JPH11179472A - Blank process design method for forged parts - Google Patents

Blank process design method for forged parts

Info

Publication number
JPH11179472A
JPH11179472A JP9353889A JP35388997A JPH11179472A JP H11179472 A JPH11179472 A JP H11179472A JP 9353889 A JP9353889 A JP 9353889A JP 35388997 A JP35388997 A JP 35388997A JP H11179472 A JPH11179472 A JP H11179472A
Authority
JP
Japan
Prior art keywords
parting
line
model
rough
mold surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9353889A
Other languages
Japanese (ja)
Inventor
Toshiyuki Suzuki
寿之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP9353889A priority Critical patent/JPH11179472A/en
Publication of JPH11179472A publication Critical patent/JPH11179472A/en
Pending legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture a rougher where no forging defects are generated in a rough stock at a low cost avoiding a trial-and-error method by vertically moving a temporary die surface obtained from the parting contour, the blank contour, and the surface smoothness relative to the parting surface based on a three-dimensional model of the rough stock. SOLUTION: A three-dimensional model of a rough stock is processed by a computer. First, the parting contour which is the intersection line of the parting surface including the line of the center of gravity of the rough stock with the model, is obtained. The parting contour is offset inward on the parting surface to obtain the parting offset line. The separation position which is farthest and outermost from the parting surface is specified on the intersection line of a plurality of imaginary perpendicular planes orthogonal to the parting surface and the line of the center of gravity with the model. Each separation position is smoothly connected on each perpendicular plane to obtain the blank contour. Then, the parting offset line and the blank contour are smoothly connected to each other to obtain a temporary die surface. The temporary die surface is vertically moved relative to the parting surface from the volumetric comparison of the model with the temporary die surface to determine the die surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は鍛造部品の荒地工程
設計方法に関する。この設計方法は、例えばエンジンを
構成する部品であるコネクティングロッド、シャーシを
構成するアーム等の異形な鍛造部品を製造する場合に用
いて好適である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for designing a rough land process for forged parts. This design method is suitable for use, for example, when manufacturing a forged part having a different shape such as a connecting rod, which is a part of an engine, and an arm, which is a part of a chassis.

【0002】[0002]

【従来の技術】例えばエンジンを構成するコネクティン
グロッドは、丸棒等の素材にいくつかの荒地工程からな
る鍛造が施されて粗形材とされ、この粗形材に仕上工程
からなる鍛造とバリ抜きが施されて完成品とされる。従
来、それらの荒地工程により素材を鍛造するための荒地
型の型面を設計するためには、設計時間の短縮のため、
標準化された設計方法が主として採用されていた。すな
わち、鍛造部品としてコネクティングロッドを例にとれ
ば、従来のコネクティングロッドの荒地工程設計方法で
は、まず粗形材の三次元形状からなるモデルの幅方向及
び長手方向に一律に一定長さだけオフセットしたライン
を設定する。また、モデルの高さ方向に一律に一定長さ
だけオフセットしたラインを設定する。さらに、各角及
び各隅に一定曲率を付与したラインを設定する。そし
て、各ラインにより第1の荒地型の型面を決定する。ま
た、各ラインのオフセットする長さや曲率を変え、第2
の荒地型の型面を決定する。
2. Description of the Related Art For example, a connecting rod constituting an engine is formed into a rough material by forging a round bar or the like in several rough land processes, and forging and burr forming a finishing process are performed on the rough material. The blanks are punched and finished. Conventionally, in order to shorten the design time to design a rough land mold surface for forging material by these rough land processes,
Standardized design methods were mainly employed. In other words, taking a connecting rod as an example of a forged part, in a conventional connecting rod wasteland process design method, first, a uniform length is offset by a fixed length in a width direction and a longitudinal direction of a model composed of a three-dimensional shape of a coarse material. Set the line. In addition, a line that is uniformly offset by a certain length in the height direction of the model is set. Further, a line having a fixed curvature at each corner and each corner is set. Then, the mold surface of the first wasteland mold is determined by each line. Also, by changing the length and curvature of offset of each line,
Determine the mold surface of the wasteland type.

