JPH111758A - Method of thermal spraying on inside peripheral surface of hollow cylindrical tube - Google Patents

Method of thermal spraying on inside peripheral surface of hollow cylindrical tube

Info

Publication number
JPH111758A
JPH111758A JP9149167A JP14916797A JPH111758A JP H111758 A JPH111758 A JP H111758A JP 9149167 A JP9149167 A JP 9149167A JP 14916797 A JP14916797 A JP 14916797A JP H111758 A JPH111758 A JP H111758A
Authority
JP
Japan
Prior art keywords
hollow cylindrical
cylindrical tube
peripheral surface
inner peripheral
spraying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9149167A
Other languages
Japanese (ja)
Other versions
JP3172121B2 (en
Inventor
Takashi Ando
孝志 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP14916797A priority Critical patent/JP3172121B2/en
Publication of JPH111758A publication Critical patent/JPH111758A/en
Application granted granted Critical
Publication of JP3172121B2 publication Critical patent/JP3172121B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of thermal spraying on the inside peripheral surface of a hollow cylindrical tube, capable of facilitating the removal of unmelted grains, fumes, or dust from the surface of a sprayed coating while obviating the necessity of the arrangement of particular devices in the vicinity of the opening of the hollow cylindrical tube as an object of working. SOLUTION: A sprayed coating 11 is formed by inserting a thermal spray gun 6 into a rotating hollow cylindrical tube 1 through its upper opening and allowing a thermal spraying material 9 to adhere to an inside peripheral surface 4 and laminating it on the inside peripheral surface 4 while moving the gun 6 along the inside peripheral surface 4. Compressed air 13 is sprayed against the recessed part 2 which is peripherally provided into annular state to the plane parallel to the end face of the opening, in the part one-half the lower side of the outside peripheral surface 5 of the hollow cylindrical tube 1 from the lower opening of the hollow cylindrical tube 1. By this method, an air flow 14 ascending along the inside peripheral surface 4 is allowed to occur, by which the unmelted grains, fumes, or dust adhering to the inside peripheral surface 4 can be removed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】 本発明は、例えばナトリウ
ム−硫黄電池用陽極容器のような外周面に凹部を有する
中空円筒管に好ましく用いられる、中空円筒管内周面へ
の溶射加工方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for thermal spraying an inner peripheral surface of a hollow cylindrical tube preferably used for a hollow cylindrical tube having a concave portion on an outer peripheral surface such as an anode container for a sodium-sulfur battery. .

【0002】[0002]

【従来の技術】 中空円筒管の内周面に耐食性、若しく
は強度を有する被膜を形成するための加工方法として、
例えばプラズマ溶射のような、溶融した溶射材料を噴射
して、基材表面に付着・積層させて被膜を形成する溶射
加工が用いられている。
2. Description of the Related Art As a processing method for forming a coating having corrosion resistance or strength on the inner peripheral surface of a hollow cylindrical tube,
2. Description of the Related Art A thermal spraying process of spraying a molten thermal spraying material, such as plasma spraying, and attaching and laminating the material on a substrate surface to form a coating film is used.

【0003】 当該溶射加工は、例えば図2に示すよう
に、固定手段33により固定された加工対象の中空円筒
管31を、当該固定手段33に接続された図示されない
駆動装置により回転させ、回転する中空円筒管31内に
溶射距離を一定に保持した状態で溶射用ガン36を挿入
し、当該溶射用ガンの先端に配設された噴射ノズル38
より溶射材料39をプラズマジェット等のエネルギー3
7を用いて溶射粒子40として噴射することにより中空
円筒管31の内周面34に溶射被膜41を形成するもの
である。
In the thermal spraying process, for example, as shown in FIG. 2, the hollow cylindrical tube 31 to be processed fixed by the fixing means 33 is rotated by a driving device (not shown) connected to the fixing means 33 to rotate. The spraying gun 36 is inserted into the hollow cylindrical tube 31 while keeping the spraying distance constant, and the spray nozzle 38 disposed at the tip of the spraying gun is inserted.
More thermal spray material 39 is used for energy 3 such as plasma jet.
7 is sprayed as thermal spray particles 40 to form a thermal spray coating 41 on the inner peripheral surface 34 of the hollow cylindrical tube 31.

【0004】 しかしながら、当該溶射加工は前記中空
円筒管の狭い空間内に溶射材料の未溶解粒子、ヒューム
(すす)等が多量に存在するため、当該未溶解粒子等が
溶射被膜表面に付着するという問題点があった。未溶解
粒子等が溶射被膜表面に付着すると、溶射被膜表面が汚
損されるのみならず、溶射被膜表面の平滑性が損なわ
れ、或いは当該付着部分から腐食を生じる場合などがあ
り好ましくない。
[0004] However, in the thermal spraying process, since a large amount of undissolved particles, fumes (soot), etc. of the thermal spray material are present in a narrow space of the hollow cylindrical tube, the undissolved particles and the like adhere to the surface of the thermal spray coating. There was a problem. If undissolved particles adhere to the surface of the sprayed coating, not only the surface of the sprayed coating is soiled, but also the smoothness of the surface of the sprayed coating is impaired, or corrosion may occur from the adhering portion.

【0005】 この解決手段としては、中空円筒管の溶
射用ガン挿入側の開口部から圧縮空気を噴射して他方の
開口部より未溶解粒子等を吹き飛ばす方法や当該他方の
開口部に排風機等の排気手段を配設し、当該他方の開口
部から未溶解粒子等を吸引して中空円筒管内部の空間か
ら除去する方法が考えられる。
[0005] As a solution to this problem, there is a method of blowing compressed air from an opening of a hollow cylindrical tube on a side where a spraying gun is inserted to blow out undissolved particles and the like from the other opening, and a blower or the like to the other opening. Is conceivable, in which the undissolved particles and the like are suctioned from the other opening and removed from the space inside the hollow cylindrical tube.

【0006】 しかしながら、溶射用ガンは通常ロボッ
ト等の制御手段に接続されており、当該溶射用ガン及び
制御手段の移動領域を確保する必要があるところ、中空
円筒管の両開口部の近傍の領域には圧縮空気の噴射手段
や排風機等の排気手段を設けることは困難である。更
に、前記の方法は、溶射用ガンが回転して溶射を行うタ
イプの溶射装置においては有効であるものの、図2のよ
うな中空円筒管を回転して溶射を行うタイプの溶射装置
においては当該回転部に前記噴射手段、排気手段を密着
して配設することは事実上不可能であるため、未溶解粒
子等の除去の効果は不十分である。
However, the spraying gun is usually connected to a control means such as a robot, and when it is necessary to secure a moving area for the spraying gun and the control means, an area near both openings of the hollow cylindrical tube is required. It is difficult to provide a means for injecting compressed air or an exhaust means such as a blower. Further, the above method is effective in a thermal spraying apparatus of a type in which a thermal spray gun rotates to perform thermal spraying, but is effective in a thermal spraying apparatus of a type in which a hollow cylindrical tube is rotated to perform thermal spraying as shown in FIG. Since it is practically impossible to arrange the injection means and the exhaust means in close contact with the rotating part, the effect of removing undissolved particles and the like is insufficient.

【0007】 従って、本発明は加工対象の中空円筒管
の開口部近傍に特別な装置を配設することなく、簡便に
溶射被膜表面の未溶解粒子、ヒューム若しくは粉塵を除
去することが可能な中空円筒管内周面への溶射加工方法
を提供することを目的とする。
Accordingly, the present invention provides a hollow tube capable of easily removing undissolved particles, fumes, or dust on the surface of a sprayed coating without disposing a special device near an opening of a hollow cylindrical tube to be processed. An object of the present invention is to provide a method for performing thermal spraying on an inner peripheral surface of a cylindrical tube.

