JPH11174506A - Wavelength conversion element - Google Patents

Wavelength conversion element

Info

Publication number
JPH11174506A
JPH11174506A JP34693497A JP34693497A JPH11174506A JP H11174506 A JPH11174506 A JP H11174506A JP 34693497 A JP34693497 A JP 34693497A JP 34693497 A JP34693497 A JP 34693497A JP H11174506 A JPH11174506 A JP H11174506A
Authority
JP
Japan
Prior art keywords
optical waveguide
conversion element
wavelength conversion
wave
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34693497A
Other languages
Japanese (ja)
Other versions
JP3111955B2 (en
Inventor
Yoshinori Ota
義徳 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP09346934A priority Critical patent/JP3111955B2/en
Publication of JPH11174506A publication Critical patent/JPH11174506A/en
Application granted granted Critical
Publication of JP3111955B2 publication Critical patent/JP3111955B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • G02F1/377Non-linear optics for second-harmonic generation in an optical waveguide structure
    • G02F1/3775Non-linear optics for second-harmonic generation in an optical waveguide structure with a periodic structure, e.g. domain inversion, for quasi-phase-matching [QPM]

Abstract

PROBLEM TO BE SOLVED: To provide a wavelength conversion element with which high efficiency is assured under pseudo phase matching by a single period without providing the element with the spread of spectra of space frequencies. SOLUTION: An optical waveguide 21 is formed by using a semiconductor material which is high transparent to a basic wave and second harmonic wave. This optical waveguide 21 is provided with a current source 22 for periodically implanting carriers in the light transmission direction (y) in the optical waveguide, by which a diffraction grating periodically lowered in refractive index by a band filling effect with respect to a conversion wavelength existing near the basic absorption end in a semiconductor is formed. The wave number between the basic wave and the conversion wave (second harmonic wave) is matched by this diffraction grating.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は波長変換素子に関
し、特に光導波路型の波長変換素子に関する。
The present invention relates to a wavelength conversion element, and more particularly to an optical waveguide type wavelength conversion element.

【0002】[0002]

【従来の技術】2次高調波を得る方法として媒質の非線
形分極を利用したものがある。媒質中において光波の電
界により電子が変化して分極が生じる。光電界が弱いと
きは分極は電界に比例するが、光が強くなると非線形成
分が無視できなくなる。
2. Description of the Related Art As a method for obtaining a second harmonic, there is a method utilizing nonlinear polarization of a medium. Electrons are changed by the electric field of the light wave in the medium to cause polarization. When the optical electric field is weak, the polarization is proportional to the electric field. However, when the light is strong, the nonlinear component cannot be ignored.

【0003】いま、角周波数ωの正弦波の光波をこの媒
質に入射させると、非線形分極により正弦波から歪んだ
光波が生じる。この波には角周波数ωの成分の他に2次
高調波である角周波数2ωの成分も含んでいる。従っ
て、この角周波数2ωの成分を取出すことにより基本波
を2次高調波に変換することができる。
When a sine wave having an angular frequency ω is incident on this medium, a light wave distorted from the sine wave due to nonlinear polarization is generated. This wave contains the component of the angular frequency 2ω which is the second harmonic in addition to the component of the angular frequency ω. Therefore, the fundamental wave can be converted into the second harmonic by extracting the component of the angular frequency 2ω.

【0004】しかし、この変換効率を高めるためには、
既に変換され伝搬している成分と、入射波の伝搬ととも
に新たに変換される成分の位相が合致する必要がある。
However, in order to increase the conversion efficiency,
It is necessary that the phase of the component already converted and propagated matches the phase of the component newly converted with the propagation of the incident wave.

【0005】さて、波長変換素子はコヒーレントな短波
長光を得るデバイスとして産業上極めて重要である。半
導体レーザの出力程度でも効率よく波長変換できる波長
変換素子が実現できるとその効果は甚大である。
[0005] A wavelength conversion element is extremely important in industry as a device for obtaining coherent short-wavelength light. If a wavelength conversion element that can efficiently convert the wavelength even with the output of the semiconductor laser can be realized, the effect is remarkable.

【0006】近年、波長変換素子を光導波路型に構成す
ることによって、基本波の空間的なパワー密度を高め、
数十mW程度の基本波入力光強度でも、比較的高い変換
効率を実現する可能性が実証され始めている。
In recent years, the spatial power density of the fundamental wave has been increased by forming the wavelength conversion element into an optical waveguide type,
The possibility of realizing a relatively high conversion efficiency even with a fundamental wave input light intensity of about several tens mW has begun to be demonstrated.