【0003】こうして各型面を設計し、設計通りの型面
になるように各荒地型を製造して荒地工程を実施するこ
ととなる。
In this way, each mold surface is designed, and each rough land mold is manufactured so as to have the designed mold surface, and the rough land process is performed.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記従来の設
計方法では、それにより製造した荒地型で初回のトライ
アウトを行うと、粗形材に欠肉や傷等の鍛造欠陥が発生
する場合がある。この場合には、各ラインのオフセット
する長さや曲率を変えて各荒地型の型面を再度決定し直
し、荒地型を製造し直さなければならない。かかる変更
は試行錯誤的に行わなければならず、荒地工程前後によ
る体積比が必ずしも最適でない場合や、型面の表面変化
が緩やかに滑らかでない場合があり、変更後の荒地型に
よったとしてもそれにより必ずしも粗形材に鍛造欠陥が
生じない訳ではない。このため、実際に鍛造部品の荒地
工程に用いる荒地型の製造コストが高騰してしまう。そ
して、寿命の短い荒地型は、型面の修理を頻繁に実施し
たり、交換サイクルを早く行ったりしなければならず、
その度に試行錯誤的に型面を設計することから、製造コ
ストの高騰化はさらに助長されることとなる。特に、荒
地工程前後による体積比が必ずしも最適でない場合、鍛
造時に荒地型に大きな負荷が作用することとなり、これ
により荒地型の寿命はさらに短縮され、ひいては製造コ
ストの高騰化がさらに助長されることとなる。
However, in the above-mentioned conventional design method, when the first try-out is performed on a rough terrain manufactured by the above-mentioned method, a forging defect such as underfill or scratch may be generated in the coarsely formed material. . In this case, it is necessary to change the offset length and the curvature of each line, determine the mold surface of each wasteland type again, and manufacture the wasteland type again. Such a change must be made by trial and error, and the volume ratio before and after the rough land process is not always optimal, or the surface change of the mold surface may not be gently smooth, even if it depends on the changed rough land type This does not necessarily mean that a forging defect does not occur in the crude material. For this reason, the manufacturing cost of the wasteland type actually used in the wasteland process of the forged part increases. And the wasteland type with a short service life has to carry out frequent repairs of the mold surface and to make the replacement cycle earlier,
Since the mold surface is designed by trial and error each time, an increase in manufacturing cost is further promoted. In particular, when the volume ratio before and after the rough land process is not always optimal, a large load acts on the rough land mold at the time of forging, thereby further shortening the life of the rough land mold and further increasing the manufacturing cost. Becomes

【0005】本発明は、上記従来の実状に鑑みてなされ
たものであって、粗形材に鍛造欠陥が生じない荒地型を
安価に製造し得る鍛造部品の荒地工程設計方法を提供す
ることを解決すべき課題としている。
The present invention has been made in view of the above-mentioned conventional situation, and has as its object to provide a method for designing a rough land process of a forged part capable of inexpensively manufacturing a rough land mold having no forging defects in a coarse material. It is an issue to be solved.

【0006】[0006]

【課題を解決するための手段】本発明の鍛造部品の荒地
工程設計方法は、荒地工程により素材を荒地型で鍛造し
て鍛造部品の粗形材とすべく、該荒地型の型面を設計す
る鍛造部品の荒地工程設計方法において、コンピュータ
に対して前記粗形材の三次元形状からなるモデルを入力
する第1工程と、該モデルに対し、該粗形材の重心を含
む重心線と、該重心線を含む前記荒地型の見切面と該モ
デルとの交線である見切外形線と、該見切面から離反し
た該モデル上の荒地外形線とを得る第2工程と、該見切
外形線及び該荒地外形線と表面滑らかさとから仮型面を
仮定し、該見切面及び該重心線と直交する垂直平面間毎
に該モデルの体積と該仮型面による体積とを比較し、該
仮型面を該見切面に対して垂直移動させて型面を決定す
る第3工程と、を有することを特徴とする。
According to the present invention, there is provided a method for designing a rough terrain process for a forged part. In a method for designing a rough land process of a forged part, a first step of inputting a model having a three-dimensional shape of the rough material to a computer, and a center line including a center of gravity of the rough material for the model, A second step of obtaining a parting outline which is an intersection of the parting plane of the wasteland type including the center of gravity line and the model, and a parting outline on the model which is separated from the parting plane; And a temporary mold surface is assumed from the rough land outline and the surface smoothness, and the volume of the model is compared with the volume of the temporary mold surface for each vertical plane orthogonal to the parting plane and the center of gravity line. A third step of determining a mold surface by moving the mold surface perpendicular to the parting surface; Characterized in that it.

