JPH11176422A - Manufacture of electrode for battery - Google Patents

Manufacture of electrode for battery

Info

Publication number
JPH11176422A
JPH11176422A JP9356140A JP35614097A JPH11176422A JP H11176422 A JPH11176422 A JP H11176422A JP 9356140 A JP9356140 A JP 9356140A JP 35614097 A JP35614097 A JP 35614097A JP H11176422 A JPH11176422 A JP H11176422A
Authority
JP
Japan
Prior art keywords
drying
electrode
layer
coating
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9356140A
Other languages
Japanese (ja)
Other versions
JP4095144B2 (en
Inventor
Hiroyuki Miyahara
裕之 宮原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP35614097A priority Critical patent/JP4095144B2/en
Publication of JPH11176422A publication Critical patent/JPH11176422A/en
Application granted granted Critical
Publication of JP4095144B2 publication Critical patent/JP4095144B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the manufacture of an electrode in which electrode active material layers on both sides of a collector do not exfoliate. SOLUTION: This manufacture of an electrode for a battery is constituted by sequentially applying electrode coating compositions including an electrode active material, a binder, a solvent and acid on both sides of a planar collector, and by respectively forming electrode active material layers on the both sides of the collector. Here, the manufacture has a front surface layer drying process, applying the electrode coating compositions on the surface of the collector, forming a coated layer and drying the coated layer, and a back surface layer drying process of the same kind. The drying processes of the front and the back surface layers include a first drying process performed at a temperature range T1 of 70-90 deg.C and a second drying process performed at a temperature range T2 of 120-200 deg.C, so that the temperature difference (T2-T1) is set to be more than 40 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電池用電極の製造
方法に関し、特に、非水電解質電池用電極の製造方法で
あって、電極活物質層を電極集電体の両面に強固に設け
ることができる電池用電極の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an electrode for a battery, and more particularly to a method for manufacturing an electrode for a non-aqueous electrolyte battery, wherein an electrode active material layer is firmly provided on both surfaces of an electrode current collector. The present invention relates to a method for producing an electrode for a battery which can be used.

【0002】[0002]

【従来技術】リチウムイオン二次電池の電極は、電極集
電体の両面に電極活物質を含む塗料をそれぞれ塗布し、
乾燥することによって形成されている。特に、負極形成
のための塗料は、負極活物質及びバインダーを含有し、
この負極活物質は、破壊されない範囲で適度に分散され
ている。負極形成のための塗料は、最初に金属箔の電極
集電体の片面に塗布され、乾燥された後、裏面(もう一
方の面)に同様に塗布され、乾燥される。これによっ
て、電極集電体の両面に電極活物質層が形成される。こ
のように電極集電体の両面に電極活物質層が形成された
電池用電極は、その後、必要に応じてプレス加工を施さ
れ、所定の寸法に切断されて使用される。
2. Description of the Related Art An electrode of a lithium ion secondary battery is formed by applying a paint containing an electrode active material to both surfaces of an electrode current collector, respectively.
It is formed by drying. In particular, the coating for forming the negative electrode contains a negative electrode active material and a binder,
This negative electrode active material is appropriately dispersed within a range not to be destroyed. The paint for forming the negative electrode is first applied to one side of the electrode current collector made of a metal foil, dried, and then applied to the back side (the other side) in the same manner and dried. Thereby, the electrode active material layers are formed on both surfaces of the electrode current collector. The battery electrode in which the electrode active material layers are formed on both surfaces of the electrode current collector in this manner is then subjected to press working as necessary, and cut into a predetermined size for use.

【0003】従来より、このようにして電極集電体とし
ての金属箔の上に、負極形成のための塗膜を形成した場
合、金属箔と電極活物質層との接着性が悪く、電極活物
質層が剥離することがあるという問題が生じていた。
Conventionally, when a coating film for forming a negative electrode is formed on a metal foil as an electrode current collector in this manner, the adhesiveness between the metal foil and the electrode active material layer is poor, and the electrode active material is poor. There has been a problem that the material layer may peel off.

【0004】このような問題を解決するために、電極塗
料中の樹脂分を多くする方法や、酸を添加するなどの方
法が提案されている。また、特開平2−68855号公
報には、塗料中に酸を添加することにより、電極集電体
と塗設された電極活物質層との密着性が向上する旨が開
示されている。
[0004] In order to solve such a problem, there have been proposed a method of increasing the resin content in the electrode coating material and a method of adding an acid. Japanese Patent Application Laid-Open No. 2-68855 discloses that the addition of an acid to a paint improves the adhesion between an electrode current collector and a coated electrode active material layer.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、予め塗
料中に酸を添加して用いた場合、適度な乾燥条件を与え
て塗膜を乾燥させないと、密着性の向上が図れない場合
ある。
However, in the case where an acid is added to a paint in advance, the adhesion may not be improved unless the coating film is dried under appropriate drying conditions.

【0006】また、最初に電極活物質層を形成した電極
集電体の片面(以下、「A面」と記す)に比べて、後か
ら電極活物質層を形成する電極集電体の裏面(以下、
「B面」と記す)では、電極活物質層の電極集電体に対
する接着性が著しく低下してしまうことがある。従っ
て、このようにして製造した電極では、電極活物質層の
剥離、特に、電極集電体の裏面(B面)からの剥離が起
こりやすいという問題があった。電極活物質層の剥離が
起こると、これを使用する電池の容量が低下したり、剥
離した電極活物質層がセパレータと、例えば、負極電極
との間に挟まり、セパレータを破って負極電極が正極電
極と短絡するおそれがある。
[0006] Also, compared to one side of the electrode current collector on which the electrode active material layer is formed first (hereinafter referred to as "A-side"), the back side of the electrode current collector on which the electrode active material layer is formed later ( Less than,
In “B side”, the adhesiveness of the electrode active material layer to the electrode current collector may be significantly reduced. Therefore, in the electrode manufactured in this manner, there is a problem that the electrode active material layer is easily peeled, particularly, the electrode current collector is easily peeled from the back surface (surface B). When the electrode active material layer is peeled off, the capacity of the battery using the electrode material is reduced, or the peeled electrode active material layer is sandwiched between the separator and, for example, the negative electrode, and the separator is broken and the negative electrode becomes a positive electrode. There is a risk of short circuit with the electrode.

【0007】さらに、予め塗料中に酸を添加して用いた
場合、電極活物質層に酸が残りすぎると特性面に悪影響
を及ぼすことがあり、乾燥処理条件にも適切な配慮をす
ることが要望されていた。
Further, when an acid is previously added to the coating material, if the acid remains in the electrode active material layer, the characteristics may be adversely affected, and proper consideration should be given to the drying conditions. Had been requested.

【0008】このような実状のもとに本発明は創案され
たものであって、その目的は、電極活物質と、バインダ
ーと、溶剤と、酸とを含有する電極塗料を平板状の電極
集電体の一方の面および他方の面に順次塗布して、前記
電極集電体の両面に電極活物質層をそれぞれ形成する電
池用電極の製造方法において、生産性が良いことはもち
ろんのこと、得られた電極活物質層と電極集電体との接
着性が極めて優れ、電極集電体の両面における電極活物
質層の剥離が起こらない電池用電極の製造方法を提供す
ることにある。また、電極活物質層に残存する酸の量に
も配慮し、特性の劣化の極めて少ない電池用電極の製造
方法を提供することにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an electrode coating material containing an electrode active material, a binder, a solvent, and an acid, which is made of a flat electrode. In the method for manufacturing a battery electrode in which the electrode active material layer is formed on both surfaces of the electrode current collector by sequentially applying one surface and the other surface of the current collector, it is obvious that the productivity is good. It is an object of the present invention to provide a method for manufacturing a battery electrode in which the obtained electrode active material layer has extremely excellent adhesion between the electrode current collector and the electrode active material layer does not peel off on both surfaces of the electrode current collector. It is another object of the present invention to provide a method for manufacturing a battery electrode in which characteristics are not significantly deteriorated in consideration of the amount of acid remaining in the electrode active material layer.

【0009】[0009]

【課題を解決するための手段】本出願に係る発明者ら
が、上記の課題を解決するために鋭意検討した結果、塗
膜層の乾燥工程を2段階に分け、それらの乾燥温度条件
を適宜設定することにより、表面側および裏面側を問わ
ず得られた電極活物質層と電極集電体との接着性が改善
でき、しかも、特性の劣化の極めて少ない電池用電極が
製造できることを見出し、本発明に到達したものであ
る。
Means for Solving the Problems As a result of intensive studies by the inventors of the present application to solve the above-mentioned problems, the drying process of the coating film layer is divided into two stages, and the drying temperature conditions are appropriately adjusted. By setting, the adhesiveness between the electrode active material layer and the electrode current collector obtained regardless of the front side and the back side can be improved, and furthermore, it has been found that a battery electrode with extremely little deterioration in characteristics can be manufactured. The present invention has been reached.

【0010】すなわち、本発明は、電極活物質と、バイ
ンダーと、溶剤と、酸とを含有する電極塗料を平板状の
電極集電体の一方の面および他方の面に順次塗布して、
前記電極集電体の両面に電極活物質層をそれぞれ形成す
る電池用電極の製造方法において、当該製造方法が、前
記電極集電体の一方の面に前記電極塗料を塗布して塗膜
層を形成し、この塗膜層を乾燥する表面層乾燥工程と、
前記電極集電体の他方の面に前記電極塗料を塗布して塗
膜層を形成し、この塗膜層を乾燥する裏面層乾燥工程と
を有し、前記表面層乾燥工程および裏面層乾燥工程は、
いずれも、第1の乾燥工程および次いで行われる第2の
乾燥工程を含み、前記第1の乾燥工程が70〜90℃の
温度範囲で行われ、前記第2の乾燥工程が120〜20
0℃の温度範囲で行われ、かつ前記第2の乾燥工程にお
ける乾燥温度T2と前記第1の乾燥工程における乾燥温
度T1の温度差(T2−T1)の値が、40℃以上であ
るように構成される。
That is, according to the present invention, an electrode paint containing an electrode active material, a binder, a solvent, and an acid is sequentially applied to one surface and the other surface of a flat electrode current collector.
In a method for manufacturing a battery electrode in which an electrode active material layer is formed on both surfaces of the electrode current collector, the method includes applying the electrode paint to one surface of the electrode current collector to form a coating layer. Forming and drying the coating layer, a surface layer drying step,
A back layer drying step of applying the electrode paint to the other surface of the electrode current collector to form a coating layer, and drying the coating layer, wherein the front layer drying step and the back layer drying step Is
Each includes a first drying step and a subsequent second drying step, wherein the first drying step is performed in a temperature range of 70 to 90 ° C., and the second drying step is performed in a temperature range of 120 to 20 ° C.
It is performed in a temperature range of 0 ° C., and the value of the temperature difference (T2−T1) between the drying temperature T2 in the second drying step and the drying temperature T1 in the first drying step is 40 ° C. or more. Be composed.

【0011】また、本発明における前記第1の乾燥工程
は、塗布後の塗膜層を、指触乾燥に至るまで乾燥処理さ
せるように構成される。
Further, the first drying step in the present invention is configured so that the applied coating layer is dried until touch drying.

【0012】本発明における電池用電極の製造方法によ
れば、塗膜層の乾燥工程を2段階に分け、それらの乾燥
温度条件を適宜設定することにより、表面側および裏面
側を問わず得られた電極活物質層と電極集電体との接着
性が改善でき、しかも、特性の劣化の極めて少ない電池
用電極が製造できる。
According to the method for producing an electrode for a battery of the present invention, the drying step of the coating layer is divided into two steps, and by appropriately setting the drying temperature conditions, the coating layer can be obtained regardless of the front side and the back side. In addition, it is possible to improve the adhesion between the electrode active material layer and the electrode current collector, and to manufacture a battery electrode with very little deterioration in characteristics.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態につい
て、詳細に説明する。図1(a)および(b)は、電極
塗料を電極集電体2の両面2a,2bに順次塗設・乾燥
し、電極活物質層51,55を順次形成する状態を経時
的に示した図面である。
Embodiments of the present invention will be described below in detail. FIGS. 1A and 1B show a state in which the electrode paint is sequentially applied to both surfaces 2a and 2b of the electrode current collector 2 and dried to form the electrode active material layers 51 and 55 sequentially. It is a drawing.

【0014】本発明の電池用電極の製造方法は、電極活
物質と、バインダーと、溶剤と、酸とを含有する電極塗
料を平板状の電極集電体2の一方の面2aに塗布して塗
膜層を形成した後、この塗膜層を乾燥させて(表面層乾
燥工程)、電極活物質層51を形成させる(図1
(a))。
In the method of manufacturing a battery electrode according to the present invention, an electrode paint containing an electrode active material, a binder, a solvent, and an acid is applied to one surface 2a of a flat electrode current collector 2. After forming the coating layer, the coating layer is dried (surface layer drying step) to form the electrode active material layer 51 (FIG. 1).
(A)).

【0015】次いで、同様な手法で電極塗料を平板状の
電極集電体2の他方の面2bに塗布して塗膜層を形成し
た後、この塗膜層を乾燥させて(裏面層乾燥工程)、電
極活物質層55を形成させる(図1(b))。このよう
な基本となる製造工程において、本発明の要部は、各塗
膜層の乾燥工程(表面層乾燥工程および裏面層乾燥工
程)をいずれの場合も、2段階に分け、それらの乾燥温
度条件を設定していることにある。
Next, in the same manner, an electrode paint is applied to the other surface 2b of the plate-shaped electrode current collector 2 to form a coating layer, and the coating layer is dried (a back layer drying step). ), And an electrode active material layer 55 is formed (FIG. 1B). In such a basic manufacturing process, the main part of the present invention is that the drying step (the front layer drying step and the back layer drying step) of each coating layer is divided into two stages in each case, The condition is set.

【0016】まず、最初に、本発明で使用される電極塗
料の準備工程について説明する。
First, a step of preparing an electrode paint used in the present invention will be described.

【0017】本発明で使用される電極塗料は、電極活物
質と、バインダーと、溶剤と、酸とを含有している。
The electrode paint used in the present invention contains an electrode active material, a binder, a solvent, and an acid.

【0018】電極活物質としては、従来より、電極活物
質として使用されるものであれば、特に制限なく、種々
の材料を使用することができる。電極活物質は、負極と
して使用するか、正極として使用するかによって材料が
異なる。
As the electrode active material, various materials can be used without any particular limitation as long as they are conventionally used as an electrode active material. The material of the electrode active material differs depending on whether it is used as a negative electrode or a positive electrode.

【0019】負極形成のための電極活物質としては、通
常、炭素質材料が使用される。炭素質材料としては、従
来より使用されている炭素質材料であれば、特に制限な
く使用することができ、例えば、無定形炭素、アセチレ
ンブラック、石油コークス、人造黒鉛、天然黒鉛、グラ
ファイト系炭素繊維、難黒鉛化炭素等を用いることがで
きる。
As an electrode active material for forming a negative electrode, a carbonaceous material is usually used. As the carbonaceous material, any conventionally used carbonaceous material can be used without particular limitation. Examples thereof include amorphous carbon, acetylene black, petroleum coke, artificial graphite, natural graphite, and graphite-based carbon fiber. And non-graphitizable carbon.

【0020】一方、正極形成のための電極活物質として
は従来より使用されているものであれば、特に制限な
く、各種の正極活物質が使用できる。例えば、コバルト
酸リチウムや、マンガン酸リチウム、ニッケル酸リチウ
ムなどの各種の正極活物質が使用することができる。
On the other hand, as the electrode active material for forming the positive electrode, various types of positive electrode active materials can be used without any particular limitation as long as they are conventionally used. For example, various positive electrode active materials such as lithium cobaltate, lithium manganate, and lithium nickelate can be used.

【0021】バインダーとしては従来より使用されてい
るバインダーであれば、特に制限なく、各種のバインダ
ーを使用することができる。例えば、バインダーとし
て、ポリアクリロニトリル(PAN)、ポリエチレンテ
レフタレート、ポリフッ化ビニリデン(PVDF)、ポ
リフッ化ビニルなどを用いることができる。
The binder is not particularly limited as long as it is a conventionally used binder, and various binders can be used. For example, as the binder, polyacrylonitrile (PAN), polyethylene terephthalate, polyvinylidene fluoride (PVDF), polyvinyl fluoride, or the like can be used.

【0022】バインダーは、電極活物質100重量部に
対して、通常、1〜40重量部、好ましくは、2〜25
重量部の割合で使用される。
The binder is used in an amount of usually 1 to 40 parts by weight, preferably 2 to 25 parts by weight, based on 100 parts by weight of the electrode active material.
Used in parts by weight.

【0023】溶剤としては、電極塗料を調製する場合に
従来より使用されている溶剤であれば、特に制限なく、
各種の溶剤を使用することができる。このような溶剤と
しては、例えば、N−メチルピロリドン(NMP)、ピ
ロリドン、N−メチルチオピロリドン、ジメチルフォル
ムアミド(DMF)、ジメチルアセトアミド、ヘキサメ
チルホスホアミド等を単独あるいは混合して用いること
ができる。
The solvent is not particularly limited as long as it is a solvent conventionally used in preparing an electrode paint.
Various solvents can be used. As such a solvent, for example, N-methylpyrrolidone (NMP), pyrrolidone, N-methylthiopyrrolidone, dimethylformamide (DMF), dimethylacetamide, hexamethylphosphamide, or the like can be used alone or in combination.

【0024】溶剤は、通常、電極塗料中の固形分(不揮
発分)が、10〜60重量%、好ましくは30〜50重
量%の割合となるように使用される。
The solvent is usually used such that the solid content (non-volatile content) in the electrode paint is 10 to 60% by weight, preferably 30 to 50% by weight.

【0025】電極塗料中に含有される酸としては、有機
酸でも無機酸でも良い。これらの酸の中では、弱酸が好
ましく、特に有機酸の弱酸が好ましい。このような有機
酸の弱酸としては、例えば、シュウ酸や、蟻酸、マレイ
ン酸、これらの酸の水和物を好ましいものとして挙げる
ことができる。
The acid contained in the electrode coating may be an organic acid or an inorganic acid. Among these acids, weak acids are preferred, and particularly weak acids of organic acids are preferred. Preferred examples of such weak organic acids include oxalic acid, formic acid, maleic acid, and hydrates of these acids.

【0026】酸は、電極活物質と、バインダーと、導電
剤等の全固形物に対して、通常、0.01〜3重量部、
好ましくは0.2〜1.0重量部の割合で使用される。
The acid is usually used in an amount of 0.01 to 3 parts by weight based on all solids such as the electrode active material, the binder and the conductive agent.
Preferably, it is used in a ratio of 0.2 to 1.0 part by weight.

【0027】なお、電極活物質の電気伝導度が悪い場合
には、必要に応じて、導電剤を加えても良い。このよう
な導電剤としては、前述した炭素質材料や、各種の金属
微粉末を使用することができる。導電剤を加える場合、
導電剤の含有量は、活物質100重要部に対して、通
常、1〜25重量部、好ましくは3〜15重量部の割合
で使用される。
When the electric conductivity of the electrode active material is poor, a conductive agent may be added as needed. As such a conductive agent, the above-described carbonaceous materials and various types of metal fine powders can be used. When adding a conductive agent,
The content of the conductive agent is usually 1 to 25 parts by weight, preferably 3 to 15 parts by weight, based on 100 important parts of the active material.

【0028】本発明で使用される電極集電体としては、
平板状のもの、特に金属箔が好適に使用される。電極集
電体の金属材料としては、従来より電極集電体に使用さ
れているものであれば、特に制限なく、各種の金属材料
を使用することができる。このような金属材料として
は、例えば、銅、アルミニウム、ステンレス鋼、ニッケ
ル、鉄等が挙げられる。
The electrode current collector used in the present invention includes:
A flat plate, particularly a metal foil, is preferably used. The metal material of the electrode current collector is not particularly limited as long as it is conventionally used for the electrode current collector, and various metal materials can be used. Examples of such a metal material include copper, aluminum, stainless steel, nickel, iron and the like.

【0029】本発明で使用される電極塗料は、上記各成
分を混合することにより調整され、スラリー状の混合物
である。電極塗料中では、電極活物質が破壊されない範
囲で適度に分散されている必要があり、プラネタリーミ
キサーや、ボールミル等を用いて混合分散される。
The electrode paint used in the present invention is prepared by mixing the above-mentioned components, and is a slurry-like mixture. In the electrode coating material, it is necessary that the electrode active material is appropriately dispersed within a range where the electrode active material is not destroyed. The electrode active material is mixed and dispersed using a planetary mixer, a ball mill, or the like.

【0030】このようにして準備された電極塗料は、電
極集電体の一方の面に塗布され塗膜層が形成される。電
極塗料の塗布は、従来公知の方法によって実施すること
ができる。例えば、エクストルージョンコート、グラビ
アコート、リバースロールコート、ディップコート、キ
スコート、ドクターコート、ナイフコート、カーテンコ
ート、スクリーン印刷等の塗布法によって電極集電体に
塗布することができる。
The electrode paint thus prepared is applied to one surface of the electrode current collector to form a coating layer. The application of the electrode paint can be performed by a conventionally known method. For example, it can be applied to the electrode current collector by an application method such as an extrusion coat, a gravure coat, a reverse roll coat, a dip coat, a kiss coat, a doctor coat, a knife coat, a curtain coat, and a screen print.

【0031】このようにして電極集電体2の一方の面2
aに塗布された塗膜層は、次工程の乾燥工程(表面層乾
燥工程)により乾燥される。次いで、同様な手法で、電
極集電体2の他方の面2bに塗布され塗膜層は、次工程
の乾燥工程(表面層乾燥工程)により乾燥される。
In this manner, one surface 2 of the electrode current collector 2
The coating layer applied to a is dried in the next drying step (surface layer drying step). Next, in the same manner, the coating layer applied to the other surface 2b of the electrode current collector 2 is dried in the next drying step (surface layer drying step).

【0032】本発明においてはこれらの乾燥工程におけ
る特定の操作に特徴がある。すなわち、本発明において
は、乾燥工程(表面層乾燥工程および裏面層乾燥工程)
をいずれの場合も、2段階に分け、それらの乾燥温度条
件を設定している。つまり、前記表面層乾燥工程および
前記裏面層乾燥工程は、いずれも、第1の乾燥工程およ
び次いで行われる第2の乾燥工程を有している。
The present invention is characterized by specific operations in these drying steps. That is, in the present invention, the drying step (the front layer drying step and the back layer drying step)
In each case, the drying temperature conditions are set in two stages. That is, each of the front surface layer drying step and the back surface layer drying step has a first drying step and a second drying step performed subsequently.

【0033】最初に行われる第1の乾燥工程では、乾燥
温度T1が、70〜90℃、より好ましくは、80〜9
0℃の温度範囲で操作される。この温度T1が、70℃
未満となると、電極集電体に塗布された電極塗料を乾燥
させる時間が非常にかかり、乾燥炉の長さも非常に長く
なるため、生産性の観点から好ましくない。この温度T
1が、90℃を超えると、塗膜層の最初の乾燥時間が短
くなり、電極塗料中に含有される酸が電極集電体である
金属箔表面の酸化層を十分にエッチングできなくなり塗
膜層の接着強度が十分とならない場合が生じる。また、
塗布後、最初に行われる表面層乾燥工程において、エッ
チングに使われず蒸発する余った酸が多くなり、この酸
が電極集電体の裏面側に付着し、他方の面2b(裏面)
側の塗膜層の接着強度を低下させる傾向にある。
In the first drying step performed first, the drying temperature T1 is 70 to 90 ° C., more preferably 80 to 9 ° C.
It is operated in a temperature range of 0 ° C. This temperature T1 is 70 ° C.
If it is less than this, it takes a very long time to dry the electrode paint applied to the electrode current collector, and the length of the drying furnace becomes very long, which is not preferable from the viewpoint of productivity. This temperature T
If the temperature exceeds 90 ° C., the initial drying time of the coating film layer will be short, and the acid contained in the electrode paint will not be able to sufficiently etch the oxide layer on the metal foil surface as the electrode current collector. In some cases, the adhesive strength of the layer is not sufficient. Also,
In the surface layer drying step performed first after the application, the excess acid that is not used for etching and evaporates increases, and this acid adheres to the back surface of the electrode current collector, and the other surface 2b (back surface)
This tends to lower the adhesive strength of the coating layer on the side.

【0034】第1の乾燥工程では、塗布後の塗膜層が、
指触乾燥に至るまで乾燥処理される。乾燥時間は、指触
乾燥の状態を目標にして適宜設定すればよい。ここで、
指触乾燥の状態とは、第1の乾燥工程中において、乾燥
炉内で塗膜表面の一部を指で触り、指の表面に塗膜また
は、溶剤等が着かない乾燥状態をいう。
In the first drying step, the coated film layer after application is
Drying treatment is performed until touch drying. The drying time may be appropriately set with the aim of the touch-drying state. here,
The state of touch-to-touch drying refers to a dry state in which a part of the coating film surface is touched with a finger in a drying oven during the first drying step, and the coating or solvent or the like does not reach the finger surface.

【0035】次いで行われる第2の乾燥工程では、乾燥
温度T2が、120〜200℃の温度範囲で操作され
る。この温度T2が、120℃未満となると、塗膜の乾
燥が不十分となり、電極塗料が乾燥した後、すなわち、
電極活物質層が形成された後、電極集電体の表面のエッ
チングに使用されなかった余った酸が蒸発できずに、電
極活物質層中に残存してしまい残留酸の量が多くなる。
残留酸の量が多くなると、電池の電気特性が劣化する。
塗膜層の接着強度も良くない。乾燥温度T2が、200
℃を超えると、電極集電体である金属箔両端の未塗布部
分の酸化が発生し、さらに、電極活物質層と電極集電体
との間でも電極集電体の酸化が発生する恐れがあるため
に、塗膜層の接着強度が低下する。このため、乾燥温度
T2が120〜200℃の温度範囲で、電極活物質層の
乾燥を行う必要がある。
In the subsequent second drying step, the drying temperature T2 is operated in a temperature range of 120 to 200.degree. When the temperature T2 is lower than 120 ° C., drying of the coating film becomes insufficient, and after the electrode paint is dried,
After the electrode active material layer is formed, excess acid not used for etching the surface of the electrode current collector cannot evaporate, but remains in the electrode active material layer, and the amount of residual acid increases.
When the amount of the residual acid increases, the electric characteristics of the battery deteriorate.
The adhesion strength of the coating layer is not good. When the drying temperature T2 is 200
If the temperature exceeds ℃, oxidation of uncoated portions at both ends of the metal foil as an electrode current collector occurs, and furthermore, oxidation of the electrode current collector may occur between the electrode active material layer and the electrode current collector. For this reason, the adhesive strength of the coating layer is reduced. Therefore, it is necessary to dry the electrode active material layer at a drying temperature T2 of 120 to 200 ° C.

【0036】さらに、本発明においては、第2の乾燥工
程における乾燥温度T2と第1の乾燥工程における乾燥
温度T1の温度差(T2−T1)の値が、40℃以上、
特に、40〜110℃に設定される。この温度差(T2
−T1)の値が、40℃未満となると、電極活物質層中
の残留酸が多くなる傾向が生じてしまう。
Further, in the present invention, the temperature difference (T2-T1) between the drying temperature T2 in the second drying step and the drying temperature T1 in the first drying step is 40 ° C. or more,
In particular, it is set at 40 to 110 ° C. This temperature difference (T2
When the value of -T1) is less than 40 ° C., a tendency that residual acid in the electrode active material layer tends to increase occurs.

【0037】本発明における所定の乾燥操作により、最
初に行われる電極集電体の一方の面2a(表面)に塗設
される電極活物質層の接着性を良好にできることはもと
より、次ぎに行われる電極集電体の他方の面2b(裏
面)に塗設される電極活物質層の接着性を従来に比べて
大幅に改善することができる。従来の方法では他方の面
2b(裏面)における接着性の劣化が、最初に塗布され
る一方の面2aに比べて、なぜ顕著に生じるのかは明瞭
に分からない。いくつかの理由は推測されるが、その中
でもっとも可能性の高い理由として、乾燥中に蒸発もし
くは昇華した塗料中の酸が、他方の面2b(裏面)側の
電極集電体に付着し、付着した酸と電極集電体の金属と
の間で接着性を阻害する何らかの化合物が形成されるた
めと考えられる。
By the predetermined drying operation in the present invention, it is possible to improve the adhesiveness of the electrode active material layer applied to one surface 2a (surface) of the electrode current collector, which is performed first, and also to perform the next operation. The adhesiveness of the electrode active material layer applied to the other surface 2b (back surface) of the electrode current collector can be greatly improved as compared with the related art. In the conventional method, it is not clearly understood why the adhesion deterioration on the other surface 2b (back surface) occurs more remarkably than on the first surface 2a applied first. There are several possible reasons, but the most probable reason is that the acid in the paint that evaporates or sublimates during drying adheres to the electrode current collector on the other surface 2b (back surface). It is considered that some compound that inhibits adhesion is formed between the attached acid and the metal of the electrode current collector.

【0038】このようにして本発明の製造方法により得
られた電極集電体の両面に電極活物質層を有する電極
は、必要に応じてローラープレス等により、厚みを調節
してもよい。
The electrode having the electrode active material layers on both sides of the electrode current collector obtained by the production method of the present invention may be adjusted in thickness by a roller press or the like, if necessary.

【0039】次いで、得られた電極材料は、所定の幅、
長さに切断される。なお、電極集電体と、外部との電気
的な接触を得るために電極集電体の一部に電極活物質層
を形成しない部分を設けることが好ましい。例えば、こ
のような部分に電極活物質層を形成させない方法として
は、予め塗布作業の時に未塗布部分を形成する方法や、
電極活物質層を形成させた後、部分的に除去する方法等
が挙げられる。
Next, the obtained electrode material has a predetermined width,
Cut to length. Note that in order to obtain electrical contact between the electrode current collector and the outside, it is preferable to provide a portion of the electrode current collector where no electrode active material layer is formed. For example, as a method of not forming an electrode active material layer in such a portion, a method of forming an uncoated portion in advance of a coating operation,
After the formation of the electrode active material layer, a method of partially removing the electrode active material layer and the like can be given.

【0040】[0040]

【実施例】以下、具体的実施例を挙げて本発明をさらに
詳細に説明する。
The present invention will be described below in further detail with reference to specific examples.

【0041】(実施例1)負極用塗料の作製 負極用塗料の組成を下記のように設定し、負極用塗料を
下記の要領で作製した。
(Example 1) Preparation of paint for negative electrode The composition of the paint for the negative electrode was set as follows, and a paint for the negative electrode was prepared in the following manner.

【0042】 メソカーボンマイクロビーズ(負極活物質) … 87重量部 アセチレンブラック(導電剤) … 3重量部 ポリフッ化ビニリデン(バインダー) … 10重量部 N−メチルピロリドン(溶剤) … 136重量部 シュウ酸二水和物(酸) … 0.5重量部 負極用塗料は、具体的に以下のようにして調整した。Mesocarbon microbeads (negative electrode active material) 87 parts by weight Acetylene black (conductive agent) 3 parts by weight Polyvinylidene fluoride (binder) 10 parts by weight N-methylpyrrolidone (solvent) 136 parts by weight Hydrate (acid) ... 0.5 parts by weight The negative electrode paint was specifically prepared as follows.

【0043】バインダー10重量部を溶剤115重量部
に溶解させ、ラッカーを作製した。負極活物質87重量
部と導電剤3重量部を混合した。この混合物を上記ラッ
カーに加えて混合し、さらにシュウ酸二水和物を溶剤2
1重量部に溶解させたものを加え充分に混合し、負極用
塗料とした。
A lacquer was prepared by dissolving 10 parts by weight of a binder in 115 parts by weight of a solvent. 87 parts by weight of the negative electrode active material and 3 parts by weight of the conductive agent were mixed. This mixture was added to the lacquer and mixed, and oxalic acid dihydrate was further added to the solvent 2
A solution dissolved in 1 part by weight was added and mixed well to obtain a negative electrode paint.

【0044】負極の作製 厚さ18μmの圧延銅箔(電極集電体)の一方の面2a
の上にノズル塗布方式にて上記負極用塗料を塗布して塗
膜層を形成した後(一方の面2a側塗布)、乾燥温度T
1=90℃の第1の乾燥工程で塗膜層を指触乾燥に至る
まで乾燥処理した。次いで、乾燥温度T2=130℃の
第2の乾燥工程で指触乾燥の塗膜層を完全な乾燥状態と
した。
Preparation of Negative Electrode One side 2a of a rolled copper foil (electrode current collector) having a thickness of 18 μm
After coating the above negative electrode paint by a nozzle coating method to form a coating layer (coating on one side 2a side), the drying temperature T
In a first drying step at 1 = 90 ° C., the coating layer was dried until touch drying. Next, in a second drying step at a drying temperature T2 of 130 ° C., the touch-dried coating film layer was completely dried.

【0045】同様な手順で、圧延銅箔(電極集電体)の
他方の面2bの上にノズル塗布方式にて上記負極用塗料
を塗布して塗膜層を形成した後(他方の面2b側塗
布)、乾燥温度T1=90℃の第1の乾燥工程で塗膜層
を指触乾燥に至るまで乾燥処理した。次いで、乾燥温度
T2=130℃の第2の乾燥工程で指触乾燥の塗膜層を
完全な乾燥状態とした。
In the same manner, the above negative electrode paint is applied on the other surface 2b of the rolled copper foil (electrode current collector) by a nozzle coating method to form a coating layer (the other surface 2b). Side coating), in a first drying step at a drying temperature T1 = 90 ° C., the coating film layer was subjected to drying treatment until touch drying. Next, in a second drying step at a drying temperature T2 of 130 ° C., the touch-dried coating film layer was completely dried.

【0046】このようにして得られた電極活物質層を両
面に備える電極集電体を、ローラープレスをかけて圧縮
成型し、しかる後、所定の大きさに切断して本実施例1
の負極サンプルを作製した。
The electrode current collector having the electrode active material layers thus obtained on both sides is compression-molded by a roller press, and then cut into a predetermined size to obtain a first embodiment.
Was prepared.

【0047】(実施例2)厚さ18μmの圧延銅箔(電
極集電体)の一方の面2aの上にノズル塗布方式にて上
記実施例1で用いた負極用塗料を塗布して塗膜層を形成
した後(一方の面2a側塗布)、乾燥温度T1=90℃
の第1の乾燥工程で塗膜層を指触乾燥に至るまで乾燥処
理した。次いで、乾燥温度T2=160℃の第2の乾燥
工程で指触乾燥の塗膜層を完全な乾燥状態とした。
Example 2 A negative electrode paint used in Example 1 was applied to one surface 2a of a rolled copper foil (electrode current collector) having a thickness of 18 μm by a nozzle coating method to form a coating film. After forming the layer (coating on one side 2a side), drying temperature T1 = 90 ° C.
In the first drying step, the coating layer was dried until touch drying. Next, in the second drying step at a drying temperature T2 of 160 ° C., the coating layer of the touch drying was completely dried.

【0048】同様な手順で、圧延銅箔(電極集電体)の
他方の面2bの上にノズル塗布方式にて上記負極用塗料
を塗布して塗膜層を形成した後(他方の面2b側塗
布)、乾燥温度T1=90℃の第1の乾燥工程で塗膜層
を指触乾燥に至るまで乾燥処理した。次いで、乾燥温度
T2=160℃の第2の乾燥工程で指触乾燥の塗膜層を
完全な乾燥状態とした。
In the same manner, the above-mentioned negative electrode paint is applied on the other surface 2b of the rolled copper foil (electrode current collector) by a nozzle coating method to form a coating layer (the other surface 2b). Side coating), in a first drying step at a drying temperature T1 = 90 ° C., the coating film layer was subjected to drying treatment until touch drying. Next, in the second drying step at a drying temperature T2 of 160 ° C., the coating layer of the touch drying was completely dried.

【0049】このようにして得られた電極活物質層を両
面に備える電極集電体を、ローラープレスをかけて圧縮
成型し、しかる後、所定の大きさに切断して本実施例2
の負極サンプルを作製した。
The thus obtained electrode current collector having electrode active material layers on both sides is compression-molded by roller pressing, and then cut into a predetermined size to obtain a second embodiment.
Was prepared.

【0050】(実施例3)厚さ18μmの圧延銅箔(電
極集電体)の一方の面2aの上にノズル塗布方式にて上
記実施例1で用いた負極用塗料を塗布して塗膜層を形成
した後(一方の面2a側塗布)、乾燥温度T1=90℃
の第1の乾燥工程で塗膜層を指触乾燥に至るまで乾燥処
理した。次いで、乾燥温度T2=190℃の第2の乾燥
工程で指触乾燥の塗膜層を完全な乾燥状態とした。
Example 3 A negative electrode paint used in Example 1 was applied by a nozzle coating method on one surface 2a of a rolled copper foil (electrode current collector) having a thickness of 18 μm to form a coating film. After forming the layer (coating on one side 2a side), drying temperature T1 = 90 ° C.
In the first drying step, the coating layer was dried until touch drying. Next, in the second drying step at a drying temperature T2 of 190 ° C., the coating layer of touch drying was completely dried.

【0051】同様な手順で、圧延銅箔(電極集電体)の
他方の面2bの上にノズル塗布方式にて上記負極用塗料
を塗布して塗膜層を形成した後(他方の面2b側塗
布)、乾燥温度T1=90℃の第1の乾燥工程で塗膜層
を指触乾燥に至るまで乾燥処理した。次いで、乾燥温度
T2=190℃の第2の乾燥工程で指触乾燥の塗膜層を
完全な乾燥状態とした。
In the same procedure, the coating material for the negative electrode is applied on the other surface 2b of the rolled copper foil (electrode current collector) by a nozzle coating method to form a coating layer (the other surface 2b). Side coating), in a first drying step at a drying temperature T1 = 90 ° C., the coating film layer was subjected to drying treatment until touch drying. Next, in the second drying step at a drying temperature T2 of 190 ° C., the coating layer of touch drying was completely dried.

【0052】このようにして得られた電極活物質層を両
面に備える電極集電体を、ローラープレスをかけて圧縮
成型し、しかる後、所定の大きさに切断して本実施例3
の負極サンプルを作製した。
The electrode current collector having the electrode active material layers thus obtained on both sides is compression-molded by a roller press, and then cut into a predetermined size.
Was prepared.

【0053】(実施例4)厚さ18μmの圧延銅箔(電
極集電体)の一方の面2aの上にノズル塗布方式にて上
記実施例1で用いた負極用塗料を塗布して塗膜層を形成
した後(一方の面2a側塗布)、乾燥温度T1=70℃
の第1の乾燥工程で塗膜層を指触乾燥に至るまで乾燥処
理した。次いで、乾燥温度T2=160℃の第2の乾燥
工程で指触乾燥の塗膜層を完全な乾燥状態とした。
Example 4 The negative electrode paint used in Example 1 was applied by a nozzle coating method on one surface 2a of a rolled copper foil (electrode current collector) having a thickness of 18 μm to form a coating film. After forming a layer (coating on one side 2a side), drying temperature T1 = 70 ° C.
In the first drying step, the coating layer was dried until touch drying. Next, in the second drying step at a drying temperature T2 of 160 ° C., the coating layer of the touch drying was completely dried.

【0054】同様な手順で、圧延銅箔(電極集電体)の
他方の面2bの上にノズル塗布方式にて上記負極用塗料
を塗布して塗膜層を形成した後(他方の面2b側塗
布)、乾燥温度T1=70℃の第1の乾燥工程で塗膜層
を指触乾燥に至るまで乾燥処理した。次いで、乾燥温度
T2=160℃の第2の乾燥工程で指触乾燥の塗膜層を
完全な乾燥状態とした。
In the same procedure, the above negative electrode paint is applied on the other surface 2b of the rolled copper foil (electrode current collector) by a nozzle coating method to form a coating layer (the other surface 2b). Side coating), in a first drying step at a drying temperature T1 = 70 ° C., the coating film layer was dried until touch drying. Next, in the second drying step at a drying temperature T2 of 160 ° C., the coating layer of the touch drying was completely dried.

【0055】このようにして得られた電極活物質層を両
面に備える電極集電体を、ローラープレスをかけて圧縮
成型し、しかる後、所定の大きさに切断して本実施例4
の負極サンプルを作製した。
The electrode current collector having the electrode active material layers thus obtained on both sides is compression-molded by a roller press, and then cut into a predetermined size to obtain a fourth embodiment.
Was prepared.

【0056】(実施例5)厚さ18μmの圧延銅箔(電
極集電体)の一方の面2aの上にノズル塗布方式にて上
記実施例1で用いた負極用塗料を塗布して塗膜層を形成
した後(一方の面2a側塗布)、乾燥温度T1=80〜
90℃の範囲の第1の乾燥工程で塗膜層を指触乾燥に至
るまで乾燥処理した。次いで、乾燥温度T2=120〜
130℃の範囲の第2の乾燥工程で指触乾燥の塗膜層を
完全な乾燥状態とした。
(Example 5) The negative electrode paint used in Example 1 was applied by a nozzle coating method onto one surface 2a of a rolled copper foil (electrode current collector) having a thickness of 18 µm to form a coating film. After forming the layer (coating on one side 2a side), drying temperature T1 = 80-
In a first drying step at a temperature of 90 ° C., the coating layer was dried until touch drying. Next, the drying temperature T2 = 120-
In the second drying step at a temperature of 130 ° C., the touch-dried coating film layer was completely dried.

【0057】同様な手順で、圧延銅箔(電極集電体)の
他方の面2bの上にノズル塗布方式にて上記負極用塗料
を塗布して塗膜層を形成した後(他方の面2b側塗
布)、乾燥温度T1=80〜90℃の範囲の第1の乾燥
工程で塗膜層を指触乾燥に至るまで乾燥処理した。次い
で、乾燥温度T2=120〜130℃の範囲の第2の乾
燥工程で指触乾燥の塗膜層を完全な乾燥状態とした。
In the same procedure, the above negative electrode paint is applied on the other surface 2b of the rolled copper foil (electrode current collector) by a nozzle coating method to form a coating layer (the other surface 2b). Side coating), in a first drying step in the range of drying temperature T1 = 80 to 90 ° C., the coating film layer was dried until touch drying. Next, in the second drying step in the range of drying temperature T2 = 120 to 130 ° C., the coating layer of touch drying was completely dried.

【0058】このようにして得られた電極活物質層を両
面に備える電極集電体を、ローラープレスをかけて圧縮
成型し、しかる後、所定の大きさに切断して本実施例5
の負極サンプルを作製した。
The electrode current collector having the electrode active material layers thus obtained on both sides is compression-molded by roller pressing, and then cut into a predetermined size to obtain a fifth embodiment.
Was prepared.

【0059】(実施例6)厚さ18μmの圧延銅箔(電
極集電体)の一方の面2aの上にノズル塗布方式にて上
記実施例1で用いた負極用塗料を塗布して塗膜層を形成
した後(一方の面2a側塗布)、乾燥温度T1=90℃
の第1の乾燥工程で塗膜層を指触乾燥に至るまで乾燥処
理した。次いで、乾燥温度T2=200℃の第2の乾燥
工程で指触乾燥の塗膜層を完全な乾燥状態とした。
Example 6 The negative electrode paint used in Example 1 was applied by a nozzle coating method on one surface 2a of a rolled copper foil (electrode current collector) having a thickness of 18 μm to form a coating film. After forming the layer (coating on one side 2a side), drying temperature T1 = 90 ° C.
In the first drying step, the coating layer was dried until touch drying. Next, in the second drying step at a drying temperature T2 of 200 ° C., the coating layer of the touch drying was completely dried.

【0060】同様な手順で、圧延銅箔(電極集電体)の
他方の面2bの上にノズル塗布方式にて上記負極用塗料
を塗布して塗膜層を形成した後(他方の面2b側塗
布)、乾燥温度T1=90℃の第1の乾燥工程で塗膜層
を指触乾燥に至るまで乾燥処理した。次いで、乾燥温度
T2=200℃の第2の乾燥工程で指触乾燥の塗膜層を
完全な乾燥状態とした。
In the same manner, the above-mentioned negative electrode paint is applied on the other surface 2b of the rolled copper foil (electrode current collector) by a nozzle coating method to form a coating layer (the other surface 2b). Side coating), in a first drying step at a drying temperature T1 = 90 ° C., the coating film layer was subjected to drying treatment until touch drying. Next, in the second drying step at a drying temperature T2 of 200 ° C., the coating layer of the touch drying was completely dried.

【0061】このようにして得られた電極活物質層を両
面に備える電極集電体を、ローラープレスをかけて圧縮
成型し、しかる後、所定の大きさに切断して本実施例6
の負極サンプルを作製した。
The electrode current collector having the electrode active material layers thus obtained on both sides is compression-molded by a roller press, and then cut into a predetermined size to obtain a sixth embodiment.
Was prepared.

【0062】(比較例1)厚さ18μmの圧延銅箔(電
極集電体)の一方の面2aの上にノズル塗布方式にて上
記実施例1で用いた負極用塗料を塗布して塗膜層を形成
した後(一方の面2a側塗布)、乾燥温度T1=130
℃の第1の乾燥工程で塗膜層を指触乾燥に至るまで乾燥
処理した。次いで、乾燥温度T2=170℃の第2の乾
燥工程で指触乾燥の塗膜層を完全な乾燥状態とした。
(Comparative Example 1) The negative electrode paint used in Example 1 was applied by a nozzle coating method on one surface 2a of a rolled copper foil (electrode current collector) having a thickness of 18 μm to form a coating film. After forming the layer (coating on one side 2a side), drying temperature T1 = 130
In a first drying step at a temperature of 0 ° C., the coating layer was dried until touch drying. Next, in the second drying step at a drying temperature T2 of 170 ° C., the coating layer of touch drying was completely dried.

【0063】同様な手順で、圧延銅箔(電極集電体)の
他方の面2bの上に、ノズル塗布方式にて上記負極用塗
料を塗布して塗膜層を形成した後(他方の面2b側塗
布)、乾燥温度T1=130℃の第1の乾燥工程で塗膜
層を指触乾燥に至るまで乾燥処理した。次いで、乾燥温
度T2=170℃の第2の乾燥工程で指触乾燥の塗膜層
を完全な乾燥状態とした。
In the same procedure, the coating material for the negative electrode was applied on the other surface 2b of the rolled copper foil (electrode current collector) by a nozzle coating method to form a coating layer (the other surface). 2b side coating), in a first drying step at a drying temperature T1 = 130 ° C., the coating film layer was dried until touch drying. Next, in the second drying step at a drying temperature T2 of 170 ° C., the coating layer of touch drying was completely dried.

【0064】このようにして得られた電極活物質層を両
面に備える電極集電体を、ローラープレスをかけて圧縮
成型し、しかる後、所定の大きさに切断して比較例1の
負極サンプルを作製した。
The thus obtained electrode current collector having the electrode active material layers on both sides is compression-molded by roller pressing, and then cut into a predetermined size to obtain a negative electrode sample of Comparative Example 1. Was prepared.

【0065】(比較例2)厚さ18μmの圧延銅箔(電
極集電体)の一方の面2aの上にノズル塗布方式にて上
記実施例1で用いた負極用塗料を塗布して塗膜層を形成
した後(一方の面2a側塗布)、乾燥温度T1=100
℃の第1の乾燥工程で塗膜層を指触乾燥に至るまで乾燥
処理した。次いで、乾燥温度T2=170℃の第2の乾
燥工程で指触乾燥の塗膜層を完全な乾燥状態とした。
(Comparative Example 2) A negative electrode paint used in Example 1 was applied by a nozzle coating method on one surface 2a of a rolled copper foil (electrode current collector) having a thickness of 18 μm to form a coating film. After forming the layer (coating on one side 2a side), drying temperature T1 = 100
In a first drying step at a temperature of 0 ° C., the coating layer was dried until touch drying. Next, in the second drying step at a drying temperature T2 of 170 ° C., the coating layer of touch drying was completely dried.

【0066】同様な手順で、圧延銅箔(電極集電体)の
他方の面2bの上に、ノズル塗布方式にて上記負極用塗
料を塗布して塗膜層を形成した後(他方の面2b側塗
布)、乾燥温度T1=100℃の第1の乾燥工程で塗膜
層を指触乾燥に至るまで乾燥処理した。次いで、乾燥温
度T2=170℃の第2の乾燥工程で指触乾燥の塗膜層
を完全な乾燥状態とした。
In the same procedure, the negative electrode paint is applied on the other surface 2b of the rolled copper foil (electrode current collector) by a nozzle coating method to form a coating layer (the other surface). 2b side coating), in a first drying step at a drying temperature T1 = 100 ° C., the coating film layer was dried until touch drying. Next, in the second drying step at a drying temperature T2 of 170 ° C., the coating layer of touch drying was completely dried.

【0067】このようにして得られた電極活物質層を両
面に備える電極集電体を、ローラープレスをかけて圧縮
成型し、しかる後、所定の大きさに切断して比較例2の
負極サンプルを作製した。
The thus obtained electrode current collector having the electrode active material layers on both surfaces was compression-molded by roller pressing, and then cut into a predetermined size to obtain a negative electrode sample of Comparative Example 2. Was prepared.

【0068】(比較例3)厚さ18μmの圧延銅箔(電
極集電体)の一方の面2aの上にノズル塗布方式にて上
記実施例1で用いた負極用塗料を塗布して塗膜層を形成
した後(一方の面2a側塗布)、乾燥温度T1=60℃
の第1の乾燥工程で塗膜層を指触乾燥に至るまで乾燥処
理した。次いで、乾燥温度T2=120℃の第2の乾燥
工程で指触乾燥の塗膜層を完全な乾燥状態とした。
(Comparative Example 3) The negative electrode paint used in Example 1 was applied by a nozzle coating method onto one surface 2a of a rolled copper foil (electrode current collector) having a thickness of 18 μm to form a coating film. After forming the layer (coating on one side 2a side), drying temperature T1 = 60 ° C.
In the first drying step, the coating layer was dried until touch drying. Next, in the second drying step at a drying temperature T2 of 120 ° C., the coating layer of touch drying was completely dried.

【0069】同様な手順で、圧延銅箔(電極集電体)の
他方の面2bの上にノズル塗布方式にて上記負極用塗料
を塗布して塗膜層を形成した後(他方の面2b側塗
布)、乾燥温度T1=60℃の第1の乾燥工程で塗膜層
を指触乾燥に至るまで乾燥処理した。次いで、乾燥温度
T2=120℃の第2の乾燥工程で指触乾燥の塗膜層を
完全な乾燥状態とした。
In the same manner, the above negative electrode paint is applied on the other surface 2b of the rolled copper foil (electrode current collector) by a nozzle coating method to form a coating layer (the other surface 2b). Side coating), in a first drying step at a drying temperature T1 = 60 ° C., the coating film layer was subjected to drying treatment until touch drying. Next, in the second drying step at a drying temperature T2 of 120 ° C., the coating layer of touch drying was completely dried.

【0070】このようにして得られた電極活物質層を両
面に備える電極集電体を、ローラープレスをかけて圧縮
成型し、しかる後、所定の大きさに切断して比較例3の
負極サンプルを作製した。
The thus obtained electrode current collector having the electrode active material layers on both surfaces was compression-molded by roller pressing, and then cut into a predetermined size to obtain a negative electrode sample of Comparative Example 3. Was prepared.

【0071】(比較例4)厚さ18μmの圧延銅箔(電
極集電体)の一方の面2aの上にノズル塗布方式にて上
記実施例1で用いた負極用塗料を塗布して塗膜層を形成
した後(一方の面2a側塗布)、乾燥温度T1=70℃
の第1の乾燥工程で塗膜層を指触乾燥に至るまで乾燥処
理した。次いで、乾燥温度T2=110℃の第2の乾燥
工程で指触乾燥の塗膜層を完全な乾燥状態とした。
(Comparative Example 4) A negative electrode paint used in Example 1 was applied to one surface 2a of a rolled copper foil (electrode current collector) having a thickness of 18 μm by a nozzle coating method to form a coating film. After forming a layer (coating on one side 2a side), drying temperature T1 = 70 ° C.
In the first drying step, the coating layer was dried until touch drying. Next, in the second drying step at a drying temperature T2 of 110 ° C., the coating layer of touch drying was completely dried.

【0072】同様な手順で、圧延銅箔(電極集電体)の
他方の面2bの上にノズル塗布方式にて上記負極用塗料
を塗布して塗膜層を形成した後(他方の面2b側塗
布)、乾燥温度T1=70℃の第1の乾燥工程で塗膜層
を指触乾燥に至るまで乾燥処理した。次いで、乾燥温度
T2=110℃の第2の乾燥工程で指触乾燥の塗膜層を
完全な乾燥状態とした。
In the same procedure, the above negative electrode paint is applied on the other surface 2b of the rolled copper foil (electrode current collector) by a nozzle coating method to form a coating layer (the other surface 2b). Side coating), in a first drying step at a drying temperature T1 = 70 ° C., the coating film layer was dried until touch drying. Next, in the second drying step at a drying temperature T2 of 110 ° C., the coating layer of touch drying was completely dried.

【0073】このようにして得られた電極活物質層を両
面に備える電極集電体を、ローラープレスをかけて圧縮
成型し、しかる後、所定の大きさに切断して比較例4の
負極サンプルを作製した。
The thus obtained electrode current collector having the electrode active material layers on both sides was compression-molded by roller pressing, and then cut into a predetermined size to obtain a negative electrode sample of Comparative Example 4. Was prepared.

【0074】(比較例5)厚さ18μmの圧延銅箔(電
極集電体)の一方の面2aの上にノズル塗布方式にて上
記実施例1で用いた負極用塗料を塗布して塗膜層を形成
した後(一方の面2a側塗布)、乾燥温度T1=90℃
の第1の乾燥工程で塗膜層を指触乾燥に至るまで乾燥処
理した。次いで、乾燥温度T2=210〜250℃の範
囲の第2の乾燥工程で指触乾燥の塗膜層を完全な乾燥状
態とした。
(Comparative Example 5) The negative electrode paint used in Example 1 was applied by a nozzle coating method onto one surface 2a of a rolled copper foil (electrode current collector) having a thickness of 18 μm to form a coating film. After forming the layer (coating on one side 2a side), drying temperature T1 = 90 ° C.
In the first drying step, the coating layer was dried until touch drying. Next, in the second drying step in the range of drying temperature T2 = 210 to 250 ° C., the coating layer of the touch drying was completely dried.

【0075】同様な手順で、圧延銅箔(電極集電体)の
他方の面2bの上にノズル塗布方式にて上記負極用塗料
を塗布して塗膜層を形成した後(他方の面2b側塗
布)、乾燥温度T1=90℃の第1の乾燥工程で塗膜層
を指触乾燥に至るまで乾燥処理した。次いで、乾燥温度
T2=210〜250℃の範囲の第2の乾燥工程で指触
乾燥の塗膜層を完全な乾燥状態とした。
In the same procedure, the above negative electrode paint is applied on the other surface 2b of the rolled copper foil (electrode current collector) by a nozzle coating method to form a coating layer (the other surface 2b). Side coating), in a first drying step at a drying temperature T1 = 90 ° C., the coating film layer was subjected to drying treatment until touch drying. Next, in the second drying step in the range of drying temperature T2 = 210 to 250 ° C., the coating layer of the touch drying was completely dried.

【0076】このようにして得られた電極活物質層を両
面に備える電極集電体を、ローラープレスをかけて圧縮
成型し、しかる後、所定の大きさに切断して比較例5の
負極サンプルを作製した。
The thus obtained electrode current collector having the electrode active material layers on both surfaces was compression-molded by roller pressing, and then cut into a predetermined size to obtain a negative electrode sample of Comparative Example 5. Was prepared.

【0077】(比較例6)厚さ18μmの圧延銅箔(電
極集電体)の一方の面2aの上にノズル塗布方式にて上
記実施例1で用いた負極用塗料を塗布して塗膜層を形成
した後(一方の面2a側塗布)、乾燥温度T1=90℃
の第1の乾燥工程で塗膜層を指触乾燥に至るまで乾燥処
理した。次いで、乾燥温度T2=120℃の第2の乾燥
工程で指触乾燥の塗膜層を完全な乾燥状態とした。
Comparative Example 6 A negative electrode paint used in Example 1 was applied by a nozzle coating method on one surface 2a of a rolled copper foil (electrode current collector) having a thickness of 18 μm to form a coating film. After forming the layer (coating on one side 2a side), drying temperature T1 = 90 ° C.
In the first drying step, the coating layer was dried until touch drying. Next, in the second drying step at a drying temperature T2 of 120 ° C., the coating layer of touch drying was completely dried.

【0078】同様な手順で、圧延銅箔(電極集電体)の
他方の面2bの上にノズル塗布方式にて上記負極用塗料
を塗布して塗膜層を形成した後(他方の面2b側塗
布)、乾燥温度T1=90℃の第1の乾燥工程で塗膜層
を指触乾燥に至るまで乾燥処理した。次いで、乾燥温度
T2=120℃の第2の乾燥工程で指触乾燥の塗膜層を
完全な乾燥状態とした。
In the same manner, the above negative electrode paint is applied on the other surface 2b of the rolled copper foil (electrode current collector) by a nozzle coating method to form a coating layer (the other surface 2b). Side coating), in a first drying step at a drying temperature T1 = 90 ° C., the coating film layer was subjected to drying treatment until touch drying. Next, in the second drying step at a drying temperature T2 of 120 ° C., the coating layer of touch drying was completely dried.

【0079】このようにして得られた電極活物質層を両
面に備える電極集電体を、ローラープレスをかけて圧縮
成型し、しかる後、所定の大きさに切断して比較例6の
負極サンプルを作製した。
The thus obtained electrode current collector having the electrode active material layers on both sides was compression-molded using a roller press, and then cut into a predetermined size to obtain a negative electrode sample of Comparative Example 6. Was prepared.

【0080】(比較例7)厚さ18μmの圧延銅箔(電
極集電体)の一方の面2aの上にノズル塗布方式にて上
記実施例1で用いた負極用塗料を塗布して塗膜層を形成
した後(一方の面2a側塗布)、乾燥温度T1=110
℃の第1の乾燥工程で塗膜層を指触乾燥に至るまで乾燥
処理した。次いで、乾燥温度T2=130℃の第2の乾
燥工程で指触乾燥の塗膜層を完全な乾燥状態とした。
(Comparative Example 7) The negative electrode paint used in Example 1 was applied on one surface 2a of a rolled copper foil (electrode current collector) having a thickness of 18 μm by a nozzle coating method to form a coating film. After forming the layer (coating on one side 2a side), drying temperature T1 = 110
In a first drying step at a temperature of 0 ° C., the coating layer was dried until touch drying. Next, in a second drying step at a drying temperature T2 of 130 ° C., the touch-dried coating film layer was completely dried.

【0081】同様な手順で、圧延銅箔(電極集電体)の
他方の面2bの上にノズル塗布方式にて上記負極用塗料
を塗布して塗膜層を形成した後(他方の面2b側塗
布)、乾燥温度T1=110℃の第1の乾燥工程で塗膜
層を指触乾燥に至るまで乾燥処理した。次いで、乾燥温
度T2=130℃の第2の乾燥工程で指触乾燥の塗膜層
を完全な乾燥状態とした。
In the same procedure, the above negative electrode paint is applied on the other surface 2b of the rolled copper foil (electrode current collector) by a nozzle coating method to form a coating layer (the other surface 2b). Side coating), and in a first drying step at a drying temperature T1 = 110 ° C., the coating film layer was dried until touch drying. Next, in a second drying step at a drying temperature T2 of 130 ° C., the touch-dried coating film layer was completely dried.

【0082】このようにして得られた電極活物質層を両
面に備える電極集電体を、ローラープレスをかけて圧縮
成型し、しかる後、所定の大きさに切断して比較例7の
負極サンプルを作製した。
The thus obtained electrode current collector having the electrode active material layers on both sides was compression-molded using a roller press, and then cut into a predetermined size to obtain a negative electrode sample of Comparative Example 7. Was prepared.

【0083】(比較例8)厚さ18μmの圧延銅箔(電
極集電体)の一方の面2aの上にノズル塗布方式にて上
記実施例1で用いた負極用塗料を塗布して塗膜層を形成
した後(一方の面2a側塗布)、乾燥温度T1=90℃
の第1の乾燥工程で塗膜層を指触乾燥に至るまで乾燥処
理した。次いで、乾燥温度T2=100℃の第2の乾燥
工程で指触乾燥の塗膜層を完全な乾燥状態とした。
Comparative Example 8 The negative electrode paint used in Example 1 was applied to one surface 2a of a rolled copper foil (electrode current collector) having a thickness of 18 μm by a nozzle coating method to form a coating film. After forming the layer (coating on one side 2a side), drying temperature T1 = 90 ° C.
In the first drying step, the coating layer was dried until touch drying. Next, in a second drying step at a drying temperature T2 = 100 ° C., the coating layer of the touch drying was completely dried.

【0084】同様な手順で、圧延銅箔(電極集電体)の
他方の面2bの上にノズル塗布方式にて上記負極用塗料
を塗布して塗膜層を形成した後(他方の面2b側塗
布)、乾燥温度T1=90℃の第1の乾燥工程で塗膜層
を指触乾燥に至るまで乾燥処理した。次いで、乾燥温度
T2=110℃の第2の乾燥工程で指触乾燥の塗膜層を
完全な乾燥状態とした。
In the same procedure, the negative electrode paint is applied on the other surface 2b of the rolled copper foil (electrode current collector) by a nozzle coating method to form a coating layer (the other surface 2b). Side coating), in a first drying step at a drying temperature T1 = 90 ° C., the coating film layer was subjected to drying treatment until touch drying. Next, in the second drying step at a drying temperature T2 of 110 ° C., the coating layer of touch drying was completely dried.

【0085】このようにして得られた電極活物質層を両
面に備える電極集電体を、ローラープレスをかけて圧縮
成型し、しかる後、所定の大きさに切断して比較例8の
負極サンプルを作製した。
The thus obtained electrode current collector having the electrode active material layers on both sides was compression-molded by applying a roller press, and then cut into a predetermined size to obtain a negative electrode sample of Comparative Example 8. Was prepared.

【0086】(比較例9)厚さ18μmの圧延銅箔(電
極集電体)の一方の面2aの上にノズル塗布方式にて上
記実施例1で用いた負極用塗料を塗布して塗膜層を形成
した後(一方の面2a側塗布)、乾燥温度T1=80℃
の第1の乾燥工程で塗膜層を指触乾燥に至るまで乾燥処
理した。次いで、乾燥温度T2=80℃の第2の乾燥工
程で指触乾燥の塗膜層を完全な乾燥状態とした。
Comparative Example 9 The negative electrode paint used in Example 1 was applied by a nozzle coating method on one surface 2a of a rolled copper foil (electrode current collector) having a thickness of 18 μm to form a coating film. After forming the layer (coating on one side 2a side), drying temperature T1 = 80 ° C.
In the first drying step, the coating layer was dried until touch drying. Next, in the second drying step at a drying temperature T2 = 80 ° C., the touch-dried coating film layer was completely dried.

【0087】同様な手順で、圧延銅箔(電極集電体)の
他方の面2bの上にノズル塗布方式にて上記負極用塗料
を塗布して塗膜層を形成した後(他方の面2b側塗
布)、乾燥温度T1=80℃の第1の乾燥工程で塗膜層
を指触乾燥に至るまで乾燥処理した。次いで、乾燥温度
T2=80℃の第2の乾燥工程で指触乾燥の塗膜層を完
全な乾燥状態とした。
In the same procedure, the coating material for the negative electrode was applied on the other surface 2b of the rolled copper foil (electrode current collector) by a nozzle coating method to form a coating layer (the other surface 2b). Side coating), and in a first drying step at a drying temperature T1 = 80 ° C., the coating film layer was dried until touch drying. Next, in the second drying step at a drying temperature T2 = 80 ° C., the touch-dried coating film layer was completely dried.

【0088】このようにして得られた電極活物質層を両
面に備える電極集電体を、ローラープレスをかけて圧縮
成型し、しかる後、所定の大きさに切断して比較例9の
負極サンプルを作製した。
The thus obtained electrode current collector having the electrode active material layers on both surfaces was compression-molded by applying a roller press, and then cut into a predetermined size to obtain a negative electrode sample of Comparative Example 9. Was prepared.

【0089】(比較例10)厚さ18μmの圧延銅箔
(電極集電体)の一方の面2aの上にノズル塗布方式に
て上記実施例1で用いた負極用塗料を塗布して塗膜層を
形成した後(一方の面2a側塗布)、乾燥温度T1=1
50℃の第1の乾燥工程で塗膜層を指触乾燥に至るまで
乾燥処理した。次いで、乾燥温度T2=150℃の第2
の乾燥工程で指触乾燥の塗膜層を完全な乾燥状態とし
た。
Comparative Example 10 The negative electrode paint used in Example 1 was applied by a nozzle coating method on one surface 2a of a rolled copper foil (electrode current collector) having a thickness of 18 μm to form a coating film. After forming the layer (coating on one side 2a side), drying temperature T1 = 1
In a first drying step at 50 ° C., the coating film layer was dried until touch drying. Next, the second drying temperature T2 = 150 ° C.
In the drying step, the coating layer of touch drying was completely dried.

【0090】同様な手順で、圧延銅箔(電極集電体)の
他方の面2bの上にノズル塗布方式にて上記負極用塗料
を塗布して塗膜層を形成した後(他方の面2b側塗
布)、乾燥温度T1=150℃の第1の乾燥工程で塗膜
層を指触乾燥に至るまで乾燥処理した。次いで、乾燥温
度T2=150℃の第2の乾燥工程で指触乾燥の塗膜層
を完全な乾燥状態とした。
In the same procedure, the above-mentioned negative electrode paint is applied on the other surface 2b of the rolled copper foil (electrode current collector) by a nozzle coating method to form a coating layer (the other surface 2b). Side coating), in a first drying step at a drying temperature T1 = 150 ° C., the coating film layer was subjected to drying treatment until touch drying. Next, in the second drying step at a drying temperature T2 = 150 ° C., the coating layer of the touch drying was completely dried.

【0091】このようにして得られた電極活物質層を両
面に備える電極集電体を、ローラープレスをかけて圧縮
成型し、しかる後、所定の大きさに切断して比較例10
の負極サンプルを作製した。
The electrode current collector having the electrode active material layers thus obtained on both sides was compression-molded using a roller press, and then cut into a predetermined size to obtain a comparative example 10.
Was prepared.

【0092】(実施例7)上記実施例1において、電極
塗料中の酸の濃度を0.1重量%に変えた。それ以外は
上記実施例1と同様にして本実施例7の負極サンプルを
作製した。
Example 7 In Example 1, the concentration of the acid in the electrode paint was changed to 0.1% by weight. Otherwise in the same manner as in Example 1, a negative electrode sample of Example 7 was produced.

【0093】(実施例8)上記実施例1において、電極
塗料中の酸の濃度を1.0重量%に変えた。それ以外は
上記実施例1と同様にして本実施例8の負極サンプルを
作製した。
(Example 8) In Example 1, the concentration of the acid in the electrode paint was changed to 1.0% by weight. Otherwise in the same manner as in Example 1, a negative electrode sample of Example 8 was produced.

【0094】(実施例9)上記実施例2において、電極
塗料中の酸の濃度を0.1重量%に変えた。それ以外は
上記実施例2と同様にして本実施例9の負極サンプルを
作製した。
(Example 9) In Example 2, the concentration of the acid in the electrode paint was changed to 0.1% by weight. Otherwise in the same manner as in Example 2, a negative electrode sample of Example 9 was produced.

【0095】(実施例10)上記実施例2において、電
極塗料中の酸の濃度を1.0重量%に変えた。それ以外
は上記実施例2と同様にして本実施例10の負極サンプ
ルを作製した。
Example 10 In Example 2, the concentration of the acid in the electrode paint was changed to 1.0% by weight. Otherwise in the same manner as in Example 2, a negative electrode sample of Example 10 was produced.

【0096】これらのサンプルについて、以下の要領
で、残留酸、および接着性の評価を行った。
The samples were evaluated for residual acid and adhesiveness in the following manner.

【0097】残留酸の測定 電極の表面側および裏面側から電極活物質層の塗膜をそ
れぞれ、1.3gづつ剥し、合計2.6gの塗膜測定サ
ンプルを取り出す。
Measurement of Residual Acid 1.3 g of the electrode active material layer coating film was peeled off from the front and back surfaces of the electrode, respectively, and a total of 2.6 g of a coating film measurement sample was taken out.

【0098】剥した塗膜をスペック用スチレン容器(Ф
1インチ×3インチ:#6134)に入れ、スペック用
メタクリルボール(Ф(3/8)インチ:#3112)
を2個加え、10分間スペックスミキサー(#800
0)で粉砕する。
The peeled coating film was placed in a styrene container for specifications (容器
1 inch x 3 inch: # 6134) and methacrylic ball for spec (Ф (3/8) inch: # 3112)
And two Spex mixers (# 800 for 10 minutes)
Grind in 0).

【0099】粉砕した塗膜2.5gを取り、50ccビ
ーカーに入れる。ホールピペットで5mlの純粋を加
え、ガラス棒で激しくかき混ぜる。黒い均一なペースト
になったところで30分間静置し、濾紙で濾過し、サン
プル溶液を作成する。このサンプル溶液を、Dione
x QICイオンクロマトグラフ分析装置によって酸の
量を測定して、その測定値に応じて以下のようなランク
に区分した。
Take 2.5 g of the pulverized coating film and place in a 50 cc beaker. Add 5 ml of pure with a whole pipette and stir vigorously with a glass rod. When a black uniform paste is formed, the mixture is allowed to stand for 30 minutes, and filtered with a filter paper to prepare a sample solution. This sample solution is added to Dione
x The amount of acid was measured by a QIC ion chromatograph analyzer, and classified according to the measured values into the following ranks.

【0100】 ○:電気特性への影響なし(40ppm未満) △:電気特性への影響小(40ppm以上100ppm
未満) ×:電気特性への影響大(100ppm以上)接着性 電極サンプルを水平な台の上に載せ、引っ掻き試験機
(ERICHSEN MODE 295,1mm間隔11枚刃)の刃を電極
に対して90度の角度で当て、左右均等に引き、電極表
面にスジを付ける。このスジの深さは電極活物質層の厚
さ程度とする。次に、最初のスジに対して90度のスジ
を付け、碁盤目状にして剥離試験を行った(JIS K
5400;8.5付着性での碁盤目法)。銅箔の露出
の程度を以下の基準に従って評価した。
:: No effect on electric characteristics (less than 40 ppm) Δ: Small effect on electric characteristics (40 ppm or more and 100 ppm)
×): Large effect on electrical characteristics (100 ppm or more) Adhesive electrode sample was placed on a horizontal table, and the blade of a scratch tester (ERICHSEN MODE 295, 11 blades at 1 mm intervals) was 90 ° to the electrode And pull it evenly to the left and right to make a streak on the electrode surface. The depth of this streak is about the thickness of the electrode active material layer. Next, a 90-degree streak was attached to the first streak, and the strip was tested in a grid pattern (JIS K).
5400; cross-cut method with 8.5 adhesion). The degree of exposure of the copper foil was evaluated according to the following criteria.

【0101】なお、接着性は、最初に塗設した電極活物
質層51(便宜上、A面と称す)および次いで裏面側に
塗設した電極活物質層55(便宜上、B面と称す)の双
方についてそれぞれ測定した。
The adhesiveness of both the electrode active material layer 51 applied first (for convenience, referred to as surface A) and the electrode active material layer 55 applied on the back surface (for convenience, referred to as surface B) are determined. Was measured for each.

【0102】 ◎:電極活物質層の剥離が見られない ○:電極活物質層の剥離面積が全正方形面積の20%未
満である △:電極活物質層の剥離面積が全正方形面積の20%以
上50%以下である ×:電極活物質層の剥離面積が全正方形面積の50%を
超える 結果を、下記表1に示す。
:: No peeling of the electrode active material layer is observed. :: The peeling area of the electrode active material layer is less than 20% of the entire square area. Δ: The peeling area of the electrode active material layer is 20% of the total square area. X: 50% or less ×: The peeling area of the electrode active material layer exceeds 50% of the area of the entire square. The results are shown in Table 1 below.

【0103】[0103]

【表1】 [Table 1]

【0104】[0104]

【発明の効果】上記の結果より本発明の効果は明らかで
ある。すなわち、本発明は、電極活物質と、バインダー
と、溶剤と、酸とを含有する電極塗料を平板状の電極集
電体の一方の面および他方の面に順次塗布して、前記電
極集電体の両面に電極活物質層をそれぞれ形成する電池
用電極の製造方法において、塗膜層の乾燥工程を2段階
に分け、それらの乾燥温度条件を適宜設定するように構
成しているので、最初に塗設される一方の面における塗
膜の接着性が良いことはもちろんのこと、後から塗設さ
れる他方の面(いわゆる裏面)における塗膜の接着性も
悪化することなく極めて良好な接着性を保証できる。し
かも、電池用電極の特性の劣化も極めて少ない。
The effects of the present invention are clear from the above results. That is, the present invention provides an electrode paint comprising an electrode active material, a binder, a solvent, and an acid, which is sequentially applied to one surface and the other surface of a flat electrode current collector. In the method for manufacturing a battery electrode in which the electrode active material layers are formed on both surfaces of the body, the drying step of the coating layer is divided into two stages, and the drying temperature conditions are appropriately set. Not only the adhesion of the coating film on one surface to be coated on the surface is good, but also the adhesion of the coating film on the other surface to be coated later (the so-called back surface) is extremely good without deteriorating. Quality can be guaranteed. In addition, the deterioration of the characteristics of the battery electrode is extremely small.

【0105】これにより、電池容量の低下を防ぐことが
でき、また、電極活物質層の剥離に起因する正負極の短
絡を防ぎ、安全性を高めることができる。
As a result, a decrease in battery capacity can be prevented, and a short circuit between the positive electrode and the negative electrode caused by peeling of the electrode active material layer can be prevented, and safety can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)および(b)は、電極塗料を電極集電体
2の両面2a,2bに順次塗設・乾燥し、電極活物質層
51,55を順次形成する状態を経時的に示す図面であ
る。
FIGS. 1 (a) and 1 (b) show a state in which an electrode paint is sequentially applied to both surfaces 2a and 2b of an electrode current collector 2 and dried to form electrode active material layers 51 and 55 sequentially. FIG.

【符号の説明】[Explanation of symbols]

2…電極集電体 2a…電極集電体の一方の面(最初に塗膜層が形成され
る側) 2b…電極集電体他方の面(裏面) 51,55…電極活物質層
2 ... Electrode current collector 2a ... One surface of the electrode current collector (the side on which the coating layer is first formed) 2b ... The other surface (back surface) of the electrode current collector 51, 55 ... Electrode active material layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電極活物質と、バインダーと、溶剤と、
酸とを含有する電極塗料を平板状の電極集電体の一方の
面および他方の面に順次塗布して、前記電極集電体の両
面に電極活物質層をそれぞれ形成する電池用電極の製造
方法において、 当該製造方法が、前記電極集電体の一方の面に前記電極
塗料を塗布して塗膜層を形成し、この塗膜層を乾燥する
表面層乾燥工程と、 前記電極集電体の他方の面に前記電極塗料を塗布して塗
膜層を形成し、この塗膜層を乾燥する裏面層乾燥工程と
を有し、 前記表面層乾燥工程および裏面層乾燥工程は、いずれ
も、第1の乾燥工程および次いで行われる第2の乾燥工
程を含み、 前記第1の乾燥工程が70〜90℃の温度範囲で行わ
れ、前記第2の乾燥工程が120〜200℃の温度範囲
で行われ、かつ前記第2の乾燥工程における乾燥温度T
2と前記第1の乾燥工程における乾燥温度T1の温度差
(T2−T1)の値が、40℃以上であることを特徴と
する電池用電極の製造方法。
1. An electrode active material, a binder, a solvent,
Production of an electrode for a battery in which an electrode paint containing an acid is sequentially applied to one surface and the other surface of a flat electrode current collector to form an electrode active material layer on both surfaces of the electrode current collector, respectively. In the method, the manufacturing method includes a step of applying the electrode paint to one surface of the electrode current collector to form a coating layer, and drying the coating layer. Forming a coating layer by applying the electrode paint to the other surface of the back surface layer, and a back layer drying step of drying the coating layer, the surface layer drying step and the back layer drying step, A first drying step and a subsequent second drying step, wherein the first drying step is performed in a temperature range of 70 to 90 ° C., and the second drying step is performed in a temperature range of 120 to 200 ° C. The drying temperature T in the second drying step.
2. A method for producing a battery electrode, wherein the temperature difference (T2−T1) between the drying temperature T1 and the drying temperature T1 in the first drying step is 40 ° C. or more.
【請求項2】 前記第1の乾燥工程は、塗布後の塗膜層
を、指触乾燥に至るまで乾燥処理させる請求項1に記載
の電池用電極の製造方法。
2. The method for producing a battery electrode according to claim 1, wherein in the first drying step, the coating film layer after application is dried until touch drying.
JP35614097A 1997-12-09 1997-12-09 Method for manufacturing battery electrode Expired - Lifetime JP4095144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35614097A JP4095144B2 (en) 1997-12-09 1997-12-09 Method for manufacturing battery electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35614097A JP4095144B2 (en) 1997-12-09 1997-12-09 Method for manufacturing battery electrode

Publications (2)

Publication Number Publication Date
JPH11176422A true JPH11176422A (en) 1999-07-02
JP4095144B2 JP4095144B2 (en) 2008-06-04

Family

ID=18447541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35614097A Expired - Lifetime JP4095144B2 (en) 1997-12-09 1997-12-09 Method for manufacturing battery electrode

Country Status (1)

Country Link
JP (1) JP4095144B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG101975A1 (en) * 2000-06-01 2004-02-27 Nisshin Spinning Electrode structure, battery and electrical double-layer capacitor and method of manufacturing same
JP2012199150A (en) * 2011-03-22 2012-10-18 Dainippon Screen Mfg Co Ltd Manufacturing method of electrode for battery and manufacturing device of electrode for battery
CN109155392A (en) * 2017-01-03 2019-01-04 株式会社Lg化学 Electrode for secondary battery preparation system with scarification tester
CN113678281A (en) * 2020-01-06 2021-11-19 株式会社Lg新能源 Metal thin film for electrode current collector including rubberized region and method of manufacturing electrode using the same
US11245107B2 (en) 2016-03-18 2022-02-08 Envision Aesc Japan Ltd. Positive electrode mixture for secondary battery, method for manufacturing positive electrode for secondary battery, and method for manufacturing secondary battery
CN118658965A (en) * 2024-08-05 2024-09-17 比亚迪股份有限公司 Composite pole piece, preparation method thereof and battery comprising composite pole piece

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG101975A1 (en) * 2000-06-01 2004-02-27 Nisshin Spinning Electrode structure, battery and electrical double-layer capacitor and method of manufacturing same
JP2012199150A (en) * 2011-03-22 2012-10-18 Dainippon Screen Mfg Co Ltd Manufacturing method of electrode for battery and manufacturing device of electrode for battery
US11245107B2 (en) 2016-03-18 2022-02-08 Envision Aesc Japan Ltd. Positive electrode mixture for secondary battery, method for manufacturing positive electrode for secondary battery, and method for manufacturing secondary battery
CN109155392A (en) * 2017-01-03 2019-01-04 株式会社Lg化学 Electrode for secondary battery preparation system with scarification tester
EP3444870A4 (en) * 2017-01-03 2019-03-20 LG Chem, Ltd. System equipped with scratch tester for producing electrode for secondary battery
US10535862B2 (en) 2017-01-03 2020-01-14 Lg Chem, Ltd. System for manufacturing electrode for secondary battery having scratch tester
CN109155392B (en) * 2017-01-03 2021-10-22 株式会社Lg化学 Electrode preparation system for secondary battery with scratch tester
CN113678281A (en) * 2020-01-06 2021-11-19 株式会社Lg新能源 Metal thin film for electrode current collector including rubberized region and method of manufacturing electrode using the same
CN118658965A (en) * 2024-08-05 2024-09-17 比亚迪股份有限公司 Composite pole piece, preparation method thereof and battery comprising composite pole piece

Also Published As

Publication number Publication date
JP4095144B2 (en) 2008-06-04

Similar Documents

Publication Publication Date Title
EP0935300B1 (en) Method for manufacturing electrode for battery
US8951670B2 (en) Adhesion of active electrode materials to metal electrode substrates
JP6554601B2 (en) Electrode and method of manufacturing the same
JP5595349B2 (en) Positive electrode current collector for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and method for producing positive electrode current collector for lithium ion secondary battery
JP4095145B2 (en) Electrode manufacturing method
CN110875492B (en) Nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery
JP4095144B2 (en) Method for manufacturing battery electrode
JP2009230976A (en) Nonaqueous electrolyte secondary battery and manufacturing method for the same
US6087045A (en) Primer with electrochemically inert particulate and process for fabricating same
CA2625896A1 (en) New electrode materials with high surface conductivity
JPH11176425A (en) Manufacture of electrode for battery
EP2869365A1 (en) Positive electrode for secondary batteries, secondary battery, and method for producing positive electrode for secondary batteries
KR101688283B1 (en) Electrode material, electrode and secondary battery
JPH10270023A (en) Manufacture of electrode for nonaqueous electrolyte secondary battery
JP7180422B2 (en) Method for manufacturing all-solid-state battery
CN106898777B (en) Polar plate structure
KR102071919B1 (en) Evaluation method of electrode
JPH11167917A (en) Manufacture of electrode for battery
KR102390892B1 (en) Negative electrode slurry and negative electrode using the slurry
JP2002157998A (en) Method of manufacturing composite positive electrode for solid lithium secondary battery and solid lithium secondary battery using same
KR20240079428A (en) Conductive coating layer for improving electrode adhesion and electrode manufacturing method using the same
JPH10223208A (en) Manufacture of electrode plate for non-aqueous electrolytic solution secondary battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041209

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080307

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 6

EXPY Cancellation because of completion of term