JPH11176355A - Cathode-ray tube device - Google Patents

Cathode-ray tube device

Info

Publication number
JPH11176355A
JPH11176355A JP33976197A JP33976197A JPH11176355A JP H11176355 A JPH11176355 A JP H11176355A JP 33976197 A JP33976197 A JP 33976197A JP 33976197 A JP33976197 A JP 33976197A JP H11176355 A JPH11176355 A JP H11176355A
Authority
JP
Japan
Prior art keywords
yoke
yoke portion
deflection
axis
outer diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33976197A
Other languages
Japanese (ja)
Inventor
Yuichi Sano
雄一 佐野
Masahiro Yokota
昌広 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP33976197A priority Critical patent/JPH11176355A/en
Publication of JPH11176355A publication Critical patent/JPH11176355A/en
Pending legal-status Critical Current

Links

Landscapes

  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)

Abstract

PROBLEM TO BE SOLVED: To ensure sufficient atmospheric pressure resistance of a vacuum envelope, if a yoke is formed into a pyramid shape, effectively reduce deflecting electric power and meet requirement for higher brightness and higher frequency deflection. SOLUTION: In a cathode-ray tube device, for which a neck with an electron gun inside and a glass vacuum envelope mounted with a deflection yoke and provided with a yoke 14 connected to the fluorescent screen side of the neck are formed at the rear part of a panel with a fluorescent screen inside, the yoke 14 in a sectionally noncircular pyramid shape has a length from the connection position of the neck to the end on the screen side of the deflection yoke. If an space between the tubular axis and the inner wall of the yoke and a space between the tubular axis and the outer wall of the yoke are the inner diameter and the outer diameter of the yoke in a vertical plane against the tubular axis, at least one vertical section against the tubular axis has the maximum outer diameter of the yoke in a direction D0 between the direction V of a vertical axis and the direction H of a horizontal axis of a screen and shows θi ≠θ0 where an angle between the horizontal axis and a direction Di formed by the maximum inner diameter of the yoke is θi and an angle between the horizontal axis and a direction D0 formed by the maximum outer diameter of the yoke is θ0 .

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、カラー陰極線管
などの陰極線管装置に係り、特に偏向電力を有効に低減
し真空外囲器の耐気圧強度を確保できる陰極線管装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cathode ray tube device such as a color cathode ray tube, and more particularly to a cathode ray tube device capable of effectively reducing deflection power and securing the pressure resistance of a vacuum envelope.

【0002】[0002]

【従来の技術】陰極線管の一例としてカラー受像管は、
表示部がほぼ矩形状のパネル、このパネルに連接された
漏斗状のフアンネル及びこのファンネルに連接された円
筒状のネックからなるガラス真空外囲器を有する。
2. Description of the Related Art A color picture tube is an example of a cathode ray tube.
The display has a glass vacuum envelope consisting of a substantially rectangular panel, a funnel-shaped funnel connected to the panel, and a cylindrical neck connected to the funnel.

【0003】また、前記ネック側から前記ファンネル側
にかけて偏向ヨークが装着されており、前記ファンネル
は前記ネックとの連接部から前記偏向ヨークの装着され
る位置までの径小部、いわゆるヨーク部を有する。
Further, a deflection yoke is mounted from the neck side to the funnel side, and the funnel has a small diameter portion from a connection portion with the neck to a position where the deflection yoke is mounted, a so-called yoke portion. .

【0004】パネルの内面には、青、緑、赤に発光する
ドット状またはストライプ状の3色蛍光体層からなる蛍
光体スクリーンが設けられ、この蛍光体スクリーンに対
向して、その内側に多数の電子ビーム通過孔の形成され
たシャドウマスクが配置されている。ネック内には3電
子ビームを放出する電子銃が配設されており、前記電子
ビームを前記偏向ヨークの発生する水平、垂直偏向磁界
により水平、垂直方向に偏向し、シャドウマスクを介し
て蛍光体スクリーンを水平、垂直走査することにより、
カラー画像を表示する構造に形成されている。
On the inner surface of the panel, there is provided a phosphor screen composed of a three-color phosphor layer in the form of dots or stripes that emit blue, green, and red light. The shadow mask in which the electron beam passage holes are formed is disposed. An electron gun for emitting three electron beams is provided in the neck, and the electron beam is horizontally and vertically deflected by a horizontal and vertical deflection magnetic field generated by the deflection yoke. By scanning the screen horizontally and vertically,
It is formed in a structure for displaying a color image.

【0005】このような受像管において、電子銃を同一
水平面上を通る一列配置の3電子ビームを放出するイン
ライン型とし、この電子銃から放出される一列配置の3
電子ビームを、偏向ヨークの発生する水平偏向磁界をピ
ンクッション形、垂直偏向磁界をバレル形として、これ
ら水平、垂直偏向磁界により偏向することにより、格別
の補正手段を要することなく、画面全体にわたり、一列
配置の3電子ビームを集中するセルフコンバーゼンス・
インライン形カラー受像管が広く実用化されている。
In such a picture tube, the electron gun is of an in-line type which emits three electron beams arranged in a line passing on the same horizontal plane.
By deflecting the electron beam with these horizontal and vertical deflection magnetic fields, with the horizontal deflection magnetic field generated by the deflection yoke as a pincushion type and the vertical deflection magnetic field as a barrel type, no special correction means is required, and the entire screen is displayed. Self-convergence for concentrating three electron beams in a row
In-line type color picture tubes are widely used.

【0006】このような陰極線管においては、偏向ヨー
クが大きな電力消費源であり、陰極線管の消費電力の低
減に当たっては、この偏向ヨークの消費電力を低減する
ことが重要である。すなわち、スクリーン輝度を上げる
ためには、最終的に電子ビームを加速する陰極電圧を上
げなければならない。また、HD(High Definition)
TVやPC(Personal Computer )などのOA機器に対
応するためには、偏向周波数を上げなければならない
が、これらは、いずれも偏向電力の増大を招く。
[0006] In such a cathode ray tube, the deflection yoke is a large power consumption source, and it is important to reduce the power consumption of the deflection yoke in reducing the power consumption of the cathode ray tube. That is, in order to increase the screen brightness, it is necessary to increase the cathode voltage for finally accelerating the electron beam. HD (High Definition)
In order to support OA equipment such as a TV and a PC (Personal Computer), the deflection frequency must be increased, but all of them cause an increase in deflection power.

【0007】一方、オペレーターが陰極線管に接近して
対応するPCなどのOA機器については、偏向ヨ一クか
ら陰極線管外に漏洩する漏洩磁界に対する規制が強化さ
れている。この偏向ヨークから陰極線管外に漏洩する磁
界の低減手段には、従来、補償コイルを付加する方法が
一般に用いられている。しかしこのように補償コイルを
付加すると、それに伴ってPCの消費電力が増大する。
On the other hand, regarding OA devices such as PCs in which an operator approaches the cathode ray tube and responds, regulations on leakage magnetic fields leaking from the deflection yoke to the outside of the cathode ray tube have been strengthened. As a means for reducing the magnetic field leaking from the deflection yoke to the outside of the cathode ray tube, a method of adding a compensation coil has conventionally been generally used. However, when the compensation coil is added in this manner, the power consumption of the PC increases accordingly.

【0008】一般に偏向電力の低減や漏洩磁界の低減に
は、陰極線管のネック径を小さくし、偏向ヨークの装着
されるヨーク部外径を小さくして、偏向磁界の作用空間
を小さくし電子ビームに対して偏向磁界が効率良く作用
するようにすると良い。
In general, in order to reduce the deflection power and the leakage magnetic field, the diameter of the neck of the cathode ray tube is reduced, the outer diameter of the yoke portion on which the deflection yoke is mounted is reduced, and the operating space of the deflection magnetic field is reduced. It is preferable that the deflecting magnetic field acts efficiently on.

【0009】しかし従来の陰極線管では、電子ビームが
偏向ヨークの装着されるヨーク部内壁に接近して通過す
るため、図8(a)に示すように、ネック104径やヨ
ーク部110外径をさらに小さくすると、最大偏向角を
とる蛍光体スクリーン105の対角部に向かう電子ビー
ム107がヨーク部110内壁に衝突し、図8(b)に
示すように、蛍光体クリーン105上に電子ビーム10
7の衝突しない部分111ができる。
However, in the conventional cathode ray tube, since the electron beam passes close to the inner wall of the yoke on which the deflection yoke is mounted, the diameter of the neck 104 and the outer diameter of the yoke 110 are reduced as shown in FIG. When the electron beam 107 is further reduced, the electron beam 107 going to the diagonal portion of the phosphor screen 105 having the maximum deflection angle collides with the inner wall of the yoke portion 110, and as shown in FIG.
7, a non-colliding portion 111 is formed.

【0010】したがって、従来の陰極線管では、ネツク
径やヨーク部110外径を小さくして、偏向電力を低滅
させることが困難である。また、ヨーク部110内壁に
電子ビーム107が衝突し続けると、ガラスが溶けるほ
どその部分の温度が上昇し、爆縮する危険が生ずる。
Therefore, in the conventional cathode ray tube, it is difficult to reduce the deflection power by reducing the diameter of the net or the outer diameter of the yoke portion 110. Further, if the electron beam 107 keeps colliding with the inner wall of the yoke part 110, the temperature of that part increases as the glass melts, and there is a risk of implosion.

【0011】このような問題を解決する手段として、特
公昭48−34349号公報(USP3,731,12
9)には、蛍光体スクリーン上に矩形状のラスターを描
く場合、偏向ヨークの装着されるヨーク部内側における
電子ビームの通過領域もほぼ矩形状になるとの考えか
ら、図9(a)に示す陰極線管113について、そのB
−B乃至F−F断面を同(b)〜(f)に示したよう
に、偏向ヨークの装着されるフアンネル103のヨーク
部110をネック104側からパネル102方向に円形
から次第にほぼ矩形状に変化する形状にしたものが示さ
れている。
As means for solving such a problem, Japanese Patent Publication No. 48-34349 (US Pat. No. 3,731,12)
FIG. 9A shows that, when a rectangular raster is drawn on the phosphor screen, the electron beam passage area inside the yoke portion on which the deflection yoke is mounted is also substantially rectangular. Regarding the cathode ray tube 113,
As shown in (b) to (f) in the section from B to FF, the yoke portion 110 of the funnel 103 to which the deflection yoke is mounted is gradually changed from a circular shape toward the panel 102 from the neck 104 side to a substantially rectangular shape. A varying shape is shown.

【0012】このように偏向ヨークの装着されるヨーク
部110を角錐状に形成すると、偏向ヨークの長軸(水
平軸:H軸)および短軸(垂直軸:V軸)方向の径も小
さくできるため、偏向ヨークの水平、垂直偏向コイルを
電子ビームに近づけて、効率良く偏向し偏向電力を低減
することができる。しかしこのような陰極線管は、偏向
電力を効果的に低減するため、ヨーク部を矩形に近づけ
るほど、偏平化によって生じるガラスの歪みにより真空
外囲器の耐気圧強度が低下し、安全性が損なわれる。
When the yoke portion 110 on which the deflection yoke is mounted is formed in a pyramid shape, the diameter of the deflection yoke in the major axis (horizontal axis: H axis) and short axis (vertical axis: V axis) directions can be reduced. Therefore, it is possible to bring the horizontal and vertical deflection coils of the deflection yoke closer to the electron beam, deflect efficiently and reduce deflection power. However, in such a cathode ray tube, in order to effectively reduce the deflection power, the closer the yoke is to a rectangular shape, the lower the pressure resistance of the vacuum envelope due to the distortion of the glass caused by the flattening, which impairs safety. It is.

【0013】また、現在は外光の映り込みや画像の見易
さ等が強く要求されているため、パネルのフラッ卜化が
必須となっているが、陰極線管のパネル面をフラット化
すると真空強度が劣化するため、従来の用いられたヨー
ク部を角錐状としたファンネルをそのまま用いても、安
全上必要なバルブ強度を確保できない。従来はこのよう
な理由から、偏向電力を十分に低減するほどのヨーク部
矩形化が出来ないか、あるいは平坦なパネルに適用出来
ないほど大気圧強度が弱いといった問題があった。
At present, the flatness of the panel is indispensable because the reflection of external light and the visibility of images are strongly demanded. However, when the panel surface of the cathode ray tube is flattened, a vacuum is generated. Since the strength is deteriorated, even if a conventional funnel having a yoke portion having a pyramid shape is used as it is, a valve strength necessary for safety cannot be secured. Conventionally, for this reason, there has been a problem that the yoke portion cannot be made rectangular enough to sufficiently reduce the deflection power, or the atmospheric pressure intensity is so weak that it cannot be applied to a flat panel.

【0014】ここで前述したヨーク部を角錐化する技術
について出願人は1970年頃、偏向角110度/ネッ
ク径36.5mmでパネル対角径が18”、20”、2
2”、26”、偏向角110度/ネック径29.1mm
で16”、20”の2つのシリーズを量産した。当時
は、パネル外面はほぼ球面でパネル外面の曲率半径が、
スクリーン有効径の約1.7倍である1R管と称するも
のに適用したものであった。しかし、パネル外面形状が
スクリーン有効径の2倍以上の陰極線管については、ヨ
ーク部形状との関連がバルブ強度との関係で不明であっ
た。
Here, regarding the above-mentioned technology for forming the yoke portion into a pyramidal shape, the applicant of the present invention circumvented the 1970's, with a deflection angle of 110 degrees / neck diameter of 36.5 mm and panel diagonal diameters of 18 ", 20", 2
2 ", 26", deflection angle 110 degrees / neck diameter 29.1 mm
And mass-produced two series, 16 "and 20". At that time, the outer surface of the panel was almost spherical and the radius of curvature of the outer surface of the panel was
This was applied to what is referred to as a 1R tube which is about 1.7 times the screen effective diameter. However, for a cathode ray tube having a panel outer surface shape twice or more the screen effective diameter, the relationship with the yoke shape was unclear due to the relationship with the bulb strength.

【0015】[0015]

【発明が解決しようとする課題】前記のように近年、陰
極線管の偏向電力及び漏洩磁界の低滅が求められている
が、これをHDTVやPCなどのOA機器に要求される
高輝度化、高周波化を満足させながら行うことは極めて
困難である。従来、その偏向電力を低減する構造とし
て、偏向ヨークの装着されるヨーク部にネック側からパ
ネル方向に円形から次第にほぼ矩形状に変化する角錐状
のヨーク部を形成したものが提案されている。しかしな
がら、従来は十分な大気圧強度と十分な偏向電力低減を
両立させる真空外囲器を製作することは困難であった。
この発明は、前記問題点を解決するためにな声れたもの
であり、ヨーク部を角錐化しても、真空外囲器の耐気圧
強度を十分に確保でき、偏向電力を有効に低滅して、高
輝度化や高周波偏向の要求を満たす陰極線管装置を構成
することを目的とする。
As described above, in recent years, it has been required to reduce the deflection power and leakage magnetic field of a cathode ray tube. It is extremely difficult to perform the process while satisfying the high frequency. Conventionally, as a structure for reducing the deflection power, a configuration in which a pyramid-shaped yoke portion that gradually changes from a circular shape to a substantially rectangular shape in a panel direction from the neck side on a yoke portion to which the deflection yoke is mounted has been proposed. However, conventionally, it has been difficult to manufacture a vacuum envelope that achieves both sufficient atmospheric pressure strength and sufficient deflection power reduction.
The present invention has been made to solve the above-mentioned problems, and even if the yoke portion is formed into a pyramid, the pressure resistance of the vacuum envelope can be sufficiently secured, and the deflection power is effectively reduced. It is another object of the present invention to configure a cathode ray tube device which satisfies the requirements of high luminance and high frequency deflection.

【0016】[0016]

【課題を解決するための手段】少なくとも蛍光体スクリ
ーンを内面に有するパネル部と、前記スクリーンに対向
して配置される電子銃を内面に有するネック部と、前記
ネック部のスクリーン側に連接されるヨーク部からなる
ガラス真空外囲器と、前記ヨーク部から前記ネック部に
かけての前記真空外囲器の外面に配置され、前記電子銃
から放出される電子ビームを、略矩形状スクリーン領域
に偏向走査する偏向ヨークから構成される陰極線管装置
において、前記ヨーク部は、前記ネック部の連接位置か
ら少なくとも前記偏向ヨークのスクリーン側端までと
し、管軸に垂直な断面において管軸と前記ヨーク部内壁
の間隔をヨーク部内径、管軸と前記ヨーク部外壁の間隔
をヨーク部外径とするとき、前記ヨーク部の前記ネック
部連接位置から少なくとも前記偏向ヨークのスクリーン
側端までの間で、前記管軸に垂直な少なくとも1つの断
面は、前記スクリーンの垂直軸方向及び水平軸方向の間
で最大ヨーク部外径をなす非円形状を有し、前記非円形
状断面のうち少なくとも1つの断面は、水平軸と最大ヨ
ーク部内径のなす角をθi 、水平軸と最大ヨーク部外径
のなす角をθoとするとき、θi ≠θo となるようにヨ
ーク部形状を構成した。
SUMMARY OF THE INVENTION A panel having at least a phosphor screen on its inner surface, a neck having an electron gun disposed on its inner surface facing the screen, and a screen connected to the neck. A glass vacuum envelope comprising a yoke portion, and an electron beam emitted from the electron gun, which is disposed on an outer surface of the vacuum envelope from the yoke portion to the neck portion, is deflected and scanned to a substantially rectangular screen area. In a cathode ray tube device comprising a deflection yoke, the yoke portion extends from a connection position of the neck portion to at least a screen side end of the deflection yoke. When the interval is the inner diameter of the yoke portion and the interval between the pipe shaft and the outer wall of the yoke portion is the outer diameter of the yoke portion, the distance between the yoke portion and the neck portion is small. At least one section perpendicular to the tube axis up to the screen side end of the deflection yoke has a non-circular shape having a maximum yoke outer diameter between the vertical axis direction and the horizontal axis direction of the screen. At least one of the non-circular cross-sections is θi ≠ θo, where θi is the angle between the horizontal axis and the inner diameter of the maximum yoke, and θo is the angle between the horizontal axis and the outer diameter of the maximum yoke. The shape of the yoke was configured as described above.

【0017】またこの場合、前記ヨーク部の管軸に垂直
な断面において、前記非円形状断面の任意のヨーク部内
壁とヨーク部外壁との間隔のうち、ヨーク部内径が最大
となるヨーク部内壁上の点とヨ一ク部外形が最大となる
ヨーク部外壁上の点との間隔が最小とならないようにヨ
ーク部形状を構成した。
In this case, in the cross section perpendicular to the tube axis of the yoke portion, the inner wall of the yoke portion having the largest inner diameter of the yoke portion out of the space between the arbitrary inner wall of the non-circular cross section and the outer wall of the yoke portion. The shape of the yoke portion was configured so that the distance between the upper point and the point on the outer wall of the yoke portion where the outer shape of the yoke portion was maximum was not minimized.

【0018】[0018]

【発明の実施の形態】図3に管軸に垂直な断面のヨーク
部外面形状を示す。この非円形断面において管軸からス
クリーンの水平方向の軸、垂直方向の軸、対角方向の軸
でそれぞれヨーク部外壁までの距離をLA.SA、DA
とすると、角錐状ヨーク部ではLA及びSAがDAより
小さくなり、結果として水平、垂直軸近傍の偏向コイル
を電子ビームに近づけて偏向電力を低減することが出来
る。ここで最大径となる対角軸距離DAはスクリーンの
対角軸方向であるが、厳密に一致しないこともある。
FIG. 3 shows the outer shape of the yoke section in a section perpendicular to the tube axis. In this non-circular cross-section, the distance from the tube axis to the outer wall of the yoke portion on the horizontal axis, vertical axis, and diagonal axis of the screen is LA. SA, DA
Then, LA and SA are smaller than DA in the pyramid-shaped yoke portion. As a result, the deflection coils near the horizontal and vertical axes can be brought closer to the electron beam to reduce the deflection power. Here, the diagonal axis distance DA having the maximum diameter is in the diagonal axis direction of the screen, but may not exactly match.

【0019】上述の3軸以外の形状は、水平軸上に中心
を持ち半径Rhの円弧と垂直軸上に中心を持ち半径Rv
の円弧と対角軸上近傍に中心を持ち半径Rdの円弧でつ
ないだ形状とした。その他に種々の数式を用いて略矩形
状の断面を作ることもできる。
Shapes other than the three axes described above include an arc having a center on the horizontal axis and a radius Rh and a center having a center on the vertical axis and a radius Rv.
And a shape centered near the diagonal axis and connected by an arc of radius Rd. In addition, a substantially rectangular cross section can be formed using various mathematical expressions.

【0020】前述したように、ヨーク部断面形状を矩形
状に近づけるほど偏向電力が低減できるが、真空外囲器
として安全上必要な強度が保てなくなる。これは、図1
0に示すように大気圧荷重Fによりフラットなヨーク部
水平軸近傍115及び垂直軸近傍116が図中破線11
7で示す方向に歪むため、ヨーク部水平軸及び垂直軸外
壁で圧縮応力σho 、σvo が生じる。そして、ヨーク
部対角軸118近傍外壁では大きな引張応力σdo が発
生するため、このヨーク部対角軸118近傍が起点とな
り亀裂が入り爆縮が起こりやすぐなる。
As described above, the deflection power can be reduced as the cross-sectional shape of the yoke portion approaches the rectangular shape, but the strength required for safety as a vacuum envelope cannot be maintained. This is shown in FIG.
As shown in FIG. 3, the flat yoke portion near the horizontal axis 115 and the vertical axis near the flat axis 115 due to the atmospheric pressure load F are indicated by broken lines 11 in FIG.
7, the compressive stresses .sigma.ho and .sigma.vo are generated on the outer walls of the yoke horizontal and vertical axes. Since a large tensile stress .sigma.do is generated on the outer wall near the yoke diagonal shaft 118, the vicinity of the yoke diagonal shaft 118 becomes a starting point, cracks are formed, and implosion occurs immediately.

【0021】従来の角錐状ヨーク部114の形状は、管
軸に垂直な断面でみたとき、図5のように略矩形状ヨー
ク部内壁の角部をなす位置つまり最大ヨーク内径位置P
diと、ヨーク外壁の角部をなす位置つまり最大ヨーク
外径位置Pdo が、共に管軸位置Oを中心とした直線1
22つまり対角軸D上ある。すなわち、従来は最大ヨー
ク部内外径をとる対角軸角度が等しいため、ネックシャ
ドウを起こさず偏向電力を軽減させるのに、最も応力の
集中する対角軸部のガラス肉厚を最も薄くする必要があ
った。そのため、従来はヨーク部対角軸近傍の強度が弱
く、かつ応力集中も大きいため、容易に直線122近傍
外壁に亀裂が入り爆縮した。ここで破線126で囲む領
域は電子ビームが通過する空間を示している。
The shape of the conventional pyramid-shaped yoke portion 114 is such that, when viewed in a cross section perpendicular to the tube axis, as shown in FIG.
di and the position forming the corner of the yoke outer wall, that is, the maximum yoke outer diameter position Pdo are both straight lines 1 centered on the pipe axis position O.
22, ie on the diagonal axis D. In other words, since the diagonal axes that take the maximum inner and outer diameters of the yoke are the same in the past, it is necessary to minimize the glass thickness of the diagonal where the stress is most concentrated in order to reduce the deflection power without causing neck shadow. was there. Conventionally, the strength near the diagonal axis of the yoke portion is weak and the stress concentration is large, so that the outer wall near the straight line 122 is easily cracked and imploded. Here, a region surrounded by a broken line 126 indicates a space through which the electron beam passes.

【0022】そこで、本発明は図6のように略矩形状
(非円形)断面をもつヨーク部14の最大ヨーク内径位
置Pdi のある対角軸(Di )122上に対して最大ヨ
ーク外径位置Pdo ’を直線122上から垂直軸上へと
ずらして最大ヨーク外形方向(Do )123上に設け
る。この場合、応力はσdo ’で最大となるがPdo ’
部の肉厚は従来に比べて厚くなっているため、応力は軽
減される。なお、図において、σv’o 、σd’o 、σ
h’o はそれぞれ図5のσvo 、σdo 、σho に対応
する。
Therefore, according to the present invention, as shown in FIG. 6, the maximum yoke outer diameter position relative to the diagonal axis (Di) 122 having the maximum yoke inner diameter position Pdi of the yoke portion 14 having a substantially rectangular (non-circular) cross section. Pdo 'is shifted from the straight line 122 to the vertical axis and provided on the maximum yoke outer direction (Do) 123. In this case, the stress is maximum at σdo ', but Pdo'
Since the thickness of the portion is thicker than before, the stress is reduced. In the figure, σv'o, σd'o, σ
h′o corresponds to σvo, σdo, and σho in FIG. 5, respectively.

【0023】すなわち従来ヨーク部形状は、亀裂の起点
となる外壁引張応力のピークと最小肉厚部が一致してお
り爆縮し易い状態であるのに対し、本発明のヨーク部は
図6では亀裂の起点と最小肉厚部が異なるため爆縮が発
生しにくくなる。
That is, the shape of the conventional yoke portion is such that the peak of the outer wall tensile stress, which is the starting point of a crack, and the minimum thickness portion are in agreement with each other, and the yoke portion of the present invention is in FIG. Since the starting point of the crack and the minimum thickness portion are different, implosion hardly occurs.

【0024】これは、スクリーン比が4:3以外の様々
な陰極線管装置に適用できるが、特にスクリーン比1
6:9のように横長となる場合、図11のようにヨーク
部形状もスクリーンに合わせて横長となるため、垂直軸
近傍116が図中破線117で示す方向に示す方向に図
10のスクリーン比4:3よりも大きく歪み、バルブ強
度の劣化が大きいため本発明を採用する効果は大きい。
This can be applied to various cathode ray tube apparatuses having a screen ratio other than 4: 3.
When the screen is horizontally long like 6: 9, the yoke shape is also horizontally long according to the screen as shown in FIG. 11, so that the vicinity 116 of the vertical axis moves in the direction shown by the broken line 117 in FIG. Since the distortion is greater than 4: 3 and the strength of the valve is greatly deteriorated, the effect of employing the present invention is great.

【0025】以上のように、偏向電力の低減と真空外囲
器の耐気圧強度を最適に確保するために、ヨーク部の管
軸に垂直な少なくとも1つの断面は、スクリーンの垂直
軸方向及び水平軸方向の間で最大ヨーク部外径をなす非
円形状を持ち、この非円形状断面のうち少なくとも1つ
の断面は、水平軸と最大ヨーク部内径のなす角をθi、
水平軸と最大ヨーク部外径のなす角をθo とするとき、
θi ≠θo となるようにヨーク部形状を構成する。
As described above, at least one section perpendicular to the tube axis of the yoke portion is formed in the vertical axis direction and the horizontal direction of the screen in order to reduce the deflection power and ensure the pressure resistance of the vacuum envelope. It has a non-circular shape that forms the maximum outer diameter of the yoke between the axial directions, and at least one of the non-circular cross sections has an angle θi between the horizontal axis and the inner diameter of the maximum yoke, θi,
When the angle between the horizontal axis and the outer diameter of the maximum yoke is θo,
The shape of the yoke is configured so that θiiθo.

【0026】またこのとき、ヨーク部の管軸に垂直な断
面において、任意のヨーク部内壁とヨーク部外壁との間
隔のうち、ヨーク部内径が最大となるヨーク部内壁上の
点とヨーク部外径が最大となるヨーク部外壁上の点との
間隔が最小とならないようにヨーク部形状を構成する。
なお、パネル部とネック部の中間にありこれらを連接す
る後部外囲器部分をファンネル部とヨーク部に分けて説
明するが、1つの管に複数のヨーク部を形成した構成も
あり、ファンネル部が漏斗状にならないものもある。し
かして本発明においてはこのような後部外囲器構成の陰
極線管についてもファンネル部と称する。
At this time, in the cross section perpendicular to the tube axis of the yoke portion, a point on the inner wall of the yoke portion at which the inner diameter of the yoke portion is the largest among the distances between the inner wall of the yoke portion and the outer wall of the yoke portion is determined. The shape of the yoke portion is configured so that the distance from the point on the outer wall of the yoke portion where the diameter becomes maximum is not minimized.
In addition, the rear envelope part which is located between the panel part and the neck part and connects them will be described as being divided into a funnel part and a yoke part. However, there is also a configuration in which a plurality of yoke parts are formed in one tube. Some do not form a funnel. Thus, in the present invention, such a cathode ray tube having a rear envelope configuration is also referred to as a funnel portion.

【0027】[0027]

【実施例】図1乃至図7により、本発明の実施例を説明
する。ここに、図4は図1を管軸Zに沿つて対角軸D面
で切ったときの断面略図である。陰極線管10は、ほぼ
矩形状のパネル部12、このパネル部12に連接された
フアンネル部13およびこのファンネル部13の径小部
に連接されたヨーク部14と、このヨーク部14に連接
された円筒状のネック部15を管軸Zに沿つて配置して
なるガラス真空外囲器を有する。
1 to 7, an embodiment of the present invention will be described. Here, FIG. 4 is a schematic cross-sectional view when FIG. 1 is cut along a diagonal axis D along the tube axis Z. The cathode ray tube 10 is connected to a substantially rectangular panel portion 12, a funnel portion 13 connected to the panel portion 12, a yoke portion 14 connected to a small diameter portion of the funnel portion 13, and the yoke portion 14. It has a glass vacuum envelope in which a cylindrical neck portion 15 is arranged along the tube axis Z.

【0028】そのパネル12の内面には、赤、緑、青の
蛍光体層17R、17G、17Bからなる蛍光体スクリ
ーン17及びこのスクリーンに近接してビーム透過孔を
もつシャドウマスク19が設けられている。またネック
部15内に電子銃18が配置されている。そして、ヨー
ク部14からネック部15の外側にかけて、偏向ヨーク
20が装着され、この偏向ヨーク20の発生する水平、
垂直偏向磁界により、前記電子銃から放出される電子ビ
ーム22を水平、垂直方向に偏向して、蛍光体スクリー
ン17を水平、垂直走査することにより、画像を表示す
る構造に形成されている。
On the inner surface of the panel 12, a phosphor screen 17 composed of red, green, and blue phosphor layers 17R, 17G, and 17B and a shadow mask 19 having a beam transmitting hole near the screen are provided. I have. An electron gun 18 is arranged in the neck 15. A deflection yoke 20 is mounted from the yoke portion 14 to the outside of the neck portion 15.
The electron beam 22 emitted from the electron gun is horizontally and vertically deflected by a vertical deflection magnetic field, and the phosphor screen 17 is horizontally and vertically scanned to display an image.

【0029】ここで偏向基準位置25は、図7(a)、
(b)に示すように管軸を挟んだスクリーン対角両端1
7dから管軸Zのある点0に直線を結んだ場合に2直線
が成す角度が陰極線管規定の最大偏向角θであるような
管軸上位置で、偏向の中心となる位置である。特にこの
陰極線管10においては、前記偏向ヨーク20が装着さ
れるヨーク部14が略角錐状に構成されている。
Here, the deflection reference position 25 is shown in FIG.
(B) As shown in FIG.
When the straight line is connected from 7d to a certain point 0 of the tube axis Z, the angle formed by the two straight lines is the position on the tube axis such that the maximum deflection angle θ specified by the cathode ray tube is the center of deflection. In particular, in the cathode ray tube 10, the yoke portion 14 to which the deflection yoke 20 is mounted is formed in a substantially pyramid shape.

【0030】また、外囲器16の管軸Zに沿う外面形状
はフアンネル部13からネック部15にかけて略S字曲
線をしており、ファンネル部13とヨーク部14の境界
は同曲線の変曲点23である。偏向ヨーク20は、その
パネル側の端縁21をこの変曲点23の近傍に位置する
ように装着され、実質上のヨーク部14は少なくともネ
ック部15との連接部24から端縁21までとなる。
The outer surface of the envelope 16 along the tube axis Z has a substantially S-shaped curve from the funnel 13 to the neck 15, and the boundary between the funnel 13 and the yoke 14 is an inflection of the same curve. Point 23. The deflection yoke 20 is mounted so that the edge 21 on the panel side is located near the inflection point 23, and the substantial yoke portion 14 is formed at least from the connection portion 24 to the neck portion 15 to the edge 21. Become.

【0031】図2にこのヨーク部14の外形形状を示
す。曲線26はネック部15との連接部24から偏向ヨ
ーク20のスクリーン側端21にかけての最大ヨーク部
外径であり、水平軸と最大ヨーク部外径とのなす角はネ
ック部との連接位置24近傍よりヨーク部スクリーン側
端縁21まで徐々に36.87゜から40.0゜まで変
化している。また、曲線27は長軸方向のヨーク部外
径、曲線28は短軸方向のヨーク部外径である。
FIG. 2 shows the outer shape of the yoke portion 14. A curve 26 represents the maximum outer diameter of the yoke from the connection 24 with the neck 15 to the screen-side end 21 of the deflection yoke 20, and the angle between the horizontal axis and the maximum outer diameter of the yoke 20 is the connection position 24 with the neck. The angle gradually changes from 36.87 ° to 40.0 ° from the vicinity to the yoke portion screen side edge 21. Curve 27 is the outer diameter of the yoke in the major axis direction, and curve 28 is the outer diameter of the yoke in the minor axis direction.

【0032】これら曲線26〜28に示されているよう
に、ヨーク部14はネック部15との連接部24ではネ
ックとほぼ同形の円形状であるが、スクリーン側17に
近づくに従って対角軸方向外径に対して長軸、短軸方向
外径が徐々に小さくなるように変化し、管軸に垂直な断
面での形状が略矩形状(非円形状)となっている。この
場合、スクリーン17のアスペクト比4:3である。
As shown by these curves 26 to 28, the yoke portion 14 has a circular shape substantially the same as the neck portion at the connection portion 24 with the neck portion 15, but the diagonal axis direction approaches the screen side 17. The outer diameter in the major axis and minor axis directions changes gradually with respect to the outer diameter, and the cross section perpendicular to the tube axis has a substantially rectangular shape (non-circular shape). In this case, the aspect ratio of the screen 17 is 4: 3.

【0033】さらには、図4の偏向基準位置25の管軸
に垂直な断面を表す図6において、ヨーク部内壁はビー
ム通過領域126を遮らないような形状に形成されてお
り、管軸位置Oとヨーク部内壁との間隔が最大となるす
なわち最大ヨーク内径と水平軸とのなす角θi は、前記
スクリーン17のアスペクト比4:3の対角軸角度と略
同一のθi =36.87゜であり、管軸位置Oとヨーク
部外壁との間隔が最大となる、すなわち最大ヨーク外径
と水平軸とのなす角θO は、θO =39.00゜であ
り、θi ≠θo としている。
Further, in FIG. 6 showing a section perpendicular to the tube axis at the deflection reference position 25 in FIG. 4, the inner wall of the yoke portion is formed so as not to block the beam passage area 126, and the tube axis position O The angle θi between the maximum inner diameter of the yoke and the horizontal axis is the same as the diagonal axis angle of the screen 17 having an aspect ratio of 4: 3, ie, θi = 36.87 °. In this case, the interval between the tube axis position O and the outer wall of the yoke portion is maximum, that is, the angle θO between the maximum yoke outer diameter and the horizontal axis is θO = 39.00 °, and θi ≠ θo.

【0034】また、従来ヨーク部の偏向基準位置25の
管軸に垂直な断面を表す図5と比較したとき、外壁引張
応力の最大となる点は最大ヨーク外径位置Pdi であ
り、この部分の肉厚tは、 t=3.0mm であるのに対し、本発明は図6の外壁引張応力の最大と
なる点が最大ヨーク外径位置Pdi ’であり、この部分
の肉厚tは、 t’=3.3mm と従来より約10%厚肉化となっており、つまり亀裂の
起点と最小肉厚部が異なり爆縮が発生しにくい形状に構
成できる。ここで、本発明の水平軸方向のヨーク部外径
LA、垂直軸方向のヨーク部外径SA、最大ヨーク部外
径DAは、従来のヨーク部のそれぞれの径と同一であ
る。
In comparison with FIG. 5, which shows a cross section perpendicular to the tube axis of the deflection reference position 25 of the conventional yoke portion, the point at which the outer wall tensile stress becomes maximum is the maximum yoke outer diameter position Pdi. In the present invention, the point at which the outer wall tensile stress becomes maximum in FIG. 6 is the maximum yoke outer diameter position Pdi ′, whereas the wall thickness t is t = 3.0 mm. '= 3.3 mm, which is about 10% thicker than the conventional one. That is, the starting point of the crack and the minimum thickness part are different, so that it is possible to configure a shape in which implosion is unlikely to occur. Here, the outer diameter LA of the yoke portion in the horizontal axis direction, the outer diameter SA of the yoke portion in the vertical axis direction, and the maximum outer diameter DA of the yoke portion in the present invention are the same as those of the conventional yoke portion.

【0035】従って、図6のような本発明のヨーク部を
もつ陰極線管装置では、バルブ強度面の問題はない。ま
た、ヨーク部は前で説明したよう図2のごとく十分に角
錐化しているため、偏向電力も十分に低減している。
Therefore, in the cathode ray tube device having the yoke portion of the present invention as shown in FIG. 6, there is no problem in terms of bulb strength. In addition, since the yoke portion is sufficiently pyramid as shown in FIG. 2 as described above, the deflection power is sufficiently reduced.

【0036】ここでヨーク部はθ0 >θi もしくはθ0
<θi いずれの場合でも従来のθ0=θi としたのに対
し、外壁引張応力の最大となる点のヨーク肉厚tを肉厚
化でき耐気圧強度を向上できる。しかし、図6のように
θ0 >θi とした方がヨーク部外断面形状が正方形に近
付くためより効果が大きい。
Here, the yoke portion is θ0> θi or θ0
<Θi In any case, the thickness of the yoke t at the point where the outer wall tensile stress becomes maximum can be increased, and the pressure resistance can be improved, as compared with the conventional θ0 = θi. However, the effect is greater when θ0> θi as shown in FIG. 6 because the outer cross-sectional shape of the yoke portion approaches a square.

【0037】[0037]

【発明の効果】本発明によるヨーク部形状構成により、
ヨーク部を角錐化しても真空外囲器の耐気圧強度を十分
に確保でき、かつ偏向電力を有効に低減して、高輝度化
や高周波偏向の要求を満たす陰極線管装置とすることが
できる。
According to the yoke portion configuration of the present invention,
Even if the yoke portion is formed into a pyramid, the pressure resistance of the vacuum envelope can be sufficiently ensured, and the deflection power can be effectively reduced, so that a cathode ray tube device that meets the requirements of high luminance and high frequency deflection can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の陰極線管の一実施例を説明する一部切
欠斜視図。
FIG. 1 is a partially cutaway perspective view illustrating an embodiment of a cathode ray tube of the present invention.

【図2】本発明の一実施例のヨーク部の管軸方向位置の
水平軸方向外径、垂直軸方向外径及び最大ヨーク部外径
の寸法を示す曲線図。
FIG. 2 is a curve diagram showing dimensions of an outer diameter in a horizontal axis direction, an outer diameter in a vertical axis direction, and an outer diameter of a maximum yoke portion at a position in a tube axis direction of a yoke portion according to an embodiment of the present invention.

【図3】管軸に垂直なヨーク部断面形状を表示するため
の説明図。
FIG. 3 is an explanatory diagram for displaying a yoke section sectional shape perpendicular to a tube axis.

【図4】図1を管軸Zに沿って対角軸D面で切ったとき
の略断面図。
FIG. 4 is a schematic cross-sectional view when FIG. 1 is cut along a diagonal axis D plane along a tube axis Z.

【図5】従来のヨーク部形状の問題点を説明するための
断面図。
FIG. 5 is a cross-sectional view for explaining a problem of a conventional yoke portion shape.

【図6】本発明のヨーク部形状を説明するための断面
図。
FIG. 6 is a cross-sectional view illustrating the shape of a yoke according to the present invention.

【図7】図4の偏向基準位置25を説明するもので
(a)は断面図、(b)は平面図。
FIGS. 7A and 7B are views for explaining a deflection reference position 25 in FIG. 4, wherein FIG. 7A is a cross-sectional view and FIG.

【図8】従来の陰極線管の問題点を説明するもので
(a)は断面略図、(b)は平面略図。
8 (a) is a schematic sectional view, and FIG. 8 (b) is a schematic plan view, for explaining a problem of the conventional cathode ray tube.

【図9】ヨーク部を角錐状とした従来の陰極線管を説明
するもので、(a)は側面略図、(b)〜(f)は略断
面図。
9A and 9B illustrate a conventional cathode ray tube in which a yoke portion has a pyramid shape, wherein FIG. 9A is a schematic side view, and FIGS. 9B to 9F are schematic sectional views.

【図10】角錐状ヨークに発生する応力を説明するため
の、管軸に直交するヨーク部断面図。
FIG. 10 is a sectional view of a yoke section orthogonal to the tube axis, for explaining stress generated in the pyramid-shaped yoke.

【図11】スクリーン比16:9における角錐状ヨーク
に発生する応力を説明するための、管軸に直交するヨー
ク部断面図。
FIG. 11 is a sectional view of a yoke portion orthogonal to the tube axis, for explaining stress generated in the pyramid-shaped yoke at a screen ratio of 16: 9.

【符号の説明】[Explanation of symbols]

10: 陰極線管 12: パネル部 13: ファンネル部 14: ヨーク部 15: ネック部 16: ガラス真空外囲器 17: 蛍光体スクリーン 18: 電子銃 20: 偏向ヨーク 21: 偏向ヨーク端縁 22: 電子ビーム 23: 変曲点 24: 連接部 25: 偏向基準位置 10: Cathode ray tube 12: Panel section 13: Funnel section 14: Yoke section 15: Neck section 16: Glass vacuum envelope 17: Phosphor screen 18: Electron gun 20: Deflection yoke 21: Deflection yoke edge 22: Electron beam 23: inflection point 24: connecting part 25: deflection reference position

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも蛍光体スクリーンを内面に有
するパネル部と、前記スクリーンに対向して配置される
電子銃を内面に有するネック部と、前記ネック部のスク
リーン側に連接されるヨーク部からなるガラス真空外囲
器と、前記ヨーク部から前記ネック部にかけての前記真
空外囲器の外面に配置され、前記電子銃から放出される
電子ビームを、略矩形状スクリーン領域に偏向走査する
偏向ヨークから構成される陰極線管装置において、 前記ヨーク部は、前記ネック部の連接位置から少なくと
も前記偏向ヨークのスクリーン側端までとし、管軸に垂
直な断面において管軸と前記ヨーク部内壁の間隔をヨー
ク部内径、管軸と前記ヨーク部外壁の間隔をヨーク部外
径とするとき、前記ヨーク部の前記ネック部連接位置か
ら少なくとも前記偏向ヨークのスクリーン側端までの間
で、前記管軸に垂直な少なくとも1つの断面は、前記ス
クリーンの垂直軸方向及び水平軸方向の間の方向で最大
ヨーク部外径を有する非円形状を有し、前記非円形状断
面は前記水平軸と前記最大ヨーク部内径のなす角をθi
、前記水平軸と前記最大ヨーク部外径のなす角をθo
とするとき、 θi ≠θo であることを特徴とする陰極線管装置。
1. A display device comprising: a panel portion having at least a phosphor screen on an inner surface; a neck portion having an electron gun disposed on an inner surface facing the screen; and a yoke portion connected to the screen side of the neck portion. A glass vacuum envelope, and a deflection yoke arranged on the outer surface of the vacuum envelope from the yoke to the neck to deflect and scan an electron beam emitted from the electron gun to a substantially rectangular screen area. In the cathode ray tube device configured, the yoke portion extends from a connection position of the neck portion to at least a screen side end of the deflection yoke, and sets a distance between the tube axis and the inner wall of the yoke portion in a cross section perpendicular to the tube axis to the yoke portion. When the distance between the inner diameter, the tube axis and the outer wall of the yoke portion is the outer diameter of the yoke portion, at least the deflection is performed from the neck portion connecting position of the yoke portion. At least one cross section perpendicular to the tube axis up to the screen side end of the screen has a non-circular shape having a maximum yoke outer diameter in a direction between the vertical axis direction and the horizontal axis direction of the screen. The non-circular cross-section has an angle θi between the horizontal axis and the inner diameter of the maximum yoke portion.
The angle between the horizontal axis and the outer diameter of the maximum yoke portion is θo
Wherein: θi ≠ θo.
【請求項2】 前記ヨーク部の管軸に垂直な断面におい
て、前記非円形状断面の任意のヨーク部内壁とヨーク部
外壁との間隔のうち、ヨーク部内径が最大となるヨーク
部内壁上の点とヨーク部外径が最大となるヨーク部外壁
上の点との間隔が最小でないことを特徴とする請求項1
記載の陰極線管装置。
2. In the section perpendicular to the tube axis of the yoke portion, the distance between the inner wall of the yoke portion and the outer wall of the yoke portion of the non-circular cross section is the largest on the inner wall of the yoke portion. 2. The distance between a point and a point on the outer wall of the yoke at which the outer diameter of the yoke is maximized is not minimum.
The cathode ray tube device as described in the above.
【請求項3】 前記パネル部と前記ヨーク部との間にフ
ァンネル部が設けられている請求項1または2記載の陰
極線管装置。
3. The cathode ray tube device according to claim 1, wherein a funnel portion is provided between said panel portion and said yoke portion.
【請求項4】 前記非円形状断面の最大ヨーク部外径を
DA、水平軸上のヨーク部外径をLA、垂直軸上のヨー
ク部外径をSAとするとき、DA>LA>SA、θo >
θi の関係にある請求項1記載の陰極線管装置。
4. When the maximum yoke outer diameter of the non-circular cross section is DA, the yoke outer diameter on the horizontal axis is LA, and the yoke outer diameter on the vertical axis is SA, DA>LA> SA, θo>
2. The cathode ray tube device according to claim 1, wherein the relationship is θi.
JP33976197A 1997-12-10 1997-12-10 Cathode-ray tube device Pending JPH11176355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33976197A JPH11176355A (en) 1997-12-10 1997-12-10 Cathode-ray tube device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33976197A JPH11176355A (en) 1997-12-10 1997-12-10 Cathode-ray tube device

Publications (1)

Publication Number Publication Date
JPH11176355A true JPH11176355A (en) 1999-07-02

Family

ID=18330564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33976197A Pending JPH11176355A (en) 1997-12-10 1997-12-10 Cathode-ray tube device

Country Status (1)

Country Link
JP (1) JPH11176355A (en)

Similar Documents

Publication Publication Date Title
KR100441553B1 (en) A cathode ray tube apparutus
JP3415361B2 (en) Cathode ray tube
JP3403005B2 (en) Cathode ray tube device
JPH09306388A (en) Cathode ray tube
JP3376260B2 (en) Cathode ray tube device
JP3376274B2 (en) Cathode ray tube device
JPH10154472A (en) Cathode-ray tube apparatus
JP3405675B2 (en) Cathode ray tube device
JPH10144238A (en) Cathode-ray tube and its manufacture
JPH11176355A (en) Cathode-ray tube device
JPH11273591A (en) Cathode-ray tube apparatus
KR100571198B1 (en) Cathode ray tube
KR100667592B1 (en) Cathode-ray tube
KR100605759B1 (en) Cathode-ray tube
JP4170791B2 (en) Cathode ray tube
KR20000066219A (en) Cathode-ray tube
JP2006079939A (en) Cathode-ray tube
KR20020090317A (en) Color cathode ray tube
JP2000294169A (en) Cathode ray tube device