【0007】しかしながら、これまでに実現または提案
されている導波路型の波長変換素子では、温度の変化に
よる屈折率の変動や、入射波長の変動に対しても、絶え
ず位相整合条件が保たれ、安定して高い波長変換が得ら
れる様な、効率と安定性が両立した発案はなされていな
い。
However, in the waveguide type wavelength conversion element which has been realized or proposed, the phase matching condition is constantly maintained even when the refractive index changes due to the temperature change or the incident wavelength changes. There has been no proposal that achieves both high efficiency and stability such that stable high wavelength conversion can be obtained.

【0008】あらゆる非線形光学材料は基本的に屈折率
の分散を有しており、高い変換を得るための要件である
位相整合、すなわち基本波の屈折率と2次高調波の屈折
率を合わせるという条件はなにがしかの補助的な手段を
設けることなしには実現不可能で、このために、結晶の
複屈折を利用した常光線基本波と異常光線2次高調波間
の整合法をはじめとして各種の方法が採られているが、
導波路型の場合には特に屈折率の周期配列や2次非線形
効果の周期配列(自発分極の反転周期)を利用する擬似
位相整合の方法がよく採られている。
[0008] Every nonlinear optical material basically has a refractive index dispersion, and phase matching, which is a requirement for obtaining high conversion, that is, matching the refractive index of the fundamental wave with the refractive index of the second harmonic. The condition cannot be realized without any auxiliary means. For this reason, various methods such as a matching method between an ordinary ray fundamental wave and an extraordinary ray second harmonic using birefringence of a crystal are used. The method is adopted,
In the case of the waveguide type, a quasi-phase matching method using a periodic array of the refractive index and a periodic array of the second-order nonlinear effect (reversal period of spontaneous polarization) is often adopted.

【0009】そして、広波長化や広温度範囲化するため
に、この周期配列の空間周波数のスペクトルを空間的に
分散して設けることがしばしば行われている。
[0009] In order to increase the wavelength and the temperature range, it is often practiced to spatially disperse the spectrum of the spatial frequency of the periodic array.

【0010】この疑似位相整合の方法を使用した波長変
換素子の一例が特開平5−107582号公報(以下、
先行技術1という)及び特開平6−273816号公報
(以下、先行技術2という)に開示されている。
An example of a wavelength conversion element using this quasi-phase matching method is disclosed in Japanese Patent Laid-Open Publication No.
This is disclosed in Japanese Patent Application Laid-Open No. 6-273816 (hereinafter referred to as Prior Art 2).

【0011】先行技術1は2次の非線形光学効果を有す
る絶縁性有機非線形材料を導波層とする光導波路素子で
あり、その特徴とするところは導波層に周期分極構造を
形成するための電極を有し、形成された分極成分が光吸
収などによって配向緩和を起こし、基本波と2次高調波
間の位相整合条件がずれ波長変換が不安定になることを
防ぐために可変電圧を上記電極に印加する手段を有し、
かつ電圧可変に応答できるように緩和時間の短い有機非
線形材料を用いたものである。
The prior art 1 is an optical waveguide device having a waveguide layer made of an insulating organic nonlinear material having a second-order nonlinear optical effect, which is characterized by forming a periodic polarization structure in the waveguide layer. A variable voltage is applied to the electrodes to prevent the polarization components formed from causing orientation relaxation due to light absorption and the like, and to prevent the phase matching condition between the fundamental wave and the second harmonic from shifting and the wavelength conversion from becoming unstable. Means for applying,
In addition, an organic nonlinear material having a short relaxation time so as to respond to a variable voltage is used.

【0012】一方、先行技術2は2次の非線形光学効果
を有する絶縁性の無機非線形結晶を用いた光導波路型2
次高調波発生素子であり、その特徴とするところは、光
導波モードの等価屈折率をその透過方向に周期変化を与
えるように構成された光導波路に、その側面から電圧を
印加し電気光学効果を介して導波路中の結晶の持つ本来
の屈折率を変化させるように電極とそれに接続する直流
電源を設けたものである。その目的とするところは整合
条件を満たす電極設定許容範囲を緩和することである。
On the other hand, Prior Art 2 discloses an optical waveguide type 2 using an insulating inorganic nonlinear crystal having a second-order nonlinear optical effect.
The second harmonic generation element is characterized by applying a voltage from the side to an optical waveguide that is configured to give a periodic change in the equivalent refractive index of the optical waveguide mode in the transmission direction. The electrode and a DC power supply connected thereto are provided so as to change the original refractive index of the crystal in the waveguide through the electrode. The purpose is to relax the allowable electrode setting range that satisfies the matching condition.