【0008】[0008]

【課題を解決するための手段】 すなわち、本発明によ
れば、中空円筒管の2つの開口部の開口端面の中心を通
る回転軸を規定し、当該回転軸を中心に前記中空円筒管
を前記開口端面の円周方向に回転し、回転する前記中空
円筒管の一方の開口部から、溶射材料を溶融・噴射する
ための溶射用ガンを挿入して、当該溶射用ガンを前記中
空円筒管の内周面に沿って移動させながら、当該中空円
筒管の内周面に前記溶射材料を付着・積層することによ
り溶射被膜を形成する中空円筒管内周面への溶射加工方
法であって、前記中空円筒管の他方の開口部から当該中
空円筒管の管長の1/2に至るまでの外周面において、
2つの開口部の開口端面と平行な面上にリング状に周設
された凹部に対し、圧縮空気を噴射することを特徴とす
る中空円筒管内周面への溶射加工方法が提供される。
That is, according to the present invention, a rotation axis passing through the centers of the open end faces of the two openings of the hollow cylindrical pipe is defined, and the hollow cylindrical pipe is centered on the rotation axis. Rotate in the circumferential direction of the opening end face, insert a spraying gun for melting and spraying the sprayed material from one opening of the rotating hollow cylindrical tube, and then apply the spraying gun to the hollow cylindrical tube. A method for thermal spraying an inner peripheral surface of a hollow cylindrical tube that forms a thermal spray coating by adhering and laminating the thermal spray material on an inner peripheral surface of the hollow cylindrical tube while moving the inner peripheral surface of the hollow cylindrical tube. On the outer peripheral surface from the other opening of the cylindrical tube to half the length of the hollow cylindrical tube,
There is provided a method for thermal spraying the inner peripheral surface of a hollow cylindrical tube, characterized by injecting compressed air into a ring-shaped concave portion provided on a surface parallel to the opening end surfaces of the two opening portions.

【0009】 また、本発明によれば、中空円筒管を立
設し、当該中空円筒管の2つの開口部の開口端面の中心
を通る回転軸を規定し、当該回転軸を中心に立設した中
空円筒管を前記開口端面の円周方向に回転し、回転する
中空円筒管の上部開口部から、溶射材料を溶融・噴射す
るための溶射用ガンを挿入して、当該溶射用ガンを前記
中空円筒管の内周面に沿って移動させながら、当該中空
円筒管の内周面に前記溶射材料を付着・積層することに
より溶射被膜を形成する中空円筒管内周面への溶射加工
方法であって、前記中空円筒管の下部開口部から当該中
空円筒管の外周面のうち下側1/2の部分において、開
口端面と平行な面上にリング状に周設された凹部に対
し、圧縮空気を噴射することを特徴とする中空円筒管内
周面への溶射加工方法が提供される。
Further, according to the present invention, the hollow cylindrical tube is erected, the rotation axis passing through the center of the opening end face of the two openings of the hollow cylindrical tube is defined, and the rotation axis is erected around the rotation axis. The hollow cylindrical tube is rotated in the circumferential direction of the opening end face, and a spraying gun for melting and spraying a sprayed material is inserted from an upper opening of the rotating hollow cylindrical tube. A method for thermal spraying an inner peripheral surface of a hollow cylindrical tube that forms a thermal spray coating by adhering and laminating the thermal spray material on the inner peripheral surface of the hollow cylindrical tube while moving the inner peripheral surface of the cylindrical tube. In the lower half of the outer peripheral surface of the hollow cylindrical tube from the lower opening of the hollow cylindrical tube, compressed air is supplied to a concave portion provided in a ring shape on a surface parallel to the opening end surface. Spraying method for inner peripheral surface of hollow cylindrical tube characterized by spraying Is provided.

【0010】 更に、本発明によれば、中空円筒管を立
設し、当該中空円筒管の2つの開口部の開口端面の中心
を通る回転軸を規定し、当該回転軸を中心に立設した中
空円筒管を前記開口端面の円周方向に回転し、回転する
中空円筒管の上部開口部から、溶射材料を溶融・噴射す
るための溶射用ガンを挿入して、当該溶射用ガンを前記
中空円筒管の内周面に沿って移動させながら、前記中空
円筒管の内周面に前記溶射材料を付着・積層することに
より溶射被膜を形成する中空円筒管内周面への溶射加工
方法であって、前記中空円筒管の下部開口部から当該中
空円筒管の外周面のうち下側1/2の部分において、開
口端面と平行な面上にリング状に周設された凹部に対
し、圧縮空気を噴射することにより、前記中空円筒管内
周面に沿って上昇する気流を生ぜしめ、当該気流により
前記中空円筒管内周面に付着した未溶解粒子、ヒューム
若しくは粉塵を除去することを特徴とする中空円筒管内
周面への溶射加工方法が提供される。
Further, according to the present invention, the hollow cylindrical tube is erected, a rotation axis passing through the center of the open end face of the two openings of the hollow cylindrical tube is defined, and the rotation axis is erected around the rotation axis. The hollow cylindrical tube is rotated in the circumferential direction of the opening end face, and a spraying gun for melting and spraying a sprayed material is inserted from an upper opening of the rotating hollow cylindrical tube. A method for thermal spraying an inner peripheral surface of a hollow cylindrical tube that forms a thermal spray coating by adhering and laminating the thermal spray material on the inner peripheral surface of the hollow cylindrical tube while moving the inner peripheral surface of the cylindrical tube. In the lower half of the outer peripheral surface of the hollow cylindrical tube from the lower opening of the hollow cylindrical tube, compressed air is supplied to a concave portion provided in a ring shape on a surface parallel to the opening end surface. By injection, it rises along the inner peripheral surface of the hollow cylindrical tube There is provided a method for performing thermal spraying on the inner peripheral surface of a hollow cylindrical tube, which comprises generating an airflow and removing undissolved particles, fumes, or dust attached to the inner peripheral surface of the hollow cylindrical tube by the airflow.

【0011】 本発明においては、圧縮空気の噴射距離
が中空円筒管外周面から10〜100 mm の範囲において、
圧縮空気の吐出圧が 1.0〜 8.0 Kg/cm2 であることが好
ましく、溶射方法としてはプラズマ溶射であることが好
ましい。なお、本発明の溶射加工方法は、ナトリウム−
硫黄電池用陽極容器の内周面の加工に好適に用いること
ができる。
In the present invention, when the injection distance of the compressed air is in the range of 10 to 100 mm from the outer peripheral surface of the hollow cylindrical tube,
The discharge pressure of the compressed air is preferably 1.0 to 8.0 Kg / cm 2 , and the thermal spraying method is preferably plasma spraying. In addition, the thermal spraying method of the present invention uses sodium-
It can be suitably used for processing the inner peripheral surface of the anode container for a sulfur battery.

【0012】[0012]

【発明の実施の形態】 本発明は溶射加工方法、詳しく
は中空円筒管を回転しながら、その内周面に溶射被膜を
形成する方法に関するものであるので、まず溶射加工方
法について概説する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention relates to a thermal spraying method, more specifically, to a method of forming a thermal spray coating on an inner peripheral surface of a hollow cylindrical tube while rotating the same.

【0013】 本発明に用いる溶射加工方法は、具体的
には、例えば図1及び図3に示すように、立設した中空
円筒管1を固定用チャック3により固定して、当該固定
用チャック3に接続された図示されない駆動装置により
開口端面22、23の円周方向に回転するとともに、上
部開口部20より溶射用ガン6を中空円筒管1内部に挿
入し、当該中空円筒管1の内周面4と一定の溶射距離を
保持しつつ、上下に反復運動を行い、溶融した溶射材料
10を中空円筒管1の内周面4に向け噴射して、所定の
厚みを有する溶射被膜11を形成する方法である。
In the thermal spraying method used in the present invention, specifically, as shown in FIGS. 1 and 3, for example, an upright hollow cylindrical tube 1 is fixed by a fixing chuck 3 and the fixing chuck 3 is fixed. Is rotated in the circumferential direction of the opening end surfaces 22 and 23 by a driving device (not shown) connected to the inner surface of the hollow cylindrical tube 1 by inserting the spraying gun 6 into the hollow cylindrical tube 1 through the upper opening 20. While maintaining a constant spraying distance with the surface 4, a reciprocating motion is performed up and down, and the molten sprayed material 10 is sprayed toward the inner peripheral surface 4 of the hollow cylindrical tube 1 to form a sprayed coating 11 having a predetermined thickness. How to

【0014】 溶射とは、金属等よりなる溶射材料を、
アセチレン等の可燃性ガス及び酸素ガスによる燃焼炎、
或いはアーク等の電気エネルギーにより溶融して溶射粒
子とし、当該溶射粒子を基材表面に噴射することにより
付着・積層してなる溶射被膜を形成する加工方法をい
う。溶射方法としては、使用するエネルギーの種類等に
より、ガス溶射、爆発溶射、線爆溶射、フレーム溶射、
アーク溶射、プラズマ溶射等があり、前記方法において
は何れの方法を用いることができるが、本発明において
は高密度の被膜を形成し得るプラズマ溶射を用いること
が好ましい。
The thermal spraying is a thermal spraying material made of metal or the like,
Combustion flame by flammable gas such as acetylene and oxygen gas,
Alternatively, it refers to a processing method in which a sprayed particle is formed by being melted by electric energy such as an arc to form a sprayed particle, and spraying the sprayed particle onto the surface of the base material to attach and laminate the sprayed particle. Depending on the type of energy used, gas spraying, explosive spraying, wire explosion spraying, flame spraying,
There are arc spraying and plasma spraying, and any of the above methods can be used. In the present invention, it is preferable to use plasma spraying capable of forming a high-density coating.

【0015】 前記方法における溶射材料としては、ア
ルミニウム、モリブデン等の金属粉末、ニッケル−クロ
ム等の合金粉末、アルミナ、ジルコニア等のセラミック
ス粉末などを用いることができるが、本発明においては
耐食性に優れるステライト合金、クロム含有量 60 %以
上のクロム−鉄合金を用いることが好ましく、その粒度
としては 10〜45 μm のものを好適に用いることができ
る。
As the thermal spraying material in the above method, metal powders such as aluminum and molybdenum, alloy powders such as nickel-chromium, ceramic powders such as alumina and zirconia can be used. In the present invention, stellite having excellent corrosion resistance is used. It is preferable to use an alloy or a chromium-iron alloy having a chromium content of 60% or more, and a particle size of 10 to 45 μm can be suitably used.

【0016】 溶射被膜とは、前記溶射材料を溶射粒子
として噴射して形成した膜状の積層体をいい、一般に気
孔を内在し層状の断面構造を有する。前記方法において
は平均厚さ 10〜300 μm 程度の溶射被膜を形成するこ
とが可能だが、本発明においては、平均厚さ 40〜100
μm 程度の薄層を形成することを目的としている。
The thermal spray coating refers to a film-like laminate formed by spraying the thermal spray material as thermal spray particles, and generally has a laminar cross-sectional structure having pores therein. In the above method, it is possible to form a sprayed coating having an average thickness of about 10 to 300 μm, but in the present invention, the average thickness is 40 to 100 μm.
The purpose is to form a thin layer of about μm.

【0017】 前記方法における溶射距離、即ち溶射用
ガンと中空円筒管の内周面との間隔は、溶射用ガンと中
空円筒管が接触せず、かつ、中空円筒管の内周面に溶射
粒子が到達して溶射被膜が形成できる限りにおいて限定
されないが、本発明で用いるような肉厚が 1.5〜3.0 m
m、管径が 70〜95 mm 程度の中空円筒管であれば、溶射
距離としては 30〜45 mm 程度であることが好ましい。
なお、溶射時の雰囲気は特に限定されず、大気中若しく
は不活性ガス中においても加工を行うことが可能であ
る。
In the above method, the spraying distance, that is, the distance between the spraying gun and the inner peripheral surface of the hollow cylindrical tube, is such that the spraying gun and the hollow cylindrical tube do not come into contact with each other and the inner peripheral surface of the hollow cylindrical tube has spray particles. Is not limited as long as the thermal sprayed coating can be formed, but the thickness used in the present invention is 1.5 to 3.0 m.
m, a hollow cylindrical tube having a diameter of about 70 to 95 mm preferably has a spraying distance of about 30 to 45 mm.
The atmosphere at the time of thermal spraying is not particularly limited, and the processing can be performed in the air or in an inert gas.

【0018】 前記方法において用いる中空円筒管と
は、アルミニウム、アルミニウム合金、ステンレス等か
らなる中空部を有する円筒管であり、管長は 300〜650
mm、肉厚は 1.0〜5.0 mm、管径は 60〜120 mm 程度のも
のを用いることができるが、本発明においては、材質は
アルミニウム若しくはアルミニウム合金、管長は 400〜
600 mm、肉厚は 1.5〜3.0 mm、管径は 70〜95 mm 程度
のものを用いることが好ましい。また、溶射粒子のアン
カー効果を高めて溶射被膜の密着性を向上させるため、
溶射加工前にブラスト加工により中空円筒管表面を粗面
化しておくことが好ましい。
The hollow cylindrical tube used in the above method is a cylindrical tube having a hollow portion made of aluminum, an aluminum alloy, stainless steel, or the like, and has a tube length of 300 to 650.
mm, a wall thickness of 1.0 to 5.0 mm, and a pipe diameter of about 60 to 120 mm can be used.In the present invention, the material is aluminum or an aluminum alloy, and the pipe length is 400 to
It is preferable to use a pipe having a thickness of about 600 mm, a wall thickness of about 1.5 to 3.0 mm, and a pipe diameter of about 70 to 95 mm. In addition, in order to improve the adhesion effect of the thermal spray coating by increasing the anchor effect of the thermal spray particles,
It is preferable that the surface of the hollow cylindrical tube is roughened by blasting before thermal spraying.

【0019】 前記方法においては、中空円筒管1の2
つの開口部20、21の開口端面22、23の中心O、
O’を通る回転軸X−X’を規定し、中空円筒管1を当
該回転軸X−X’を中心に前記開口端面22、23の円
周方向に回転する。このように回転する中空円筒管1の
内周面4に沿って溶射用ガン6を移動させることによ
り、中空円筒管1の内周面4と溶射用ガン6との溶射距
離が一定に保たれるため、均一な溶射被膜11を形成す
ることが可能となる。なお、前記のような回転方法をと
れる限りにおいて、図1のように中空円筒管を立設して
配置する必要はなく、横設してもよい。
In the above method, the hollow cylindrical tube 1
The center O of the open end faces 22, 23 of the two openings 20, 21;
A rotation axis XX 'passing through O' is defined, and the hollow cylindrical tube 1 is rotated around the rotation axis XX 'in the circumferential direction of the opening end faces 22, 23. By moving the spray gun 6 along the inner peripheral surface 4 of the rotating hollow cylindrical tube 1 in this manner, the spray distance between the inner peripheral surface 4 of the hollow cylindrical tube 1 and the spray gun 6 is kept constant. Therefore, a uniform thermal spray coating 11 can be formed. In addition, as long as the rotation method as described above can be used, it is not necessary to arrange the hollow cylindrical tube upright as shown in FIG.

【0020】 以上のような溶射加工方法において、本
発明では、中空円筒管の溶射用ガン挿入側でない開口部
から当該中空円筒管の管長の1/2に至るまでの外周面
において、2つの開口部の開口端面と平行な面上にリン
グ状に周設された凹部に対し、圧縮空気を噴射すること
を特徴とする。
In the thermal spraying method as described above, according to the present invention, two openings are provided on the outer peripheral surface from the opening of the hollow cylindrical tube not on the side where the spraying gun is inserted to half the length of the hollow cylindrical tube. The compressed air is injected into a concave portion provided in a ring shape on a surface parallel to an opening end surface of the portion.

【0021】 こうすることにより、中空円筒管の内周
面に沿って溶射用ガン挿入側の開口部に向けて吹き上げ
る気流が生じるため、中空円筒管の開口部近傍に特別な
装置を配設することなく簡便に、当該気流により溶射被
膜表面に付着した未溶解粒子、ヒューム若しくは粉塵を
除去することが可能となる。以下、本発明の方法につい
て図面を参照しながら具体的に説明する。
[0021] By doing so, an airflow is generated which blows up toward the opening on the side where the spraying gun is inserted along the inner peripheral surface of the hollow cylindrical tube, so that a special device is disposed near the opening of the hollow cylindrical tube. It is possible to easily remove undissolved particles, fumes, or dust adhering to the surface of the thermal spray coating by the airflow without the need. Hereinafter, the method of the present invention will be specifically described with reference to the drawings.

【0022】 図1に示すように、本発明で用いる中空
円筒管としては、溶射用ガンを挿入する側でない開口部
から当該中空円筒管の管長の1/2に至るまでの外周
面、図1の例では中空円筒管1の外周面5の下側1/2
のいずれかの部位(下部外周面)25に、2つの開口部
20、21の開口端面22、23と平行な面24上にリ
ング状に周設された凹部2が設けられている。
As shown in FIG. 1, as the hollow cylindrical tube used in the present invention, the outer peripheral surface from the opening not on the side where the thermal spraying gun is inserted to half the length of the hollow cylindrical tube, FIG. In the example, the lower half of the outer peripheral surface 5 of the hollow cylindrical tube 1
The concave portion 2 provided in a ring shape on a surface 24 parallel to the opening end surfaces 22 and 23 of the two openings 20 and 21 is provided in any of the portions (lower outer peripheral surface) 25.

【0023】 当該凹部2に対して、立設された中空円
筒管1の側方に配設された噴射ノズル12より圧縮空気
13を噴射することにより中空円筒管1の下部開口部2
1より内周面4に沿って上方に吹き上げる気流14が生
じ、当該気流14により中空円筒管1内部に存在し若し
くは中空円筒管1の内周面4に付着した未溶解粒子、ヒ
ューム若しくは粉塵を中空円筒管1外部へ排出すること
ができる。
By injecting compressed air 13 into the concave portion 2 from an injection nozzle 12 disposed on the side of the hollow cylindrical tube 1 erected, the lower opening 2 of the hollow cylindrical tube 1 is formed.
An air flow 14 is generated which blows upward along the inner peripheral surface 4 from the inner peripheral surface 1, and undissolved particles, fumes or dust existing inside the hollow cylindrical tube 1 or adhering to the inner peripheral surface 4 of the hollow cylindrical tube 1 are generated by the air flow 14. It can be discharged to the outside of the hollow cylindrical tube 1.

【0024】 従って、中空円筒管1の開口部20、2
1近傍に特別な設備を配置する必要はなく、中空円筒管
1の外周面5に圧縮空気13を吹き付けるという極めて
簡易な操作により未溶解粒子、ヒューム若しくは粉塵の
除去が可能となるため、溶射被膜表面の清浄化、平滑化
を図ることができ、当該付着部分からの腐食も防止する
ことができる。
Therefore, the openings 20, 2, 2
It is not necessary to arrange any special equipment in the vicinity of 1 and it is possible to remove undissolved particles, fumes or dust by a very simple operation of blowing compressed air 13 to the outer peripheral surface 5 of the hollow cylindrical tube 1. The surface can be cleaned and smoothed, and corrosion from the attached portion can be prevented.

【0025】 現在のところ前記気流14が生ずる原因
は不明であるが、前記操作により必ず気流14が生ずる
ことは確認しており、凹部2に吹き付けられた圧縮空気
13が中空円筒管1の回転により中空円筒管1内部に巻
き込まれることにより、上方に吹き上げる気流14が生
ずるものと推定している。
At present, the cause of the air flow 14 is unknown, but it has been confirmed that the air flow 14 is always generated by the above operation, and the compressed air 13 blown to the recess 2 is rotated by the rotation of the hollow cylindrical tube 1. It is presumed that the airflow 14 that blows upward is generated by being caught in the hollow cylindrical tube 1.

【0026】 ここで、本発明が好適に用いられるナト
リウム−硫黄電池用陽極容器(以下、陽極容器とい
う。)について概説する。ナトリウム−硫黄電池は、30
0〜350 ℃で作動させる高温二次電池であり、例えば図
4に示すように、主として陽極導電材62に硫黄を含浸
した円筒状の陽極モールド56、当該陽極モールド56
を収容する陽極容器53、β−アルミナよりなる有底円
筒状の固体電解質管55、及び底部に開口67を有する
ナトリウム収容容器60により構成される。なお、図4
において、51は絶縁体リング、54はナトリウム−硫
黄電池、57はナトリウム、61は陰極金具を示す。
Here, an anode container for a sodium-sulfur battery (hereinafter, referred to as an anode container) to which the present invention is preferably used will be outlined. Sodium-sulfur battery has 30
This is a high-temperature secondary battery operated at 0 to 350 ° C., for example, as shown in FIG. 4, a cylindrical anode mold 56 in which an anode conductive material 62 is mainly impregnated with sulfur.
Container, a cylindrical solid electrolyte tube 55 having a bottom made of β-alumina, and a sodium container 60 having an opening 67 at the bottom. FIG.
In the figure, 51 indicates an insulator ring, 54 indicates a sodium-sulfur battery, 57 indicates sodium, and 61 indicates a cathode fitting.

【0027】 以上の構成を有するナトリウム−硫黄電
池54は、放電時には溶融ナトリウム57が電子を放出
してナトリウムイオンとなり、これがナトリウムイオン
を選択的に透過させる機能を有する固体電解質管5内を
透過して陽極側に移動し、陽極導電材62中の硫黄及び
外部回路を通ってきた電子と反応して多硫化ナトリウム
を生成し、2V程度の電圧を発生させるが、充電時に
は、放電とは逆に、多硫化ナトリウムからのナトリウム
及び硫黄の生成反応が起こる。従って、ナトリウム−硫
黄電池の充放電効率を高めるためには、電池の内部抵抗
を低減させることが必要であり、具体的には、陽極容器
53、陽極導電材62等の各部材間の接触抵抗を低減す
ること等が考えられる。
In the sodium-sulfur battery 54 having the above configuration, at the time of discharge, the molten sodium 57 emits electrons to become sodium ions, which pass through the solid electrolyte tube 5 having a function of selectively transmitting sodium ions. To the anode side, and reacts with the sulfur in the anode conductive material 62 and the electrons that have passed through the external circuit to generate sodium polysulfide and generate a voltage of about 2 V. , A reaction of forming sodium and sulfur from sodium polysulfide occurs. Therefore, in order to increase the charge / discharge efficiency of the sodium-sulfur battery, it is necessary to reduce the internal resistance of the battery. Specifically, the contact resistance between each member such as the anode container 53 and the anode conductive material 62 is required. Can be reduced.

【0028】 陽極容器の内表面は腐食性の高い硫化ナ
トリウムに曝されるため、溶射被膜を形成して耐腐食性
を付与することが行われる。しかしながら、図5(a)
に示すように当該溶射被膜63表面に未溶解粒子64や
ヒューム65が残留した場合には溶射被膜表面66の平
滑性が失われ、陽極容器53と陽極導電材62との密着
性が低下する。陽極容器53と陽極導電材62との密着
性不良は、電池の内部抵抗の上昇につながるため好まし
くない。
Since the inner surface of the anode container is exposed to highly corrosive sodium sulfide, a sprayed coating is formed to impart corrosion resistance. However, FIG.
As shown in (2), when undissolved particles 64 and fumes 65 remain on the surface of the sprayed coating 63, the smoothness of the sprayed coating surface 66 is lost, and the adhesion between the anode container 53 and the anode conductive material 62 is reduced. Poor adhesion between the anode container 53 and the anode conductive material 62 is not preferable because it leads to an increase in the internal resistance of the battery.

【0029】 本発明の溶射加工方法を用いて、陽極容
器外周面に設けられている凹部に対し、圧縮空気を吹き
付けることにより、図5(b)に示すように溶射被膜表
面66が平滑となり、陽極容器53と陽極導電材62と
の密着性を確保することが可能となる。
By using the thermal spray processing method of the present invention to blow compressed air to the concave portion provided on the outer peripheral surface of the anode container, the thermal spray coating surface 66 becomes smooth as shown in FIG. Adhesion between the anode container 53 and the anode conductive material 62 can be ensured.

【0030】[0030]

【実施例】 以下、本発明をナトリウム−硫黄電池用陽
極容器(以下、陽極容器という。)に適用した実施例に
ついて説明するが、本発明はこの実施例に限定されるも
のではない。
Hereinafter, an example in which the present invention is applied to an anode container for a sodium-sulfur battery (hereinafter, referred to as an anode container) will be described, but the present invention is not limited to this example.

【0031】(実施例1) 図1に示す装置において、
中空円筒管1としては、アルミニウム合金よりなる、管
長 460 mm、パイプ内径 84 mm、パイプ厚み 2.0 mm で
ある陽極容器を用いた。当該陽極容器1の外周面5に
は、固体電解質管への機械的応力の緩和のため、図下部
の開口部より約 30 mm の部分に幅 8〜19 mm、深さ 6〜
12 mm の凹部2が2つの開口端面と平行にリング状に周
設されている。
(Example 1) In the apparatus shown in FIG.
As the hollow cylindrical tube 1, an anode container made of an aluminum alloy and having a tube length of 460 mm, a pipe inner diameter of 84 mm, and a pipe thickness of 2.0 mm was used. The outer peripheral surface 5 of the anode container 1 has a width of 8 to 19 mm and a depth of 6 to 19 mm at a portion approximately 30 mm from the opening at the bottom of the figure in order to reduce mechanical stress on the solid electrolyte tube.
A 12 mm concave portion 2 is provided in a ring shape parallel to the two open end faces.

【0032】 前記陽極容器1を溶射材料との密着性向
上のため、200 ℃に予熱した後、固定用チャック3に固
定し、当該固定用チャック3に接続された図示されない
駆動装置により前記陽極容器1を 320 rpm で回転しな
がら、陽極容器1外周面5から 50 mm の距離に配設さ
れた噴射ノズル12から前記凹部2に対し、垂直に 4.8
Kg/cm2 の吐出圧で圧縮空気13を吹き付けて溶射加工
を行った。
The anode container 1 is preheated to 200 ° C. in order to improve the adhesion with the sprayed material, and then fixed to a fixing chuck 3, and the anode container 1 is driven by a driving device (not shown) connected to the fixing chuck 3. While rotating the container 1 at 320 rpm, the injection nozzle 12 disposed at a distance of 50 mm from the outer peripheral surface 5 of the anode container 1 vertically 4.8
Thermal spraying was performed by blowing compressed air 13 at a discharge pressure of Kg / cm 2 .

【0033】 溶射材料9としては、耐食性の高いクロ
ム含有率 72 %のクロム−鉄合金を用い、プラズマ出力
を 9.5 KW、溶射用ガン6のトラバース速度を 15mm/se
c. とし、溶射距離を 35 mm に保持しながら、溶射用ガ
ン6を陽極容器1内周面4に沿って一往復させて約 40
〜80 μm の溶射被膜11を形成した。
As the thermal spraying material 9, a chromium-iron alloy having a high chromium content of 72% having high corrosion resistance is used, the plasma output is 9.5 KW, and the traverse speed of the thermal spray gun 6 is 15 mm / se.
c. The spraying gun 6 is reciprocated along the inner peripheral surface 4 of the anode container 1 once while maintaining the spraying distance at 35 mm.
A sprayed coating 11 of ~ 80 µm was formed.

【0034】 実施例及び比較例については、JIS-B-06
51 に規定する触針式表面粗さ測定に準拠して評価を行
った。詳しくは、各々の加工を施した4本の陽極容器の
溶射面の3箇所づつにつき、株式会社ミツトヨ製サーフ
テスト 301 表面粗さ測定機を用いて、中心線平均粗さ
(Ra)を測定した。測定はパイプの長手方向について行
い、測定距離は 12.5 mmとした。その結果を表1に示
す。また、各陽極容器をナトリウム−硫黄電池に組み込
み、実施例1及び比較例1については 372 ℃運転の、
実施例2及び比較例2については 360 ℃運転の、充放
電サイクルを 600 回繰り返した場合の内部抵抗値及び
電池容量の変化を追跡した。その評価結果を図6及び図
7に示す。
For the examples and comparative examples, see JIS-B-06
The evaluation was performed according to the stylus type surface roughness measurement specified in 51. In detail, for each of the three sprayed surfaces of the four anode containers that were processed, the center line average roughness was measured using a surf test 301 surface roughness tester manufactured by Mitutoyo Corporation.
(Ra) was measured. The measurement was performed in the longitudinal direction of the pipe, and the measurement distance was 12.5 mm. Table 1 shows the results. Further, each anode container was incorporated in a sodium-sulfur battery, and Example 1 and Comparative Example 1 were operated at 372 ° C.
In Example 2 and Comparative Example 2, changes in the internal resistance and the battery capacity when the charge / discharge cycle at 360 ° C. was repeated 600 times were tracked. The evaluation results are shown in FIGS.

【0035】(比較例1) 実施例1と同様の条件にお
いて、圧縮空気13の吹き付けのみ行わずに溶射加工を
行った。その評価結果を表1、図6及び図7に示す。
(Comparative Example 1) Under the same conditions as in Example 1, a thermal spraying process was performed without only blowing the compressed air 13. The evaluation results are shown in Table 1, FIG. 6 and FIG.

【0036】[0036]

【表1】 [Table 1]

【0037】(実施例2) 図8に示す装置において、
中空円筒管として、アルミニウム合金よりなる管長 500
mm、パイプ内径 92 mm、パイプ厚み 3.0 mm である陽
極容器71を用いた。当該陽極容器71の外周面75に
は、図下部の開口部91より 30 mm の部分に幅 10 m
m、深さ 10 mm の凹部72が2つの開口端面90、93
と平行にリング状に周設されている。
(Embodiment 2) In the apparatus shown in FIG.
Tube length 500 made of aluminum alloy as hollow cylindrical tube
The anode container 71 having an inner diameter of 92 mm, a pipe inner diameter of 92 mm and a pipe thickness of 3.0 mm was used. The outer peripheral surface 75 of the anode container 71 has a width of 10 m at a portion 30 mm from the opening 91 at the bottom of the figure.
m, a concave portion 72 having a depth of 10 mm has two open end faces 90, 93.
It is provided in a ring shape in parallel with.

【0038】 前記陽極容器71を溶射材料との密着性
向上のため、230℃に予熱した後、固定用チャック7
3に固定し、当該固定用チャック73に接続された図示
されない駆動装置により前記陽極容器71を 380 rpm
で回転しながら、図8(a)に示すように、陽極容器7
1外周面75から 65 mm の距離に配設された噴射ノズ
ル82から前記凹部72に対し、垂直に 5.0 Kg/cm2
吐出圧で圧縮空気83を吹き付けて溶射加工を行った。
After the anode container 71 is preheated to 230 ° C. in order to improve the adhesion with the sprayed material, the fixing chuck 7
The anode container 71 is fixed at 380 rpm by a driving device (not shown) connected to the fixing chuck 73.
8A, the anode container 7 is rotated as shown in FIG.
1 A spray nozzle 82 was disposed at a distance of 65 mm from the outer peripheral surface 75, and the concave portion 72 was sprayed vertically with compressed air 83 at a discharge pressure of 5.0 kg / cm 2 to perform thermal spraying.

【0039】 溶射材料79としては実施例1と同様に
クロム含有率 72 %のクロム−鉄合金を用い、プラズマ
77の出力を 9.3 KW、溶射用ガン76のトラバース速
度を 12 mm/sec.、溶射距離を 40 mm として、実施例1
と同様に内周面74に約 40〜80 mm の溶射被膜81を
形成した。その評価結果を表2、図6及び図7に示す。
As in Example 1, a chromium-iron alloy having a chromium content of 72% was used as the thermal spray material 79, the output of the plasma 77 was 9.3 KW, the traverse speed of the thermal spray gun 76 was 12 mm / sec. Example 1 with a distance of 40 mm
In the same manner as above, a thermal spray coating 81 of about 40 to 80 mm was formed on the inner peripheral surface 74. The evaluation results are shown in Table 2, FIG. 6 and FIG.

【0040】(比較例2) 実施例2と同様の条件にお
いて、図8(b)に示す如く、圧縮空気83を凹部72
ではなく、管中央の平板部85に対して吹き付けながら
溶射加工を行った。その評価結果を表2、図6及び図7
に示す。なお、図8(a)、(b)において、78は溶
射材料用噴射ノズル、80は溶射粒子である。
COMPARATIVE EXAMPLE 2 Under the same conditions as in Example 2, as shown in FIG.
Instead, spraying was performed while spraying the flat plate portion 85 at the center of the tube. The evaluation results are shown in Table 2, FIG. 6 and FIG.
Shown in In FIGS. 8A and 8B, reference numeral 78 denotes a spray material spray nozzle, and reference numeral 80 denotes spray particles.

【0041】[0041]

【表2】 [Table 2]

【0042】 表1に示すように、実施例1の陽極容器
の表面粗度が平均 4.7μm、3.9〜5.8 μm の範囲で分布
しているのに対し、比較例1では表面粗度の平均が 7.
5 μm、6.9〜8.2 μm の範囲で分布しており、明らかに
本発明の加工方法を用いた方が表面粗度は低く、優位差
が認められる。実施例2も表面粗度に関しては実施例1
と同様の傾向を示している。ただし、比較例2のよう
に、同じ陽極容器の外周面であっても、管中央の平板部
に圧縮空気を噴射した場合には、本発明の効果は得られ
ず、圧縮空気を噴射しなかった比較例1と同様の結果し
か得られない。
As shown in Table 1, the surface roughness of the anode vessel of Example 1 was 4.7 μm on average and was distributed in the range of 3.9 to 5.8 μm, whereas the average of surface roughness was comparative example 1 7.
It is distributed in the range of 5 μm and 6.9 to 8.2 μm, and the surface roughness is clearly lower when the processing method of the present invention is used, and a superior difference is recognized. Example 2 is also the same as Example 1 with respect to the surface roughness.
The same tendency is shown. However, as in Comparative Example 2, even when the same outer peripheral surface of the anode container is used, when the compressed air is injected to the flat plate portion at the center of the tube, the effect of the present invention is not obtained, and the compressed air is not injected. Only the same results as in Comparative Example 1 can be obtained.

【0043】 また、実施例1、2及び比較例1、2の
陽極容器をナトリウム−硫黄電池に組み込み、運転温度
を 372 ℃として充放電サイクルを 600 回繰り返した場
合、実施例1、2の陽極容器は約 4.8 mΩ からほとん
ど内部抵抗値の上昇がみられないのに対し、比較例1、
2の陽極容器は約 4.8 mΩ から徐々に上昇し、約 6.0
mΩ に達した。
When the anode containers of Examples 1 and 2 and Comparative Examples 1 and 2 were incorporated in a sodium-sulfur battery and the charge / discharge cycle was repeated 600 times at an operating temperature of 372 ° C., the anode containers of Examples 1 and 2 were Although the container showed almost no increase in internal resistance from about 4.8 mΩ, Comparative Example 1
Anode container 2 gradually rises from about 4.8 mΩ to about 6.0 mΩ.
mΩ.

【0044】 さらに、実施例1及び比較例1の陽極容
器をナトリウム−硫黄電池に組み込み、運転温度を 360
℃として充放電サイクルを 600 回繰り返した場合に
は、実施例1の陽極容器が電池容量の低下は見られるも
のの 93 %程度で収まっているのに対し、比較例1の陽
極容器は約 150 回の充放電サイクルを経た時点より顕
著に電池容量が低下し、600 回の充放電サイクル終了時
には 81 %にまで低下した。
Further, the anode containers of Example 1 and Comparative Example 1 were incorporated in a sodium-sulfur battery, and the operating temperature was adjusted to 360 °.
When the charge / discharge cycle was repeated 600 times at ℃, the anode container of Example 1 was about 93%, although the battery capacity was reduced, whereas the anode container of Comparative Example 1 was about 150 times. The battery capacity decreased remarkably after passing through the charge / discharge cycles, and dropped to 81% at the end of 600 charge / discharge cycles.

【0045】[0045]

【発明の効果】 以上説明したように、本発明によれ
ば、特別な設備を配設することなく、溶射加工において
溶射被膜表面に付着する未溶解粒子、ヒューム若しくは
粉塵を除去することができ、溶射被膜表面の清浄化、平
滑化を図ることができ、当該付着部分からの腐食も防止
することができる。また、本発明の加工方法は、ナトリ
ウム−硫黄電池用陽極容器の内周面の溶射加工に好まし
く用いることができ、当該加工方法による陽極容器は内
部抵抗値の上昇、ひいては電池容量の低下が抑制され
る。
As described above, according to the present invention, it is possible to remove undissolved particles, fumes, or dust adhering to the surface of a thermal sprayed coating during thermal spraying without providing special equipment. The surface of the thermal spray coating can be cleaned and smoothed, and corrosion from the adhered portion can be prevented. In addition, the processing method of the present invention can be preferably used for thermal spraying of the inner peripheral surface of the anode container for a sodium-sulfur battery, and the anode container according to the processing method suppresses an increase in internal resistance and a reduction in battery capacity. Is done.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一の実施例を示す一部欠損正面図で
ある。
FIG. 1 is a partially cutaway front view showing one embodiment of the present invention.

【図2】 従来技術の例を示す一部欠損正面図である。FIG. 2 is a partially cutaway front view showing an example of the prior art.

【図3】 本発明の一の実施例を説明するための概略斜
視図である。
FIG. 3 is a schematic perspective view for explaining one embodiment of the present invention.

【図4】 ナトリウム−硫黄電池の例を示す正面断面図
である。
FIG. 4 is a front sectional view showing an example of a sodium-sulfur battery.

【図5】 従来の溶射被膜表面及び本発明の溶射被膜表
面を示すナトリウム−硫黄電池の概略正面断面図
(a)、(b)である。
FIGS. 5A and 5B are schematic front sectional views (a) and (b) of a sodium-sulfur battery showing a conventional thermal spray coating surface and a thermal spray coating surface of the present invention, respectively.

【図6】 ナトリウム−硫黄電池の充放電サイクルによ
る内部抵抗値の変化を示すグラフである。
FIG. 6 is a graph showing a change in an internal resistance value according to a charge / discharge cycle of a sodium-sulfur battery.

【図7】 ナトリウム−硫黄電池の充放電サイクルによ
る電池容量の変化を示すグラフである。
FIG. 7 is a graph showing a change in battery capacity according to a charge / discharge cycle of a sodium-sulfur battery.

【図8】 本発明の実施例2及び比較例2の圧縮空気の
噴射位置を示す概略正面図(a)、(b)である。
FIGS. 8A and 8B are schematic front views (a) and (b) showing the injection positions of compressed air in Example 2 and Comparative Example 2 of the present invention.

【符号の説明】[Explanation of symbols]

1…中空円筒管(陽極容器)、2…凹部、3…固定用チ
ャック、4…内周面、5…外周面、6…溶射用ガン、7
…プラズマジェット、8…噴射ノズル(溶射材料用)、
9…溶射材料、10…溶射粒子、11…溶射被膜、12
…噴射ノズル(圧縮空気用)、13…圧縮空気、14…
気流、20…上部開口部、21…下部開口部、22…上
部開口端面、23…下部開口端面、24…開口端面と平
行な面、25…下部外周面、31…中空円筒管、33…
固定手段、34…内周面、35…外周面、36…溶射用
ガン、37…エネルギー、38…噴射ノズル(溶射材料
用)、39…溶射材料、40…溶射粒子、41…溶射被
膜、51…絶縁体リング、53…陽極容器、54…ナト
リウム−硫黄電池、55…固体電解質管、56…陽極モ
ールド、57…ナトリウム、60…ナトリウム収容容
器、61…陰極金具、62…陽極導電材、63…溶射被
膜、64…未溶解粒子、65…ヒューム、66…溶射被
膜表面、71…陽極容器、72…凹部、73…固定用チ
ャック、74…内周面、75…外周面、76…溶射用ガ
ン、77…プラズマジェット、78…噴射ノズル(溶射
材料用)、79…溶射材料、80…溶射粒子、81…溶
射被膜、82…噴射ノズル(圧縮空気用)、83…圧縮
空気、85…管中央平板部、90…上部開口端面、91
…下部開口部、93…下部開口端面。
DESCRIPTION OF SYMBOLS 1 ... Hollow cylindrical tube (anode container), 2 ... concave part, 3 ... fixing chuck, 4 ... inner peripheral surface, 5 ... outer peripheral surface, 6 ... spraying gun, 7
... Plasma jet, 8 ... Injection nozzle (for thermal spray material),
9: Thermal spray material, 10: Thermal spray particles, 11: Thermal spray coating, 12
... Injection nozzle (for compressed air), 13 ... Compressed air, 14 ...
Air flow, 20: upper opening, 21: lower opening, 22: upper opening end surface, 23: lower opening end surface, 24: surface parallel to the opening end surface, 25: lower outer peripheral surface, 31: hollow cylindrical tube, 33 ...
Fixing means, 34: inner peripheral surface, 35: outer peripheral surface, 36: thermal spray gun, 37: energy, 38: spray nozzle (for thermal spray material), 39: thermal spray material, 40: thermal spray particles, 41: thermal spray coating, 51 ... Insulator ring, 53 ... Anode container, 54 ... Sodium-sulfur battery, 55 ... Solid electrolyte tube, 56 ... Anode mold, 57 ... Sodium, 60 ... Sodium storage container, 61 ... Cathode fitting, 62 ... Anode conductive material, 63 ... sprayed coating, 64 ... undissolved particles, 65 ... fume, 66 ... sprayed coating surface, 71 ... anode container, 72 ... recess, 73 ... fixing chuck, 74 ... inner peripheral surface, 75 ... outer peripheral surface, 76 ... thermal spraying Gun, 77: Plasma jet, 78: Spray nozzle (for spray material), 79: Spray material, 80: Spray particles, 81: Spray coating, 82: Spray nozzle (for compressed air), 83: Compressed air, 85: Tube Center Plate portion, 90 ... upper open end, 91
... lower opening, 93 ... lower opening end face.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 中空円筒管の2つの開口部の開口端面の
中心を通る回転軸を規定し、 前記中空円筒管を当該回転軸を中心に前記開口端面の円
周方向に回転し、 回転する前記中空円筒管の一方の開口部から、溶射材料
を溶融・噴射するための溶射用ガンを挿入して、当該溶
射用ガンを前記中空円筒管の内周面に沿って移動させな
がら、当該中空円筒管の内周面に前記溶射材料を付着・
積層することにより溶射被膜を形成する中空円筒管内周
面への溶射加工方法であって、 前記中空円筒管の他方の開口部から当該中空円筒管の管
長の1/2に至るまでの外周面において、2つの開口部
の開口端面と平行な面上にリング状に周設された凹部に
対し、圧縮空気を噴射することを特徴とする中空円筒管
内周面への溶射加工方法。
1. A rotation axis passing through the centers of the open end faces of two openings of a hollow cylindrical pipe is defined, and the hollow cylindrical pipe is rotated around the rotary axis in a circumferential direction of the open end face to rotate. From one opening of the hollow cylindrical tube, insert a spray gun for melting and spraying the sprayed material, and move the spray gun along the inner peripheral surface of the hollow cylindrical tube, The sprayed material is attached to the inner peripheral surface of the cylindrical tube.
A method for thermal spraying an inner peripheral surface of a hollow cylindrical tube that forms a thermal spray coating by laminating, the outer peripheral surface extending from the other opening of the hollow cylindrical tube to half the length of the hollow cylindrical tube. 2. A method for thermal spraying an inner peripheral surface of a hollow cylindrical tube, wherein compressed air is jetted to a concave portion provided in a ring shape on a surface parallel to the opening end surfaces of the two opening portions.
【請求項2】 中空円筒管を立設し、 当該中空円筒管の2つの開口部の開口端面の中心を通る
回転軸を規定し、 当該回転軸を中心に立設した中空円筒管を前記開口端面
の円周方向に回転し、 回転する中空円筒管の上部開口部から、溶射材料を溶融
・噴射するための溶射用ガンを挿入して、当該溶射用ガ
ンを前記中空円筒管の内周面に沿って移動させながら、
当該中空円筒管の内周面に前記溶射材料を付着・積層す
ることにより溶射被膜を形成する中空円筒管内周面への
溶射加工方法であって、 前記中空円筒管の下部開口部から当該中空円筒管の外周
面のうち下側1/2の部分において、開口端面と平行な
面上にリング状に周設された凹部に対し、圧縮空気を噴
射することを特徴とする中空円筒管内周面への溶射加工
方法。
2. A hollow cylindrical tube is erected, a rotation axis passing through the center of an open end face of two openings of the hollow cylindrical tube is defined, and the hollow cylindrical tube erected around the rotation axis is opened. A spray gun for melting and spraying a spray material is inserted from the upper opening of the rotating hollow cylindrical tube rotating in the circumferential direction of the end face, and the spray gun is moved to the inner peripheral surface of the hollow cylindrical tube. While moving along
A method for thermal spraying an inner peripheral surface of a hollow cylindrical tube that forms a thermal spray coating by adhering and laminating the thermal spray material on an inner peripheral surface of the hollow cylindrical tube. Injection of compressed air to a concave portion provided in a ring shape on a surface parallel to the opening end surface in a lower half portion of the outer peripheral surface of the tube to the inner peripheral surface of the hollow cylindrical tube. Thermal spray processing method.
【請求項3】 中空円筒管を立設し、 当該中空円筒管の2つの開口部の開口端面の中心を通る
回転軸を規定し、 当該回転軸を中心に立設した中空円筒管を前記開口端面
の円周方向に回転し、 回転する中空円筒管の上部開口部から、溶射材料を溶融
・噴射するための溶射用ガンを挿入して、当該溶射用ガ
ンを前記中空円筒管の内周面に沿って移動させながら、
前記中空円筒管の内周面に前記溶射材料を付着・積層す
ることにより溶射被膜を形成する中空円筒管内周面への
溶射加工方法であって、 前記中空円筒管の下部開口部から当該中空円筒管の外周
面のうち下側1/2の部分において、開口端面と平行な
面上にリング状に周設された凹部に対し、圧縮空気を噴
射することにより、前記中空円筒管内周面に沿って上昇
する気流を生ぜしめ、当該気流により前記中空円筒管内
周面に付着した未溶解粒子、ヒューム若しくは粉塵を除
去することを特徴とする中空円筒管内周面への溶射加工
方法。
3. A hollow cylindrical tube is erected, a rotation axis passing through the centers of the open end faces of two openings of the hollow cylindrical tube is defined, and the hollow cylindrical tube erected around the rotation axis is opened. A spray gun for melting and spraying a spray material is inserted from the upper opening of the rotating hollow cylindrical tube rotating in the circumferential direction of the end face, and the spray gun is moved to the inner peripheral surface of the hollow cylindrical tube. While moving along
A method for performing thermal spraying on an inner peripheral surface of a hollow cylindrical tube that forms a thermal spray coating by attaching and laminating the thermal spray material on an inner peripheral surface of the hollow cylindrical tube. By injecting compressed air to a concave portion provided in a ring shape on a surface parallel to the opening end surface in a lower half portion of the outer peripheral surface of the pipe, the inner peripheral surface of the hollow cylindrical pipe extends along the inner peripheral surface. A method of performing a thermal spraying process on the inner peripheral surface of the hollow cylindrical tube, wherein an undissolved particle, fume, or dust attached to the inner peripheral surface of the hollow cylindrical tube is removed by the air flow.
【請求項4】 圧縮空気の噴射距離が中空円筒管の外周
面から 10〜100 mm の範囲において、圧縮空気の吐出圧
が 1.0〜8.0 Kg/cm2 である請求項1から3のいずれか
一項に記載の溶射加工方法。
4. The discharge pressure of the compressed air is 1.0 to 8.0 Kg / cm 2 when the injection distance of the compressed air is in a range of 10 to 100 mm from the outer peripheral surface of the hollow cylindrical tube. The thermal spraying method described in the paragraph.
【請求項5】 溶射方法がプラズマ溶射である請求項1
から4のいずれか一項に記載の溶射加工方法。
5. The method according to claim 1, wherein the thermal spraying method is plasma spraying.
The thermal spraying method according to any one of items 1 to 4.
【請求項6】 中空円筒管がナトリウム−硫黄電池用陽
極容器である請求項1から5のいずれか一項に記載の溶
射加工方法。
6. The thermal spraying method according to claim 1, wherein the hollow cylindrical tube is an anode container for a sodium-sulfur battery.
JP14916797A 1997-06-06 1997-06-06 Thermal spraying method for inner peripheral surface of hollow cylindrical tube Expired - Lifetime JP3172121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14916797A JP3172121B2 (en) 1997-06-06 1997-06-06 Thermal spraying method for inner peripheral surface of hollow cylindrical tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14916797A JP3172121B2 (en) 1997-06-06 1997-06-06 Thermal spraying method for inner peripheral surface of hollow cylindrical tube

Publications (2)

Publication Number Publication Date
JPH111758A true JPH111758A (en) 1999-01-06
JP3172121B2 JP3172121B2 (en) 2001-06-04

Family

ID=15469269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14916797A Expired - Lifetime JP3172121B2 (en) 1997-06-06 1997-06-06 Thermal spraying method for inner peripheral surface of hollow cylindrical tube

Country Status (1)

Country Link
JP (1) JP3172121B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1136583A1 (en) * 2000-03-20 2001-09-26 Sulzer Metco AG Method and apparatus for thermally coating the cylinder surfaces of combustion engines
DE10130455B4 (en) * 2000-06-21 2004-11-11 Suzuki Motor Corp., Hamamatsu Hot spray system for cylinders
JP2006220018A (en) * 2005-02-08 2006-08-24 Nissan Motor Co Ltd Cylinder block and bore inner surface machining method for cylinder block
JP2006322049A (en) * 2005-05-19 2006-11-30 Fuji Heavy Ind Ltd Powder thermal spray process and powder thermal spray device
JP2011094183A (en) * 2009-10-29 2011-05-12 Sumitomo Light Metal Ind Ltd Method of producing aluminum material for brazing and member for heat exchanger
WO2014106573A1 (en) * 2013-01-04 2014-07-10 Ford-Werke Gmbh Method for thermally coating a surface
US8957346B2 (en) 2007-03-26 2015-02-17 Toyota Jidosha Kabushiki Kaisha Thermal spraying apparatus
WO2016208599A1 (en) * 2015-06-23 2016-12-29 日本発條株式会社 Clad pipe and method for manufacturing clad pipe
US10501446B2 (en) 2003-07-01 2019-12-10 Transitions Optical, Inc. Photochromic compounds
CN116657074A (en) * 2023-05-25 2023-08-29 江苏风驰碳基新材料研究院有限公司 Outer surface treatment device for sodium ion battery production

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1136583A1 (en) * 2000-03-20 2001-09-26 Sulzer Metco AG Method and apparatus for thermally coating the cylinder surfaces of combustion engines
DE10130455B4 (en) * 2000-06-21 2004-11-11 Suzuki Motor Corp., Hamamatsu Hot spray system for cylinders
US10501446B2 (en) 2003-07-01 2019-12-10 Transitions Optical, Inc. Photochromic compounds
JP2006220018A (en) * 2005-02-08 2006-08-24 Nissan Motor Co Ltd Cylinder block and bore inner surface machining method for cylinder block
JP4506494B2 (en) * 2005-02-08 2010-07-21 日産自動車株式会社 Cylinder block bore inner surface processing method
JP2006322049A (en) * 2005-05-19 2006-11-30 Fuji Heavy Ind Ltd Powder thermal spray process and powder thermal spray device
US8957346B2 (en) 2007-03-26 2015-02-17 Toyota Jidosha Kabushiki Kaisha Thermal spraying apparatus
JP2011094183A (en) * 2009-10-29 2011-05-12 Sumitomo Light Metal Ind Ltd Method of producing aluminum material for brazing and member for heat exchanger
WO2014106573A1 (en) * 2013-01-04 2014-07-10 Ford-Werke Gmbh Method for thermally coating a surface
JP2017008379A (en) * 2015-06-23 2017-01-12 日本発條株式会社 Clad pipe, and production method of clad pipe
KR20180011166A (en) * 2015-06-23 2018-01-31 닛폰 하츠죠 가부시키가이샤 Clad pipe and method for manufacturing clad pipe
CN107709613A (en) * 2015-06-23 2018-02-16 日本发条株式会社 The manufacture method of multiple tube and multiple tube
WO2016208599A1 (en) * 2015-06-23 2016-12-29 日本発條株式会社 Clad pipe and method for manufacturing clad pipe
CN116657074A (en) * 2023-05-25 2023-08-29 江苏风驰碳基新材料研究院有限公司 Outer surface treatment device for sodium ion battery production
CN116657074B (en) * 2023-05-25 2024-04-12 江苏风驰碳基新材料研究院有限公司 Outer surface treatment device for sodium ion battery production

Also Published As

Publication number Publication date
JP3172121B2 (en) 2001-06-04

Similar Documents

Publication Publication Date Title
KR102410645B1 (en) Plasma spray coating design using phase and stress control
US5795626A (en) Coating or ablation applicator with a debris recovery attachment
JP3172121B2 (en) Thermal spraying method for inner peripheral surface of hollow cylindrical tube
AU754373B2 (en) Thermal spray coated substrate for use in an electrical energy storage device and method
TW201515087A (en) Plasma spray coating enhancement using plasma flame heat treatment
GB2063926A (en) Plasma coating
TW201209957A (en) Substrate supports for semiconductor applications
US20130040538A1 (en) Method and equipment for removal of ceramic coatings by co2 coatings
KR100982649B1 (en) Thermal spray coating method, method of manufacturing a electrostatic chuck using the thermal spray coating method and electrostatic chuck
CN212648287U (en) Thermal battery shell and fastener insulation protective coating structure
US4048348A (en) Method of applying a fused silica coating to a substrate
JP4421763B2 (en) Blasting method for inner surface of metal pipe
EP0644016A1 (en) Process for coating the internal surface of hollow bodies
JP2002323473A (en) Method of manufacturing gas sensor element and flame spraying apparatus
CN108754390A (en) The preparation method of the small-bore graphite crucible protective coating of melting radioactive metal
TWI795717B (en) Plasma corrosion-resistant component, preparation method thereof, and plasma treatment equipment
JP2005179723A (en) Method of forming sprayed coating, and device of forming sprayed coating
JP2002146510A (en) Method for manufacturing bottomed cylindrical metallic container
JP2004138451A (en) Method for manufacturing gas sensor element
JP2003213399A (en) Melt-spraying device and its method
JP3599682B2 (en) Method for producing solid electrolyte tube for sodium-sulfur battery
JPH10158810A (en) Method for thermal spraying to outer peripheral surface of thin metallic pipe
JP2001052893A (en) Plasma spraying device
JP6934401B2 (en) Manufacturing method of thermal spraying member
JP2854226B2 (en) Anode container for sodium-sulfur battery and method for producing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010313

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090323

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090323

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100323

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100323

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110323

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120323

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140323

Year of fee payment: 13

EXPY Cancellation because of completion of term