JPH11179154A - Method and apparatus for cleaning of air pollution hazardous substance - Google Patents

Method and apparatus for cleaning of air pollution hazardous substance

Info

Publication number
JPH11179154A
JPH11179154A JP9364840A JP36484097A JPH11179154A JP H11179154 A JPH11179154 A JP H11179154A JP 9364840 A JP9364840 A JP 9364840A JP 36484097 A JP36484097 A JP 36484097A JP H11179154 A JPH11179154 A JP H11179154A
Authority
JP
Japan
Prior art keywords
gas
air
light
chloroform
air pollution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9364840A
Other languages
Japanese (ja)
Inventor
Toshiaki Minami
敏明 南
Hisami Satake
寿巳 佐竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paper Industries Co Ltd
Jujo Paper Co Ltd
Original Assignee
Nippon Paper Industries Co Ltd
Jujo Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paper Industries Co Ltd, Jujo Paper Co Ltd filed Critical Nippon Paper Industries Co Ltd
Priority to JP9364840A priority Critical patent/JPH11179154A/en
Publication of JPH11179154A publication Critical patent/JPH11179154A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To decompose and remove even air pollution hazardous substances such as chloroform in a paper pulp manufacturing process, etc., by utilizing photocatalytic reaction and to continuously use a photocatalyst body without decreasing function of the photocatalyst body, under a stable condition and for a long time. SOLUTION: Air pollution hazardous substances in a gas poured into a photocatalytic reactor B in which a photoreactive semiconductor carrying substance A is stored are irradiated with a UV rays-contg. light from a light source C for irradiating the UV rays-contg. light. Acidic gases generated in a decomposed gas decomposed by photocatalytic reaction are reacted with water or a basic substance in a gas collector D to perform cleaning.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、大気汚染有害物質
の浄化方法及び装置に関し、更に詳細には光触媒反応を
利用して紙パルプ製造工程等で発生するクロロホルムの
ような大気汚染有害物質までも分解・除去する浄化方法
及び装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for purifying air pollutants, and more particularly, to a method for purifying air pollutants such as chloroform generated in a paper pulp manufacturing process using a photocatalytic reaction. The present invention relates to a purification method and apparatus for decomposing and removing.

【0002】[0002]

【従来の技術】生活環境に対する関心の高揚に伴い、悪
臭などの日常生活における有害物質の除去の要求が増え
てきており、悪臭除去装置などを組み込んだ空気清浄器
の開発が盛んに行われている。これらの装置では、主に
活性炭を含有したフィルタ−が使われ、活性炭に悪臭物
質を吸着させる方式が採用されてきた。しかしながら、
活性炭は吸着作用はあるが分解能力がないため、一定量
の悪臭物質等の有害物質を吸収すると飽和してしまい、
定期的にフィルタ−を交換しなければならなかった。
2. Description of the Related Art With increasing interest in the living environment, there has been an increasing demand for the removal of harmful substances in daily life such as odors, and the development of air purifiers incorporating odor removal devices and the like has been actively carried out. I have. In these apparatuses, a filter mainly containing activated carbon is used, and a method of adsorbing malodorous substances on activated carbon has been adopted. However,
Activated carbon has an adsorption effect but has no decomposition ability, so it will be saturated when it absorbs a certain amount of harmful substances such as malodorous substances.
The filters had to be replaced periodically.

【0003】近年、このような問題の解決策として、活
性炭と有害物質を光分解する触媒とを組合わせた複合材
料が開発されて来ている。例えば、特開平1−2347
29号公報で、臭気成分を吸着するハニカム形状等の活
性炭に臭気成分を分解する光触媒層である酸化チタンを
担持させた光反応性半導体複合体を組込んだ空気調和機
が開示されている。この場合、吸着された悪臭成分の一
部は光反応性半導体表面から発現するOHラジカルによ
り分解されるため、活性炭の吸着能を比較的長期間保つ
ことができる。しかし、この方法では光反応性半導体を
担持し且つ光反応効率を高めるために、ハニカム形状等
の特殊な構造の活性炭が必要であり、またその活性炭の
表面及びハニカム内部等に酸化チタンを保持させるため
に特別な工程が必要であった。更に、有害物質を光分解
する触媒として酸化チタンを利用した気相での有害物質
の除去方法としては、例えば特開平2−253848号
公報に、無機質繊維状担体にアナタ−ゼ型酸化チタンを
担持させたオゾン分解触媒が開示されている。
In recent years, as a solution to such a problem, a composite material in which activated carbon and a catalyst for decomposing harmful substances are combined has been developed. For example, Japanese Patent Application Laid-Open No. 1-2347
No. 29 discloses an air conditioner incorporating a photoreactive semiconductor composite in which titanium oxide as a photocatalytic layer for decomposing odor components is supported on activated carbon having a honeycomb shape or the like that adsorbs odor components. In this case, a part of the adsorbed malodorous component is decomposed by OH radicals generated from the surface of the photoreactive semiconductor, so that the adsorbing ability of activated carbon can be maintained for a relatively long time. However, in this method, activated carbon having a special structure such as a honeycomb shape is required to support the photoreactive semiconductor and increase the photoreaction efficiency, and titanium oxide is retained on the surface of the activated carbon and the inside of the honeycomb. A special process was required. Further, as a method of removing harmful substances in the gas phase using titanium oxide as a catalyst for photodecomposing harmful substances, for example, Japanese Patent Application Laid-Open No. 2-253848 discloses a method in which an anatase type titanium oxide is supported on an inorganic fibrous carrier. Ozonolysis catalysts are disclosed.

【0004】これ以外に、特開平3−233100号公
報に、二酸化チタンと活性炭との混合物とこれに波長が
300nm以上の光を照射する光源とからなる換気設備
が開示されており、特開平4−256755号公報に、
二酸化チタン等を粒状パルプに担持させることにより家
庭用の脱臭,消臭剤として使用できることが開示されて
いる。更に、久永らはセラミックペ−パ−に二酸化チタ
ンを保持することにより有機ハロゲン化合物の光分解を
行っている(電気化学協会誌、60巻、107ペ−ジ、
1992年)。一方、世界規模での地球環境保護の観点
から、各種の化学工場から排出される大気汚染有害物質
の削減が実施されようとしており、製紙業界でも工場か
ら排出されるクロロホルム,ベンゼン,ホルムアルデヒ
ド等の化学物質が削減の対象になっている。
In addition, Japanese Patent Application Laid-Open No. 3-233100 discloses a ventilating facility comprising a mixture of titanium dioxide and activated carbon and a light source for irradiating the mixture with light having a wavelength of 300 nm or more. -256755,
It is disclosed that by supporting titanium dioxide or the like on granular pulp, it can be used as a household deodorant and deodorant. Further, Kusunaga et al. Performed photodecomposition of organic halogen compounds by holding titanium dioxide on ceramic paper (Journal of the Electrochemical Society, vol. 60, pp. 107,
1992). On the other hand, from the viewpoint of global environmental protection, reduction of air pollution harmful substances emitted from various chemical factories is being implemented. In the paper industry, chemicals such as chloroform, benzene and formaldehyde emitted from factories are being reduced. Substances are subject to reduction.