【0007】本発明の設計方法では、コンピュータ上の
モデルから表面滑らかさを考慮しつつ仮型面を仮定し、
かつ荒地工程前後による体積比が最適になるようにこの
仮型面から型面を決定する。このため、試行錯誤的に荒
地型を製造する必要がなく、粗形材に鍛造欠陥の発生が
なく、実際に鍛造部品の荒地工程に用い得る荒地型を迅
速に製造可能である。
In the design method of the present invention, a temporary mold surface is assumed from a model on a computer while considering surface smoothness.
The mold surface is determined from the temporary mold surface so that the volume ratio before and after the rough land process is optimized. For this reason, it is not necessary to manufacture a rough land mold by trial and error, and there is no forging defect in the rough shaped material, and a rough land mold that can be actually used in a rough land process of a forged part can be quickly manufactured.

【0008】したがって、本発明の設計方法によれば、
粗形材に鍛造欠陥が生じない荒地型を安価に製造するこ
とができる。本発明の設計方法では次の操作を行うこと
が実用的である。すなわち、まず第2工程において、見
切外形線を見切面上で内方にオフセットして見切オフセ
ットラインを得る。また、見切面及び重心線と直交する
複数の垂直平面を仮定する。そして、各垂直平面毎に各
垂直平面とモデルとの交線を求め、各交線上に見切面か
ら最も離れかつ外方よりの離反位置を特定する。そし
て、各垂直平面毎に各離反位置を滑らかに結び、荒地外
形線を得る。
Therefore, according to the design method of the present invention,
It is possible to inexpensively manufacture a rough land type in which a forging defect does not occur in a crude material. In the design method of the present invention, it is practical to perform the following operations. That is, first, in the second step, the parting outline is offset inward on the parting plane to obtain the parting offset line. Also, a plurality of vertical planes orthogonal to the parting plane and the center of gravity are assumed. Then, an intersection line between each vertical plane and the model is obtained for each vertical plane, and a position farthest from the parting plane and away from the outside is specified on each intersection line. Then, each separation position is smoothly connected to each vertical plane, and a rough land outline is obtained.

【0009】そして、第3工程において、見切オフセッ
トライン及び荒地外形線を滑らかな面で結んで仮型面と
し、垂直平面間毎にモデルの体積と仮型面による体積と
を比較し、仮型面を見切面に対して垂直移動させて型面
を得る。
In a third step, the parting offset line and the rough land outline are connected by a smooth surface to form a temporary mold surface, and the volume of the model and the volume of the temporary mold surface are compared for each vertical plane. The surface is moved perpendicular to the parting plane to obtain the mold surface.

【0010】[0010]

【発明の実施の形態】以下、本発明の設計方法をコネク
ティングロッドの荒地工程設計方法に具体化した実施形
態を図面を参照しつつ説明する。実施形態では、図1に
示す処理手順でコンピュータを処理する。 「第1工程」まず、ステップS1において、図2に示す
ように、コンピュータ上で作動する三次元CADに対
し、粗形材の三次元形状からなるモデル1を入力する。
また、モデル1をCAD上で180°水平反転させるこ
とにより、モデル2を入力する。 「第2工程」次いで、図1に示すステップS2におい
て、図2に示すように、モデル1、2に対し、粗形材の
重心を含む重心線3を入力する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the design method of the present invention is embodied in a method for designing a connecting rod in a rough land will be described below with reference to the drawings. In the embodiment, the computer is processed according to the processing procedure shown in FIG. [First Step] First, in step S1, as shown in FIG. 2, a model 1 consisting of a three-dimensional shape of a rough material is input to a three-dimensional CAD operated on a computer.
The model 2 is input by inverting the model 1 horizontally by 180 ° on the CAD. [Second Step] Next, in step S2 shown in FIG. 1, a center line 3 including the center of gravity of the coarse material is input to the models 1 and 2, as shown in FIG.

【0011】また、図1に示すステップS3において、
図3に示すように、モデル1、2に対し、荒地型の見切
面4を重心線3を含んで仮定する。そして、図1に示す
ステップS4において、図3に示すように、見切面4と
モデル1、2との交線である見切外形線5、6を得る。
この後、図1に示すステップS5において、図4に示す
ように、見切外形線5、6を見切面4上で一定長さだけ
内方にオフセットし、見切オフセットライン7、8を得
る。ここで、第2の荒地工程用の荒地型の型面を設計す
るのであれば、一定長さを0.5mmとする。また、第
1の荒地工程用の荒地型の型面を設計するのであれば、
一定長さを1mmとする。
Also, in step S3 shown in FIG.
As shown in FIG. 3, it is assumed that a wasteland type parting plane 4 includes the center of gravity line 3 for the models 1 and 2. Then, in step S4 shown in FIG. 1, as shown in FIG. 3, parting outlines 5, 6 which are intersections of the parting plane 4 and the models 1, 2 are obtained.
Thereafter, in step S5 shown in FIG. 1, as shown in FIG. 4, the parting outlines 5 and 6 are offset inward by a fixed length on the parting plane 4 to obtain parting offset lines 7 and 8. Here, when designing a wasteland type mold surface for the second wasteland process, the fixed length is 0.5 mm. Also, when designing a wasteland type mold surface for the first wasteland process,
The fixed length is 1 mm.

【0012】そして、図1に示すステップS6におい
て、見切面4及び重心線3と直交する複数の垂直平面9
(図8及び図9参照)を仮定する。ここで、第2の荒地
工程用の荒地型の型面を設計するのであれば、垂直平面
9を5mmピッチで仮定する。また、第1の荒地工程用
の荒地型の型面を設計するのであれば、垂直平面9を1
0mmピッチで仮定する。なお、垂直平面9の一つが図
2に示すA−A線である。
In step S6 shown in FIG. 1, a plurality of vertical planes 9 orthogonal to the parting plane 4 and the center of gravity line 3 are provided.
(See FIGS. 8 and 9). Here, when designing the mold surface of the wasteland type for the second wasteland process, the vertical plane 9 is assumed to have a pitch of 5 mm. When designing the mold surface of the wasteland type for the first wasteland process, the vertical plane 9 is set to 1
Assume a 0 mm pitch. Note that one of the vertical planes 9 is an AA line shown in FIG.

【0013】この後、図1に示すステップS7におい
て、図5に示すように、各垂直平面9毎に各垂直平面9
とモデル1、2との交線を求め、各交線上に見切面4か
ら上又は下に最も離れかつ外方よりの離反位置10を特
定する。ここで、第2の荒地工程用の荒地型の型面を設
計するのであれば、各交線上の外側の曲率部の終点に離
反位置10を特定する。また、第1の荒地工程用の荒地
型の型面を設計するのであれば、第2の荒地工程用の荒
地型の型面のための離反位置10より内側に0.5mm
オフセットした位置に離反位置10を特定する。
Thereafter, in step S7 shown in FIG. 1, as shown in FIG.
A line of intersection between the model and the models 1 and 2 is determined, and a separation position 10 farthest above or below the parting plane 4 and from the outside is specified on each line of intersection. Here, when designing a wasteland type mold surface for the second wasteland process, the separation position 10 is specified at the end point of the outer curvature portion on each intersection line. Also, when designing a wasteland mold surface for the first wasteland process, 0.5 mm inward from the separation position 10 for the wasteland mold surface for the second wasteland process.
The separation position 10 is specified at the offset position.

【0014】この後、図1に示すステップS8におい
て、CADのスプラインコマンドを実行する。こうし
て、図6に示すように、各垂直平面9毎に各離反位置1
0が所定の正接条件で滑らかに結ばれ、荒地外形線11
が得られる。 「第3工程」そして、図1に示すステップS9におい
て、図8に示すように、見切オフセットライン7、8及
び荒地外形線11が滑らかな面で結ばれた仮型面12が
得られる。垂直平面間9毎の仮型面12は図9に示すよ
うになっている。かかる垂直平面間9毎の仮型面12に
よる立体は図10に示すようになっている。
Thereafter, in step S8 shown in FIG. 1, a CAD spline command is executed. In this way, as shown in FIG.
0 is smoothly connected under a predetermined tangent condition, and
Is obtained. "Third Step" Then, in step S9 shown in FIG. 1, as shown in FIG. 8, a temporary mold surface 12 in which the parting offset lines 7, 8 and the rough land outline 11 are connected by a smooth surface is obtained. The temporary mold surfaces 12 at every vertical plane 9 are as shown in FIG. The three-dimensional object formed by the temporary mold surface 12 between the vertical planes 9 is as shown in FIG.

【0015】この後、垂直平面間9毎にモデル1、2の
体積と、仮型面12による体積とを比較する。ここで、
最適体積比は以下の表1のように予め定めている。
Thereafter, the volume of the models 1 and 2 is compared with the volume of the temporary mold surface 12 at every interval 9 between the vertical planes. here,
The optimum volume ratio is predetermined as shown in Table 1 below.

【0016】[0016]

【表1】 このため、図1に示すステップS10において、第1の
荒地工程用の荒地型の型面を設計するのであれば、体積
比の値が1.12になるように、図7に示すように、仮
型面12を見切面4に対して垂直移動させて型面13を
得る。また、第2の荒地工程用の荒地型の型面を設計す
るのであれば、体積比の値が1.05になるように、図
7に示すように、仮型面12を見切面4に対して垂直移
動させて型面13を得る。
[Table 1] For this reason, in step S10 shown in FIG. 1, if the mold surface of the wasteland type for the first wasteland process is designed, as shown in FIG. The mold surface 13 is obtained by moving the temporary mold surface 12 perpendicularly to the cutting surface 4. Further, when designing a wasteland mold surface for the second wasteland process, as shown in FIG. 7, the temporary mold surface 12 is cut off to the parting surface 4 so that the value of the volume ratio becomes 1.05. The mold surface 13 is obtained by vertically moving the mold surface.

【0017】こうして、第1、2の荒地型の各型面13
を設計し、図11に示すように、設計通りの型面になる
ように各荒地型を製造する。そして、丸棒等の素材に第
1、2の荒地工程からなる鍛造を施して粗形材とする。
得られた粗形材は仕上工程からなる鍛造とバリ抜きが施
されて完成品とされる。こうして、実施形態の設計方法
では、コンピュータ上のモデル1、2から表面滑らかさ
を考慮しつつ仮型面12を仮定し、かつ第1、2の荒地
工程前後による体積比が最適になるようにこの仮型面1
2から型面13を決定する。このため、試行錯誤的に各
荒地型を製造する必要がなく、粗形材に鍛造欠陥の発生
がなく、実際にコネクティングロッドの第1、2の荒地
工程に用い得る各荒地型を迅速に製造することができ
る。
In this manner, each of the first and second rough land mold surfaces 13
, And as shown in FIG. 11, each wasteland mold is manufactured so that the mold surface is as designed. Then, a material such as a round bar is subjected to forging including the first and second rough land processes to obtain a coarse material.
The obtained crude material is subjected to forging and deburring in a finishing process to be a finished product. Thus, in the design method of the embodiment, the temporary mold surface 12 is assumed from the models 1 and 2 on the computer while considering the surface smoothness, and the volume ratio before and after the first and second rough land processes is optimized. This temporary mold surface 1
The mold surface 13 is determined from 2. For this reason, it is not necessary to manufacture each wasteland mold by trial and error, and there is no forging defect in the rough material, and each wasteland mold that can be actually used in the first and second wasteland processes of the connecting rod is quickly manufactured. can do.

【0018】したがって、実施形態の設計方法によれ
ば、粗形材に鍛造欠陥が生じない各荒地型を安価に製造
することができる。発明者らの試験結果によれば、実施
形態による各荒地型では鍛造時に大きな負荷が作用しな
いため、従来よりも1.5倍程度の延命化を実現するこ
とができた。
Therefore, according to the design method of the embodiment, it is possible to inexpensively manufacture each rough land mold in which a forging defect does not occur in a rough material. According to the test results of the inventors, since a large load does not act during forging in each of the wasteland molds according to the embodiment, it was possible to achieve a life extension of about 1.5 times as compared with the related art.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態に係り、コンピュータへの処理手順を
示す流れ図である。
FIG. 1 is a flowchart showing a processing procedure for a computer according to an embodiment.

【図2】実施形態に係り、入力したモデルの平面図を示
すコンピュータ画面である。
FIG. 2 is a computer screen showing a plan view of an input model according to the embodiment.

【図3】実施形態に係り、図2のA−A断面図に相当す
るモデルと見切面と重心線とを示すコンピュータ画面で
ある。
FIG. 3 is a computer screen showing a model corresponding to an AA cross-sectional view of FIG. 2, a parting plane, and a barycentric line according to the embodiment;

【図4】実施形態に係り、図2のA−A断面図に相当す
るモデルと見切面と重心線と見切オフセットラインとを
示すコンピュータ画面である。
FIG. 4 is a computer screen showing a model corresponding to the AA cross-sectional view of FIG. 2, a parting plane, a center of gravity line, and a parting offset line according to the embodiment;

【図5】実施形態に係り、図2のA−A断面図に相当す
るモデルと見切面と重心線と見切オフセットラインと荒
地外形線とを示すコンピュータ画面である。
5 is a computer screen showing a model corresponding to the AA cross-sectional view of FIG. 2, a parting plane, a center of gravity line, a parting offset line, and a rough land outline according to the embodiment;

【図6】実施形態に係り、図2のA−A断面図に相当す
るモデルと仮型面とを示すコンピュータ画面である。
FIG. 6 is a computer screen showing a model and a temporary mold surface corresponding to the AA cross-sectional view of FIG. 2 according to the embodiment.

【図7】実施形態に係り、図2のA−A断面図に相当す
るモデルと垂直移動後の仮型面とを示すコンピュータ画
面である。
FIG. 7 is a computer screen showing a model corresponding to the AA cross-sectional view of FIG. 2 and a temporary mold surface after vertical movement according to the embodiment.

【図8】実施形態に係り、垂直平面と仮型面の平面図と
を示すコンピュータ画面である。
FIG. 8 is a computer screen showing a vertical plane and a plan view of a temporary mold surface according to the embodiment.

【図9】実施形態に係り、垂直平面と、二枚の垂直平面
間の仮型面の平面図とを示すコンピュータ画面である。
FIG. 9 is a computer screen showing a vertical plane and a plan view of a temporary mold plane between two vertical planes according to the embodiment.

【図10】実施形態に係り、二枚の垂直平面間の仮型面
による立体を示すコンピュータ画面である。
FIG. 10 is a computer screen showing a solid by a temporary mold surface between two vertical planes according to the embodiment.

【図11】実施形態に係り、決定した型面をもつ荒地型
を示すコンピュータ画面である。
FIG. 11 is a computer screen showing a wasteland type having a determined die surface according to the embodiment.

【符号の説明】[Explanation of symbols]

1、2…モデル 3…重心線 4…見切面 5、6…見切外形線 7、8…見切オフセットライン 9…垂直平面 10…離反位置 11…荒地外形線 12…仮型面 13…型面 1, 2 ... Model 3 ... Center of gravity line 4 ... Parting plane 5, 6 ... Parting outline line 7, 8 ... Parting offset line 9 ... Vertical plane 10 ... Separation position 11 ... Wasteland outline line 12 ... Temporary mold surface 13 ... Mold surface

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】荒地工程により素材を荒地型で鍛造して鍛
造部品の粗形材とすべく、該荒地型の型面を設計する鍛
造部品の荒地工程設計方法において、 コンピュータに対して前記粗形材の三次元形状からなる
モデルを入力する第1工程と、 該モデルに対し、該粗形材の重心を含む重心線と、該重
心線を含む前記荒地型の見切面と該モデルとの交線であ
る見切外形線と、該見切面から離反した該モデル上の荒
地外形線とを得る第2工程と、 該見切外形線及び該荒地外形線と表面滑らかさとから仮
型面を仮定し、該見切面及び該重心線と直交する垂直平
面間毎に該モデルの体積と該仮型面による体積とを比較
し、該仮型面を該見切面に対して垂直移動させて型面を
決定する第3工程と、を有することを特徴とする鍛造部
品の荒地工程設計方法。
1. A method for designing a rough land process of a forged part for designing a die surface of the rough land mold in order to forge a raw material with a rough land mold in a rough land process to obtain a rough material of the forged part. A first step of inputting a model consisting of a three-dimensional shape of the shape member; and, for the model, a center line including the center of gravity of the coarse member; A second step of obtaining a parting outline which is an intersection line and a rough land outline on the model separated from the parting plane; and assuming a temporary mold surface from the parting outline, the rough land outline and the surface smoothness. Comparing the volume of the model with the volume of the temporary mold surface for each vertical plane orthogonal to the parting plane and the center of gravity line, and moving the temporary mold plane perpendicular to the parting plane to move the mold surface. And a third step of determining.
JP9353889A 1997-12-22 1997-12-22 Blank process design method for forged parts Pending JPH11179472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9353889A JPH11179472A (en) 1997-12-22 1997-12-22 Blank process design method for forged parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9353889A JPH11179472A (en) 1997-12-22 1997-12-22 Blank process design method for forged parts

Publications (1)

Publication Number Publication Date
JPH11179472A true JPH11179472A (en) 1999-07-06

Family

ID=18433912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9353889A Pending JPH11179472A (en) 1997-12-22 1997-12-22 Blank process design method for forged parts

Country Status (1)

Country Link
JP (1) JPH11179472A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100385346B1 (en) * 2001-06-29 2003-05-27 주식회사화신 Planning method for the optimum arrangement of the press mold and the record medium which the planning program is saved
JP2008161893A (en) * 2006-12-27 2008-07-17 Showa Denko Kk Forging method and forging apparatus
CN115533458A (en) * 2022-10-17 2022-12-30 哈尔滨工业大学 Design method of ball bearing outer ring forge piece with mounting edge

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100385346B1 (en) * 2001-06-29 2003-05-27 주식회사화신 Planning method for the optimum arrangement of the press mold and the record medium which the planning program is saved
JP2008161893A (en) * 2006-12-27 2008-07-17 Showa Denko Kk Forging method and forging apparatus
CN115533458A (en) * 2022-10-17 2022-12-30 哈尔滨工业大学 Design method of ball bearing outer ring forge piece with mounting edge

Similar Documents

Publication Publication Date Title
US4967584A (en) Method of making a forging in closed-dies
US6021270A (en) System for generating geometry of object associated with one of similar products, based on geometrical characteristic of this one product
CN110293167B (en) SUV automobile back door outer plate drawing technical surface modeling method
JP3695699B2 (en) Method for determining dimensions of roll forming material of aluminum alloy suspension part and method for manufacturing aluminum alloy suspension part
JP3114918B2 (en) Manufacturing method of curved hollow pipe
CN110773699B (en) Method for controlling extrusion forming residual stress of forged blade
US7464011B2 (en) Method for determining addendum and binder surfaces of springback compensated stamping dies
JPH11179472A (en) Blank process design method for forged parts
Altan Design and manufacture of dies and molds
CN110705050A (en) Design method of die surface and die for deep drawing process of inner plate of car door
CN110756714A (en) High-speed extrusion forming die for blades
JPH08287133A (en) Method and device for automatic designing of press die
JP4576322B2 (en) Shape correction method, mold, and method of manufacturing molded product
CN110695118B (en) Method for reducing residual stress of high-speed extrusion forming blade
US6839602B2 (en) Device and method for designing shaped material production process
JP2723344B2 (en) Precision forging
CN112828168A (en) Digital conversion manufacturing method for craftsman skill of magnesium-aluminum alloy automobile covering part die
JPH10254926A (en) Decision method for shape of forged parts in its preprocess and forging die design method
JPH11300756A (en) Molding part design device and molding part design method
JP2022030639A (en) Blank dimension determination method for uo bending molding
JP2007260750A (en) Press die manufacturing method
JP2006281281A (en) Forming process decision apparatus, forming process decision program, forming process decision method, and formability determination apparatus, formability determination program, and formability determination method
JP2003136541A (en) Method for producing three-dimensional blade plate to be embedded in tire molding mold, and mold for producing the blade plate
JPH08320891A (en) Method and device for automatically designing die
CN111728315A (en) Processing method of heel shaping die