる不連続面36は略格子状に配置されている。
Further, as shown in FIG. 4, when the foam is projected on a projection surface orthogonal to the thickness direction, a continuous surface 3 formed by projecting only the continuous foam layer 32 and the low foam thin film 34 is formed.
5, a continuous foam layer 32, a low foam thin film 34, and a high foam section 33.
Is formed by projecting a discontinuous surface 36, and a portion of the foam corresponding to the discontinuous surface 36 is formed such that one surface thereof is convex with respect to a portion of the foam corresponding to the continuous surface 35. (FIG. 3). Further, the discontinuous surfaces 36 formed by projecting the high foaming portions 33 are arranged in a substantially lattice shape.

【0124】すなわち、少なくとも一方の面が凸状に形
成された複数の高発泡部33は、その側面の一部で、隣
接する高発泡体33と低発泡薄膜34を介して接合され
ていない部分が接合されている部分より凸状に形成され
ている。
That is, the plurality of high-foamed portions 33 having at least one surface formed in a convex shape are portions of the side surfaces which are not joined to the adjacent high-foamed body 33 via the low-foamed thin film 34. Are formed in a more convex shape than the portion where they are joined.

【0125】図5は、請求項4を引用した請求項7記載
の発明の熱可塑性樹脂発泡体を厚み方向に直交する投影
面に投影した仮想投影図である。高発泡部が投影される
不連続面16は略格子状に配置されていること以外は図
3と同様である。
FIG. 5 is a virtual projection view in which the thermoplastic resin foam according to the seventh aspect of the present invention is projected onto a projection plane orthogonal to the thickness direction. 3 is the same as FIG. 3 except that the discontinuous surfaces 16 on which the highly foamed portions are projected are arranged in a substantially lattice shape.

【0126】図6は、請求項2を引用した請求項7記載
の発明の熱可塑性樹脂発泡体の一例を示す断面図であ
る。図6において11は熱可塑性樹脂発泡体、12は連
続発泡層、13は高発泡部、14は低発泡薄膜である。
なお、発泡体の投影図は、図3、5と同様であるので説
明を省略する。図6に示すように、図3、5の連続面3
5、15に対応する発泡体の部分に対して、高発泡部1
3(図3、5の不連続面36、16に対応)の一方の表
面が凸状に、他方の表面が凹状に形成されている。
FIG. 6 is a cross-sectional view showing an example of the thermoplastic resin foam according to the seventh aspect of the present invention. In FIG. 6, 11 is a thermoplastic resin foam, 12 is a continuous foam layer, 13 is a high foam portion, and 14 is a low foam thin film.
The projection of the foam is the same as in FIGS. As shown in FIG. 6, the continuous surface 3 of FIGS.
For the foam parts corresponding to 5 and 15,
3 (corresponding to the discontinuous surfaces 36 and 16 in FIGS. 3 and 5) has one surface formed in a convex shape and the other surface formed in a concave shape.

【0127】図7は、請求項2を引用した請求項7記載
の発明の熱可塑性樹脂発泡体を、請求項8記載の製造方
法で製造する方法の発泡工程を説明する断面図であり、
図8はその冷却工程を示す説明する断面図である。図7
に示すように請求項8記載の発明の熱可塑性樹脂発泡体
の製造方法はまず、発泡剤を含有している発泡性熱可塑
性樹脂粒状体25が平面的に略均一に配置されており、
かつ上記発泡性熱可塑性樹脂粒状体25が発泡性熱可塑
性樹脂薄膜26を介して一体的に連結されている発泡性
熱可塑性樹脂シート状体27を、フッ化エチレン樹脂シ
ート28上に配置する。さらにその上にフッ化エチレン
樹脂シート29を重ね、上記発泡剤の分解温度以上に加
熱し発泡させる。
FIG. 7 is a cross-sectional view for explaining a foaming step of the method for producing the thermoplastic resin foam of the invention according to the seventh aspect of the present invention by citing the second aspect.
FIG. 8 is a cross-sectional view illustrating the cooling step. FIG.
As shown in the above, in the method for producing a thermoplastic resin foam according to the invention of claim 8, first, foamable thermoplastic resin particles 25 containing a foaming agent are arranged substantially uniformly in a plane,
In addition, a foamable thermoplastic resin sheet 27 in which the foamable thermoplastic resin particles 25 are integrally connected via a foamable thermoplastic resin thin film 26 is disposed on a fluorinated ethylene resin sheet 28. Further, a fluorinated ethylene resin sheet 29 is superposed thereon, and is heated and foamed at a temperature higher than the decomposition temperature of the foaming agent.

【0128】このとき、まず熱容量の小さい発泡性熱可
塑性樹脂薄膜26のみがまず発泡し、熱容量の大きい発
泡性熱可塑性樹脂粒状体25は発泡しない。このため、
発泡性熱可塑性樹脂薄膜26は面内方向には殆ど膨張せ
ず、図8に示す波打った連続発泡層12となり凹部が形
成される。さらに発泡性熱可塑性樹脂粒状体31の隙間
に充填され、図8に示す低発泡薄膜14となる。その後
発泡性熱可塑性樹脂粒状体25が発泡し、高発泡部13
となり、この熱可塑性樹脂発泡体11を完全充填される
以上の空隙を有する冷却型内30、30内で冷却する
と、凹部の反対の反対の面に凸部が形成される。
At this time, first, only the foamable thermoplastic resin thin film 26 having a small heat capacity foams first, and the foamable thermoplastic resin particles 25 having a large heat capacity do not foam. For this reason,
The foamable thermoplastic resin thin film 26 hardly expands in the in-plane direction, and becomes the wavy continuous foam layer 12 shown in FIG. Further, gaps between the expandable thermoplastic resin particles 31 are filled to form the low-expandable thin film 14 shown in FIG. Thereafter, the expandable thermoplastic resin granules 25 are expanded, and the highly expanded portions 13 are formed.
When the thermoplastic resin foam 11 is cooled in the cooling molds 30 and 30 having voids equal to or more than completely filled, a convex portion is formed on the surface opposite to the concave portion.

【0129】[0129]

【実施例】以下、本発明の非限定的な実施例及び比較例
を挙げることにより、本発明の効果を明らかにする。
EXAMPLES The effects of the present invention will be clarified by giving non-limiting examples and comparative examples of the present invention.

【0130】発泡性熱可塑性樹脂シート状体の製造 実施例1〜10及び比較例3 ポリプロピレン(三菱油化社製、品番「MA−3」;メ
ルトインデックス11g/10分)50重量部、架橋性
シラン変成ポリプロピレン(三菱油化社製、品番「XP
M800H」;メルトインデックス11g/10分、架
橋後のゲル分率80重量%)50重量部、高密度ポリエ
チレン(三菱油化社製、品番「HY3405;メルトイ
ンデックス1.5g/10分)20重量部、シラン架橋
触媒としてのジブチル錫ジラウレート0.1重量部、及
び熱分解型発泡剤としてのアゾジカルボンアミド(大塚
化学社製、品番「SO−20」、分解温度210℃)4
重量部を、図9に示した2軸押出機21に供給した。2
軸押出機21としては、径44mmのものを用いた。2
軸押出機21において、上記組成物を180℃で溶融混
練し、面長500mmのTダイ22により軟化状態のシ
ート状発泡性熱可塑樹脂に押し出した。
Production of expandable thermoplastic resin sheet Examples 1 to 10 and Comparative Example 3 50 parts by weight of polypropylene (manufactured by Mitsubishi Yuka Co., Ltd., product number "MA-3"; melt index 11 g / 10 min), crosslinkability Silane-modified polypropylene (Mitsubishi Yuka Co., Ltd., product number "XP
M800H "; melt index 11 g / 10 min, gel fraction after crosslinking 80% by weight) 50 parts by weight, high-density polyethylene (Mitsubishi Yuka Co., product number"HY3405; melt index 1.5 g / 10 minutes) 20 parts by weight 0.1 part by weight of dibutyltin dilaurate as a silane crosslinking catalyst, and azodicarbonamide (manufactured by Otsuka Chemical Co., Ltd., product number “SO-20”, decomposition temperature 210 ° C.) 4 as a pyrolytic foaming agent
The parts by weight were supplied to the twin-screw extruder 21 shown in FIG. 2
The screw extruder 21 used had a diameter of 44 mm. 2
The composition was melt-kneaded at 180 ° C. in a screw extruder 21 and extruded into a softened sheet-like foamable thermoplastic resin by a T-die 22 having a surface length of 500 mm.

【0131】さらに、表1に示した粒状体の配置、高
さ、径及び粒状体間の中心間間隔に対応する配置の円筒
状凹部23aを有する径250mm及び面長500mm
の賦形ロール23、24間に軟化状態のシート状発泡性
熱可塑樹脂を賦形しつつ冷却し、上記賦形ロール23の
凹部23aに対応する部分において、発泡剤を含有して
いる発泡性熱可塑性樹脂粒状体25が平面的に略均一に
配置されており、かつ前記発泡性熱可塑性樹脂粒状体2
5が発泡性熱可塑性樹脂薄膜26を介して一体的に連結
されている発泡性熱可塑性樹脂シート状体27を得た。
得られた発泡性熱可塑性シート状体27を98℃の水中
に2時間浸漬した後乾燥することにより、表1に示した
形態の発泡性熱可塑性樹脂シート状体を得た。
Furthermore, the diameter, 250 mm, and the surface length, 500 mm, having the cylindrical concave portions 23a arranged in correspondence with the arrangement, height, diameter, and center-to-center spacing between the granules shown in Table 1 were obtained.
Is cooled while shaping a softened sheet-like foamable thermoplastic resin between the shaping rolls 23 and 24, and a foaming agent containing a foaming agent is formed in a portion corresponding to the recess 23a of the shaping roll 23. The thermoplastic resin granules 25 are arranged substantially uniformly in a plane, and the foamable thermoplastic resin granules 2
5 was obtained as a foamable thermoplastic resin sheet 27 integrally connected via a foamable thermoplastic resin thin film 26.
The obtained foamable thermoplastic sheet 27 was immersed in water at 98 ° C. for 2 hours and then dried to obtain a foamable thermoplastic resin sheet having the form shown in Table 1.

【0132】上記のようにして得た発泡性熱可塑性樹脂
シート状体27における発泡性熱可塑性樹脂粒状体25
の配置、高さ、径及び粒状体間の中心間間隔、並びに発
泡性熱可塑性樹脂薄膜26の厚みを表1に纏めて示し
た。
The foamable thermoplastic resin particles 25 in the foamable thermoplastic resin sheet 27 obtained as described above.
Table 1 summarizes the arrangement, height, diameter, and center-to-center spacing between the granular materials, and the thickness of the foamable thermoplastic resin thin film 26.

【0133】なお、上記発泡性熱可塑性樹脂粒状体の高
さとは、発泡性熱可塑性樹脂薄膜が発泡性熱可塑性樹脂
粒状体の高さ方向一端に連結されている場合には、発泡
性熱可塑性樹脂薄膜の厚みを含ない発泡性熱可塑性樹脂
粒状体の高さ方向寸法をいうものとする。
The height of the expandable thermoplastic resin particles means the expandable thermoplastic resin thin film when the expandable thermoplastic resin thin film is connected to one end in the height direction of the expandable thermoplastic resin particles. It refers to the dimension in the height direction of the foamable thermoplastic resin granule not including the thickness of the resin thin film.

【0134】熱可塑性樹脂発泡体の製造 上記のようにして得た発泡性熱可塑性樹脂シート状体2
7を、図7に示したフッ化エチレン樹脂シート28上
に、表1に示した重量となるように配置し、さらに上方
にフッ化エチレン樹脂シート29を重ね、210℃のハ
ンドプレスを用い10分間加熱し発泡させた後、表1に
示した隙間を有する30℃の冷却プレス型30に移し、
10分間冷却し、熱可塑性樹脂発泡体を得た。
Production of thermoplastic resin foam The foamable thermoplastic resin sheet 2 obtained as described above
7 is placed on the fluorinated ethylene resin sheet 28 shown in FIG. 7 so as to have the weight shown in Table 1, and the fluorinated ethylene resin sheet 29 is further superimposed thereon. After heating and foaming for 30 minutes, it was transferred to a cooling press mold 30 at 30 ° C. having the gaps shown in Table 1,
After cooling for 10 minutes, a thermoplastic resin foam was obtained.

【0135】比較例1 Tダイから押し出されたシートを、表面に凹部を有しな
い径250mm及び面長500mmのロール間を通して
冷却し、冷却されたシートを98℃の水中に2時間浸漬
した後乾燥し、厚み1.0mmの平坦な発泡性熱可塑性
樹脂シートを得たこと、発泡性熱可塑性樹脂シートをフ
ッ化エチレン樹脂よりなるシート上に表1に示した重量
となるように配置したこと以外は実施例1と同様にして
熱可塑性樹脂発泡体を得た。得られた熱可塑性樹脂発泡
体を、一方の面に深さ3mm、直径10mm、中心間距
離10.1mm、千鳥配置の孔を多数有する大きさ20
0×200×5mmの閉じた型に800g/m2 充填
し、温度170℃、圧力0.5kgf/cm2の条件で
加熱賦型を行い、表1に示した評価サンプルを成形し
た。
Comparative Example 1 A sheet extruded from a T-die was cooled by passing between rolls having a diameter of 250 mm and a surface length of 500 mm without concave portions on the surface, and the cooled sheet was immersed in 98 ° C. water for 2 hours and then dried. Except that a flat foamable thermoplastic resin sheet having a thickness of 1.0 mm was obtained, and that the foamable thermoplastic resin sheet was disposed on a sheet made of fluorinated ethylene resin so as to have the weight shown in Table 1. In the same manner as in Example 1, a thermoplastic resin foam was obtained. The obtained thermoplastic resin foam was sized to have a depth of 3 mm, a diameter of 10 mm, a center-to-center distance of 10.1 mm, and a large number of staggered holes on one surface.
0 × 200 × with closed mold 800 g / m 2 filling of 5 mm, temperature 170 ° C., were thermally shaping under a pressure of 0.5 kgf / cm 2, were molded evaluation samples shown in Table 1.

【0136】比較例2 Tダイから押し出されたシートを、表面に凹部を有しな
い直径250mm及び面長500mmのロール間を通し
て冷却した後、ペレット化し、これを98℃の水中に2
時間浸漬した後乾燥した。このようにして、5×5mm
×厚み1.5mmの発泡性熱可塑性樹脂ペレットを得
た。得られた発泡性熱可塑性樹脂ペレットをフッ化エチ
レン樹脂よりなるシート上に表1に示した重量となるよ
うに散布したこと以外は比較例1と同様にして熱可塑性
樹脂発泡体を得た。
Comparative Example 2 A sheet extruded from a T-die was cooled between rolls having no concave portions on the surface and having a diameter of 250 mm and a surface length of 500 mm, and then pelletized.
After soaking for an hour, it was dried. Thus, 5 × 5 mm
A foamable thermoplastic resin pellet having a thickness of 1.5 mm was obtained. A thermoplastic resin foam was obtained in the same manner as in Comparative Example 1 except that the obtained foamable thermoplastic resin pellets were sprayed on a sheet made of a fluoroethylene resin so as to have a weight shown in Table 1.

【0137】得られた熱可塑性樹脂発泡体の厚さ、発泡
倍率及び疑似1次元発泡性を測定した。結果を表1に示
した。
The thickness, expansion ratio and pseudo one-dimensional expandability of the obtained thermoplastic resin foam were measured. The results are shown in Table 1.

【0138】(発泡体の厚さ)ノギスを用い、得られた
熱可塑性樹脂発泡体の厚さを測定した。 (発泡倍率)得られた熱可塑性樹脂発泡体を水中置換法
により発泡倍率を測定した。 (疑似一次元発泡性)発泡前に配置した発泡性熱可塑性
樹脂シート状体の面積と、得られた凹凸状熱可塑性樹脂
発泡体の面積を測定し、後者の前者に対する比を求め、
疑似一次元発泡性とした。この値が1に近いほど疑似一
次元発泡性が高いことになる。
(Thickness of Foam) Using a caliper, the thickness of the obtained thermoplastic resin foam was measured. (Expansion Ratio) The expansion ratio of the obtained thermoplastic resin foam was measured by an underwater substitution method. (Pseudo one-dimensional foamability) Measure the area of the foamable thermoplastic resin sheet placed before foaming and the area of the obtained irregular thermoplastic resin foam, and determine the ratio of the latter to the former,
Pseudo one-dimensional foaming. The closer this value is to 1, the higher the pseudo one-dimensional foamability.

【0139】[0139]

【表1】 [Table 1]

【0140】評価サンプルの作製 実施例1、3、5、7、9 得られた熱可塑性樹脂発泡体の凹部面を、熱可塑性樹脂
発泡体の厚みが8mmになるようにサンダーにて切削し
た。
Preparation of Evaluation Samples Examples 1, 3, 5, 7, 9 The concave surface of the obtained thermoplastic resin foam was cut with a sander so that the thickness of the thermoplastic resin foam became 8 mm.

【0141】実施例2、4、6、8、10、比較例1〜
3 得られた熱可塑性樹脂発泡体をそのまま評価に使用し
た。
Examples 2, 4, 6, 8, 10 and Comparative Examples 1 to
3 The obtained thermoplastic resin foam was used for evaluation as it was.

【0142】得られた熱可塑性樹脂発泡体の厚さ、発泡
倍率及び凹部の有無、凸状部高さ、充填率を以下のよう
にして測定した。結果を表2に示した。
The thickness, expansion ratio, presence or absence of concave portions, height of convex portions, and filling ratio of the obtained thermoplastic resin foam were measured as follows. The results are shown in Table 2.

【0143】(凹部の有無)深さ1mm以上の凹部の有
無を目視にて評価した。 (凸状部高さ)熱可塑性樹脂発泡体の縦断面方向に切断
し、融着していない低発泡薄膜で外表面を被覆された高
発泡体の中で、融着していない部分の厚さ方向の最大値
をノギスにて測定した。 (充填率)平板状に熱可塑性樹脂発泡体を置いた際の最
大高さから求められる体積(嵩体積)における、熱可塑
性樹脂発泡体の重量を密度で割ることで求められる体積
(真体積)の比を求めた。
(Presence or absence of concave portion) The presence or absence of a concave portion having a depth of 1 mm or more was visually evaluated. (Protrusion height) The thickness of the non-fused portion of the high-foamed material whose outer surface is covered with a low-foaming thin film that has been cut in the longitudinal section direction of the thermoplastic resin foam and has not been fused. The maximum value in the vertical direction was measured with a caliper. (Filling rate) Volume (true volume) obtained by dividing the weight of the thermoplastic resin foam by the density in the volume (bulk volume) obtained from the maximum height when the thermoplastic resin foam is placed on a flat plate. Was determined.

【0144】得られた熱可塑性樹脂発泡体の凹部の有
無、凸状部高さ、充填率を実施例と同様にして測定し
た。結果を表2に示した。
The presence or absence of concave portions, the height of convex portions, and the filling factor of the obtained thermoplastic resin foam were measured in the same manner as in the examples. The results are shown in Table 2.

【0145】得られた熱可塑性樹脂発泡体の厚さばらつ
き、圧縮変形量ばらつき、最大衝撃力を以下のようにし
て測定した。結果を下記の表2に示した。
The thickness variation, the amount of compression deformation variation, and the maximum impact force of the obtained thermoplastic resin foam were measured as follows. The results are shown in Table 2 below.

【0146】(厚さバラツキ)ノギスを用いn=20の
発泡体の厚さを測定し、最大値と最小値の差を求めた。 (圧縮変形量)カットにより、200mm×200mm
の発泡体を成形し、発泡体の凸状面の反対面に厚さ3m
mの合板を接着したのち、φ50mm円柱圧子、押さえ
速度2m/minでで圧縮試験を行い、80kgf荷重
時の圧縮変形量を沈み込み量とした。このとき、n=2
0の発泡体の厚圧縮変形量さを測定し、最大値と最小値
の差を求め、圧縮変形量のばらつきとした。 (最大衝撃力)カットにより、200mm×200mm
の発泡体を成形し、発泡体の凸状面の反対面に厚さ3m
mの合板を接着したのち、40mmの高さからJIS
A1418で定義されるハンマーを落下させた際の最大
衝撃力を加速度センサーにて測定した。
(Variation in Thickness) The thickness of the foam at n = 20 was measured using calipers, and the difference between the maximum value and the minimum value was determined. (Compression deformation amount) By cutting, 200mm x 200mm
Of foam and a thickness of 3 m on the surface opposite to the convex surface of the foam.
After bonding the plywood of m, a compression test was performed with a φ50 mm cylindrical indenter and a holding speed of 2 m / min, and the amount of compressive deformation under a load of 80 kgf was defined as the amount of sinking. At this time, n = 2
The thickness of the foam having a thickness of 0 was measured for compressive deformation, and the difference between the maximum value and the minimum value was determined, which was taken as the variation in the amount of compressive deformation. (Maximum impact force) By cutting, 200mm x 200mm
Of foam and a thickness of 3 m on the surface opposite to the convex surface of the foam.
After bonding the plywood of JIS m, JIS from the height of 40mm
The maximum impact force when the hammer defined by A1418 was dropped was measured by an acceleration sensor.

【0147】[0147]

【表2】 [Table 2]

【0148】表1から明らかなように、比較例1で得ら
れた熱可塑性樹脂発泡体では、発泡倍率8倍の凹凸状熱
可塑性樹脂発泡体を得ることができたが、疑似一次元発
泡性が4.00と非常に大きく、従って、長さ方向、幅
方向においても発泡に際してかなり膨張していた。また
熱可塑性樹脂発泡体が波打ち、厚みばらつきが非常に大
きい。加えて熱可塑性樹脂発泡体が均質なため圧縮強度
が低く、沈み込み量が2.2mmと非常に大きな値とな
った。
As is clear from Table 1, the thermoplastic resin foam obtained in Comparative Example 1 was able to obtain an irregular thermoplastic resin foam having an expansion ratio of 8 times. Was extremely large at 4.00, and therefore expanded considerably during foaming also in the length and width directions. Further, the thermoplastic resin foam is wavy, and the thickness variation is very large. In addition, since the thermoplastic resin foam was homogeneous, the compressive strength was low and the sink amount was 2.2 mm, which was a very large value.

【0149】また、比較例2では、発泡性熱可塑性樹脂
ペレットを用いて発泡倍率8倍の熱可塑性樹脂発泡体を
得ている。疑似一次元発泡性は発泡性熱可塑性樹脂ペレ
ット間に隙間があるため比較例1に比べ小さくなっては
いるが、発泡性熱可塑性樹脂ペレットの散布精度に依存
するため、1.25と少し高く、従って、幅方向及び長
手方向においてもかなりの割合で膨張していることが認
められた。このことにより厚みのばらつきも大きな値と
なった。得られた熱可塑性樹脂発泡体の圧縮強度は、低
発泡薄膜が形成されるため比較例1に比べて少し大きく
なっているが、圧縮変形量が1.75mmと大きく、か
つばらつきが非常に大きな値となった。
Further, in Comparative Example 2, a thermoplastic resin foam having an expansion ratio of 8 was obtained by using foamable thermoplastic resin pellets. Although the pseudo one-dimensional foamability is smaller than that of Comparative Example 1 due to a gap between the foamable thermoplastic resin pellets, it is slightly higher than 1.25 because it depends on the spraying accuracy of the foamable thermoplastic resin pellets. Therefore, it was recognized that the swelling occurred at a considerable rate also in the width direction and the longitudinal direction. As a result, the variation in the thickness became a large value. Although the compressive strength of the obtained thermoplastic resin foam is slightly larger than that of Comparative Example 1 due to the formation of a low-foaming thin film, the amount of compressive deformation is as large as 1.75 mm and the variation is very large. Value.

【0150】また、比較例3では、発泡性熱可塑性樹脂
シート状体を用いて発泡倍率8倍の3次元的に均等な熱
可塑性樹脂発泡体が得られた。熱可塑性樹脂発泡体が3
次元的に均等であるため、圧縮変形量が1.75mm2
と小さく、かつばらつきも小さいが、充填率が100%
と平板状の熱可塑性樹脂発泡体であるため、最大衝撃力
が大きく十分な緩衝性を発現できなかった。
In Comparative Example 3, a three-dimensionally uniform thermoplastic resin foam having an expansion ratio of 8 was obtained by using the foamable thermoplastic resin sheet. Thermoplastic foam 3
Since it is dimensionally uniform, the amount of compressive deformation is 1.75 mm 2
And small variation, but the filling rate is 100%
Since the thermoplastic resin foam was a flat thermoplastic resin foam, the maximum impact force was large and sufficient cushioning property could not be exhibited.

【0151】これに対して、実施例1〜7で得られた熱
可塑性樹脂発泡体では、低発泡薄膜が形成されたため、
圧縮変形量が1.4mm以下と小さく、かつばらつきも
小さいため、圧縮強度の高い凹凸状熱可塑性樹脂発泡体
であることもわかった。また、緩衝性能も圧縮強度の小
さな比較例1と同等以上の性能を示していることから圧
縮強度と緩衝性を両立した熱可塑性樹脂発泡体となっ
た。
On the other hand, in the thermoplastic resin foams obtained in Examples 1 to 7, a low foamed thin film was formed.
Since the amount of compressive deformation was as small as 1.4 mm or less and the dispersion was small, it was also found that the foam was an irregular thermoplastic resin foam having high compressive strength. In addition, since the buffering performance was equal to or higher than that of Comparative Example 1 having a small compressive strength, a thermoplastic resin foam having both compressive strength and buffering properties was obtained.

【0152】また、実施例1、2及び3、4並びに5、
6間の比較から、凹状部が形成された熱可塑性樹脂発泡
体は、最大衝撃力が低減し、緩衝性に優れた熱可塑性樹
脂発泡体であった。
Examples 1, 2, and 3, 4 and 5,
From the comparison between Nos. 6, the thermoplastic resin foam having the concave portions was a thermoplastic resin foam having a reduced maximum impact force and an excellent cushioning property.

【0153】また、実施例1、3、5間及び実施例2、
4、6間の比較から、アトランダムに略均一に発泡性熱
可塑性樹脂粒状体を配置した場合に比べて、格子状に配
置した場合の方が圧縮強度、緩衝性ともに優れた熱可塑
性樹脂発泡体を得ることができ、さらに、千鳥状に配置
した場合に最も圧縮強度に優れた熱可塑性樹脂発泡体の
得られた。
Further, in Examples 1, 3, and 5, and in Example 2,
From the comparison between 4 and 6, the thermoplastic resin foam which is superior in both compressive strength and buffering property when arranged in a lattice is better than when foamable thermoplastic resin particles are arranged almost uniformly at random. Thus, a thermoplastic resin foam having the most excellent compressive strength when it was arranged in a staggered manner was obtained.

【0154】また、実施例5〜10との比較から、凸状
部の高さが、3mm以上で特に高い緩衝性が発現できる
事がわかり、また、充填率が50〜90%であれば圧縮
強度と緩衝性が両立出来る。
From the comparison with Examples 5 to 10, it was found that a particularly high buffering property can be exhibited when the height of the convex portion is 3 mm or more. Strength and cushioning can be compatible.

【0155】[0155]

【発明の効果】請求項1に記載の発明に係る凹凸状熱可
塑性樹脂発泡体では、熱可塑性樹脂よりなる連続発泡層
と、該連続発泡層の少なくとも片面上に複数配置される
熱可塑性樹脂よりなる高発泡部と、上記連続発泡層とと
もに高発泡部の外表面を被覆する熱可塑性樹脂よりなる
低発泡薄膜とを備えた熱可塑性樹脂発泡体からなる板状
体であって、該発泡体を厚み方向に直交する投影面に投
影したときに、連続発泡層のみ、又は連続発泡層と低発
泡薄膜のみが投影される連続面と、連続発泡層、低発泡
薄膜及び高発泡部が投影される不連続面とからなり、上
記不連続面に対応する発泡体の部位が、連続面に対応す
る発泡体の部位に対して、少なくとも一方の表面が凸状
に形成されているため、ばらつきが小さく、高い圧縮強
度が発現できる。また、低発泡薄膜で外表面を被覆され
た高発泡体が少なくとも一方の表面において、凸状に形
成されているため、衝撃作用時の緩衝性にも優れる。
The uneven thermoplastic resin foam according to the first aspect of the present invention comprises a continuous foam layer made of a thermoplastic resin and a plurality of thermoplastic resins arranged on at least one surface of the continuous foam layer. And a plate-shaped body made of a thermoplastic resin foam having a low-foamed thin film made of a thermoplastic resin covering the outer surface of the high-foamed portion together with the continuous foamed layer. When projected on a projection plane orthogonal to the thickness direction, only the continuous foam layer, or a continuous face on which only the continuous foam layer and the low foam thin film are projected, and the continuous foam layer, the low foam thin film, and the high foam portion are projected. Consisting of a discontinuous surface, the portion of the foam corresponding to the discontinuous surface, the portion of the foam corresponding to the continuous surface, at least one surface is formed in a convex shape, the variation is small , High compressive strength can be developed. In addition, since the high-foamed body whose outer surface is covered with the low-foaming thin film is formed on at least one surface in a convex shape, the shock-absorbing property is excellent.

【0156】請求項2に記載の発明によれば、低発泡薄
膜で外表面を被覆された高発泡体が一方の表面におい
て、凸状に形成され、他方の表面において凹状に形成さ
れるため、緩衝性能が更に向上し、且つ圧縮強度の低下
も小さい。
According to the second aspect of the present invention, since the high-foamed material whose outer surface is covered with the low-foaming thin film is formed on one surface in a convex shape and on the other surface in a concave shape, The buffer performance is further improved, and the decrease in compressive strength is small.

【0157】請求項3に記載の発明によれば、高発泡体
が格子状に配置されており、個々の高発泡体が四角柱の
形状であり、熱可塑性樹脂発泡体の厚みばらつきが少な
く、圧縮強度、緩衝性ともに向上する。
According to the third aspect of the present invention, the high-foamed bodies are arranged in a lattice, each high-foamed body is in the shape of a square pillar, and the thickness variation of the thermoplastic resin foam is small. Both compressive strength and cushioning property are improved.

【0158】請求項4に記載の発明によれば、高発泡体
が、千鳥配置されており、複数の六角柱状の高発泡体が
低発泡薄膜を介して熱融着されている構造であり、全体
としてハニカム状の熱可塑性樹脂発泡体となる。したが
って、圧縮強度が特に優れた熱可塑性樹脂発泡体とな
る。
According to the fourth aspect of the present invention, the high foams are staggered, and a plurality of hexagonal column-shaped high foams are heat-sealed through the low foam thin film. As a whole, it becomes a honeycomb-shaped thermoplastic resin foam. Therefore, a thermoplastic resin foam having particularly excellent compressive strength is obtained.

【0159】請求項5に記載の発明によれば、凸状部の
高さが1mm以上であることから緩衝性能が優れた凹凸
状熱可塑性樹脂発泡体となる。
According to the fifth aspect of the present invention, since the height of the convex portion is 1 mm or more, the uneven thermoplastic resin foam having excellent buffer performance is obtained.

【0160】請求項6に記載の発明によれば、充填率が
50〜90%であることから圧縮強度に優れ、且つ緩衝
性が高い発泡体となる
According to the sixth aspect of the present invention, since the filling rate is 50 to 90%, the foam is excellent in compressive strength and high in cushioning property.

【0161】請求項7に記載の発明によれば、請求項1
の構成に加えて、連続発泡層が個々の高発泡体を繋ぐよ
うに熱融着されているため、圧縮加重付与時に低発泡薄
膜間の融着界面で剥離・破壊することがない。
According to the invention of claim 7, according to claim 1,
In addition to the configuration described above, since the continuous foamed layer is thermally fused so as to connect the individual high foamed materials, there is no peeling or breakage at the fusion interface between the low foamed thin films when a compression load is applied.

【0162】請求項8に記載の発明に係る熱可塑性樹脂
発泡体の製造方法によれば、発泡剤を含有している発泡
性熱可塑性樹脂粒状体が平面的に略均一に配置されてお
り、かつ前記発泡性熱可塑性樹脂粒状体が発泡性熱可塑
性樹脂薄膜を介して一体的に連結されている発泡性熱可
塑性樹脂シート状体を、上記発泡剤の分解温度以上に加
熱し発泡させる工程と、発泡して得られる発泡体が完全
充填される以上の空隙を有する冷却型内で冷却すること
により凹凸を形成する工程とを備えるので、圧縮強度、
緩衝性、厚み精度などの品質に優れ、かつ品質のばらつ
きの少ない請求項1〜7の熱可塑性樹脂発泡体を高い生
産性を持って製造することができる。
According to the method for producing a thermoplastic resin foam according to the eighth aspect of the present invention, the foamable thermoplastic resin granules containing a foaming agent are substantially uniformly arranged in a plane. And a step of heating and foaming the foamable thermoplastic resin sheet, in which the foamable thermoplastic resin granules are integrally connected via a foamable thermoplastic resin thin film, at or above the decomposition temperature of the foaming agent. Forming a concave and convex by cooling in a cooling mold having voids over which the foam obtained by foaming is completely filled, so that the compressive strength,
The thermoplastic resin foam according to claims 1 to 7 having excellent quality such as cushioning property and thickness accuracy and having little variation in quality can be manufactured with high productivity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】請求項1又は3記載の発明の記載の発明の熱可
塑性樹脂発泡体の一例を示す断面図である。
FIG. 1 is a cross-sectional view showing an example of a thermoplastic resin foam according to the first or third aspect of the present invention.

【図2】図1の熱可塑性樹脂発泡体を厚み方向に直交す
る投影面に投影した仮想投影図である。
FIG. 2 is a virtual projection view in which the thermoplastic resin foam of FIG. 1 is projected on a projection plane orthogonal to a thickness direction.

【図3】請求項7記載の発明の熱可塑性樹脂発泡体の一
例を示す断面図である。
FIG. 3 is a sectional view showing an example of the thermoplastic resin foam according to the invention of claim 7;

【図4】図3の熱可塑性樹脂発泡体を厚み方向に直交す
る投影面に投影した仮想投影図である。
FIG. 4 is a virtual projection view in which the thermoplastic resin foam of FIG. 3 is projected on a projection plane orthogonal to the thickness direction.

【図5】請求項4を引用した請求項7記載の発明の熱可
塑性樹脂発泡体を厚み方向に直交する投影面に投影した
仮想投影図である。
FIG. 5 is a virtual projection view of projecting the thermoplastic resin foam according to the invention of claim 7 onto a projection plane orthogonal to the thickness direction.

【図6】請求項2を引用した請求項7記載の発明の熱可
塑性樹脂発泡体の一例を示す断面図である。
FIG. 6 is a cross-sectional view showing an example of the thermoplastic resin foam according to the invention of claim 7 cited in claim 2;

【図7】請求項2を引用した請求項7記載の発明の熱可
塑性樹脂発泡体を、請求項8記載の製造方法で製造する
方法の発泡工程を説明する断面図である。
FIG. 7 is a cross-sectional view illustrating a foaming step of a method for producing the thermoplastic resin foam of the invention according to the seventh aspect of the present invention by citing the second aspect.

【図8】請求項8記載の製造方法で製造する方法の冷却
工程を示す説明する断面図である。
FIG. 8 is a cross-sectional view for explaining a cooling step in a method of manufacturing by the manufacturing method according to claim 8;

【図9】請求項8記載の製造方法で使用される発泡性熱
可塑性樹脂シート状体を製造する工程を説明するための
略図的側面図である。
FIG. 9 is a schematic side view for explaining a step of producing a foamable thermoplastic resin sheet used in the production method according to claim 8;

【符号の説明】[Explanation of symbols]

1、11、31 熱可塑性樹脂発泡体 2、12、32 連続発泡層 3、13、33 高発泡部 4、14、34 低発泡薄膜 5、15、35 連続面 6、16、36 不連続面 25 発泡性熱可塑性樹脂粒状体 26 発泡性熱可塑性樹脂薄膜 27 発泡性熱可塑性樹脂シート状体 30 冷却型 1, 11, 31 Thermoplastic resin foam 2, 12, 32 Continuous foam layer 3, 13, 33 High foam part 4, 14, 34 Low foam thin film 5, 15, 35 Continuous surface 6, 16, 36 Discontinuous surface 25 Expandable thermoplastic resin granules 26 Expandable thermoplastic resin thin film 27 Expandable thermoplastic resin sheet 30 Cooling type

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 熱可塑性樹脂よりなる連続発泡層と、該
連続発泡層の少なくとも片面上に複数配置される熱可塑
性樹脂よりなる高発泡部と、上記連続発泡層とともに高
発泡部の外表面を被覆する熱可塑性樹脂よりなる低発泡
薄膜とを備えた熱可塑性樹脂発泡体からなる板状体であ
って、該発泡体を厚み方向に直交する投影面に投影した
ときに、連続発泡層のみ、又は連続発泡層と低発泡薄膜
のみが投影される連続面と、連続発泡層、低発泡薄膜及
び高発泡部が投影される不連続面とからなり、上記不連
続面に対応する発泡体の部位が、連続面に対応する発泡
体の部位に対して、少なくとも一方の表面が凸状に形成
されていることを特徴とする熱可塑性樹脂発泡体。
1. A continuous foamed layer made of a thermoplastic resin, a highly foamed portion made of a thermoplastic resin disposed on at least one surface of the continuous foamed layer, and an outer surface of the highly foamed portion together with the continuous foamed layer. A plate-like body made of a thermoplastic resin foam provided with a low-foaming thin film made of a thermoplastic resin to be coated, and when the foam is projected on a projection surface orthogonal to the thickness direction, only the continuous foam layer, Or a continuous surface on which only the continuous foam layer and the low-foaming thin film are projected, and a discontinuous surface on which the continuous foaming layer, the low-foaming thin film and the high-foaming portion are projected, and a portion of the foam corresponding to the discontinuous surface However, a thermoplastic resin foam characterized in that at least one surface is formed in a convex shape with respect to a portion of the foam corresponding to the continuous surface.
【請求項2】 熱可塑性樹脂よりなる連続発泡層と、該
連続発泡層の少なくとも片面上に複数配置される熱可塑
性樹脂よりなる高発泡部と、上記連続発泡層とともに高
発泡部の外表面を被覆する熱可塑性樹脂よりなる低発泡
薄膜とを備えた熱可塑性樹脂発泡体からなる板状体であ
って、該発泡体を厚み方向に直交する投影面に投影した
ときに、連続発泡層のみ、又は連続発泡層と低発泡薄膜
のみが投影される連続面と、連続発泡層、低発泡薄膜及
び高発泡部が投影される不連続面とからなり、上記不連
続面に対応する発泡体の部位が、連続面に対応する発泡
体の部位に対して、少なくとも一方の表面が凸状に形成
され、他方の表面は凹状に形成されていることを特徴と
する熱可塑性樹脂発泡体。
2. A continuous foamed layer made of a thermoplastic resin, a high foamed portion made of a thermoplastic resin disposed on at least one surface of the continuous foamed layer, and an outer surface of the high foamed portion together with the continuous foamed layer. A plate-like body made of a thermoplastic resin foam provided with a low-foaming thin film made of a thermoplastic resin to be coated, and when the foam is projected on a projection surface orthogonal to the thickness direction, only the continuous foam layer, Or a continuous surface on which only the continuous foam layer and the low-foaming thin film are projected, and a discontinuous surface on which the continuous foaming layer, the low-foaming thin film and the high-foaming portion are projected, and a portion of the foam corresponding to the discontinuous surface However, a thermoplastic resin foam characterized in that at least one surface is formed in a convex shape and the other surface is formed in a concave shape with respect to a portion of the foam corresponding to the continuous surface.
【請求項3】 前記高発泡部が格子状に配置されている
ことを特徴とする請求項1又は2に記載の熱可塑性樹脂
発泡体。
3. The thermoplastic resin foam according to claim 1, wherein the highly foamed portions are arranged in a lattice.
【請求項4】 前記高発泡部が千鳥状に配置されている
ことを特徴とする請求項1又は2に記載の熱可塑性樹脂
発泡体。
4. The thermoplastic resin foam according to claim 1, wherein the highly foamed portions are arranged in a staggered manner.
【請求項5】 前記低発泡薄膜で外表面を被覆された高
発泡部の凸状に形成された部分の高さが連続面に対して
1mm以上であることを特徴とする請求項1〜4に記載
の熱可塑性樹脂発泡体。
5. The high-foamed portion, the outer surface of which is covered with the low-foaming thin film, has a convex portion having a height of 1 mm or more with respect to a continuous surface. 4. The thermoplastic resin foam according to claim 1.
【請求項6】 熱可塑性樹脂発泡体の体積が、熱可塑性
樹脂発泡体を外接しうる最小の直方体の体積に対して5
0〜90%であることを特徴とする請求項1〜5に記載
の熱可塑性樹脂発泡体。
6. The volume of the thermoplastic resin foam is 5 to the minimum volume of the rectangular parallelepiped that can circumscribe the thermoplastic resin foam.
The thermoplastic resin foam according to any one of claims 1 to 5, wherein the content is 0 to 90%.
【請求項7】 前記複数の高発泡部が互いに低発泡薄膜
を介して熱融着されていることを特徴とする請求項1〜
6に記載の熱可塑性樹脂発泡体。
7. The method according to claim 1, wherein the plurality of high foaming portions are heat-sealed to each other via a low foaming thin film.
7. The thermoplastic resin foam according to 6.
【請求項8】 発泡剤を含有している発泡性熱可塑性樹
脂粒状体が平面的に略均一に配置されており、かつ前記
発泡性熱可塑性樹脂粒状体が発泡性熱可塑性樹脂薄膜を
介して一体的に連結されている発泡性熱可塑性樹脂シー
ト状体を、上記発泡剤の分解温度以上に加熱し発泡させ
る工程と、発泡して得られる発泡体が完全充填される以
上の空隙を有する冷却型内で冷却することにより凹凸を
形成する工程とを備えることを特徴とする熱可塑性樹脂
発泡体の製造方法。
8. A foamable thermoplastic resin granule containing a foaming agent is substantially uniformly arranged in a plane, and the foamable thermoplastic resin granule is interposed via a foamable thermoplastic resin thin film. A step of heating the foamed thermoplastic resin sheet integrally connected to the foaming agent at a temperature higher than the decomposition temperature of the foaming agent and foaming the foamed foam; Forming irregularities by cooling in a mold. A method for producing a thermoplastic resin foam, comprising:
JP34937797A 1997-12-18 1997-12-18 Thermoplastic resin foam and method for producing the same Expired - Fee Related JP3369091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34937797A JP3369091B2 (en) 1997-12-18 1997-12-18 Thermoplastic resin foam and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34937797A JP3369091B2 (en) 1997-12-18 1997-12-18 Thermoplastic resin foam and method for producing the same

Publications (2)

Publication Number Publication Date
JPH11179829A true JPH11179829A (en) 1999-07-06
JP3369091B2 JP3369091B2 (en) 2003-01-20

Family

ID=18403352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34937797A Expired - Fee Related JP3369091B2 (en) 1997-12-18 1997-12-18 Thermoplastic resin foam and method for producing the same

Country Status (1)

Country Link
JP (1) JP3369091B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002016124A1 (en) * 2000-08-25 2002-02-28 Sekisui Chemical Co., Ltd. Expandable thermoplastic resin molded product, method of producing expandable thermoplastic resin molded product and thermoplastic resin foam
JP2003220655A (en) * 2002-01-31 2003-08-05 Pacific Ind Co Ltd Foam pressurized fitting plate and injection mold used therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002016124A1 (en) * 2000-08-25 2002-02-28 Sekisui Chemical Co., Ltd. Expandable thermoplastic resin molded product, method of producing expandable thermoplastic resin molded product and thermoplastic resin foam
US7235291B2 (en) * 2000-08-25 2007-06-26 Sekisui Chemical Co., Ltd. Expandable thermoplastic resin product, method for manufacture of expandable thermoplastic resin product and thermoplastic resin foam
JP2003220655A (en) * 2002-01-31 2003-08-05 Pacific Ind Co Ltd Foam pressurized fitting plate and injection mold used therefor

Also Published As

Publication number Publication date
JP3369091B2 (en) 2003-01-20

Similar Documents

Publication Publication Date Title
JPWO2002016124A1 (en) Expandable thermoplastic resin molded article, method for producing expandable thermoplastic resin molded article, and thermoplastic resin foam
US5552448A (en) Plastic foam material composed of thermoplastic resin and silane-modified thermoplastic resin and method for making same
EP0890423A1 (en) Foamable thermoplastic sheet-like synthetic resin, thermoplastic foamed resin and their production method
EP0745641B1 (en) Thermoplastic resin foam and method of production thereof
JP4299375B2 (en) Foamable thermoplastic resin sheet, thermoplastic resin foam, and methods for producing the same
EP0646622B1 (en) Plastic foam material composed of thermoplastic resin and silane-modified thermoplastic resin and method for making same
JPH11179829A (en) Thermoplastic resin foam and manufacture thereof
JP3366162B2 (en) Floor material
JP3958811B2 (en) Continuous production method of foam
JPH10212819A (en) Floor material
JP2003166335A (en) Floor material
JP3848419B2 (en) Foamable thermoplastic resin sheet and method for producing foam
JPH11138564A (en) Manufacture of foam and floor heating floor material
JP3603068B2 (en) Method for producing thermoplastic resin foam
JPH09234756A (en) Manufacture of expandable thermoplastic resin sheet and expanded sheet
JPH07237238A (en) Manufacture of composite foam
JP2000135721A (en) Method and device for manufacture of recessed and projected thermoplastic resin foamed body
JP2000071364A (en) Production of floor material
JPH10100181A (en) Foamable thermoplastic resin sheet and production of foam
JP2000178371A (en) Production of thermoplastic resin foam
JP3267420B2 (en) Foamable resin composition
JPH08267487A (en) Manufacture of thermoplastic resin foam
JP2000176955A (en) Production of foam
JPH02102034A (en) Interior molding form for vehicle
JPH09136371A (en) Foam and its manufacture

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071115

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101115

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111115

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111115

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121115

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131115

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees