JPH11175960A - Magnetic recording medium - Google Patents
Magnetic recording mediumInfo
- Publication number
- JPH11175960A JPH11175960A JP34607097A JP34607097A JPH11175960A JP H11175960 A JPH11175960 A JP H11175960A JP 34607097 A JP34607097 A JP 34607097A JP 34607097 A JP34607097 A JP 34607097A JP H11175960 A JPH11175960 A JP H11175960A
- Authority
- JP
- Japan
- Prior art keywords
- protective film
- magnetic
- carbon
- hydrogen
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Magnetic Record Carriers (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、プラスチツク非磁
性基体上にCo合金系磁性層を設けてなる薄膜型磁気記
録媒体に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin-film magnetic recording medium having a Co non-magnetic magnetic layer provided on a plastic non-magnetic substrate.
【0002】[0002]
【従来の技術】コンピユ―タ用の外部記録装置として、
ハ―ドデイスクが一般に広く使用されている。最近のハ
―ドデイスクは、記録容量がますます増大し、数ギガビ
ツト/平方インチ級のものも実用化されている。2. Description of the Related Art As an external recording device for a computer,
Hard disks are generally widely used. The recording capacity of recent hard disks has been increasingly increased, and several gigabits / square inch have been put to practical use.
【0003】従来のハ―ドデイスクは、ガラスやNi−
P/Alなどの硬質非磁性基体上にCo合金系磁性層な
どの薄膜型磁性層を設けたタイプのものである。しかる
に、ガラスやNi−P/Alなどの硬質非磁性基体は比
較的高価であり、デイスクコストの約3〜4割が上記の
硬質非磁性基体で占められている。最近、ノ―ト型など
の携帯用パソコンの急激な普及に伴い、ハ―ドデイスク
の記録容量のさらなる増大とともに、コストの低減が強
く求められている。Conventional hard disks are made of glass or Ni-
This is a type in which a thin-film type magnetic layer such as a Co alloy-based magnetic layer is provided on a hard non-magnetic substrate such as P / Al. However, hard non-magnetic substrates such as glass and Ni-P / Al are relatively expensive, and about 30 to 40% of the disk cost is occupied by the above-mentioned hard non-magnetic substrates. Recently, with the rapid spread of portable personal computers such as notebook computers, there is a strong demand for further increase in the recording capacity of hard disks and reduction in costs.
【0004】このような状況下、従来のガラスやNi−
P/Alなどの硬質非磁性基体に代えて、ポリカ―ボネ
―ト、ノルボルネン系アモルフアスポリオレフインなど
の高分子を射出成形してなるプラスチツク非磁性基体の
使用が試みられている。この種のデイスクでは、デイス
ク全体のコストに占める基体コストを1割未満にするこ
とができ、デイスクのコストを大きく低減できるメリツ
トがある。Under these circumstances, conventional glass and Ni-
Attempts have been made to use a plastic nonmagnetic substrate obtained by injection molding a polymer such as polycarbonate or norbornene-based amorphous polyolefin instead of a hard nonmagnetic substrate such as P / Al. This type of disc has the advantage that the cost of the substrate can be less than 10% of the total cost of the disc, and the cost of the disc can be greatly reduced.
【0005】一方、従来のハ―ドデイスクは、CoCr
Ta系磁性体をスパツタする際に、ガラスやNi−P/
Alなどの基体を250℃以上に加熱し、これによりC
o結晶粒の周りにCrリツチ非磁性を偏析させて、Co
結晶粒間の磁気的相互作用を断ち切り、高記録密度領域
でのノイズを低下させている。Co結晶粒の周りに偏析
したCrリツチ非磁性は、磁性膜自身の耐食性を高める
作用もある。On the other hand, a conventional hard disk is made of CoCr.
When sputtering a Ta-based magnetic material, glass or Ni-P /
A substrate such as Al is heated to 250 ° C. or more, thereby
o By segregating Cr-rich non-magnetism around crystal grains,
The magnetic interaction between crystal grains is cut off to reduce noise in a high recording density region. The Cr-rich non-magnetic segregated around the Co crystal grains also has the effect of increasing the corrosion resistance of the magnetic film itself.
【0006】しかし、プラスチツク非磁性基体を用いた
薄膜型磁気記録媒体は、上記基体の耐熱性に劣るため、
成膜時に基体を加熱し、非磁性Cr偏析による磁気特性
の向上を図るという方法を採れない。このため、基体の
非加熱状態下で成膜するが、この場合Co結晶粒を物理
的に分離し、磁気的相互作用を断ち切る必要がある。ま
た、磁性体のうち、CoCrPt系磁性体は、結晶磁気
異方性が大きく、低温で成膜しても比較的大きな保磁力
が得られ、プラスチツク非磁性基体を用いる場合、高記
録密度を実現するための重要な磁性材料となる。However, a thin film type magnetic recording medium using a plastic non-magnetic substrate is inferior in heat resistance of the substrate,
It is not possible to adopt a method in which the substrate is heated at the time of film formation to improve the magnetic properties due to nonmagnetic Cr segregation. For this reason, the film is formed without heating the substrate. In this case, it is necessary to physically separate the Co crystal grains and cut off the magnetic interaction. Among the magnetic materials, the CoCrPt-based magnetic material has a large crystal magnetic anisotropy, can obtain a relatively large coercive force even when formed at a low temperature, and achieves a high recording density when a plastic non-magnetic substrate is used. It is an important magnetic material for
【0007】また、従来のハ―ドデイスクは、磁気記録
を担う磁性層がCo合金系の金属薄膜からなるため、塗
布型媒体に比べて、耐久性や耐食性の面での信頼性に劣
る。この信頼性の改善のため、金属薄膜上に適宜の保護
膜、とくにカ―ボン系保護膜を設けるようにしている。
このような保護膜の設計は、磁性材料の研究開発と同等
以上に重要な課題である。さらに近年、より高い記録密
度を実現するため、保護膜の厚さは30nm未満に薄膜
化され、記録再生時の磁気ヘツド浮上量は50nm前後
に設計されており、媒体の高耐食性化、磁気ヘツドスラ
イダと保護膜間のトロイボロジ―は、重要な研究課題と
なつている。Further, the conventional hard disk is inferior in reliability in terms of durability and corrosion resistance, as compared with a coating type medium, since the magnetic layer responsible for magnetic recording is made of a Co alloy-based metal thin film. In order to improve the reliability, an appropriate protective film, particularly a carbon-based protective film, is provided on the metal thin film.
The design of such a protective film is as important as the research and development of magnetic materials. In recent years, in order to realize a higher recording density, the thickness of the protective film has been reduced to less than 30 nm, and the flying height of the magnetic head at the time of recording / reproducing has been designed to be about 50 nm. Troiborogy between the slider and the protective film has been an important research topic.
【0008】[0008]
【発明が解決しようとする課題】このように、Ni−P
/Alやガラスなどの硬質非磁性基体に代えて、射出成
形したプラスチツク非磁性基体を用いると、デイスクの
コスト低減に大きく貢献できる反面、上記基体が耐熱性
に乏しいことから、高記録密度領域でのノイズを低減す
るために上記基体を加熱した状態で成膜することができ
ない。その結果、上記ノイズ低減のために、Co結晶粒
を物理的に分離し、磁気的相互作用を断ち切る必要があ
る。また、低温成膜で満足な磁気特性を得るには、結晶
磁気異方性の大きいCoCrPt系磁性体を用いるのが
望ましい。As described above, Ni-P
Using an injection-molded plastic non-magnetic substrate instead of a hard non-magnetic substrate such as Al or glass can greatly reduce the cost of a disk, but because the substrate has poor heat resistance, it can be used in a high recording density region. In order to reduce the noise, it is impossible to form a film while the substrate is heated. As a result, it is necessary to physically separate Co crystal grains and cut off magnetic interaction in order to reduce the noise. In order to obtain satisfactory magnetic characteristics by low-temperature film formation, it is desirable to use a CoCrPt-based magnetic material having large crystal magnetic anisotropy.
【0009】ここで、Co結晶粒を物理分離する有効な
手段として、プラスチツク非磁性基体上に非磁性Cr合
金などの適宜の下地層を設けて、上記基体表面を粗面化
し、この上にCo合金薄膜を成膜する方法がある。これ
によると、高記録密度領域でのノイズが低減し、S/N
比が向上するが、その反面、上記薄膜からなる磁性層の
連続性が低下して膜が疎化する。その結果、磁性層の表
面粗さが大きくなり、カ―ボン系保護膜の被覆性が低下
し、耐食性が劣化しやすい。Here, as an effective means for physically separating Co crystal grains, an appropriate underlayer such as a non-magnetic Cr alloy is provided on a plastic non-magnetic substrate to roughen the surface of the substrate. There is a method of forming an alloy thin film. According to this, noise in the high recording density area is reduced, and S / N
Although the ratio is improved, on the other hand, the continuity of the magnetic layer composed of the thin film is reduced and the film is sparse. As a result, the surface roughness of the magnetic layer increases, the coverage of the carbon-based protective film decreases, and the corrosion resistance tends to deteriorate.
【0010】また、Co合金系磁性材料として、とくに
CoCrPt系磁性体を使用して、これをプラスチツク
非磁性基体上に低温でスパツタすると、Co結晶粒の周
囲に非磁性Crリツチ層が十分に偏析しないこと、さら
にはPtが貴な金属であるため、Coとの電気化学的電
位差が大きいことにより、上記磁性体からなる磁性層の
耐食性がより一段と低下する問題を有していた。When a CoCrPt-based magnetic material is used as a Co alloy-based magnetic material and is sputtered on a plastic non-magnetic substrate at a low temperature, the non-magnetic Cr rich layer is sufficiently segregated around the Co crystal grains. In addition, since Pt is a noble metal, there is a problem that the corrosion resistance of the magnetic layer made of the magnetic material is further reduced due to a large electrochemical potential difference with Co.
【0011】本発明は、このような事情に照らし、プラ
スチツク非磁性基体上にCo合金系磁性層を設けてなる
薄膜型磁気記録媒体において、上記磁性層の耐食性が改
善された薄膜型磁気記録媒体を提供すること、また上記
耐食性に加えて耐久性にもすぐれた薄膜型磁気記録媒体
を提供することを目的としている。In view of such circumstances, the present invention relates to a thin-film magnetic recording medium in which a Co alloy-based magnetic layer is provided on a plastic non-magnetic substrate, wherein the corrosion resistance of the magnetic layer is improved. It is another object of the present invention to provide a thin-film magnetic recording medium having excellent durability in addition to the above-mentioned corrosion resistance.
【0012】[0012]
【課題を解決するための手段】本発明者らは、プラスチ
ツク非磁性基体上にCo合金系磁性層を低温成膜するに
あたり、高記録密度領域でのノイズ低減のためCo結晶
粒を物理分離すると、膜の連続性が失われ、磁性粒子が
粗大化して、磁性層の表面粗さが大きくなり、この上に
カ―ボンをスパツタすると、スパツタされるカ―ボンク
ラスタが高い指向性を有しているために、シヤド―イン
グ作用により保護膜の被覆性が低下し、とくに磁性粒子
間の谷間での被覆性が悪く、この部分では磁性層が大気
(水と酸素、またはNOx、SOxなどの腐食ガス)に
露出した状態になつて腐食が進行し、耐食性が顕著に悪
化してくるものであると考えた。Means for Solving the Problems In forming a Co alloy-based magnetic layer on a plastic non-magnetic substrate at a low temperature, the present inventors have proposed to physically separate Co crystal grains in order to reduce noise in a high recording density region. However, the continuity of the film is lost, the magnetic particles become coarse, the surface roughness of the magnetic layer becomes large, and if carbon is sputtered on this, the sputtered carbon cluster has high directivity. Therefore, the coverage of the protective film is reduced due to the shadowing effect, and the coverage between the valleys between the magnetic particles is particularly poor. In this portion, the magnetic layer is covered with the atmosphere (water and oxygen or NOx, SOx, etc.). It was considered that corrosion progressed in a state of being exposed to corrosive gas, and the corrosion resistance was remarkably deteriorated.
【0013】そこで、上記カ―ボン系保護膜の被覆性を
高めるために、検討を加えた結果、Co系磁性層上に水
素ガスや炭化水素の存在下カ―ボンをスパツタするか、
水素ガスをキヤリヤ―ガス、炭化水素をモノマ―ガスと
して、CVD法によりカ―ボンを被覆すると、系内に発
生する活性水素により磁性層表面の凸部がエツチングさ
れて、磁性層表面が平坦化され、これによりシヤド―イ
ング作用が低減され、また活性炭素が発生する系では上
記炭素の指向性が低く、磁性層への付き回り性が良くな
り、とくにCVD法ではこれ特有の低い指向性を示すた
め、磁性層に対する被覆性が高められることがわかつ
た。また、このように形成されるカ―ボン系保護膜は活
性水素と炭素が結合した水素含有アモルフアスカ―ボン
からなり、上記良好な被覆性によつてCo系磁性層の耐
食性を大きく改善でき、低温成膜でも良好な磁気特性を
与える結晶磁気異方性の大きいCoCrPt系磁性体を
用いたときでも、その耐食性を高度に改善できることが
わかつた。[0013] In order to enhance the coverage of the carbon-based protective film, studies have been made. As a result, carbon is sputtered on the Co-based magnetic layer in the presence of hydrogen gas or hydrocarbon.
When hydrogen gas is used as a carrier gas and hydrocarbons are used as a monomer gas, the carbon layer is coated by the CVD method, and active hydrogen generated in the system etches the convex portions of the magnetic layer surface, flattening the magnetic layer surface. As a result, the shadowing action is reduced, and the directivity of the carbon is low in a system in which activated carbon is generated, and the directivity to the magnetic layer is improved. As a result, it was found that the coatability of the magnetic layer was improved. Further, the carbon-based protective film thus formed is made of hydrogen-containing amorphous carbon in which active hydrogen and carbon are bonded, and the above-mentioned good covering properties can greatly improve the corrosion resistance of the Co-based magnetic layer. It has been found that even when a CoCrPt-based magnetic material having a large crystal magnetic anisotropy that gives good magnetic properties even at a low temperature is used, its corrosion resistance can be improved to a high degree.
【0014】一方、このような水素含有アモルフアスカ
―ボンからなるカ―ボン系保護膜によると、デイスクの
走行耐久性などを良くするためにカ―ボン系保護膜上に
通常設けられる潤滑層が存在する状態、つまり潤滑状態
での摩擦係数が増大する傾向があり、これは水素含有ア
モルフアスカ―ボン中の水素含有量に比例して顕著とな
つて、上記耐久性を悪化させる原因となることが判明し
た。そこで、この問題を克服するために、さらに検討を
加えたところ、上記水素含有アモルフアスカ―ボンを第
1の保護膜(下層)として、この上に水素を含まないア
モルフアスカ―ボン、水素を含有するがその含有量が上
記第1の保護膜よりも低くされた水素含有アモルフアス
カ―ボン、あるいはこれらに窒素を含ませた窒素含有ア
モルフアスカ―ボンからなる第2の保護膜(上層)を設
けて、2層構成のカ―ボン系保護膜とすることにより、
第1の保護膜に基づく良好な耐食性に加えて、第2の保
護膜により潤滑状態での摩擦係数が低減して、デイスク
の走行耐久性などに非常に好結果が得られることを知
り、本発明を完成するに至つた。On the other hand, according to such a carbon-based protective film made of hydrogen-containing amorphous carbon, a lubricating layer usually provided on the carbon-based protective film in order to improve the running durability and the like of a disk. There is a tendency that the friction coefficient in the existing state, that is, in the lubricated state, tends to increase, which becomes remarkable in proportion to the hydrogen content in the hydrogen-containing amorphous carbon and causes the above-mentioned durability to deteriorate. There was found. In order to overcome this problem, further investigations were made. As a result, the hydrogen-containing amorphous carbon was used as a first protective film (lower layer) to form a hydrogen-free amorphous carbon and a hydrogen-containing amorphous sulfur. However, a second protective film (upper layer) made of hydrogen-containing amorphous carbon whose content is lower than that of the first protective film or nitrogen-containing amorphous carbon in which nitrogen is added thereto is provided. By using a two-layer carbon-based protective film,
In addition to good corrosion resistance based on the first protective film, the second protective film reduced the coefficient of friction in a lubricated state, and found that very good results were obtained in the running durability of the disk. The invention has been completed.
【0015】すなわち、本発明は、プラスチツク非磁性
基体上にCo合金系磁性層を設け、この上にカ―ボン系
保護膜を設け、さらにこの上に潤滑層を設けてなる磁気
記録媒体において、上記のカ―ボン系保護膜は、水素含
有アモルフアスカ―ボンからなる第1の保護膜(下層)
と、水素を含まないアモルフアスカ―ボン、水素含有量
が第1の保護膜に比べて低い水素含有アモルフアスカ―
ボンまたはこれらに窒素を含ませた窒素含有アモルフア
スカ―ボンからなる第2の保護膜(上層)とにより構成
されていることを特徴とする磁気記録媒体(請求項1)
に係るものである。また、上記第1の保護膜を構成する
水素含有アモルフアスカ―ボンの水素含有量[H/(C
+H)]が0.2〜0.5である構成(請求項2)、第
2の保護膜を構成する水素含有アモルフアスカ―ボンの
水素含有量[H/(C+H)]が0.2未満である構成
(請求項3)、第2の保護膜を構成する窒素含有アモル
フアスカ―ボンの窒素含有量〔N/(C+H+N)]が
0.05〜0.5である構成(請求項4)からなる、上
記磁気記録媒体に係るものである。That is, the present invention provides a magnetic recording medium comprising a Co alloy magnetic layer provided on a plastic non-magnetic substrate, a carbon protective film provided thereon, and a lubricating layer provided thereon. The carbon-based protective film is a first protective film (lower layer) made of hydrogen-containing amorphous carbon.
And a hydrogen-free amorphous carbon having a lower hydrogen content than the first protective film.
And a second protective film (upper layer) made of nitrogen or nitrogen-containing amorphous carbon containing nitrogen therein.
It is related to. Further, the hydrogen content of the hydrogen-containing amorphous carbon constituting the first protective film [H / (C
+ H)] is 0.2 to 0.5 (claim 2), and the hydrogen content [H / (C + H)] of the hydrogen-containing amorphous carbon constituting the second protective film is less than 0.2. (Claim 3), wherein the nitrogen content [N / (C + H + N)] of the nitrogen-containing amorphous carbon constituting the second protective film is 0.05 to 0.5 (claim 4). The present invention relates to the above magnetic recording medium.
【0016】また、本発明は、これらの磁気記録媒体に
おいて、とくに、カ―ボン系保護膜における第1の保護
膜と第2の保護膜との合計の膜厚が30nm以下に設定
されている構成(請求項5)、カ―ボン系保護膜におけ
る第1の保護膜と第2の保護膜との合計の膜厚中、第1
の保護膜の占める割合が20〜75%である構成(請求
項6)、プラスチツク非磁性基体がポリカ―ボネ―ト、
ノルボルネン系アモルフアスポリオレフイン、ポリエ―
テルイミド、ポリエ―テルスルフオン、フエノ―ル樹脂
から選ばれる高分子を射出成形してなるものである構成
(請求項7)、さらにCo合金系磁性層がプラスチツク
非磁性基体の非加熱状態下で設けられたCoCrPt系
磁性体からなる構成(請求項8)、またプラスチツク非
磁性基体とCo合金系磁性層との間に、非磁性無機バツ
フア―層と、非磁性Cr合金下地層または非磁性Ni−
P下地層を、この順に設けてなる構成(請求項9)を、
それぞれ好ましい態様としたものである。According to the present invention, in these magnetic recording media, in particular, the total thickness of the first protective film and the second protective film in the carbon-based protective film is set to 30 nm or less. In the structure (Claim 5), the first thickness of the first protection film and the second protection film in the carbon-based protection film,
Wherein the proportion of the protective film is 20 to 75% (claim 6), wherein the plastic non-magnetic substrate is made of polycarbonate;
Norbornene-based amorphous polyolefin, polyether
A structure in which a polymer selected from terimide, polyethersulfone, and phenolic resin is injection-molded (claim 7), and a Co alloy-based magnetic layer is provided under a non-heated state of the plastic nonmagnetic substrate. A nonmagnetic inorganic buffer layer, a nonmagnetic Cr alloy underlayer or a nonmagnetic Ni-layer, between the plastic nonmagnetic substrate and the Co alloy magnetic layer.
A configuration in which a P underlayer is provided in this order (claim 9)
Each is a preferred embodiment.
【0017】[0017]
【発明の実施の形態】本発明におけるプラスチツク非磁
性基体としては、Ni−P/Alやガラスなどの硬質非
磁性基体に代わるものとして、ポリカ―ボネ―ト、ノル
ボルネン系アモルフアスポリオレフイン、ポリエ―テル
イミド、ポリエ―テルスルフオン、フエノ―ル樹脂から
選ばれる高分子を射出成形してなるものが用いられる。
厚さはとくに限定されないが、通常は0.5〜2mmであ
る。BEST MODE FOR CARRYING OUT THE INVENTION As the plastic non-magnetic substrate in the present invention, polycarbonate, norbornene-based amorphous polyolefin, polyetherimide are used in place of rigid non-magnetic substrates such as Ni-P / Al and glass. What is obtained by injection-molding a polymer selected from polyethersulfone and phenol resin is used.
The thickness is not particularly limited, but is usually 0.5 to 2 mm.
【0018】本発明において、上記のプラスチツク非磁
性基体上にCo合金系磁性層を設けるにあたり、下地処
理として、通常は、非磁性無機バツフア―層と、非磁性
Cr合金下地層または非磁性Ni−P下地層とを、この
順に設ける。前者の非磁性無機バツフア―層は、上記基
体がプラスチツク製で柔らかいため、この層を設けるこ
とにより基体の表面硬度を高めるためのものであり、S
iN、カ―ボン、シリコンなどの厚さが通常5〜100
nmの層が用いられる。In the present invention, when providing a Co alloy-based magnetic layer on the above-mentioned plastic non-magnetic substrate, as a base treatment, usually a non-magnetic inorganic buffer layer, a non-magnetic Cr alloy base layer or a non-magnetic Ni-base layer are used. A P underlayer is provided in this order. The former nonmagnetic inorganic buffer layer is used to increase the surface hardness of the substrate by providing this layer because the substrate is made of plastic and soft.
Normal thickness of iN, carbon, silicon etc. is 5-100
nm layers are used.
【0019】後者の非磁性Cr合金下地層または非磁性
NiP下地層は、Co合金系磁性層の結晶子サイズを均
一に微細化し、またCoの異方性主軸であるc軸を膜面
内に配向させる役割を有し、とくにCo結晶粒を物理分
離して高記録密度領域でのノイズ低減とそれによるS/
N比の向上に寄与させるものである。この下地層の厚さ
は、通常5〜100nmであるのがよい。また、上記の
非磁性Cr合金下地層には、CrTi、CrV、CrM
oなどの合金が用いられる。The latter nonmagnetic Cr alloy underlayer or nonmagnetic NiP underlayer makes the crystallite size of the Co alloy magnetic layer uniform and fine, and the c axis, which is the anisotropic principal axis of Co, is formed in the film plane. It has the role of orienting, and in particular, physically separates Co crystal grains to reduce noise in a high recording density region and thereby reduce S /
This contributes to the improvement of the N ratio. The thickness of the underlayer is usually preferably 5 to 100 nm. In addition, CrTi, CrV, CrM,
An alloy such as o is used.
【0020】本発明におけるCo合金系磁性層は、前記
のプラスチツク非磁性基体上に、上記のような下地処理
層を介して、設けられる。その際、プラスチツク非磁性
基体が耐熱性に乏しいために、この基体の非加熱状態
下、つまりこの基体を加熱することなく成膜する、低温
成膜が採用される。このような低温成膜を採用しても、
前記下地層の形成により、Co結晶粒を十分に物理分離
することができる。このように成膜されるCo合金系磁
性層の厚さとしては、とくに限定されないが、通常は1
0〜50nmであるのがよい。The Co alloy-based magnetic layer in the present invention is provided on the above-mentioned plastic non-magnetic substrate via the above-mentioned undercoating layer. At this time, since the plastic non-magnetic substrate has poor heat resistance, low-temperature film formation in which the film is formed without heating the substrate, that is, without heating the substrate, is employed. Even if such low-temperature film formation is adopted,
By forming the underlayer, Co crystal grains can be sufficiently separated physically. The thickness of the Co alloy-based magnetic layer formed in this manner is not particularly limited, but is usually 1
The thickness is preferably 0 to 50 nm.
【0021】ここで、Co合金系磁性材料としては、従
来のCoCrTa系磁性体を使用することもできるが、
とくに好ましくは、結晶磁気異方性が大きく、低温で成
膜しても比較的大きな保持力を得ることができ、高記録
密度を実現するうえで有用なCoCrPt系磁性体が用
いられる。このCoCrPt系磁性体としては、CoC
rPt、CoCrPtTa、CoCrPtTi、CoC
rPtTiTa、CoCrPtNi、CoCrPt−S
iO2 、CoCrPt−SiCx、CoCrPt−C、
CoCrPt−Oなどが挙げられる。Here, as the Co alloy-based magnetic material, a conventional CoCrTa-based magnetic material can be used.
It is particularly preferable to use a CoCrPt-based magnetic material which has a large crystal magnetic anisotropy, can obtain a relatively large coercive force even when the film is formed at a low temperature, and is useful for realizing a high recording density. As this CoCrPt-based magnetic material, CoC
rPt, CoCrPtTa, CoCrPtTi, CoC
rPtTiTa, CoCrPtNi, CoCrPt-S
iO 2 , CoCrPt-SiCx, CoCrPt-C,
CoCrPt-O and the like.
【0022】本発明においては、このように低温成膜さ
れるCo合金系磁性層上に、2層構成のカ―ボン系保護
膜の下層として、水素含有アモルフアスカ―ボンからな
る第1の保護膜を設けることにより、上記磁性層の耐食
性を向上させる。この第1の保護膜は、Co系磁性層上
に、アルゴンガスと水素ガス雰囲気中でカ―ボンをス
パツタする方法、アルゴンガスとCH4 、C2 H6 、
C2 H4 などの炭化水素雰囲気中でカ―ボンをスパツタ
する方法、水素ガスをキヤリヤ―ガスとし、CH4 、
C2 H6 、C2 H4 、C6 H6 などの炭化水素をモノマ
―ガスとして、CVD法によりカ―ボンを被覆する方法
などにより、設けられる。In the present invention, a first protective layer made of hydrogen-containing amorphous carbon is formed as a lower layer of a two-layer carbon-based protective film on the Co alloy-based magnetic layer formed at a low temperature in this manner. The provision of the film improves the corrosion resistance of the magnetic layer. This first protective film is formed by a method of sputtering carbon on a Co-based magnetic layer in an atmosphere of argon gas and hydrogen gas, argon gas and CH 4 , C 2 H 6 ,
A method of sputtering carbon in a hydrocarbon atmosphere such as C 2 H 4 , using hydrogen gas as a carrier gas, CH 4 ,
It is provided by a method of coating carbon by a CVD method using a hydrocarbon such as C 2 H 6 , C 2 H 4 , C 6 H 6 as a monomer gas.
【0023】の方法では、プラズマ中で発生した活性
水素がCo系磁性層表面をエツチングする作用を有し、
Co結晶粒を物理分離したときに生成する磁性層表面の
凸部をエツチングして、その表面粗さを小さくする。つ
まり、磁性層表面がスパツタ中に平坦化され、シヤド―
イング作用が低減され、カ―ボン系保護膜の被覆性が高
められる。の方法では、プラズマ中で炭化水素が分解
して活性水素と活性炭素が発生し、活性水素は、上記同
様のエツチング作用によりCo系磁性層表面を平坦化し
て、シヤド―イング作用を低減し、活性炭素は、スパツ
タされたカ―ボンクラスタに加えて、カ―ボン系保護膜
の供給源となり、これはとくに指向性が低いため、磁性
層表面への付き回り性が高い。このため、カ―ボン系保
護膜の被覆性がより高められる。の方法では、上記
と同様の作用に加えて、CVD法特有の低い指向性によ
り、保護膜の被覆性がより一段と高められる。In the method, active hydrogen generated in the plasma has an effect of etching the surface of the Co-based magnetic layer,
The protrusions on the surface of the magnetic layer generated when the Co crystal grains are physically separated are etched to reduce the surface roughness. In other words, the surface of the magnetic layer is flattened in the sputter,
Ing effect is reduced, and the coverage of the carbon-based protective film is enhanced. In the method of the above, hydrocarbons are decomposed in the plasma to generate active hydrogen and active carbon, and the active hydrogen flattens the surface of the Co-based magnetic layer by the same etching action as described above to reduce the shadowing action, Activated carbon, in addition to sputtered carbon clusters, serves as a source of carbon-based protective films, which have a particularly low directivity and a high throwing power to the magnetic layer surface. Therefore, the coverage of the carbon-based protective film is further improved. In the method (1), in addition to the same effect as described above, the coverage of the protective film is further enhanced by the low directivity unique to the CVD method.
【0024】このように成膜される第1の保護膜は、上
記〜のいずれの方法でも、活性水素と活性炭素が結
合してなる、水素含有アモルフアスカ―ボンとなる。こ
の水素含有アモルフアスカ―ボンの水素含有量[H/
(C+H)]は、水素ガスや炭化水素などの導入量を調
整して、0.2〜0.5、好ましくは0.3〜0.4に
設定するのがよい。上記水素含有量が過少では、プラズ
マ中で発生する活性水素が不十分で、Co系磁性層の表
面凸部をエツチングする作用が不足して、磁性層表面を
十分に平坦化できなかつたり、プラズマ中の活性炭素が
少なくて、指向性の低い炭素供給源が不足し、保護膜の
被覆性が低下する。また、上記水素含有量が過多となる
と、成膜されたカ―ボン系保護膜がポリマ―的となり、
膜強度とくに表面硬度が低下して、耐摺動性が悪化す
る。In any of the above methods, the first protective film formed as described above becomes a hydrogen-containing amorphous carbon in which active hydrogen and active carbon are bonded. The hydrogen content of this hydrogen-containing amorphous carbon [H /
(C + H)] may be set to 0.2 to 0.5, preferably 0.3 to 0.4 by adjusting the amount of hydrogen gas or hydrocarbon introduced. If the hydrogen content is too low, the active hydrogen generated in the plasma is insufficient, and the effect of etching the surface projections of the Co-based magnetic layer is insufficient, so that the surface of the magnetic layer cannot be sufficiently flattened. Since the amount of activated carbon is low, a carbon source having low directivity is insufficient, and the coverage of the protective film is reduced. If the hydrogen content is excessive, the carbon-based protective film formed becomes polymer-like,
The film strength, especially the surface hardness, decreases, and the sliding resistance deteriorates.
【0025】また、上記の水素含有アモルフアスカ―ボ
ンは、炭素および水素以外に、窒素を含有していてもよ
い。窒素を含有させることにより、膜強度とくに表面硬
度が高くなるという効果が奏される。このときの窒素含
有量〔N/(C+H+N)]は、0.05〜0.5、好
適には0.1〜0.4であるのがよい。窒素含有量が少
なすぎても多すぎても、膜強度の向上に好結果が得られ
ない。窒素を含有させるには、前記〜の成膜方法に
おいて、系内に水素ガスや炭化水素などとともに、所定
量の窒素ガスを導入すればよい。The above-mentioned hydrogen-containing amorphous carbon may contain nitrogen in addition to carbon and hydrogen. The effect of increasing the film strength, in particular, the surface hardness, is obtained by incorporating nitrogen. At this time, the nitrogen content [N / (C + H + N)] is preferably 0.05 to 0.5, and more preferably 0.1 to 0.4. If the nitrogen content is too low or too high, good results cannot be obtained in improving the film strength. In order to contain nitrogen, a predetermined amount of nitrogen gas may be introduced into the system together with hydrogen gas, hydrocarbon, or the like in the above film formation methods.
【0026】本発明においては、上記の水素含有アモル
フアスカ―ボンからなる第1の保護膜を下層として、さ
らにその上に、水素を含まないアモルフアスカ―ボン、
水素含有量が第1の保護膜に比べて低い水素含有アモル
フアスカ―ボンまたはこれらに窒素を含ませた窒素含有
アモルフアスカ―ボンからなる第2の保護膜を上層とし
て設けることにより、2層構成のカ―ボン系保護膜とす
る。この構成により、下層に基づく耐食性の改善に加え
て、上層に基づく潤滑状態での摩擦係数の低減により走
行耐久性などの維持に好結果を得ることができる。In the present invention, the first protective film made of the above-mentioned hydrogen-containing amorphous carbon is used as a lower layer, and further, a hydrogen-free amorphous carbon is further provided thereon.
A two-layer structure is provided by providing, as an upper layer, a hydrogen-containing amorphous carbon having a lower hydrogen content than the first protective film or a second protective film made of nitrogen-containing amorphous carbon in which nitrogen is contained. Carbon protective film. With this configuration, in addition to the improvement of the corrosion resistance based on the lower layer, a favorable result can be obtained in maintaining the running durability and the like by reducing the friction coefficient in a lubricated state based on the upper layer.
【0027】ここで、水素を含まないアモルフアスカ―
ボンは、アルゴンガス雰囲気中でカ―ボンをスパツタす
る通常の方法で設けることができる。また、水素含有量
が第1の保護膜に比べて低い水素含有アモルフアスカ―
ボンは、第1の保護膜の形成方法に準じて設けることが
でき、その際、水素ガスや炭化水素などの導入量を減ら
して、アモルフアスカ―ボン中の水素含有量[H/(C
+H)]が0.2未満となるようにするのがよい。さら
に、窒素含有アモルフアスカ―ボンは、上記の水素を含
まないアモルフアスカ―ボンまたは水素含有量が第1の
保護膜に比べて低い水素含有アモルフアスカ―ボンの成
膜方法において、系内に所定量の窒素ガスを導入するこ
とにより、設けることができる。この際のアモルフアス
カ―ボン中の窒素含有量〔N/(C+H+N)]は、前
記同様の理由により、0.05〜0.5、好ましくは
0.1〜0.4となるようにするのがよい。Here, hydrogen-free amorphous masks
The carbon can be provided by a usual method of spattering carbon in an argon gas atmosphere. Further, the hydrogen-containing amorphous mask having a lower hydrogen content than the first protective film.
The hydrogen can be provided in accordance with the method for forming the first protective film. At this time, the introduction amount of hydrogen gas or hydrocarbon is reduced, and the hydrogen content in the amorphous carbon [H / (C
+ H)] is less than 0.2. Further, the nitrogen-containing amorphous carbon is formed in the system in the above-described method for forming a hydrogen-free amorphous carbon or a hydrogen-containing amorphous carbon having a lower hydrogen content than the first protective film. It can be provided by introducing a fixed amount of nitrogen gas. At this time, the nitrogen content [N / (C + H + N)] in the amorphous carbon is adjusted to be 0.05 to 0.5, preferably 0.1 to 0.4 for the same reason as described above. Is good.
【0028】このような第1の保護膜と第2の保護膜と
からなるカ―ボン系保護膜は、合計の膜厚が通常30n
m以下に設定されているのが好ましい。30nmより厚
くなると、磁気的スペ―シングが増大し、高い密度で記
録再生する際の障害となる。また、第1および第2の保
護膜は、それぞれの膜厚が5nm以上であるのが望まし
く、これ未満となると連続膜とならず、島状に成長して
被覆性や耐久性が低下する。さらに、第1の保護膜と第
2の保護膜との合計の膜厚中、第1の保護膜の占める割
合は20〜75%であるのがよい。20%未満では、被
覆性の低下により耐食性が改善されず、75%を超える
と耐久性が低下する。The carbon protective film composed of the first protective film and the second protective film has a total film thickness of usually 30 n.
m or less. When the thickness is more than 30 nm, the magnetic spacing increases, which becomes an obstacle when recording and reproducing at a high density. The first and second protective films each preferably have a thickness of 5 nm or more. If the thickness is less than 5 nm, the first and second protective films do not become a continuous film, but grow in an island shape, thereby deteriorating the coverage and durability. Further, the ratio of the first protective film to the total thickness of the first protective film and the second protective film is preferably 20 to 75%. If it is less than 20%, the corrosion resistance will not be improved due to a decrease in coverage, and if it exceeds 75%, the durability will be reduced.
【0029】本発明においては、上記カ―ボン系保護膜
上にさらに潤滑層を設けて、磁気記録媒体の耐久性を改
善する。この潤滑層の厚さとしては、通常1〜10nm
とするのがよい。潤滑剤の種類としては、アウジモト社
製の「Fomblin−Z−AM2001」、「同−D
OL」、「同−DEAL」、「同−DIAC」、ダイキ
ン工業社製の「Demunum−SA」、「同−S
H」、「同−SP」、「同−SY」、デユポン社製の
「Krytox」などのパ―フルオロポリエ―テル系潤
滑剤や、脂肪族炭化水素系潤滑剤、フツ素置換アルキル
系潤滑剤、燐酸エステル系潤滑剤などが挙げられ、これ
らの中から、用途目的に応じて適宜のものを使用するこ
とができる。In the present invention, a lubricating layer is further provided on the carbon-based protective film to improve the durability of the magnetic recording medium. The thickness of the lubricating layer is usually 1 to 10 nm.
It is good to do. As the kind of the lubricant, “Fomblin-Z-AM2001” and “Dom-D” manufactured by Audimoto
OL, "-DEAL", "-DIAC", "Demunum-SA" manufactured by Daikin Industries, Ltd., "-S
H, "-SP", "-SY", "Krytox" manufactured by DuPont, and the like, perfluoropolyether-based lubricants, aliphatic hydrocarbon-based lubricants, and fluorine-substituted alkyl-based lubricants And a phosphoric ester-based lubricant. Among them, an appropriate one can be used according to the purpose of use.
【0030】[0030]
【実施例】つぎに、本発明の実施例を記載して、より具
体的に説明する。以下において、カ―ボン系保護膜を構
成する第1および第2の保護膜中の水素含有量[H/(C
+H)]はHFS(Hydrogen Forward
Scattering)により、また窒素含有量〔N
/(C+H+N)]はXPS(X−Ray Photo
Spectroscopy)により、それぞれ調べ
た。Next, an embodiment of the present invention will be described in more detail. Hereinafter, the hydrogen content [H / (C) in the first and second protective films constituting the carbon-based protective film will be described.
+ H)] is HFS (Hydrogen Forward)
Scattering) and the nitrogen content [N
/ (C + H + N)] is XPS (X-Ray Photo
(Spectroscopy).
【0031】実施例1 ノルボルネン系アモルフアスポリオレフイン樹脂を射出
成形して、厚さが1.2mmで、3.5インチサイズのプ
ラスチツク非磁性基体を作製した。このプラスチツク非
磁性基体上に、アルゴンガス雰囲気中、DCマグネトロ
ンスパツタ法により、SiNxからなる厚さが50nm
の非磁性無機バツフア―層、NiPxからなる厚さが5
0nmの非磁性Ni−P下地層、CoCrPt磁性体か
らなる厚さが15nmのCo合金系磁性層を、この順に
成膜した。Example 1 A norbornene-based amorphous polyolefin resin was injection-molded to produce a 3.5-inch plastic nonmagnetic substrate having a thickness of 1.2 mm. A 50 nm thick SiNx film was formed on this non-magnetic plastic substrate by DC magnetron sputtering in an argon gas atmosphere.
Non-magnetic inorganic buffer layer of NiPx having a thickness of 5
A non-magnetic Ni-P underlayer having a thickness of 0 nm and a Co alloy-based magnetic layer having a thickness of 15 nm made of a CoCrPt magnetic material were formed in this order.
【0032】この磁性層上に、アルゴンガス流量90s
ccm、CH4 ガス流量40sccmの雰囲気中で、カ
―ボンタ―ゲツトをDCスパツタして、水素含有アモル
フアスカ―ボンからなる厚さが10nmの第1の保護膜
を成膜した。この第1の保護膜中の水素含有量[H/
(C+H)]は0.29であつた。つぎに、この上に、
アルゴンガス流量90sccmの雰囲気中で、カ―ボン
タ―ゲツトをDCスパツタして、水素を含まないアモル
フアスカ―ボンからなる厚さが10nmの第2の保護膜
を成膜して、全厚が20nmの2層構成のカ―ボン系保
護膜を形成した。最後に、このカ―ボン系保護膜上に、
ステアリルアミンと部分フツ素化アルキルエステルから
なる潤滑剤をスピンコ―トして潤滑層を形成し、図1に
示される断面構造の磁気記録媒体を作製した。On this magnetic layer, an argon gas flow rate of 90 s
A carbon protective target was DC-sputtered in an atmosphere of ccm and a CH 4 gas flow rate of 40 sccm to form a first protective film having a thickness of 10 nm made of hydrogen-containing amorphous carbon. The hydrogen content in this first protective film [H /
(C + H)] was 0.29. Next, on this,
In an atmosphere of an argon gas flow rate of 90 sccm, a carbon target is DC-sputtered to form a second protective film having a thickness of 10 nm made of hydrogen-free amorphous carbon and having a total thickness of 20 nm. The carbon-based protective film having a two-layer structure was formed. Finally, on this carbon-based protective film,
A lubricant composed of stearylamine and a partially fluorinated alkyl ester was spin-coated to form a lubricating layer, thereby producing a magnetic recording medium having a sectional structure shown in FIG.
【0033】なお、図1に示す磁気記録媒体において、
1はノルボルネン系アモルフアスポリオレフイン樹脂か
らなるプラスチツク非磁性基体、2はSiNxからなる
非磁性無機バツフア―層、3はNiPxからなる非磁性
Ni−P下地層、4はCoCrPt磁性体からなるCo
合金系磁性層、5は水素含有アモルフアスカ―ボンから
なる第1の保護膜5Aと水素を含まないアモルフアスカ
―ボンからなる第2の保護膜5Bとの2層構成のカ―ボ
ン系保護膜、6はステアリルアミンと部分フツ素化アル
キルエステルからなる潤滑層である。In the magnetic recording medium shown in FIG.
1 is a non-magnetic plastic substrate made of norbornene-based amorphous polyolefin resin, 2 is a non-magnetic inorganic buffer layer made of SiNx, 3 is a non-magnetic Ni-P underlayer made of NiPx, and 4 is Co made of CoCrPt magnetic material.
The alloy-based magnetic layer 5 has a two-layer carbon-based protective film comprising a first protective film 5A made of hydrogen-containing amorphous carbon and a second protective film 5B made of hydrogen-free amorphous carbon. Reference numeral 6 denotes a lubricating layer comprising stearylamine and a partially fluorinated alkyl ester.
【0034】実施例2 2層構成のカ―ボン系保護膜の形成にあたり、第1の保
護膜の成膜後、アルゴンガス流量90sccm、CH4
ガス流量10sccmの雰囲気中で、カ―ボンタ―ゲツ
トをDCスパツタして、水素含有量[H/(C+H)]
が0.08の水素含有アモルフアスカ―ボンからなる厚
さが10nmの第2の保護膜を形成した以外は、実施例
1と同様にして、磁気記録媒体を作製した。Example 2 In forming a carbon-based protective film having a two-layer structure, an argon gas flow rate of 90 sccm and CH 4 were formed after the formation of the first protective film.
In a gas flow rate of 10 sccm, the carbon target is subjected to DC sputtering to obtain a hydrogen content [H / (C + H)].
A magnetic recording medium was manufactured in the same manner as in Example 1 except that a second protective film having a thickness of 10 nm and made of hydrogen-containing amorphous carbon having a thickness of 0.08 was formed.
【0035】実施例3 2層構成のカ―ボン系保護膜の形成にあたり、第1の保
護膜の成膜後、アルゴンガス流量90sccm、CH4
ガス流量20sccmの雰囲気中で、カ―ボンタ―ゲツ
トをDCスパツタして、水素含有量[H/(C+H)]
が0.15の水素含有アモルフアスカ―ボンからなる厚
さが10nmの第2の保護膜を形成した以外は、実施例
1と同様にして、磁気記録媒体を作製した。Example 3 In forming a carbon-based protective film having a two-layer structure, an argon gas flow rate of 90 sccm and CH 4 were formed after the first protective film was formed.
In a gas flow rate of 20 sccm, the carbon target is subjected to DC sputtering to obtain a hydrogen content [H / (C + H)].
A magnetic recording medium was produced in the same manner as in Example 1 except that a second protective film having a thickness of 10 nm and comprising hydrogen-containing amorphous carbon having a thickness of 0.15 was formed.
【0036】実施例4 2層構成のカ―ボン系保護膜の形成にあたり、第1の保
護膜の成膜後、アルゴンガス流量90sccm、窒素ガ
ス流量30sccmの雰囲気中で、カ―ボンタ―ゲツト
をDCスパツタして、窒素含有量[N/(C+H+
N)](H=0)が0.07の窒素含有アモルフアスカ
―ボンからなる厚さが10nmの第2の保護膜を形成し
た以外は、実施例1と同様にして、磁気記録媒体を作製
した。Example 4 In forming a carbon-based protective film having a two-layer structure, after forming the first protective film, a carbon target was formed in an atmosphere of an argon gas flow rate of 90 sccm and a nitrogen gas flow rate of 30 sccm. DC spatter to remove nitrogen content [N / (C + H +
N)] A magnetic recording medium was manufactured in the same manner as in Example 1 except that a second protective film having a thickness of 10 nm made of nitrogen-containing amorphous carbon with (H = 0) of 0.07 was formed. did.
【0037】実施例5 2層構成のカ―ボン系保護膜の形成にあたり、第1の保
護膜の成膜後、アルゴンガス流量90sccm、窒素ガ
ス流量60sccmの雰囲気中で、カ―ボンタ―ゲツト
をDCスパツタして、窒素含有量[N/(C+H+
N)](H=0)が0.14の窒素含有アモルフアスカ
―ボンからなる厚さが10nmの第2の保護膜を形成し
た以外は、実施例1と同様にして、磁気記録媒体を作製
した。Example 5 In forming a carbon-based protective film having a two-layer structure, after forming the first protective film, a carbon target was formed in an atmosphere of an argon gas flow rate of 90 sccm and a nitrogen gas flow rate of 60 sccm. DC spatter to remove nitrogen content [N / (C + H +
N)] (H = 0) A magnetic recording medium was manufactured in the same manner as in Example 1 except that a second protective film having a thickness of 10 nm and comprising nitrogen-containing amorphous carbon having a thickness of 0.14 was formed. did.
【0038】実施例6 2層構成のカ―ボン系保護膜の形成にあたり、第1の保
護膜の成膜後、アルゴンガス流量90sccm、窒素ガ
ス流量90sccmの雰囲気中で、カ―ボンタ―ゲツト
をDCスパツタして、窒素含有量[N/(C+H+
N)](H=0)が0.28の窒素含有アモルフアスカ
―ボンからなる厚さが10nmの第2の保護膜を形成し
た以外は、実施例1と同様にして、磁気記録媒体を作製
した。Example 6 In forming a carbon-based protective film having a two-layer structure, after forming the first protective film, a carbon target was formed in an atmosphere of an argon gas flow rate of 90 sccm and a nitrogen gas flow rate of 90 sccm. DC spatter to remove nitrogen content [N / (C + H +
N)] (H = 0) A magnetic recording medium was manufactured in the same manner as in Example 1, except that a second protective film having a thickness of 10 nm and comprising nitrogen-containing amorphous carbon having a thickness of 0.28 was formed. did.
【0039】実施例7 2層構成のカ―ボン系保護膜の形成に際し、Co合金系
磁性層上に、アルゴンガス流量90sccm、水素ガス
流量20sccmの雰囲気中で、カ―ボンタ―ゲツトを
DCスパツタして、水素含有アモルフアスカ―ボンから
なる厚さが10nmの第1の保護膜を成膜した。この第
1の保護膜中の水素含有量[H/(C+H)]は0.2
2であつた。この上に実施例1と同様の第2の保護膜を
成膜した以外は、実施例1と同様にして、磁気記録媒体
を作製した。Example 7 In forming a carbon-based protective film having a two-layer structure, a carbon sputter was applied on a Co alloy-based magnetic layer in an atmosphere of an argon gas flow rate of 90 sccm and a hydrogen gas flow rate of 20 sccm by a DC sputtering method. Then, a first protective film made of hydrogen-containing amorphous carbon and having a thickness of 10 nm was formed. The hydrogen content [H / (C + H)] in the first protective film is 0.2
I got 2. A magnetic recording medium was manufactured in the same manner as in Example 1 except that a second protective film similar to that of Example 1 was formed thereon.
【0040】実施例8 2層構成のカ―ボン系保護膜の形成に際し、Co合金系
磁性層上に、アルゴンガス流量90sccm、水素ガス
流量60sccm、窒素ガス流量40sccmの雰囲気
中で、カ―ボンタ―ゲツトをDCスパツタして、水素お
よび窒素含有アモルフアスカ―ボンからなる厚さが10
nmの第1の保護膜を成膜した。この第1の保護膜中の
水素含有量[H/(C+H)]は0.41、窒素含有量
[N/(C+H+N)]は0.11であつた。この上に
実施例2と同様の第2の保護膜を成膜した以外は、実施
例1と同様にして、磁気記録媒体を作製した。Example 8 In forming a carbon-based protective film having a two-layer structure, a carbon protective film was formed on a Co alloy-based magnetic layer in an atmosphere of an argon gas flow rate of 90 sccm, a hydrogen gas flow rate of 60 sccm, and a nitrogen gas flow rate of 40 sccm. -DC spatter on the target to obtain a hydrogen and nitrogen containing amorphous carbon
A first protective film having a thickness of nm was formed. The hydrogen content [H / (C + H)] in the first protective film was 0.41, and the nitrogen content [N / (C + H + N)] was 0.11. A magnetic recording medium was manufactured in the same manner as in Example 1 except that a second protective film similar to that in Example 2 was formed thereon.
【0041】実施例9 2層構成のカ―ボン系保護膜の形成に際し、Co合金系
磁性層上に、アルゴンガス流量90sccm、CH4 ガ
ス流量20sccmの雰囲気中で、カ―ボンタ―ゲツト
をDCスパツタして、水素含有アモルフアスカ―ボンか
らなる厚さが10nmの第1の保護膜を成膜した。この
第1の保護膜中の水素含有量[H/(C+H)]は0.
21であつた。この上に実施例3と同様の第2の保護膜
を成膜した以外は、実施例1と同様にして、磁気記録媒
体を作製した。Example 9 In forming a carbon-based protective film having a two-layer structure, a carbon target was placed on a Co alloy-based magnetic layer in an atmosphere of an argon gas flow rate of 90 sccm and a CH 4 gas flow rate of 20 sccm using a DC target. As a sputter, a first protective film made of hydrogen-containing amorphous carbon and having a thickness of 10 nm was formed. The hydrogen content [H / (C + H)] in the first protective film is 0.1.
It was 21. A magnetic recording medium was manufactured in the same manner as in Example 1 except that a second protective film similar to that of Example 3 was formed thereon.
【0042】実施例10 2層構成のカ―ボン系保護膜の形成に際し、Co合金系
磁性層上に、アルゴンガス流量90sccm、CH4 ガ
ス流量60sccm、窒素ガス流量40sccmの雰囲
気中で、カ―ボンタ―ゲツトをDCスパツタして、水素
および窒素含有アモルフアスカ―ボンからなる厚さが1
0nmの第1の保護膜を成膜した。この第1の保護膜中
の水素含有量[H/(C+H)]は0.40、窒素含有
量[N/(C+H+N)]は0.11であつた。この上
に実施例4と同様の第2の保護膜を成膜した以外は、実
施例1と同様にして、磁気記録媒体を作製した。Example 10 In forming a carbon-based protective film having a two-layer structure, a carbon-based protective layer was formed on a Co alloy-based magnetic layer in an atmosphere of an argon gas flow rate of 90 sccm, a CH 4 gas flow rate of 60 sccm, and a nitrogen gas flow rate of 40 sccm. The bonder is DC-sputtered to form a hydrogen and nitrogen containing amorphous carbon having a thickness of 1%.
A first protective film having a thickness of 0 nm was formed. The hydrogen content [H / (C + H)] in the first protective film was 0.40, and the nitrogen content [N / (C + H + N)] was 0.11. A magnetic recording medium was manufactured in the same manner as in Example 1 except that a second protective film similar to that in Example 4 was formed thereon.
【0043】実施例11 2層構成のカ―ボン系保護膜の形成に際し、Co合金系
磁性層上に、水素ガス流量40sccm、CH4 ガス流
量100sccmの雰囲気中で、13.56MHzの高
周波電源を用いたCVD法により成膜して、水素含有ア
モルフアスカ―ボンからなる厚さが10nmの第1の保
護膜を成膜した。この第1の保護膜中の水素含有量[H
/(C+H)]は0.37であつた。ついで、この第1
の保護膜上に実施例5と同様の第2の保護膜を成膜した
以外は、実施例1と同様にして、磁気記録媒体を作製し
た。Embodiment 11 In forming a carbon protective film having a two-layer structure, a 13.56 MHz high frequency power supply was applied on a Co alloy magnetic layer in an atmosphere of a hydrogen gas flow rate of 40 sccm and a CH 4 gas flow rate of 100 sccm. A first protective film made of hydrogen-containing amorphous carbon and having a thickness of 10 nm was formed by the used CVD method. The hydrogen content in this first protective film [H
/ (C + H)] was 0.37. Then, this first
A magnetic recording medium was manufactured in the same manner as in Example 1, except that a second protective film similar to that of Example 5 was formed on the protective film of Example 5.
【0044】実施例12 2層構成のカ―ボン系保護膜の形成に際し、Co合金系
磁性層上に、水素ガス流量80sccm、CH4 ガス流
量100sccm、窒素ガス流量40sccmの雰囲気
中で、13.56MHzの高周波電源を用いたCVD法
により成膜し、水素および窒素含有アモルフアスカ―ボ
ンからなる厚さが10nmの第1の保護膜を成膜した。
この第1の保護膜中の水素含有量[H/(C+H)]は
0.48、窒素含有量[N/(C+H+N)]は0.1
0であつた。ついで、この第1の保護膜上に実施例6と
同様の第2の保護膜を成膜した以外は、実施例1と同様
にして、磁気記録媒体を作製した。Example 12 In forming a carbon-based protective film having a two-layer structure, 13. a hydrogen gas flow rate of 80 sccm, a CH 4 gas flow rate of 100 sccm, and a nitrogen gas flow rate of 40 sccm were formed on the Co alloy magnetic layer. A film was formed by a CVD method using a high frequency power supply of 56 MHz, and a first protective film made of hydrogen and nitrogen-containing amorphous carbon and having a thickness of 10 nm was formed.
The hydrogen content [H / (C + H)] in the first protective film is 0.48, and the nitrogen content [N / (C + H + N)] is 0.1.
It was 0. Then, a magnetic recording medium was manufactured in the same manner as in Example 1 except that a second protective film similar to that of Example 6 was formed on the first protective film.
【0045】比較例1 Co合金系磁性層上に、アルゴンガス流量90sccm
の雰囲気中で、カ―ボンタ―ゲツトをDCスパツタし
て、水素を含まないアモルフアスカ―ボンからなる厚さ
が20nmの単層構成のカ―ボン系保護膜を形成するよ
うにした以外は、実施例1と同様にして、磁気記録媒体
を作製した。Comparative Example 1 An argon gas flow rate of 90 sccm was formed on a Co alloy magnetic layer.
Except that the carbon target was DC-sputtered in the atmosphere described above to form a single-layered carbon-based protective film having a thickness of 20 nm made of hydrogen-free amorphous carbon. A magnetic recording medium was manufactured in the same manner as in Example 1.
【0046】比較例2 Co合金系磁性層上に、アルゴンガス流量90scc
m、窒素ガス流量30sccmの雰囲気中で、カ―ボン
タ―ゲツトをDCスパツタして、窒素含有量[N/(C
+H+N)](H=0)が0.19の窒素含有アモルフ
アスカ―ボンからなる厚さが20nmの単層構成のカ―
ボン系保護膜を形成した以外は、実施例1と同様にし
て、磁気記録媒体を作製した。Comparative Example 2 An argon gas flow rate of 90 scc was formed on the Co alloy magnetic layer.
m and a nitrogen gas flow rate of 30 sccm, the carbon target was subjected to DC sputtering to obtain a nitrogen content [N / (C
+ H + N)] (H = 0) is a single-layered car having a thickness of 20 nm and made of nitrogen-containing amorphous carbon having a thickness of 0.19.
A magnetic recording medium was manufactured in the same manner as in Example 1 except that a carbon-based protective film was formed.
【0047】比較例3 Co合金系磁性層上に、アルゴンガス流量90scc
m、CH4 ガス10sccmの雰囲気中で、カ―ボンタ
―ゲツトをDCスパツタして、水素含有量[H/(C+
H)]が0.08の水素含有アモルフアスカ―ボンから
なる厚さが20nmの単層構成のカ―ボン系保護膜を形
成した以外は、実施例1と同様にして、磁気記録媒体を
作製した。Comparative Example 3 An argon gas flow rate of 90 scc was formed on a Co alloy magnetic layer.
m, in a 10 sccm atmosphere of CH 4 gas, the carbon target was subjected to DC sputtering to obtain a hydrogen content [H / (C +
H)] A magnetic recording medium was produced in the same manner as in Example 1 except that a single-layered carbon-based protective film having a thickness of 20 nm made of hydrogen-containing amorphous carbon having a thickness of 0.08 was formed. did.
【0048】比較例4 Co合金系磁性層上に、アルゴンガス流量90scc
m、CH4 ガス40sccmの雰囲気中で、カ―ボンタ
―ゲツトをDCスパツタして、水素含有量[H/(C+
H)]が0.29の水素含有アモルフアスカ―ボンから
なる厚さが20nmの単層構成のカ―ボン系保護膜を形
成した以外は、実施例1と同様にして、磁気記録媒体を
作製した。Comparative Example 4 An argon gas flow rate of 90 scc was formed on the Co alloy magnetic layer.
m, the carbon target was subjected to DC sputtering in an atmosphere of CH 4 gas 40 sccm, and the hydrogen content [H / (C +
H)] A magnetic recording medium was produced in the same manner as in Example 1 except that a single-layered carbon-based protective film having a thickness of 20 nm made of hydrogen-containing amorphous carbon having a thickness of 0.29 was formed. did.
【0049】以上の実施例1〜12および比較例1〜4
の各磁気記録媒体について、潤滑層を設ける前の媒体表
面のCo濃度をXPS(X−Ray Photo Sp
ectroscopy)で分析した。また、潤滑層を設
けたのちに、下記の方法により、CSS(Contac
t Start and Stop)耐久性試験を行
い、耐久性の評価を行つた。これらの結果を、表1にま
とめて示した。さらに、60℃,90%RHの環境下に
放置し、磁性層の飽和磁化量の変化を調べて、耐食性を
評価した。この結果を表2に示した。The above Examples 1 to 12 and Comparative Examples 1 to 4
For each of the magnetic recording media described above, the Co concentration on the medium surface before providing the lubricating layer was determined by XPS (X-Ray Photo Sp).
(Ectroscopy). After the lubrication layer is provided, the CSS (Contac) is obtained by the following method.
t Start and Stop) A durability test was performed to evaluate durability. These results are summarized in Table 1. Further, it was left in an environment of 60 ° C. and 90% RH, and the change in the saturation magnetization of the magnetic layer was examined to evaluate the corrosion resistance. The results are shown in Table 2.
【0050】<CSS耐久性試験>DLC(Diamo
nd Like Carbon)を10nmの厚さでコ
―テイングしたAl2 O3 /TiCスライダ―を、垂直
荷重3.5gで使用した。試験方法は、3秒間で線速度
12.5m/秒に加速し、10秒間12.5m/秒で保
持し、6秒間で減速し、11秒間停止する1サイクル3
0秒の試験であり、この試験により、潤滑層を介してカ
―ボン系保護膜およびCo合金系磁性層が破壊するまで
のサイクル数を求めるものである。<CSS Durability Test> DLC (Diamo
An Al 2 O 3 / TiC slider coated with a 10 nm thickness (nd Like Carbon) was used with a vertical load of 3.5 g. The test method is to accelerate to a linear velocity of 12.5 m / sec in 3 seconds, hold at 12.5 m / sec for 10 seconds, decelerate in 6 seconds, and stop for 11 seconds.
This is a test of 0 seconds, and the number of cycles until the carbon protective film and the Co alloy magnetic layer are broken through the lubricating layer is determined by this test.
【0051】 [0051]
【0052】 [0052]
【0053】上記の表1,表2から、水素含有アモルフ
アスカ―ボンからなる第1の保護膜と水素を含まないア
モルフアスカ―ボンなどからなる第2の保護膜との2層
構成のカ―ボン系保護膜を設けた実施例1〜12の磁気
記録媒体は、いずれも、上記第1の保護膜に基づく高い
被覆性により、媒体表面からCoが全く検出されず、し
たがつて、60℃,90%RHの環境下に放置しても、
磁性層の飽和磁化の減少率が小さく、高い耐食性が得ら
れており、しかもこの良好な耐食性に加えて、上記第2
の保護膜により潤滑状態での摩擦係数が低減して、CS
S耐久試験に非常に好結果が得られていることも明らか
である。From the above Tables 1 and 2, the two-layered structure of the first protective film composed of hydrogen-containing amorphous carbon and the second protective film composed of hydrogen-free amorphous carbon and the like is shown. In all of the magnetic recording media of Examples 1 to 12 provided with a carbon-based protective film, Co was not detected at all from the medium surface due to the high covering property based on the first protective film. , 90% RH,
The reduction rate of the saturation magnetization of the magnetic layer is small, high corrosion resistance is obtained, and in addition to this good corrosion resistance,
The protective film reduces the coefficient of friction in a lubricated state,
It is also clear that very good results have been obtained in the S endurance test.
【0054】これに対して、単層構成のカ―ボン系保護
膜を設けた比較例1〜4の磁気記録媒体のうち、上記保
護膜を水素を含まない純アモルフアスカ―ボンで構成し
た比較例1、窒素含有アモルフアスカ―ボンで構成した
比較例2、水素を含有するがその水素含有量の低い水素
含有アモルフアスカ―ボンで構成した比較例3では、い
ずれも、保護膜の被覆性が低いために、媒体表面にCo
がそれぞれ1.7原子%、1.3原子%、0.5原子%
も析出しており、このため、60℃,90%RHの環境
下に放置したときに、上記析出量に応じて磁性層の飽和
磁化が大きく減少している。また、水素含有量を高くし
た水素含有アモルフアスカ―ボンで構成した比較例4
は、媒体表面のCoは検出されないが、潤滑状態での摩
擦係数が低減して、CSS耐久試験に好結果が得られな
い。On the other hand, of the magnetic recording media of Comparative Examples 1 to 4 provided with a carbon-based protective film having a single-layer structure, the protective film was made of pure amorphous carbon not containing hydrogen. In Example 1, Comparative Example 2 composed of nitrogen-containing amorphous carbon, and Comparative Example 3 composed of hydrogen-containing amorphous carbon containing hydrogen but having a low hydrogen content, the covering properties of the protective film were all low. Low, Co
Are 1.7 atomic%, 1.3 atomic%, and 0.5 atomic%, respectively.
Therefore, when left in an environment of 60 ° C. and 90% RH, the saturation magnetization of the magnetic layer is greatly reduced in accordance with the amount of precipitation. Comparative Example 4 composed of hydrogen-containing amorphous carbon having a high hydrogen content
Does not detect Co on the medium surface, but the coefficient of friction in a lubricated state is reduced, and good results cannot be obtained in a CSS durability test.
【0055】実施例13 2層構成のカ―ボン系保護膜の形成に際し、Co合金系
磁性層上に、アルゴン流量90sccm、CH4 ガス流
量40sccmの雰囲気中で、カ―ボンタ―ゲツトをD
Cスパツタして、水素含有量[H/(C+H)]が0.
29の水素含有アモルフアスカ―ボンからなる厚さがA
nmの第1の保護膜を形成し、この上に、アルゴンガス
流量90sccm、窒素ガス流量30sccmの雰囲気
中で、カ―ボンタ―ゲツトをDCスパツタして、窒素含
有量[N/(C+H+N)](H=0)が0.07の窒
素含有アモルフアスカ―ボンからなる厚さがBnmの第
2の保護膜を形成して、上記の第1および第2の保護膜
の合計の膜厚(A+B)が25nmとなるようにした以
外は、実施例1と同様にして、A,Bの厚さが表3に示
されるとおりのNo.1〜6の磁気記録媒体を作製し
た。Example 13 In forming a carbon-based protective film having a two-layer structure, a carbon target was deposited on a Co alloy-based magnetic layer in an atmosphere having an argon flow rate of 90 sccm and a CH 4 gas flow rate of 40 sccm.
C spatter to reduce the hydrogen content [H / (C + H)] to 0.
29 hydrogen-containing amorphous carbons having a thickness of A
A first protective film having a thickness of 10 nm is formed on the first protective film, and a carbon target is subjected to DC sputtering in an atmosphere of an argon gas flow rate of 90 sccm and a nitrogen gas flow rate of 30 sccm to obtain a nitrogen content [N / (C + H + N)]. A second protective film made of nitrogen-containing amorphous carbon (H = 0) of 0.07 and having a thickness of B nm is formed, and the total film thickness of the first and second protective films (A + B) is formed. ) Was 25 nm, except that the thicknesses of A and B were as shown in Table 3 in the same manner as in Example 1. Magnetic recording media 1 to 6 were produced.
【0056】この各磁気記録媒体について、前記と同様
にして、耐食性試験として60℃,90%RHの環境下
に4週間放置したのちの飽和磁化の減少を測定し、さら
に、CSS耐久性試験を行つた。これらの結果を、下記
の表3に示した。この表3の結果から、第1の保護膜と
第2の保護膜との合計の膜厚中、第1の保護膜が占める
割合〔A/(A+B)〕×100(%)が20〜75%
の範囲にあるNo.2〜5の磁気記録媒体は、耐食性お
よびCSS耐久性の両特性を高度に満足しており、上記
範囲内に設定するのが望ましいものであることがわか
る。For each of the magnetic recording media, a decrease in saturation magnetization after being left for 4 weeks in an environment of 60 ° C. and 90% RH was measured as a corrosion resistance test in the same manner as described above. I went. The results are shown in Table 3 below. From the results in Table 3, the ratio [A / (A + B)] × 100 (%) occupied by the first protective film in the total film thickness of the first protective film and the second protective film is 20 to 75. %
No. in the range of No. The magnetic recording media of Nos. 2 to 5 highly satisfy both the characteristics of corrosion resistance and CSS durability, and it is understood that it is desirable to set them within the above ranges.
【0057】 [0057]
【0058】[0058]
【発明の効果】本発明においては、プラスチツク非磁性
基体上に低温成膜によりCo合金系磁性層を設け、その
上に水素含有アモルフアスカ―ボンからなる第1の保護
膜と水素を含まないアモルフアスカ―ボンなどからなる
第2の保護膜との2層構成のカ―ボン系保護膜を設け、
さらにその上に潤滑層を設けるようにしたことにより、
上記第1の保護膜に基づく高い被覆性によつて耐食性に
すぐれる磁気記録媒体を提供できるとともに、上記第2
の保護膜に基づいて走行耐久性などにもすぐれる磁気記
録媒体を提供できるという効果が奏される。According to the present invention, a Co alloy-based magnetic layer is formed on a plastic non-magnetic substrate by low-temperature deposition, and a first protective film made of hydrogen-containing amorphous carbon and a hydrogen-free amorphous film are formed thereon. Providing a carbon-based protective film having a two-layer structure with a second protective film made of carbon or the like;
In addition, by providing a lubrication layer on it,
The magnetic recording medium having excellent corrosion resistance can be provided by the high covering property based on the first protective film, and the second recording medium can be provided.
Based on the protective film described above, there is an effect that a magnetic recording medium having excellent running durability and the like can be provided.
【図面の簡単な説明】[Brief description of the drawings]
【図1】本発明の磁気記録媒体の一例を示す模式的断面
図である。FIG. 1 is a schematic sectional view showing an example of a magnetic recording medium of the present invention.
1 プラスチツク非磁性基体 2 非磁性無機バツフア―層 3 非磁性Ni−P下地層 4 Co合金系磁性層 5 カ―ボン系保護膜 5A 第1の保護膜(下層) 5B 第2の保護膜(上層) 6 潤滑層 REFERENCE SIGNS LIST 1 plastic non-magnetic substrate 2 non-magnetic inorganic buffer layer 3 non-magnetic Ni-P underlayer 4 Co alloy magnetic layer 5 carbon-based protective film 5A first protective film (lower layer) 5B second protective film (upper layer) 6) Lubrication layer
フロントページの続き (72)発明者 関口 隆史 大阪府茨木市丑寅一丁目1番88号 日立マ クセル株式会社内Continued on the front page (72) Inventor Takashi Sekiguchi 1-88 Ushitora 1-chome, Ibaraki-shi, Osaka Hitachi Maxell Co., Ltd.
Claims (9)
磁性層を設け、この上にカ―ボン系保護膜を設け、さら
にこの上に潤滑層を設けてなる磁気記録媒体において、
上記のカ―ボン系保護膜は、水素含有アモルフアスカ―
ボンからなる第1の保護膜(下層)と、水素を含まない
アモルフアスカ―ボン、水素含有量が第1の保護膜に比
べて低い水素含有アモルフアスカ―ボンまたはこれらに
窒素を含ませた窒素含有アモルフアスカ―ボンからなる
第2の保護膜(上層)とにより構成されていることを特
徴とする磁気記録媒体。1. A magnetic recording medium comprising: a Co alloy-based magnetic layer provided on a plastic non-magnetic substrate; a carbon-based protective film provided thereon; and a lubricating layer provided thereon.
The above carbon-based protective film is made of hydrogen-containing amorphous mask.
A first protective film (lower layer) made of carbon, a non-hydrogen-containing amorphous carbon, a hydrogen-containing amorphous carbon having a lower hydrogen content than that of the first protective film, or nitrogen containing nitrogen. A magnetic recording medium comprising: a second protective film (upper layer) made of amorphous carbon.
膜を構成する水素含有アモルフアスカ―ボンの水素含有
量[H/(C+H)]が0.2〜0.5である請求項1
に記載の磁気記録媒体。2. The carbon-based protective film, wherein the hydrogen content [H / (C + H)] of the hydrogen-containing amorphous carbon constituting the first protective film is 0.2 to 0.5. 1
3. The magnetic recording medium according to claim 1.
膜を構成する水素含有アモルフアスカ―ボンの水素含有
量[H/(C+H)]が0.2未満である請求項1また
は2に記載の磁気記録媒体。3. The carbon protective film according to claim 1, wherein the hydrogen content [H / (C + H)] of the hydrogen-containing amorphous carbon constituting the second protective film is less than 0.2. 3. The magnetic recording medium according to claim 1.
膜を構成する窒素含有アモルフアスカ―ボンの窒素含有
量〔N/(C+H+N)]が0.05〜0.5である請
求項1または2に記載の磁気記録媒体。4. The carbon-based protective film, wherein the nitrogen-containing amorphous carbon constituting the second protective film has a nitrogen content [N / (C + H + N)] of 0.05 to 0.5. 3. The magnetic recording medium according to 1 or 2.
膜と第2の保護膜との合計の膜厚が30nm以下に設定
されている請求項1〜4のいずれかに記載の磁気記録媒
体。5. The magnetic material according to claim 1, wherein in the carbon-based protective film, the total thickness of the first protective film and the second protective film is set to 30 nm or less. recoding media.
膜と第2の保護膜との合計の膜厚中、第1の保護膜の占
める割合が20〜75%である請求項1〜5のいずれか
に記載の磁気記録媒体。6. The carbon-based protective film, wherein the proportion of the first protective film in the total film thickness of the first protective film and the second protective film is 20 to 75%. 6. The magnetic recording medium according to any one of items 1 to 5,
ネ―ト、ノルボルネン系アモルフアスポリオレフイン、
ポリエ―テルイミド、ポリエ―テルスルフオン、フエノ
―ル樹脂から選ばれる高分子を射出成形してなるもので
ある請求項1〜6のいずれかに記載の磁気記録媒体。7. The plastic non-magnetic substrate includes polycarbonate, norbornene-based amorphous polyolefin,
7. The magnetic recording medium according to claim 1, wherein a polymer selected from polyetherimide, polyethersulfon, and phenol resin is injection-molded.
性基体の非加熱状態下で設けられたCoCrPt系磁性
体からなる請求項1〜7のいずれかに記載の磁気記録媒
体。8. The magnetic recording medium according to claim 1, wherein the Co alloy-based magnetic layer is made of a CoCrPt-based magnetic material provided on a non-heated plastic non-magnetic substrate.
性層との間に、非磁性無機バツフア―層と、非磁性Cr
合金下地層または非磁性Ni−P下地層を、この順に設
けてなる請求項1〜8のいずれかに記載の磁気記録媒
体。9. A non-magnetic inorganic buffer layer and a non-magnetic Cr layer between a plastic non-magnetic substrate and a Co alloy-based magnetic layer.
9. The magnetic recording medium according to claim 1, wherein an alloy underlayer or a non-magnetic Ni-P underlayer is provided in this order.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34607097A JPH11175960A (en) | 1997-12-16 | 1997-12-16 | Magnetic recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34607097A JPH11175960A (en) | 1997-12-16 | 1997-12-16 | Magnetic recording medium |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11175960A true JPH11175960A (en) | 1999-07-02 |
Family
ID=18380946
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP34607097A Pending JPH11175960A (en) | 1997-12-16 | 1997-12-16 | Magnetic recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11175960A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6620481B2 (en) | 2000-07-06 | 2003-09-16 | Fujitsu Limited | Magnetic recording medium, magnetic recording medium manufacture method, and information regeneration apparatus |
US6946191B2 (en) | 2002-02-25 | 2005-09-20 | Hoya Corporation | Magnetic recording medium |
CN100373460C (en) * | 2004-08-31 | 2008-03-05 | 富士通株式会社 | Magnetic recording medium, head slider and manufacturing methods therefor |
US7514163B2 (en) | 2004-06-08 | 2009-04-07 | Fujitsu Limited | Magnetic recording medium and magnetic recording device |
JP2010020830A (en) * | 2008-07-10 | 2010-01-28 | Panasonic Corp | Protective layer of magnetic recording medium |
JP2010231863A (en) * | 2009-03-28 | 2010-10-14 | Hoya Corp | Method for manufacturing magnetic disk |
WO2011001774A1 (en) * | 2009-06-30 | 2011-01-06 | ダブリュディ・メディア・シンガポール・プライベートリミテッド | Method for producing magnetic recording medium |
-
1997
- 1997-12-16 JP JP34607097A patent/JPH11175960A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6620481B2 (en) | 2000-07-06 | 2003-09-16 | Fujitsu Limited | Magnetic recording medium, magnetic recording medium manufacture method, and information regeneration apparatus |
US6946191B2 (en) | 2002-02-25 | 2005-09-20 | Hoya Corporation | Magnetic recording medium |
US7208236B2 (en) | 2002-02-25 | 2007-04-24 | Hoya Corporation | Magnetic recording medium with multi-portion carbon-based protection layer, and apparatus thereof |
US7514163B2 (en) | 2004-06-08 | 2009-04-07 | Fujitsu Limited | Magnetic recording medium and magnetic recording device |
CN100373460C (en) * | 2004-08-31 | 2008-03-05 | 富士通株式会社 | Magnetic recording medium, head slider and manufacturing methods therefor |
JP2010020830A (en) * | 2008-07-10 | 2010-01-28 | Panasonic Corp | Protective layer of magnetic recording medium |
JP2010231863A (en) * | 2009-03-28 | 2010-10-14 | Hoya Corp | Method for manufacturing magnetic disk |
WO2011001774A1 (en) * | 2009-06-30 | 2011-01-06 | ダブリュディ・メディア・シンガポール・プライベートリミテッド | Method for producing magnetic recording medium |
JP2011014178A (en) * | 2009-06-30 | 2011-01-20 | Wd Media Singapore Pte Ltd | Method for manufacturing magnetic recording medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6524687B2 (en) | Bilayer carbon overcoating for magnetic data storage disks and magnetic head/slider constructions | |
JP5360894B2 (en) | Method for manufacturing magnetic recording medium | |
JP2007109380A (en) | Granular magnetic recording medium with improved corrosion resistance by cap layer and pre-overcoat etching | |
US6524730B1 (en) | NiFe-containing soft magnetic layer design for multilayer media | |
US6245417B1 (en) | Magnetic recording medium comprising multilayered carbon-containing protective overcoats | |
JPH06349054A (en) | Magnetic recording medium and its production | |
US6238780B1 (en) | Magnetic recording medium comprising multilayered carbon-containing protective overcoats | |
US6136421A (en) | Magneto-resistance recording media comprising multilayered protective overcoats | |
JPH11175960A (en) | Magnetic recording medium | |
JPH083893B2 (en) | In-plane magnetic recording medium | |
US6572958B1 (en) | Magnetic recording media comprising a silicon carbide corrosion barrier layer and a c-overcoat | |
US6824836B1 (en) | Protection overcoat for recording media | |
US6517956B1 (en) | Magneto-resistance recording media comprising aluminum nitride corrosion barrier layer and a c-overcoat | |
JPH11144232A (en) | Magnetic recording medium | |
JP4523705B2 (en) | Magnetic recording medium, magnetic recording medium manufacturing method, and information reproducing apparatus | |
US20230238023A1 (en) | Heat-assisted magnetic recording (hamr) media with dual-layer media carbon overcoat | |
JP3046846B2 (en) | Magnetic recording media | |
JP2512113B2 (en) | Thin film magnetic disk | |
JP2861081B2 (en) | Magnetic recording media | |
JP4077964B2 (en) | Magnetic recording medium, method of manufacturing the same, and magnetic storage device | |
JP3479529B2 (en) | Magnetic recording medium, method of manufacturing the same, and magnetic storage device | |
JPH0836744A (en) | Magnetic recording medium | |
JP2004006023A (en) | Magnetic recording medium, its manufacturing method, and magnetic storage | |
JPH06231441A (en) | Magnetic recording medium and its production | |
JPH0346119A (en) | Magnetic recording medium and production thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050324 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050405 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050603 |
|
A02 | Decision of refusal |
Effective date: 20061212 Free format text: JAPANESE INTERMEDIATE CODE: A02 |