【0005】しかしながら、前記の従来技術において
は、気相中での有害物質の光分解によって生じる二次的
生成物である各種の酸に対する考慮はなされていなかっ
た。例えば、酸化チタンなどの光触媒分解により大気汚
染物質の一つであるホルマリン等のアルデヒド類からは
分解中間生成物としてカルボン酸が、クロロホルム等の
含塩素系化合物からは最終生成物として塩化水素が、N
Ox等の含窒素系化合物からは最終生成物として硝酸
が、SOx等の含硫黄系化合物からは最終生成物として
硫酸がというように各種の酸が発生する。これらの強酸
は酸化チタン等の光触媒の固体表面に吸着するため、光
触媒担持体の有害物質の分解効率を著しく低下させると
共に、発生した強酸が大気中に再び放出されるといった
二次的大気汚染の問題を生ずる。特に、パルプ製造工程
中の塩素系薬品によるパルプ漂白工程において発生する
大気汚染有害物質の一つであるクロロホルムを効率良く
分解し、その過程で酸化チタン光触媒固体表面から二次
的に発生する塩化水素を効率良く除去できる浄化方法や
装置はこれまでに全く存在していなかった。
[0005] However, in the above-mentioned prior art, no consideration was given to various acids which are secondary products generated by photolysis of harmful substances in the gas phase. For example, aldehydes such as formalin, which is one of the air pollutants due to photocatalytic decomposition of titanium oxide, are carboxylic acids as decomposition intermediates, and hydrogen chloride as a final product from chlorine-containing compounds such as chloroform, N
Various acids such as nitric acid are generated as final products from nitrogen-containing compounds such as Ox, and sulfuric acid is generated as final products from sulfur-containing compounds such as SOx. Since these strong acids are adsorbed on the solid surface of a photocatalyst such as titanium oxide, the decomposition efficiency of harmful substances on the photocatalyst carrier is significantly reduced, and secondary air pollution such as the release of the generated strong acids into the atmosphere is also observed. Cause problems. In particular, it efficiently decomposes chloroform, one of the air pollutants generated in the pulp bleaching process by chlorine-based chemicals during the pulp manufacturing process, and hydrogen chloride that is secondarily generated from the titanium oxide photocatalyst solid surface in the process There has been no purification method or apparatus capable of efficiently removing methane.

【0006】[0006]

【発明が解決しようとする課題】本発明は、パルプ製造
工程内の塩素系パルプ漂白工程において発生するクロロ
ホルム等の大気汚染有害物質を効率良く分解すると共
に、その過程で発生する塩化水素等の酸を効率良く除去
する浄化方法及び装置を提供することを課題とする。
DISCLOSURE OF THE INVENTION The present invention efficiently decomposes air pollution harmful substances such as chloroform generated in a chlorine-based pulp bleaching step in a pulp manufacturing step, and generates an acid such as hydrogen chloride generated in the process. It is an object of the present invention to provide a purification method and a device for efficiently removing methane.

【0007】[0007]

【課題を解決するための手段】本発明者らは前記課題を
解決すべく鋭意研究の結果、大気汚染有害物質を含有す
る気体中の大気汚染有害物質を光触媒反応により分解し
て分解ガス中に発生する酸性ガスを水又は塩基性物質と
反応させて浄化すればよく、この大気汚染有害物質の浄
化方法を実施するには、ガス注入口より大気汚染有害物
質を含有する気体が注入される光反応性半導体担持物質
を内蔵した光触媒反応器と、該光触媒反応器内に紫外線
を含有する光を照射する光源と、該光触媒反応器を通過
した気体中の光触媒反応により分解した酸性ガスを水又
は塩基性物質と反応させるガス捕集器とを備えている大
気汚染有害物質の浄化装置が好適であることを究明して
本発明を完成したのである。
Means for Solving the Problems The present inventors have conducted intensive studies to solve the above problems, and as a result, decomposed air pollutant harmful substances in gas containing air pollutant harmful substances by photocatalytic reaction into decomposed gas. The generated acidic gas may be purified by reacting it with water or a basic substance. In order to carry out this method of purifying air pollutant harmful substances, a gas containing air pollutant harmful substance is injected from a gas inlet. A photocatalytic reactor containing a reactive semiconductor carrier, a light source for irradiating light containing ultraviolet light into the photocatalytic reactor, and an acid gas decomposed by a photocatalytic reaction in a gas passing through the photocatalytic reactor with water or The present inventors have determined that an air pollution harmful substance purifying apparatus provided with a gas collector for reacting with a basic substance is suitable, and completed the present invention.

【0008】[0008]

【発明の実施の形態】以下、図面に基づき、本発明に係
る大気汚染有害物質の浄化方法及び装置を詳細に説明す
る。図1〜図3はそれぞれ本発明に係る大気汚染有害物
質の浄化装置の1実施例を示す概念図であり、図4は図
1に示した本発明に係る大気汚染有害物質の浄化装置の
1実施例をタンデムに設置した1実施例を示す概念図で
ある。図面中、Aは光反応性半導体担持体を、Bは光触
媒反応器を、Cは紫外線を含有した光を照射する光源
を、Dはガス捕集器を、Eは流量調整機能付き気体循環
装置を、Fは注入口を、Gは開閉弁付きの排出口を示
し、図面中の矢印→は大気汚染有害物質の浄化装置内の
気体の流れ方向を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a method and an apparatus for purifying air pollutants according to the present invention will be described in detail with reference to the drawings. FIGS. 1 to 3 are conceptual views showing one embodiment of an air pollution harmful substance purifying apparatus according to the present invention. FIG. 4 is a conceptual diagram showing the air pollution harmful substance purifying apparatus according to the present invention shown in FIG. It is a key map showing one example which installed an example in tandem. In the drawings, A is a photoreactive semiconductor carrier, B is a photocatalytic reactor, C is a light source for irradiating light containing ultraviolet light, D is a gas collector, and E is a gas circulation device with a flow control function. , F indicates an inlet, G indicates an outlet with an on-off valve, and the arrow in the drawing indicates the direction of gas flow in the apparatus for purifying air pollutants.

【0009】本発明において使用する光反応性半導体と
は、0.5〜5eV、好ましくは1〜3eVの禁止帯幅
を有する、光触媒反応を生じる半導体である。このよう
な光反応性半導体としては、酸化亜鉛,三酸化タングス
テン,二酸化チタン,酸化セリウム等の金属酸化物粒子
がよく、特に二酸化チタンが好ましい。
The photoreactive semiconductor used in the present invention is a semiconductor having a bandgap of 0.5 to 5 eV, preferably 1 to 3 eV, which causes a photocatalytic reaction. As such a photoreactive semiconductor, metal oxide particles such as zinc oxide, tungsten trioxide, titanium dioxide, and cerium oxide are preferable, and titanium dioxide is particularly preferable.

【0010】これらの金属酸化物粒子は、通常比表面積
が10〜500m2/gのものが用いられるが、二酸化
チタンの場合は比表面積が50〜400m2/gのもの
が好ましい。また、光反応性半導体の表面に白金,パラ
ジウム等の貴金属を担持させることにより、触媒効果の
向上を図ることもできる。
These metal oxide particles usually have a specific surface area of 10 to 500 m 2 / g, and titanium dioxide preferably has a specific surface area of 50 to 400 m 2 / g. Further, by supporting a noble metal such as platinum and palladium on the surface of the photoreactive semiconductor, the catalytic effect can be improved.

【0011】本発明においては、光反応性半導体を様々
な基材に担持させて光反応性半導体担持体Aとして光触
媒反応器Bに内蔵させる。光反応性半導体担持体Aとし
ては公知のものが幅広く利用できる。例えば図1に示す
如く、セラミック,ガラス,石英ガラス,活性炭,活性
白土,ゼオライト,合成ゼオライト,セピオライト,ベ
ントナイトなどのペレット状の無機多孔質物質に酸化チ
タン等の前記光反応性半導体の超微粒子を混合,混練,
焼成することにより担持させたものであっても、図3に
示す如く、セラミック,ガラス,石英ガラス,活性炭,
活性白土,ゼオライト,合成ゼオライト,セピオライ
ト,ベントナイトなどの粒子状又はフレ−ク状の無機多
孔質物質に酸化チタン等の前記光反応性半導体の超微粒
子を混合,混練,焼成することにより担持させたもので
あっても、図2に示す如く、有機又は無機合成高分子繊
維から成る繊維状物に光反応性半導体の超微粒子を混
合,混練,焼成することにより担持させたものや、更に
有機又は無機合成高分子繊維から成る不織布,織布,天
然繊維から成る紙,織布などの通気性シ−ト内或いは通
気性シ−ト上に光反応性半導体の超微粒子を担持させた
ものであっても、更には発泡又は成型加工などによりハ
ニカム状や三次元網目構造化した無機多孔質物質に光反
応性半導体の超微粒子を担持させたものであっても良
い。これらの中で、セラミック,ガラス,石英ガラス,
ベントナイトなどのペレット状の無機多孔質物質にX線
粒径5〜30nmの超微粒子二酸化チタンを混合,混
練,焼成又は造粒したもの、或いは有機又は無機合成高
分子繊維から成る不織布,織布,天然繊維から成る紙,
織布などの通気性シ−ト内や通気性シ−ト上にX線粒径
5〜30nmの超微粒子二酸化チタンを担持させ、ハニ
カム状に加工した光反応性半導体担持体Aが望ましい。
In the present invention, a photoreactive semiconductor is supported on various substrates and incorporated in a photocatalytic reactor B as a photoreactive semiconductor carrier A. Known photoreactive semiconductor carriers A can be widely used. For example, as shown in FIG. 1, ultrafine particles of the photoreactive semiconductor, such as titanium oxide, are added to a pellet-shaped inorganic porous material such as ceramic, glass, quartz glass, activated carbon, activated clay, zeolite, synthetic zeolite, sepiolite, and bentonite. Mixing, kneading,
As shown in FIG. 3, ceramic, glass, quartz glass, activated carbon,
Ultra-fine particles of the photoreactive semiconductor such as titanium oxide are mixed, kneaded, and fired to a particulate or flake-like inorganic porous material such as activated clay, zeolite, synthetic zeolite, sepiolite, bentonite, and the like. As shown in FIG. 2, ultra-fine particles of a photoreactive semiconductor are supported by mixing, kneading, and firing on a fibrous material composed of organic or inorganic synthetic polymer fibers. Ultra-fine particles of a photoreactive semiconductor are carried in or on a gas-permeable sheet such as a nonwoven fabric, a woven fabric, a paper or a woven fabric made of an inorganic synthetic polymer fiber. Alternatively, an inorganic porous material having a honeycomb shape or a three-dimensional network structure formed by foaming or molding may support ultrafine particles of a photoreactive semiconductor. Among these, ceramic, glass, quartz glass,
Ultrafine titanium dioxide having an X-ray particle size of 5 to 30 nm mixed, kneaded, calcined or granulated with an inorganic porous substance in the form of pellets such as bentonite, or a nonwoven fabric, woven fabric, Paper made of natural fibers,
The photoreactive semiconductor carrier A is preferably processed into a honeycomb shape by carrying ultrafine titanium dioxide having an X-ray particle size of 5 to 30 nm in or on a permeable sheet such as a woven cloth.

【0012】このようにして製造された光反応性半導体
担持体Aは光触媒反応器Bに内蔵され、紫外線を含有し
た光を照射する光源Cから紫外線を含有した光が照射さ
れる。この紫外線を含有した光を照射する光源Cとして
は、波長200〜400nmで紫外線強度1〜100m
W/cm2の紫外線を発生する太陽光,蛍光灯,ブラッ
クライト,殺菌灯,水銀灯,ハロゲンランプ,白熱ラン
プの光などを単独で、又は組合せて利用できる。更に、
外部から光触媒反応器Bを100〜300℃に加熱する
ことにより、光触媒反応器B内の光反応性半導体担持体
Aに生じた分解ガス中の酸性ガスを効率良くガス捕集器
Dへと誘導することもできる。
The photoreactive semiconductor carrier A thus manufactured is incorporated in a photocatalytic reactor B, and is irradiated with light containing ultraviolet rays from a light source C for irradiating light containing ultraviolet rays. The light source C for irradiating the light containing this ultraviolet light has a wavelength of 200 to 400 nm and an ultraviolet intensity of 1 to 100 m.
Sunlight, fluorescent light, black light, germicidal lamp, mercury lamp, halogen lamp, incandescent lamp that generates W / cm 2 ultraviolet light can be used alone or in combination. Furthermore,
By heating the photocatalyst reactor B from outside to 100 to 300 ° C., the acidic gas in the decomposition gas generated in the photoreactive semiconductor carrier A in the photocatalyst reactor B is efficiently guided to the gas collector D. You can also.

【0013】光触媒反応器Bにはガス捕集器Dが連結さ
れており、光触媒反応器B内での光触媒反応により発生
した二次的生成物である塩化水素,硫酸,硝酸などの強
酸はガス捕集器D内で捕集される。このガス捕集器Dと
しては、水を注入しておくことにより酸性水として取り
出した後に塩基性水溶液で中和して処理することができ
るが、予めガス捕集器D内に塩基性水溶液を注入してお
くことにより捕集処理と中和処理とを同時に行うことも
できる。また、ガス捕集器D内に塩基性固体をを充填し
ておくことにより、固体状態で中和処理を行うこともで
きる。この場合、塩基性固体のサイズとしては直径0.
1〜10mmが望ましい。
A gas collector D is connected to the photocatalytic reactor B, and strong acids such as hydrogen chloride, sulfuric acid and nitric acid, which are secondary products generated by the photocatalytic reaction in the photocatalytic reactor B, are gaseous. It is collected in the collector D. This gas collector D can be treated by neutralizing it with a basic aqueous solution after taking out as acidic water by injecting water. By injecting, the collection process and the neutralization process can be performed simultaneously. Further, by filling the gas collector D with a basic solid, the neutralization treatment can be performed in a solid state. In this case, the size of the basic solid is 0.
1 to 10 mm is desirable.

【0014】また、ガス捕集方法としては、発生した二
次的生成物である塩化水素,硫酸,硝酸などのガス状強
酸物質に水又は塩基性水溶液を霧状に噴霧することも考
えられるが、除去効率を考慮すると水又は塩基性水溶液
を含有させたガス捕集器Dを使用するか、塩基性固体を
充填したガス捕集器Dを設置しておくことにより固体状
態で中和処理する方法が優れている。
As a gas collecting method, it is conceivable to spray water or a basic aqueous solution in a mist on a gaseous strong acid substance such as hydrogen chloride, sulfuric acid or nitric acid which is a secondary product generated. In consideration of the removal efficiency, neutralization treatment is performed in a solid state by using a gas collector D containing water or a basic aqueous solution, or by installing a gas collector D filled with a basic solid. The method is excellent.

【0015】ガス捕集器D内に注入又は充填する塩基性
水溶液や塩基性固体の塩基性物質としては、従来公知の
塩基性物質が利用できる。具体的には、水酸化ナトリウ
ム,水酸化カリウム,水酸化カルシウム,炭酸ナトリウ
ム,炭酸水素ナトリウム,炭酸カルシウム,水酸化アル
ミニウム,アンモニア水などが挙げられる。
As the basic aqueous solution or basic solid substance to be injected or filled into the gas collector D, conventionally known basic substances can be used. Specific examples include sodium hydroxide, potassium hydroxide, calcium hydroxide, sodium carbonate, sodium hydrogen carbonate, calcium carbonate, aluminum hydroxide, aqueous ammonia, and the like.

【0016】このようにして、クロロホルムなどの紙パ
ルプ製造工程で発生する大気汚染有害気体物質を含有す
る気体を装置内に取り込み、光触媒反応器B内の光反応
性半導体担持体Aで光触媒分解を行い、二次的に発生す
る塩化水素,硫酸,硝酸などの強酸成分をガス捕集器D
内の水,塩基性水溶液又は塩基性固体で捕集する。更
に、装置内に設置されたファン,ブロワ−などの流量調
整機能付き気体循環装置Eを用いることで装置内の気体
を強制的に流動させることが好ましく、図1〜3に示す
如く光触媒反応器Bとガス捕集器Dとが1基ずつ設置さ
れている場合には装置内の気体を連続循環し、大気汚染
有害気体物質を一定レベルまで分解した後に開閉弁付き
の排出口Gから浄化された気体として大気中に排出する
ことが好ましいが、図4に示す如く光触媒反応器Bとガ
ス捕集器Dとが複数基タンデムに設置されている場合に
は装置内の気体を強制的に流動させて大気汚染有害気体
物質を一定レベルまで分解した後に大気中に排出すれば
よい。
In this way, a gas containing harmful air pollutants such as chloroform generated in the paper pulp manufacturing process is taken into the apparatus, and the photoreactive semiconductor carrier A in the photocatalyst reactor B undergoes photocatalytic decomposition. Then, the strong acid components such as hydrogen chloride, sulfuric acid and nitric acid which are generated secondarily are collected by the gas collector D.
Capture with water, basic aqueous solution or basic solid. Further, it is preferable to forcibly flow the gas in the apparatus by using a gas circulating apparatus E having a flow rate adjusting function such as a fan and a blower installed in the apparatus. As shown in FIGS. When B and the gas collector D are installed one by one, the gas in the apparatus is continuously circulated to decompose the air polluting harmful gas substances to a certain level, and then purified from the outlet G with the on-off valve. Although it is preferable to discharge the gas into the atmosphere as air, when the photocatalyst reactor B and the gas collector D are installed in a plurality of tandems as shown in FIG. Then, the air polluting harmful gas substances may be decomposed to a certain level and then discharged to the atmosphere.

【0017】このような本発明に係る大気汚染有害物質
の浄化方法及び装置によれば、光反応性半導体担持体A
を内蔵した光触媒反応器Bを光源Cから紫外線を含有し
た光を照射することにより、塩素系パルプ漂白工程にお
いて発生するクロロホルムなどの大気汚染有害物質を光
分解し、そこで二次的に発生する塩化水素などの酸性物
質を光触媒反応器Bに連結されたガス捕集器Dで捕集す
ることにより、大気汚染有害物質の光触媒分解と二次的
大気汚染有害物質の除去とを同時に行うことができる。
According to the method and apparatus for purifying air pollutants according to the present invention, the photoreactive semiconductor carrier A
By irradiating light containing ultraviolet light from a light source C to a photocatalyst reactor B containing a chlorinated pulp, air pollution harmful substances such as chloroform generated in a chlorine-based pulp bleaching process are photo-decomposed. By collecting acidic substances such as hydrogen with the gas collector D connected to the photocatalytic reactor B, photocatalytic decomposition of air pollutants and removal of secondary air pollutants can be performed simultaneously. .

【0018】[0018]

【実施例】以下に本発明の実施例を示すが、本発明はこ
れに限定されるものではない。 (実施例1)硫酸チタニルを加熱加水分解して得られた
酸性チタニアゾルをTiO2基準で40g/Lに水で希
釈した後、この希釈液に多孔質球状セラミックビ−ズ
(直径2mm)の充填材を1時間含浸させ、アンモニア
水を添加してpH7に中和して充填材の表面に酸化チタ
ンを付着させた。更に、この酸化チタン付着充填材をろ
過分離し、乾燥させた後、600℃の温度で1時間焼成
し、この焼成した充填材を水洗,乾燥して光反応性半導
体担持体Aを得た。この担持体A50gをガラス管(内
径20mm×長さ300mm×厚さ1mm)内に充填し
て光触媒反応器Bとした。この光触媒反応器Bの両サイ
ド5cmの距離に20Wの紫外線を含有した光を照射す
る光源Cであるブラックライト(352nmに吸収ピ−
ク)を2個設置し、この光触媒反応器Bに水を注入した
ガス捕集器Dを連結し、このガス捕集器Dに流量調整機
能付き気体循環装置Eとしてエアーポンプを連結し、こ
のエアーポンプEから送り出された気体が開閉弁付きの
排出口Gと大気汚染物質を含有する気体を注入する注入
口Fとに供給され、開閉弁付きの排出口Gが閉鎖されて
いる場合には再び光触媒反応器Bに接続されて循環シス
テムが構成されている図1に示す全容積が5000ml
に設定された大気汚染物質の浄化装置を形成した。
EXAMPLES Examples of the present invention will be described below, but the present invention is not limited to these examples. (Example 1) was diluted with water to 40 g / L of acidic titania sol obtained by thermal hydrolysis of titanyl sulfate in TiO 2 basis, porous spherical ceramic bi this dilution - filling's (diameter 2 mm) The material was impregnated for 1 hour, neutralized to pH 7 by adding aqueous ammonia, and titanium oxide was attached to the surface of the filler. Further, the titanium oxide-attached filler was separated by filtration, dried, and then fired at a temperature of 600 ° C. for 1 hour. The fired filler was washed with water and dried to obtain a photoreactive semiconductor carrier A. 50 g of this carrier A was filled in a glass tube (inner diameter 20 mm × length 300 mm × thickness 1 mm) to obtain a photocatalytic reactor B. A black light (absorption peak at 352 nm), which is a light source C for irradiating light containing 20 W of ultraviolet light to a distance of 5 cm on both sides of the photocatalytic reactor B, is applied.
H), two gas collectors D into which water has been injected are connected to the photocatalytic reactor B, and an air pump is connected to the gas collector D as a gas circulation device E having a flow rate adjusting function. When the gas sent from the air pump E is supplied to an outlet G with an on-off valve and an inlet F for injecting a gas containing air pollutants, and the outlet G with an on-off valve is closed It is connected to the photocatalyst reactor B again to constitute the circulation system.
The air pollutant purification device set in was set up.

【0019】この図1に示す浄化装置を使用して、注入
口Fから濃度250000ppmのガス状クロロホルム
を含有する空気3mlを、シリンジを用いて系内に注入
した。この時、注入口Fから測定した系内のクロロホル
ムの初期濃度は150ppmであった。そして、ブラッ
クライトCから紫外線強度4mW/cm2で光照射を行
いながら、エアーポンプEにより10リットル/分の流
量で系内の気体を循環し、10時間連続運転を行った。
10時間後、開閉弁付きの排出口Gを開いて排出口Gか
ら排出ガスを採取し、クロロホルム及び塩化水素の濃度
を測定した。その結果、クロロホルムの光触媒分解反応
により発生した塩化水素は総てガス捕集器D内の水に溶
解して塩酸に変化していて塩化水素の濃度は0ppmで
あった。また、クロロホルムの最終濃度は5ppmであ
った。このように、クロロホルムの初期濃度150pp
mと最終濃度5ppmとより、光触媒分解効率は96.
7%であり、また10時間の連続運転でも光反応性半導
体担持体Aの分解効率の低下は認められなかった。
Using the purifying apparatus shown in FIG. 1, 3 ml of air containing gaseous chloroform having a concentration of 250,000 ppm was injected into the system from the inlet F using a syringe. At this time, the initial concentration of chloroform in the system measured from the inlet F was 150 ppm. The gas in the system was circulated at a flow rate of 10 liter / min by the air pump E while irradiating light from the black light C at an ultraviolet intensity of 4 mW / cm 2 , and a continuous operation was performed for 10 hours.
After 10 hours, the outlet G with the on-off valve was opened, and the exhaust gas was collected from the outlet G, and the concentrations of chloroform and hydrogen chloride were measured. As a result, all the hydrogen chloride generated by the photocatalytic decomposition reaction of chloroform was dissolved in water in the gas collector D and changed into hydrochloric acid, and the concentration of hydrogen chloride was 0 ppm. The final concentration of chloroform was 5 ppm. Thus, the initial concentration of chloroform was 150 pp.
m and a final concentration of 5 ppm, the photocatalytic decomposition efficiency was 96.
It was 7%, and no reduction in the decomposition efficiency of the photoreactive semiconductor carrier A was observed even after continuous operation for 10 hours.

【0020】(比較例1)実施例1において、ガス捕集
器Dを設置しない以外は同様な装置及び条件で実験を行
った。その結果、クロロホルムの光触媒分解反応により
発生した塩化水素の濃度は100ppm、クロロホルム
の最終濃度は50ppmであった。このように、クロロ
ホルムの初期濃度150ppmと最終濃度50ppmと
より、光触媒分解効率は66.7%であり、10時間の
連続運転で光反応性半導体担持体Aの分解効率の低下が
認められた。
(Comparative Example 1) An experiment was carried out in the same manner as in Example 1, except that the gas collector D was not installed. As a result, the concentration of hydrogen chloride generated by the photocatalytic decomposition reaction of chloroform was 100 ppm, and the final concentration of chloroform was 50 ppm. Thus, from the initial concentration of chloroform of 150 ppm and the final concentration of 50 ppm, the photocatalytic decomposition efficiency was 66.7%, and a decrease in the decomposition efficiency of the photoreactive semiconductor carrier A was observed after continuous operation for 10 hours.

【0021】(実施例2)硫酸法酸化チタンの製造工程
中に得られる含水酸化チタンを水酸化ナトリウム水溶液
で中和洗浄し、塩酸により解膠して酸化チタン換算で4
0重量%でpH1のチタニアゾル原液を得た。このチタ
ニアゾル原液を10倍に希釈した後、ブチンジオール系
ノニオン界面活性剤のメタノール溶液を1000ppm
添加してチタニア含浸液とした。水流交絡法により強度
を増強したポリプロピレン繊維より成る不織布(目付
量:40g/m2)をコロナ処理した後、上記チタニア
ゾル含浸液に浸漬して軽く絞った。一方、炭酸水素ナト
リウムを水に溶解してpH8のアルカリ処理用水溶液を
作製し、このアルカリ処理用水溶液にチタニアゾルを含
浸させた不織布を浸漬して酸化チタンを不織布に担持さ
せ、80℃で3分間風乾し、更に成型加工によりハニカ
ム構造の光反応性半導体担持体Aを得た。この担持体A
(縦300mm×横300mm×厚み10mm)をガラ
ス管(内径300mm×長さ300mm×厚さ5mm)
内に設置し光触媒反応器Bとした。この光触媒反応器B
の両サイド5cmの距離に紫外線を含有した光を照射す
る光源Cである20Wの殺菌灯(254nmに吸収ピ−
ク)を2個設置した。この光触媒反応器Bに水酸化ナト
リウム水溶液を注入したガス捕集器Dを連結し、このガ
ス捕集器Dに流量調整機能付き気体循環装置Eとしてエ
アーポンプを連結し、このエアーポンプEから送り出さ
れた気体が開閉弁付きの排出口Gと大気汚染物質を含有
する気体を注入する注入口Fとに供給され、開閉弁付き
の排出口Gが閉鎖されている場合には再び光触媒反応器
Bに接続されて循環システムが構成されている図2に示
す全容積が5000mlに設定された大気汚染物質の浄
化装置を形成した。
Example 2 The hydrous titanium oxide obtained during the production process of the sulfuric acid-processed titanium oxide was neutralized and washed with an aqueous sodium hydroxide solution, peptized with hydrochloric acid, and converted to titanium oxide by 4%.
A titania sol stock solution of 0% by weight and a pH of 1 was obtained. After diluting this titania sol stock solution 10 times, a methanol solution of a butynediol-based nonionic surfactant was added at 1000 ppm.
This was added to obtain a titania impregnating liquid. A nonwoven fabric (weight per unit area: 40 g / m 2 ) made of polypropylene fiber whose strength was enhanced by the hydroentanglement method was subjected to corona treatment, and then immersed in the above titania sol impregnating solution and squeezed lightly. On the other hand, sodium bicarbonate is dissolved in water to prepare an aqueous solution for alkaline treatment of pH 8, a nonwoven fabric impregnated with titania sol is immersed in the aqueous solution for alkaline treatment, titanium oxide is supported on the nonwoven fabric, and the solution is treated at 80 ° C. for 3 minutes. The resultant was air-dried and further molded to obtain a photoreactive semiconductor carrier A having a honeycomb structure. This carrier A
(300mm length x 300mm width x 10mm thickness) into a glass tube (300mm inner diameter x 300mm length x 5mm thickness)
It was set as a photocatalyst reactor B inside. This photocatalytic reactor B
20 W germicidal lamp (absorption peak at 254 nm) which is a light source C for irradiating light containing ultraviolet rays to a distance of 5 cm on both sides of the
H) were installed. A gas collector D into which an aqueous solution of sodium hydroxide was injected was connected to the photocatalyst reactor B, and an air pump was connected to the gas collector D as a gas circulation device E having a flow rate adjusting function. The discharged gas is supplied to an outlet G with an on-off valve and an inlet F for injecting a gas containing air pollutants, and when the outlet G with an on-off valve is closed, the photocatalytic reactor B is again turned on. 2 and a circulation system was constructed, and a purification device for air pollutants having a total volume set to 5000 ml as shown in FIG. 2 was formed.

【0022】この図2に示す浄化装置を使用して、注入
口Fから濃度250000ppmのガス状クロロホルム
を含有する空気3mlを、シリンジを用いて系内に注入
した。この時、注入口Fから測定した系内のクロロホル
ムの初期濃度は150ppmであった。そして、殺菌灯
Cから紫外線強度4mW/cm2で光照射を行いなが
ら、エアーポンプEにより10リットル/分の流量で系
内の気体を循環し、10時間連続運転を行った。10時
間後、開閉弁付きの排出口Gを開いて排出口Gから排出
ガスを採取し、クロロホルム及び塩化水素の濃度を測定
した。その結果、クロロホルムの光触媒分解反応により
発生した塩化水素は総てガス捕集器D内の水酸化ナトリ
ウム水溶液と反応して塩化ナトリウムに変化しており、
塩化水素の濃度は0ppmであった。また、クロロホル
ムの最終濃度は4ppmであった。このように、クロロ
ホルムの初期濃度150ppmと最終濃度4ppmとよ
り、光触媒分解効率は97.3%であり、また10時間
の連続運転でも光反応性半導体担持体Aの分解効率の低
下は認められなかった。
Using the purifying apparatus shown in FIG. 2, 3 ml of air containing gaseous chloroform having a concentration of 250,000 ppm was injected into the system from the inlet F using a syringe. At this time, the initial concentration of chloroform in the system measured from the inlet F was 150 ppm. Then, while irradiating light from the germicidal lamp C with an ultraviolet intensity of 4 mW / cm 2 , the gas in the system was circulated at a flow rate of 10 liter / min by the air pump E, and the continuous operation was performed for 10 hours. After 10 hours, the outlet G with the on-off valve was opened, and the exhaust gas was collected from the outlet G, and the concentrations of chloroform and hydrogen chloride were measured. As a result, all the hydrogen chloride generated by the photocatalytic decomposition reaction of chloroform has been converted to sodium chloride by reacting with the aqueous sodium hydroxide solution in the gas collector D.
The concentration of hydrogen chloride was 0 ppm. The final concentration of chloroform was 4 ppm. Thus, from the initial concentration of chloroform of 150 ppm and the final concentration of 4 ppm, the photocatalytic decomposition efficiency was 97.3%, and no reduction in the decomposition efficiency of the photoreactive semiconductor carrier A was observed even after continuous operation for 10 hours. Was.

【0023】(比較例2)実施例2において、ガス捕集
器Dを設置しない以外は同様な装置及び条件で実験を行
った。その結果、クロロホルムの光触媒分解反応により
発生した塩化水素の濃度は90ppmであった。また、
クロロホルムの最終濃度は55ppmであった。クロロ
ホルムの初期濃度150ppmと最終濃度55ppmと
より、光触媒分解効率は63.3%であり、10時間の
連続運転で光反応性半導体担持体Aの分解効率の低下が
認められた。
(Comparative Example 2) An experiment was carried out in the same manner as in Example 2, except that the gas collector D was not provided. As a result, the concentration of hydrogen chloride generated by the photocatalytic decomposition reaction of chloroform was 90 ppm. Also,
The final concentration of chloroform was 55 ppm. From the initial concentration of chloroform of 150 ppm and the final concentration of 55 ppm, the photocatalytic decomposition efficiency was 63.3%, and a decrease in the decomposition efficiency of the photoreactive semiconductor carrier A was observed after continuous operation for 10 hours.

【0024】(実施例3)LBKP微細パルプ繊維10
0gを水2000mlに1時間撹拌しながら分散させ、
このパルプ繊維分散液に超微粒子酸化チタンの20%分
散液50gを添加し1時間撹拌し、更に10%ポリビニ
ルアルコール水溶液50gを添加し1時間撹拌した。次
にスクリーンでこの超微粒子酸化チタンの付着した微細
パルプ繊維を濾過し、濾過物を100℃で1時間乾燥・
粉砕して光反応性半導体担持体Aを得た。この担持体A
50gを、ガラス管(内径20mm×長さ300mm×
厚さ1mm)内に充填して光触媒反応器Bとした。この
光触媒反応器Bの両サイド5cmの距離に100Wの紫
外線を含有した光を照射する光源Cである水銀灯を2個
設置し、この光触媒反応器Bに水酸化ナトリウム固体を
充填したガス捕集器Dを連結し、このガス捕集器Dに流
量調整機能付き気体循環装置Eとしてエアーポンプを連
結し、このエアーポンプEから送り出された気体が開閉
弁付きの排出口Gと大気汚染物質を含有する気体を注入
する注入口Fとに供給され、開閉弁付きの排出口Gが閉
鎖されている場合には再び光触媒反応器Bに接続されて
循環システムが構成されている図3に示す全容積が50
00mlに設定された大気汚染物質の浄化装置を形成し
た。
(Example 3) LBKP fine pulp fiber 10
0 g is dispersed in 2000 ml of water with stirring for 1 hour,
To this pulp fiber dispersion was added 50 g of a 20% dispersion of ultrafine titanium oxide, and the mixture was stirred for 1 hour. Further, 50 g of a 10% aqueous polyvinyl alcohol solution was added and stirred for 1 hour. Next, the fine pulp fiber to which the ultrafine titanium oxide particles are adhered is filtered by a screen, and the filtrate is dried at 100 ° C. for 1 hour.
This was crushed to obtain a photoreactive semiconductor carrier A. This carrier A
50 g into a glass tube (inner diameter 20 mm x length 300 mm x
(1 mm thick) to form a photocatalytic reactor B. Two mercury lamps, which are light sources C for irradiating light containing 100 W of ultraviolet light, are installed at a distance of 5 cm on both sides of the photocatalytic reactor B, and a gas collector in which the photocatalytic reactor B is filled with solid sodium hydroxide. D, and an air pump is connected to the gas collector D as a gas circulating device E with a flow rate adjusting function. The gas sent from the air pump E contains an exhaust port G with an on-off valve and an air pollutant. 3 is connected to the photocatalyst reactor B to form a circulation system when the discharge port G with an on-off valve is closed. Is 50
An air pollutant purification device set to 00 ml was formed.

【0025】この図3に示す浄化装置を使用して、注入
口Fから濃度250000ppmのガス状クロロホルム
を含有する空気3mlを、シリンジを用いて系内に注入
した。この時、注入口Fから測定した系内のクロロホル
ムの初期濃度は150ppmであった。そして、水銀灯
Cから紫外線強度20mW/cm2で光照射を行いなが
らエアーポンプEにより10リットル/分の流量で系内
の気体を循環し、10時間連続運転を行った。10時間
後、開閉弁付きの排出口Gを開いて排出口Gから排出ガ
スを採取し、クロロホルム及び塩化水素の濃度を測定し
た。その結果、クロロホルムの光触媒分解反応により発
生した塩化水素は総てガス捕集器D内の水酸化ナトリウ
ム固体と反応して塩化ナトリウムに変化しており、塩化
水素の濃度は0ppmであった。また、クロロホルムの
最終濃度は3ppmであった。このように、クロロホル
ムの初期濃度150ppmと最終濃度3ppmとより、
光触媒分解効率は98%であり、また10時間の連続運
転でも光反応性半導体担持体Aの分解効率の低下は認め
られなかった。
Using the purifying apparatus shown in FIG. 3, 3 ml of air containing gaseous chloroform having a concentration of 250,000 ppm was injected into the system from the inlet F using a syringe. At this time, the initial concentration of chloroform in the system measured from the inlet F was 150 ppm. The gas in the system was circulated at a flow rate of 10 liters / minute by the air pump E while irradiating light with a UV intensity of 20 mW / cm 2 from the mercury lamp C, and a continuous operation was performed for 10 hours. After 10 hours, the outlet G with the on-off valve was opened, and the exhaust gas was collected from the outlet G, and the concentrations of chloroform and hydrogen chloride were measured. As a result, all of the hydrogen chloride generated by the photocatalytic decomposition reaction of chloroform reacted with the solid sodium hydroxide in the gas collector D and changed to sodium chloride, and the concentration of hydrogen chloride was 0 ppm. The final concentration of chloroform was 3 ppm. Thus, from an initial concentration of chloroform of 150 ppm and a final concentration of 3 ppm,
The photocatalytic decomposition efficiency was 98%, and no reduction in the decomposition efficiency of the photoreactive semiconductor carrier A was observed even after continuous operation for 10 hours.

【0026】(比較例3)実施例3において、ガス捕集
器Dを設置しない以外は同様な装置及び条件で実験を行
った。その結果、クロロホルムの光触媒分解反応により
発生した塩化水素の濃度は125ppm、クロロホルム
の最終濃度は60ppmであった。このように、クロロ
ホルムの初期濃度150ppmと最終濃度60ppmと
より、光触媒分解効率は60%であり、10時間の連続
運転で光反応性半導体担持体Aの分解効率の低下が認め
られた。
(Comparative Example 3) An experiment was carried out in the same manner as in Example 3, except that the gas collector D was not installed. As a result, the concentration of hydrogen chloride generated by the photocatalytic decomposition reaction of chloroform was 125 ppm, and the final concentration of chloroform was 60 ppm. As described above, the photocatalytic decomposition efficiency was 60% from the initial concentration of chloroform of 150 ppm and the final concentration of 60 ppm, and a decrease in the decomposition efficiency of the photoreactive semiconductor carrier A was observed after continuous operation for 10 hours.

【0027】[0027]

【発明の効果】以上に詳述した如く、本発明に係る大気
汚染有害物質の浄化方法及び装置は、化学工場で排出さ
れるクロロホルムの如き大気汚染有害物質を効率良く光
分解し、二次的に発生する大気汚染有害物質をも捕集・
除去できるため、極めて効率良く大気汚染有害物質の浄
化が行えると同時に、光触媒体の機能を低下させること
なく安定した状態で長期間連続使用できる。特に、パル
プ製造工程中の塩素系薬品によるパルプ漂白工程におい
て発生する大気汚染有害物質の一つであるクロロホルム
を効率良く分解できると共に、その過程で二次的に発生
する塩化水素を効率良く除去することが可能であり、そ
の工業的価値は非常に大きなものである。
As described above in detail, the method and apparatus for purifying air pollutants according to the present invention efficiently decompose air pollutants such as chloroform discharged from a chemical factory, and perform secondary decomposition. Air pollution harmful substances generated in
Because it can be removed, it is possible to purify air pollutants very efficiently and at the same time, it can be used continuously for a long time in a stable state without deteriorating the function of the photocatalyst. In particular, it is possible to efficiently decompose chloroform, one of the air pollutant harmful substances generated in the pulp bleaching process by chlorine-based chemicals in the pulp manufacturing process, and efficiently remove the hydrogen chloride secondary generated in the process. It is possible and its industrial value is very large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る大気汚染有害物質の浄化装置の1
実施例を示す概念図である。
FIG. 1 shows an apparatus for purifying harmful substances of air pollution according to the present invention.
It is a key map showing an example.

【図2】本発明に係る大気汚染有害物質の浄化装置の他
の実施例を示す概念図である。
FIG. 2 is a conceptual diagram showing another embodiment of the air pollution harmful substance purifying apparatus according to the present invention.

【図3】本発明に係る大気汚染有害物質の浄化装置の他
の実施例を示す概念図である。
FIG. 3 is a conceptual diagram showing another embodiment of the air pollution harmful substance purifying apparatus according to the present invention.

【図4】図1に示した本発明に係る大気汚染有害物質の
浄化装置の1実施例をタンデムに設置した1実施例を示
す概念図である。
FIG. 4 is a conceptual diagram showing one embodiment in which the air pollution harmful substance purifying apparatus according to the present invention shown in FIG. 1 is installed in tandem.

【符号の説明】[Explanation of symbols]

A 光反応性半導体担持体 B 光触媒反応器 C 紫外線を含有した光を照射する光源 D ガス捕集器 E 流量調整機能付き気体循環装置 F 注入口 G 開閉弁付き排出口 Reference Signs List A photoreactive semiconductor carrier B photocatalytic reactor C light source that emits light containing ultraviolet light D gas collector E gas circulation device with flow rate adjustment function F inlet G outlet with on-off valve

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 大気汚染有害物質を含有する気体中の大
気汚染有害物質を光触媒反応により分解して分解ガス中
に発生する酸性ガスを水又は塩基性物質と反応させて浄
化することを特徴とする大気汚染有害物質の浄化方法。
An air pollution harmful substance in a gas containing an air pollution harmful substance is decomposed by a photocatalytic reaction, and an acid gas generated in the decomposition gas is reacted with water or a basic substance to purify the gas. To clean up air polluting harmful substances.
【請求項2】 大気汚染有害物質が紙パルプ製造工程等
で発生するクロロホルムである請求項1に記載の大気汚
染有害物質の浄化方法。
2. The method for purifying air pollutants according to claim 1, wherein the air pollutants are chloroform generated in a paper pulp manufacturing process or the like.
【請求項3】 ガス注入口(F)より大気汚染有害物質を
含有する気体が注入される光反応性半導体担持物質(A)
を内蔵した光触媒反応器(B)と、該光触媒反応器(B)内
に紫外線を含有する光を照射する光源(C)と、該光触媒
反応器(B)を通過した気体中の光触媒反応により分解し
た酸性ガスを水又は塩基性物質と反応させるガス捕集器
(D)とを備えていることを特徴とする大気汚染有害物質
の浄化装置。
3. A photoreactive semiconductor carrier (A) into which a gas containing air pollutants is injected from a gas inlet (F).
, A light source (C) for irradiating light containing ultraviolet light into the photocatalyst reactor (B), and a photocatalytic reaction in gas passing through the photocatalyst reactor (B). Gas collector for reacting decomposed acidic gas with water or basic substance
(D), a purification device for air pollutant harmful substances.
【請求項4】 ガス捕集器(D)内の塩基性物質が、塩基
性水溶液又は塩基性固体である請求項3に記載の有害物
質の大気汚染有害物質の浄化装置。
4. The apparatus according to claim 3, wherein the basic substance in the gas collector (D) is a basic aqueous solution or a basic solid.
【請求項5】 紫外線を含有する光を照射する光源(C)
が、太陽光,蛍光灯,ブラックライト,殺菌灯、水銀
灯,ハロゲンランプ及び白熱ランプの群から選ばれる少
なくとも一種の光源である請求項3又は4に記載の大気
汚染有害物質の浄化装置。
5. A light source (C) for irradiating light containing ultraviolet rays.
The air pollution harmful substance purifying apparatus according to claim 3 or 4, wherein the device is at least one light source selected from the group consisting of sunlight, a fluorescent lamp, a black light, a germicidal lamp, a mercury lamp, a halogen lamp, and an incandescent lamp.
JP9364840A 1997-12-22 1997-12-22 Method and apparatus for cleaning of air pollution hazardous substance Pending JPH11179154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9364840A JPH11179154A (en) 1997-12-22 1997-12-22 Method and apparatus for cleaning of air pollution hazardous substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9364840A JPH11179154A (en) 1997-12-22 1997-12-22 Method and apparatus for cleaning of air pollution hazardous substance

Publications (1)

Publication Number Publication Date
JPH11179154A true JPH11179154A (en) 1999-07-06

Family

ID=18482797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9364840A Pending JPH11179154A (en) 1997-12-22 1997-12-22 Method and apparatus for cleaning of air pollution hazardous substance

Country Status (1)

Country Link
JP (1) JPH11179154A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100713173B1 (en) 2006-01-19 2007-05-02 고려공업검사 주식회사 Air purifying device comprising gas-liquid two phase fluidized bed reactor
JP2010149038A (en) * 2008-12-25 2010-07-08 National Institute Of Advanced Industrial Science & Technology Method of recovering nitrogen oxides in atmospheric air by utilizing sustainable photocatalytic reaction
WO2011061842A1 (en) * 2009-11-19 2011-05-26 イビデン株式会社 Method for producing honeycomb structure
JP2017023206A (en) * 2015-07-16 2017-02-02 株式会社フジコー Livestock farming environment maintenance equipment
WO2022086303A1 (en) * 2020-10-23 2022-04-28 주식회사 지오엔 Reactor for removing or reducing foul smell or harmful gas

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100713173B1 (en) 2006-01-19 2007-05-02 고려공업검사 주식회사 Air purifying device comprising gas-liquid two phase fluidized bed reactor
JP2010149038A (en) * 2008-12-25 2010-07-08 National Institute Of Advanced Industrial Science & Technology Method of recovering nitrogen oxides in atmospheric air by utilizing sustainable photocatalytic reaction
WO2011061842A1 (en) * 2009-11-19 2011-05-26 イビデン株式会社 Method for producing honeycomb structure
JP2017023206A (en) * 2015-07-16 2017-02-02 株式会社フジコー Livestock farming environment maintenance equipment
WO2022086303A1 (en) * 2020-10-23 2022-04-28 주식회사 지오엔 Reactor for removing or reducing foul smell or harmful gas

Similar Documents

Publication Publication Date Title
KR100688249B1 (en) Device and method for treatment of odor and hazardous air pollutant
US5689798A (en) Method and apparatus for removing undesirable chemical substances from gases, exhaust gases, vapors, and brines
KR100957433B1 (en) Odor and voc removal system using photo-catalyst
JPH05337337A (en) Purifying method of gas, exhaust gas, vapor and sol and apparatus therefor
JP2006255529A (en) Photocatalyst filter, photocatalyst filter unit, clean room, air purifier, manufacturing apparatus and air purifying method
CN102811794A (en) System and method for air purification using enhanced multi-functional coating based on pn-situ photocatalytic oxidation and ozonation
KR20050047045A (en) Hybrid processing method for deodorization and the system therefor adopted real-time controller
CA2300513A1 (en) Process and catalyst for photocatalytic conversion of contaminants
KR100842100B1 (en) Treatment Method Of Volatie Organic Compounds And Malodor By Hybrid System Of Ozone/Ultraviolet/Catalyst
CN109414647B (en) Method for low-temperature gas cleaning and catalyst used for method
CN104174271A (en) Indoor volatile organic compound purification device
KR100469005B1 (en) Photocatalytic system for the removal of volatile organic compounds
US6596664B2 (en) Method, catalyst, and photocatalyst for the destruction of phosgene
CN110772912A (en) Purification equipment for comprehensive waste gas of biological pharmaceutical factory
US6464951B1 (en) Method, catalyst, and photocatalyst for the destruction of phosgene
CN110227346A (en) A kind of leather and fur products exhaust treatment system
JPH11179154A (en) Method and apparatus for cleaning of air pollution hazardous substance
JP3679167B2 (en) Processing equipment for volatile organic compounds
JP2000152983A (en) Air cleaner
KR100713173B1 (en) Air purifying device comprising gas-liquid two phase fluidized bed reactor
KR100627972B1 (en) equipment for treatment of air using immobilized photocatalytic fiber filter
JP2001025668A (en) Photocatalytic corrugated filter
CN200984352Y (en) Gas deodorization device
WO2010105420A1 (en) Sequencing air cleaning rejuvenation system
CN110711484A (en) A clarification plant that is used for weaving printing factory sewage treatment back to discharge waste gas