【0013】[0013]

【発明が解決しようとする課題】しかし、空間周波数の
スペクトルの広がりを設けると単位周波数(波長)当た
りの実効的な非線形定数が低下するために効率が低下す
るという欠点があった。
However, if the spectrum of the spatial frequency is widened, there is a drawback that the efficiency decreases because the effective nonlinear constant per unit frequency (wavelength) decreases.

【0014】そこで本発明の目的は、空間周波数のスペ
クトルの広がりを設けることなく単一周期による疑似位
相整合の下で高効率を確保し、かつ冗長性(広波長化や
広い温度範囲化)を与える波長変換素子を提供すること
にある。
Accordingly, an object of the present invention is to secure high efficiency under quasi-phase matching by a single period without providing a spectrum spread of a spatial frequency, and to achieve redundancy (wide wavelength and wide temperature range). To provide a wavelength conversion element.

【0015】[0015]

【課題を解決するための手段】前記課題を解決するため
に本発明は、基本波及び2次高調波に対して透過性の高
い極性物質で形成された光導波路と、この光導波路を透
過する光の透過方向に周期的にキャリアを注入するキャ
リア注入手段とを含むことを特徴とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides an optical waveguide formed of a polar substance having a high transmittance with respect to a fundamental wave and a second harmonic, and a light transmitting through the optical waveguide. And a carrier injection means for periodically injecting carriers in the light transmission direction.

【0016】本発明によれば、光導波路に周期的にキャ
リア注入することにより光透過方向の屈折率を周期的に
変化させることができる。これにより、基本波と2次高
調波の位相を整合させることができる。
According to the present invention, the refractive index in the light transmission direction can be periodically changed by periodically injecting carriers into the optical waveguide. Thereby, the phases of the fundamental wave and the second harmonic can be matched.

【0017】[0017]

【発明の実施の形態】本発明の特徴は、導波路中に周期
的なキャリアを注入するための電流源を設け、周期的な
キャリア分布が作る2次高調波のみに作用する回折格子
により基本波と2次高調波との間の位相整合を実現し、
かつ注入キャリアの大きさを変化させて屈折率や基本波
長の揺動を補償した高効率で安定な波長変換素子を提供
するものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A feature of the present invention is that a current source for injecting periodic carriers into a waveguide is provided, and a diffraction grating that acts only on a second harmonic generated by a periodic carrier distribution is basically used. To achieve phase matching between the wave and the second harmonic,
It is another object of the present invention to provide a highly efficient and stable wavelength conversion element in which the fluctuation of the refractive index and the fundamental wavelength is compensated by changing the size of the injected carrier.

【0018】先行技術1,2も本発明も屈折率の周期又
は分極の周期構造を介して基本波と2次高調波との間の
位相を整合させるという考え方を共通にしているが、そ
の形成方法、即ち半導体材料中のキャリア注入によって
注入部位の屈折率低下を利用して、周期構造を形成する
ことが本発明の特異とするところであり、これにより、
先行技術2で用いられている電気光学効果等に比べて遥
かに大きな屈折率変化が得られ、先行技術2の効果に述
べられている周期設定許容誤差の補正にとどまらず基本
波長のばらつきや揺動という大きな変化をも吸収するこ
とができる。
Both the prior arts 1 and 2 and the present invention share a common idea of matching the phase between the fundamental wave and the second harmonic through the periodic structure of the refractive index or the periodic structure of the polarization. Forming a periodic structure using a method, that is, utilizing a decrease in the refractive index of an injection site by carrier injection in a semiconductor material is a unique feature of the present invention.
The refractive index change is much larger than the electro-optic effect and the like used in the prior art 2, and is not limited to the correction of the period setting allowable error described in the effect of the prior art 2, but also the dispersion and fluctuation of the fundamental wavelength. It can also absorb large changes such as movement.

【0019】ここで、屈折率変化の周期構造について簡
単に説明する。屈折率変化の空間的な周期が光を回折す
ることは、固体又は液体中の音波による光の回折の例で
よく知られている。
Here, the periodic structure of the refractive index change will be briefly described. The fact that the spatial period of the refractive index change diffracts light is well known in the example of light diffraction by sound waves in a solid or liquid.

【0020】音波波長が短く、光との相互作用長が十分
に長い場合、入射光波は音波によって全て1次の回折光
に回折される。これをBragg回折領域という。
When the wavelength of the sound wave is short and the interaction length with the light is sufficiently long, the incident light wave is all diffracted by the sound wave into first-order diffracted light. This is called a Bragg diffraction region.

【0021】いま、媒質中のx方向に周期Λを固定して
形成された振幅ΔNの屈折率変化の周期構造は、前進す
る音波ΔN・exp(−jKx)と後進する音波ΔN・
exp(+jKx)とが干渉して定在波が形成されてい
ると解釈することができる。ここに、Kxはx方向の波
数を表し、Kx=2π/Λである。
Now, the periodic structure of the refractive index change of the amplitude ΔN formed with the period Λ fixed in the x direction in the medium includes a forward sound wave ΔN · exp (−jKx) and a backward sound wave ΔN ·
exp (+ jKx) can be interpreted as interfering with the formation of a standing wave. Here, Kx represents the wave number in the x direction, and Kx = 2π / Λ.

【0022】この屈折率変化の周期構造は、本発明では
キャリア注入によるバンドフィリング効果によって生じ
る屈折率低下の周期の構造を示す。
In the present invention, the periodic structure of the change of the refractive index indicates the structure of the period of the decrease in the refractive index caused by the band filling effect due to the carrier injection.

【0023】以下、本発明の実施の形態について添付図
面を参照しながら説明する。図1は本発明に係る波長変
換素子の第1の実施の形態の外観斜視図である。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is an external perspective view of a first embodiment of the wavelength conversion element according to the present invention.

【0024】波長変換素子は、基本波及び2次高調波に
対して透過性の高い極性物質で形成された光導波路2
1、即ち、例えば短波長青色の光まで透明でかつ2次非
線形効果を有するGaNやAlN結晶等の光半導体材料
を用いた光導波路21と、この光導波路21に電流iを
印加するための電流源22とからなる。
The wavelength conversion element is an optical waveguide 2 made of a polar substance having high transmittance with respect to the fundamental wave and the second harmonic.
1, for example, an optical waveguide 21 using an optical semiconductor material such as GaN or AlN crystal that is transparent to short-wavelength blue light and has a second-order nonlinear effect, and a current for applying a current i to the optical waveguide 21 Source 22.

【0025】さらに、光導波路21は光を透過させるn
型ガイド層1と、このn型ガイド層1を上下から挟持す
るp型クラッド層3及びn型クラッド層2と、さらにn
型ガイド層1及び2つのクラッド層2,3を上下から挟
持するp型コンタクト層5及びn型コンタクト層4と、
p型コンタクト層5に設けられ梯子状に形成されたp型
電極6と、n型コンタクト層4に設けられ平面状に形成
されたn型電極7とからなる。
Further, the optical waveguide 21 is a light transmitting n
A mold guide layer 1, a p-type clad layer 3 and an n-type clad layer 2 sandwiching the n-type guide layer 1 from above and below,
A p-type contact layer 5 and an n-type contact layer 4 sandwiching the mold guide layer 1 and the two cladding layers 2 and 3 from above and below,
It comprises a p-type electrode 6 provided on the p-type contact layer 5 and formed in a ladder shape, and an n-type electrode 7 provided on the n-type contact layer 4 and formed in a planar shape.

【0026】そして、このp型電極6及びn型電極7間
に電流源22により電流iが印加される。
Then, a current i is applied between the p-type electrode 6 and the n-type electrode 7 by the current source 22.

【0027】この光導波路21は、電流注入により結晶
中のキャリア増減が可能となるよう、光学的及び電子的
条件を満たす構造が気相や液相等の結晶成長法により形
成される。
In the optical waveguide 21, a structure satisfying optical and electronic conditions is formed by a crystal growth method such as a vapor phase or a liquid phase so that carriers in the crystal can be increased or decreased by current injection.

【0028】このキャリアを注入するために設けるp型
電極6は、周期Λの周期構造を有するよう梯子状に形成
されている。一方、n型電極7は一様に平面状に形成さ
れている。
The p-type electrode 6 provided for injecting the carriers is formed in a ladder shape so as to have a periodic structure with a period Λ. On the other hand, the n-type electrode 7 is uniformly formed in a planar shape.

【0029】なお、便宜上、光導波路21を光が透過す
る方向をy、これと直角方向(光導波路21の横方向)
をx、y及びxと直角方向(光導波路21の縦方向)を
zで表す。
For the sake of convenience, the direction in which light passes through the optical waveguide 21 is denoted by y, and the direction perpendicular to this direction (the horizontal direction of the optical waveguide 21).
Is represented by x, y, and x at right angles (the vertical direction of the optical waveguide 21).

【0030】次に、動作の詳細について説明する。図2
は光波の波数対周波数特性図、図3及び図4は光導波路
21の光進行方向yにおける屈折率変化特性図である。
Next, the operation will be described in detail. FIG.
Is a wave number versus frequency characteristic diagram of a light wave, and FIGS. 3 and 4 are refractive index change characteristic diagrams of the optical waveguide 21 in the light traveling direction y.

【0031】図1を参照して、電流源22によりp型電
極6とn型電極7間に電流iを流した状態で、光導波路
21の一方の端面よりn型ガイド層1に基本波9を注入
すると、光導波路21を構成する結晶のもつ2次の非線
形効果によって周波数が2倍の2次高調波10が光導波
路21の他方の端面より発生する。
Referring to FIG. 1, a fundamental wave 9 is applied to n-type guide layer 1 from one end face of optical waveguide 21 with current i flowing between p-type electrode 6 and n-type electrode 7 by current source 22. Is injected, a second harmonic 10 having a frequency twice that of the crystal constituting the optical waveguide 21 is generated from the other end face of the optical waveguide 21 due to a second-order nonlinear effect.

【0032】2次高調波の発生には位相整合条件が満た
されることが必要となる。
The generation of the second harmonic requires that the phase matching condition be satisfied.

【0033】図2は導波光の周波数と波数の関係を示し
ている。同図に示すように、n型ガイド層1に導波され
る導波モードの分散曲線(実線)11は、n型ガイド層
1を構成する結晶層のバルクの分散曲線(破線)12と
n型及びp型クラッド層2,3を構成する結晶層のバル
クの分散曲線(破線)13との間に存在し、基本波(波
数k(ω))と2次高調波(波数k(2ω))が位相整
合するためには、 k(ω)+k(ω)=k(2ω) …(1) が成り立つ必要があるが、通常の光材料では屈折率分散
があってこの条件は得られない。
FIG. 2 shows the relationship between the frequency and the wave number of the guided light. As shown in the figure, the dispersion curve (solid line) 11 of the guided mode guided by the n-type guide layer 1 is represented by the bulk dispersion curve (dashed line) 12 of the crystal layer constituting the n-type guide layer 1 and n Between the bulk dispersion curve (broken line) 13 of the crystal layers constituting the p-type and p-type cladding layers 2 and 3, and includes a fundamental wave (wave number k (ω)) and a second harmonic (wave number k (2ω)). ) Needs to satisfy k (ω) + k (ω) = k (2ω) (1), but this condition cannot be obtained with ordinary optical materials due to the refractive index dispersion. .

【0034】そこで、図3に示すように、p型電極6と
n型電極7間に電流iを流してn型ガイド層1及びp
型,n型クラッド層2,3の基礎吸収端(光を通す領域
に対し光が通らなくなる領域をいう)に近い周波数2ω
の光のみバンドフィリング効果によって周期Λで屈折率
が低下するようにする。即ち、光導波路21の光の透過
方向yにおける屈折率を周期Λで増減させる。
Therefore, as shown in FIG. 3, a current i is applied between the p-type electrode 6 and the n-type electrode 7 to
Frequency near the fundamental absorption edge of the n-type and n-type cladding layers 2 and 3 (meaning a region where light does not pass through a region where light passes)
The refractive index is reduced at a period of に よ っ て due to the band-filling effect of only the light. That is, the refractive index in the light transmission direction y of the optical waveguide 21 is increased or decreased by the period Λ.

【0035】この屈折率低下により減少する波数をK
(Λ)とすると、この空間格子(光導波路21の屈折率
が周期Λで増減する部分)を介して疑似的な位相整合、 k(ω)+k(ω)=k(2ω)−K(Λ) …(2) が成り立ち、効率よく波長変換が行われる。
The wave number reduced by the decrease in the refractive index is represented by K
Assuming that (疑), pseudo phase matching is performed via this spatial grating (a portion where the refractive index of the optical waveguide 21 increases and decreases with the period Λ), and k (ω) + k (ω) = k (2ω) −K (Λ (2) is satisfied, and the wavelength conversion is performed efficiently.

【0036】即ち、図2を参照して、分散曲線(実線)
11の波数k(2ω)に対応する周波数2ωの点Fが波
数K(Λ)だけ左方向に水平移動し点Gに位置するよう
に分散曲線(実線)11のカーブが変化する。
That is, referring to FIG. 2, dispersion curve (solid line)
The curve of the dispersion curve (solid line) 11 changes so that the point F of the frequency 2ω corresponding to the 11 wave number k (2ω) moves horizontally leftward by the wave number K (Λ) and is located at the point G.

【0037】次に、第2の実施の形態について説明す
る。第1の実施の形態の場合、(2)式が成り立ったと
しても、さらに周囲温度の変化や入射波長の変化がある
と、(2)式の条件も成立しなくなる。この解決策が第
2の実施の形態である。
Next, a second embodiment will be described. In the case of the first embodiment, even if the equation (2) holds, if the ambient temperature changes or the incident wavelength further changes, the condition of the equation (2) does not hold. This solution is a second embodiment.

【0038】図4は第2の実施の形態における光導波路
21の光進行方向yにおける屈折率変化特性を示してい
る。
FIG. 4 shows a refractive index change characteristic of the optical waveguide 21 in the light traveling direction y in the second embodiment.

【0039】第2の実施の形態では、電流源22により
p型電極6とn型電極7間に流す電流i、即ち注入キャ
リアの量を変化させる。
In the second embodiment, the current i flowing between the p-type electrode 6 and the n-type electrode 7 by the current source 22, that is, the amount of injected carriers is changed.

【0040】図4を参照して、この変化させる電流の量
をΔiとすると、屈折率の周期Λは変わらず平均屈折率
ΔNaveが変わることになる。
Referring to FIG. 4, if the amount of the current to be changed is Δi, the period of the refractive index 率 does not change and the average refractive index ΔNave changes.

【0041】図5は電流iをパラメータとした波長対屈
折率特性図である。同図を参照すると、注入電流値をi
+Δiとすることにより屈折率の周期Λは変えずに屈折
率のみを変えることができる。これにより、疑似位相整
合条件が再び成り立つようにすることができる。
FIG. 5 is a wavelength-refractive index characteristic diagram with current i as a parameter. Referring to the figure, the injection current value is i
By setting + Δi, only the refractive index can be changed without changing the period Λ of the refractive index. Thereby, the pseudo phase matching condition can be satisfied again.

【0042】これにより、周囲温度の変化や入射波長の
変化があっても、注入電流を調整することにより(2)
式の上記疑似位相整合が保たれ、高い波長変換が維持さ
れる。
Thus, even if there is a change in the ambient temperature or a change in the incident wavelength, it is possible to adjust the injection current (2).
The quasi-phase matching of the equation is maintained, and high wavelength conversion is maintained.

【0043】次に、第3の実施の形態について説明す
る。第3の実施の形態は光導波路21に異なる周波数ω
1とω2の2波を注入し、ω3なる和周波又は差周波を
生成するものである。
Next, a third embodiment will be described. In the third embodiment, the optical waveguide 21 has a different frequency ω.
Two waves 1 and ω2 are injected to generate a sum frequency or difference frequency ω3.

【0044】例えば、波長1.3μmの光波と波長0.
8μmの光波を同時に光導波路21に注入して、印加電
流iを調整することにより、これらの差の波長0.51
μmの緑色の光を生成することができる。
For example, a light wave having a wavelength of 1.3 μm and a wavelength of 0.3 μm.
By simultaneously injecting a light wave of 8 μm into the optical waveguide 21 and adjusting the applied current i, a wavelength of 0.51
μm green light can be generated.

【0045】同様に、2つの異なる波長の光波を同時に
光導波路21に注入して、印加電流iを調整することに
より、これらの和の波長の光を生成することもできる。
Similarly, by injecting light waves of two different wavelengths into the optical waveguide 21 at the same time and adjusting the applied current i, it is possible to generate light having the sum of these wavelengths.

【0046】一方、1つの波長の光波を光導波路21に
注入する場合(第1及び第2の実施の形態)についてい
えば、波長1.3μmの光波を光導波路21に注入し
て、その2次高調波を発生するように電流iを調整すれ
ば、0.65μmの赤色の光が得られ、波長0.83μ
mの光波を光導波路21に注入して、その2次高調波を
発生するように電流iを調整すれば、0.415μmの
青色の光が得られる。
On the other hand, in the case where a light wave of one wavelength is injected into the optical waveguide 21 (the first and second embodiments), a light wave of 1.3 μm is injected into the optical waveguide 21 and the second method is adopted. If the current i is adjusted to generate the second harmonic, red light of 0.65 μm is obtained, and the wavelength is 0.83 μm.
By injecting a light wave of m into the optical waveguide 21 and adjusting the current i so as to generate the second harmonic, blue light of 0.415 μm can be obtained.

【0047】従って、注入光波の選択と注入電流の設定
によって、赤、緑、青の光の三原色を順次作り出すこと
ができ、レーザディスプレイやレーザプリンタに使用す
ることができる。
Therefore, the three primary colors of red, green, and blue light can be sequentially generated by selecting the injection lightwave and setting the injection current, and can be used for a laser display or a laser printer.

【0048】又、本発明では波長変換素子をGaNやA
lN結晶等の光半導体材料で構成したことにより、受光
デバイスや電子回路を波長変換素子とモノリシックに集
積化することができ、変換波強度の安定化のための制御
回路構成や変換波強度の高速度変調回路の一体集積化も
可能となる。
In the present invention, the wavelength conversion element is made of GaN or A.
By using an optical semiconductor material such as 1N crystal, the light receiving device and the electronic circuit can be monolithically integrated with the wavelength conversion element, and the control circuit configuration for stabilizing the converted wave intensity and the high converted wave intensity can be obtained. The speed modulation circuit can also be integrated integrally.

【0049】[0049]

【発明の効果】本発明によれば、基本波及び2次高調波
に対して透過性の高い極性物質で形成された光導波路
と、この光導波路を透過する光の透過方向に周期的にキ
ャリアを注入するキャリア注入手段とを含み構成したた
め、空間周波数のスペクトルの広がりを設けることなく
単一周期による疑似位相整合の下で高効率を確保し、か
つ冗長性(広波長化や広い温度範囲化)を与えることが
可能となる。
According to the present invention, an optical waveguide formed of a polar substance having a high transmittance with respect to a fundamental wave and a second harmonic, and a carrier periodically arranged in a transmission direction of light transmitted through the optical waveguide. And carrier injecting means for injecting the laser beam, thereby ensuring high efficiency under a quasi-phase matching by a single period without providing a spread of a spatial frequency spectrum, and providing redundancy (widening of wavelength and widening of temperature range). ) Can be given.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る波長変換素子の第1の実施の形態
の外観斜視図である。
FIG. 1 is an external perspective view of a first embodiment of a wavelength conversion element according to the present invention.

【図2】同波長変換素子の光波の波数対周波数特性図で
ある。
FIG. 2 is a wave number versus frequency characteristic diagram of a light wave of the wavelength conversion element.

【図3】同波長変換素子の光導波路の光進行方向におけ
る屈折率変化特性図である。
FIG. 3 is a refractive index change characteristic diagram in the light traveling direction of an optical waveguide of the wavelength conversion element.

【図4】同波長変換素子の光導波路の光進行方向におけ
る屈折率変化特性図である。
FIG. 4 is a graph showing a refractive index change characteristic of an optical waveguide of the wavelength conversion element in a light traveling direction.

【図5】同波長変換素子の電流をパラメータとした波長
対屈折率特性図である。
FIG. 5 is a wavelength-refractive index characteristic diagram with the current of the wavelength conversion element as a parameter.

【符号の説明】[Explanation of symbols]

1 n型ガイド層 2 n型クラッド層 3 p型クラッド層 4 n型コンタクト層 5 p型コンタクト層 6 p型電極 7 n型電極 21 光導波路 22 電流源 REFERENCE SIGNS LIST 1 n-type guide layer 2 n-type cladding layer 3 p-type cladding layer 4 n-type contact layer 5 p-type contact layer 6 p-type electrode 7 n-type electrode 21 optical waveguide 22 current source

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 基本波及び2次高調波に対して透過性の
高い極性物質で形成された光導波路と、この光導波路を
透過する光の透過方向に周期的にキャリアを注入するキ
ャリア注入手段とを含むことを特徴とする波長変換素
子。
1. An optical waveguide formed of a polar substance having a high transmittance with respect to a fundamental wave and a second harmonic, and a carrier injection means for periodically injecting a carrier in a transmission direction of light transmitted through the optical waveguide. And a wavelength conversion element.
【請求項2】 前記光導波路は前記光を透過させるガイ
ド層と、このガイド層を上下から挟持する極性が異なる
2つのクラッド層と、さらに前記ガイド層及び2つのク
ラッド層を上下から挟持する極性が異なる2つのコンタ
クト層とからなり、前記キャリア注入手段は前記2つの
コンタクト層のうちの一方に設けられ梯子状に形成され
た第1電極と、前記2つのコンタクト層のうちの他方に
設けられ平面状に形成された第2電極と、前記第1及び
第2電極間に印加される電流源とからなることを特徴と
する請求項1記載の波長変換素子。
2. The optical waveguide according to claim 1, wherein the optical waveguide has a guide layer that transmits the light, two clad layers having different polarities sandwiching the guide layer from above and below, and polarities sandwiching the guide layer and the two clad layers from above and below. Are different from each other, and the carrier injection means is provided on one of the two contact layers and is provided on a first electrode formed in a ladder shape and on the other of the two contact layers. 2. The wavelength conversion element according to claim 1, comprising a second electrode formed in a planar shape, and a current source applied between the first and second electrodes.
【請求項3】 前記第1電極は前記キャリア注入により
生じる前記光導波路の屈折率低下の周期に対応させて電
極が等間隔に形成されることを特徴とする請求項2記載
の波長変換素子。
3. The wavelength conversion element according to claim 2, wherein the first electrodes are formed at regular intervals in correspondence with a period of a decrease in the refractive index of the optical waveguide caused by the carrier injection.
【請求項4】 前記電流源は電流可変に構成されること
を特徴とする請求項2又は3記載の波長変換素子。
4. The wavelength conversion element according to claim 2, wherein said current source is configured to be variable in current.
【請求項5】 前記光導波路には1つの基本波が入力さ
れ、出力としてその基本波の2次高調波が得られること
を特徴とする請求項1〜4いずれかに記載の波長変換素
子。
5. The wavelength conversion element according to claim 1, wherein one fundamental wave is input to the optical waveguide, and a second harmonic of the fundamental wave is obtained as an output.
【請求項6】 前記光導波路には2つの異なる波長の基
本波が入力され、出力としてそれらの波長の和又は差周
波が得られることを特徴とする請求項1〜4いずれかに
記載の波長変換素子。
6. The wavelength according to claim 1, wherein a fundamental wave of two different wavelengths is input to the optical waveguide, and a sum or a difference frequency of the wavelengths is obtained as an output. Conversion element.
【請求項7】 前記光導波路を形成する極性物質は光半
導体材料であることを特徴とする請求項1〜6いずれか
に記載の波長変換素子。
7. The wavelength conversion element according to claim 1, wherein the polar substance forming the optical waveguide is an optical semiconductor material.
JP09346934A 1997-12-17 1997-12-17 Wavelength conversion element Expired - Fee Related JP3111955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09346934A JP3111955B2 (en) 1997-12-17 1997-12-17 Wavelength conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09346934A JP3111955B2 (en) 1997-12-17 1997-12-17 Wavelength conversion element

Publications (2)

Publication Number Publication Date
JPH11174506A true JPH11174506A (en) 1999-07-02
JP3111955B2 JP3111955B2 (en) 2000-11-27

Family

ID=18386815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09346934A Expired - Fee Related JP3111955B2 (en) 1997-12-17 1997-12-17 Wavelength conversion element

Country Status (1)

Country Link
JP (1) JP3111955B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006243390A (en) * 2005-03-03 2006-09-14 Nippon Telegr & Teleph Corp <Ntt> Electromagnetic wave generating element
WO2009075363A1 (en) * 2007-12-12 2009-06-18 National Institute For Materials Science Wavelength conversion element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006243390A (en) * 2005-03-03 2006-09-14 Nippon Telegr & Teleph Corp <Ntt> Electromagnetic wave generating element
WO2009075363A1 (en) * 2007-12-12 2009-06-18 National Institute For Materials Science Wavelength conversion element
JP2009145440A (en) * 2007-12-12 2009-07-02 Sumitomo Metal Mining Co Ltd Wavelength conversion element
US8472106B2 (en) 2007-12-12 2013-06-25 National Institute For Materials Science Wavelength conversion element

Also Published As

Publication number Publication date
JP3111955B2 (en) 2000-11-27

Similar Documents

Publication Publication Date Title
US8320418B2 (en) Multiple wavelength optical systems
US6301273B1 (en) Power enhanced frequency conversion system
EP0664474B1 (en) Electrically tuneable grating, and optical elements having such a grating
US7330490B2 (en) Optical wavelength converter and image forming apparatus using the same
CN100409098C (en) Optical waveguide device, coherent light source using same and optical apparatus having same
US20110043895A1 (en) Wavelength converting device, laser, and method to stabilize the wavelength conversion efficiency
US7315697B2 (en) Light source for generating an output signal having spaced apart frequencies
Webjorn et al. Visible laser sources based on frequency doubling in nonlinear waveguides
US20110097029A1 (en) Super Flat Optical Frequency Comb Signal Generator
US5644422A (en) Techniques of radiation phase matching within optical crystals
US7085297B2 (en) Driving method and driving circuit of light source apparatus
JP3111955B2 (en) Wavelength conversion element
JP2822778B2 (en) Wavelength conversion element
US6919985B2 (en) Optical wavelength converting apparatus and optical wavelength converting method
JPH0933962A (en) Wavelength conversion device and wavelength conversion method
US8625189B2 (en) Compensation for the Gouy phase shift in quasi-phase matching
WO1991012556A1 (en) Light source
US7605973B2 (en) Optical wavelength conversion light source
JP2833391B2 (en) Wavelength conversion element and multiple wavelength light source device
JP3448959B2 (en) Wavelength conversion element and wavelength conversion light source
JP2833392B2 (en) Wavelength conversion element
JP2000267146A (en) Waveguide type optical modulation element and wavelength conversion device
JPH1140876A (en) Second harmonic generating device and method
JPH0451026A (en) Wavelength transforming device
JP2008071841A (en) Optical wavelength conversion device and image display device using it

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees