JPH11174378A - Optical isolator and its manufacture - Google Patents

Optical isolator and its manufacture

Info

Publication number
JPH11174378A
JPH11174378A JP35617297A JP35617297A JPH11174378A JP H11174378 A JPH11174378 A JP H11174378A JP 35617297 A JP35617297 A JP 35617297A JP 35617297 A JP35617297 A JP 35617297A JP H11174378 A JPH11174378 A JP H11174378A
Authority
JP
Japan
Prior art keywords
optical
wave plate
unit
joint unit
faraday rotator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35617297A
Other languages
Japanese (ja)
Inventor
Hiroki Yoshikawa
博樹 吉川
Toshihiko Riyuuou
俊彦 流王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP35617297A priority Critical patent/JPH11174378A/en
Publication of JPH11174378A publication Critical patent/JPH11174378A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make manufacturable an optical isolator which has excellent optical characters without making any special adjustment by bringing the end surfaces of joint units into contact with each other and then making extremely small the gap or overlap of a 1/2-wavelength plate and to make adaptable the optical isolator to mass-production by cutting a large-size 1/2-wavelength plate and a Faraday rotator to specific size after sticking them together. SOLUTION: The 1/2-wavelength plates of the 1st joint unit A and 2nd joint unit B having the 1/2-wavelength plates and Faraday rotators adhered and fixed on optical surfaces are arranged oppositely to each other and the end surfaces P and Q perpendicular to the optical surfaces of the units are brought into contact; and a half of incident light is transmitted through the 1/2-wavelength plate of the 1st joint unit and the remaining half of the light is transmitted through the 1/2-wavelength plate of the 2nd joint unit. In this case, the angle that the phase delay axis D of the 1/2-wavelength plate of the 1st joint unit and the phase delay axis D of the 1/2-wavelength plate of the 2nd joint unit contain is 45 deg. and the angle of rotation of the Faraday rotator is 45 deg..

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、第一の1/2波長
板とファラデー回転子と第二の1/2波長板とが順次配
置され、入射した光の1/2が第一の1/2波長板を透
過し、残りの1/2の光が第二の1/2波長板を透過す
る構造であり、第一の1/2波長板の遅相軸と第二の1
/2波長板の遅相軸のなす角が45°、ファラデー回転
子の回転角が45°である偏波無依存光アイソレータ及
びその製造方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a first half-wave plate, a Faraday rotator and a second half-wave plate which are sequentially arranged, and one-half of the incident light is the first one-wave plate. A half-wave plate is transmitted, and the remaining half of the light is transmitted through a second half-wave plate.
The present invention relates to a polarization-independent optical isolator in which an angle between a slow axis of a half-wave plate and a rotation angle of a Faraday rotator is 45 ° and a method of manufacturing the same.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
光通信システムにおける光増幅技術の急速な発達に伴っ
て、その構成部品である偏波無依存光アイソレータの小
型化、低価格化への要望が増大している。このような要
求を満足する偏波無依存光アイソレータとして、NTT
より複屈折結晶板を使用しないアイソレータが提案され
た(1997年電子情報通信学会総合大会C−3−9
8)。
2. Description of the Related Art In recent years,
With the rapid development of optical amplification technology in optical communication systems, there is an increasing demand for miniaturization and cost reduction of polarization-independent optical isolators that are components thereof. As a polarization independent optical isolator satisfying such requirements, NTT
An isolator that does not use a birefringent crystal plate has been proposed (1997 IEICE General Conference C-3-9)
8).

【0003】このアイソレータの構造は、1/2波長板
/ファラデー回転子/1/2波長板の順に光学素子を配
置したもので、2枚の1/2波長板は、互いに向かいあ
った形で、入射光の半分だけが通過するように配置され
ている。
This isolator has a structure in which optical elements are arranged in the order of a half-wave plate / a Faraday rotator / a half-wave plate. The two half-wave plates are arranged facing each other. , So that only half of the incident light passes therethrough.

【0004】通常1/2波長板は、安価な水晶板を使用
することが可能である。また、水晶で作成した1/2波
長板の厚みは、90μm程度であり、従来型偏波無依存
光アイソレータに使用されている複屈折素子よりもかな
り薄くすることが可能である(ルチルを使用した複屈折
素子の厚みは800μm程度)。このような特徴から、
小型低価格な光アイソレータとして実用化が望まれてい
る。
In general, an inexpensive quartz plate can be used as a half-wave plate. The half-wave plate made of quartz has a thickness of about 90 μm, and can be considerably thinner than a birefringent element used in a conventional polarization-independent optical isolator (using rutile). The thickness of the obtained birefringent element is about 800 μm). Because of these features,
Practical application as a small and low-cost optical isolator is desired.

【0005】この光アイソレータを実用化する上で重要
な要件の1つは、2枚の1/2波長板を光軸方向に投影
した時に形成される隙間(又は重なり)が0に近いほど
消光比や挿入損失の優れた光アイソレータが得られる
(2枚の波長板の隙間もしくは重なりが2μmを超える
と十分な光学特性を得ることができない)ということで
ある。しかし、部品の加工精度をサブミクロンオーダー
まで上げるとコストの上昇は免れない。通常、一般によ
く使用されるダイサーを使用した場合、切断加工の寸法
精度は、±5μm程度である。従って、この程度の寸法
精度の部品を使用しても十分な光学特性を持つ光アイソ
レータを開発することが課題となっている。
One of the important requirements in putting this optical isolator into practical use is that as the gap (or overlap) formed when two half-wave plates are projected in the optical axis direction becomes closer to 0, the light is extinguished. This means that an optical isolator having an excellent ratio and insertion loss can be obtained (if the gap or overlap between the two wave plates exceeds 2 μm, sufficient optical characteristics cannot be obtained). However, if the processing accuracy of parts is raised to the submicron order, an increase in cost is unavoidable. Usually, when a commonly used dicer is used, the dimensional accuracy of the cutting process is about ± 5 μm. Therefore, it has been a problem to develop an optical isolator having sufficient optical characteristics even if components having such a dimensional accuracy are used.

【0006】[0006]

【課題を解決するための手段及び発明の実施の形態】本
発明は、上記課題を解決するため、(1)1/2波長板
とファラデー回転子とが光学面で接着固定された接合ユ
ニット2個を、その第一の接合ユニットと第二の接合ユ
ニットの各1/2波長板が互いに反対側に位置するよう
に配置して上記各ユニットの光学面に対し垂直な端面相
互を密着してなり、入射した光の1/2が第一の接合ユ
ニットの1/2波長板を透過し、残りの1/2の光が第
二の接合ユニットの1/2波長板を透過する構造であ
り、第一の接合ユニットの1/2波長板の遅相軸と第二
の接合ユニットの1/2波長板の遅相軸のなす角が45
°、ファラデー回転子の回転角が45°であることを特
徴とする偏波無依存光アイソレータ、及び、(2)1/
2波長板とファラデー回転子とを光学面で接着した切り
出し用ユニットを製造し、この切り出し用ユニットを所
定のサイズに切断し、得られた切断ユニット2個を第一
及び第二の接合ユニットとして使用し、第一の接合ユニ
ットと第二の接合ユニットの各1/2波長板が互いに反
対側に位置するように配置して上記各ユニットの光学面
に対して垂直な端面相互を密着させたことを特徴とする
上記(1)記載の偏波無依存光アイソレータの製造方法
を提供する。
Means for Solving the Problems and Embodiments of the Invention In order to solve the above problems, the present invention provides (1) a joining unit 2 in which a half-wave plate and a Faraday rotator are adhesively fixed on an optical surface. Are arranged such that the respective half-wave plates of the first bonding unit and the second bonding unit are located on the opposite sides, and the end faces perpendicular to the optical surface of each unit are in close contact with each other. In this structure, half of the incident light passes through the half-wave plate of the first junction unit, and the remaining half of the light passes through the half-wave plate of the second junction unit. The angle between the slow axis of the half-wave plate of the first joining unit and the slow axis of the half-wave plate of the second joining unit is 45.
, A polarization independent optical isolator characterized in that the rotation angle of the Faraday rotator is 45 °, and (2) 1 /
A cutting unit in which the two-wavelength plate and the Faraday rotator are bonded on the optical surface is manufactured, and the cutting unit is cut into a predetermined size, and the obtained two cutting units are used as first and second joining units. Used, each half-wave plate of the first joining unit and the second joining unit were arranged so that they were located on opposite sides, and the end faces perpendicular to the optical surface of each unit were brought into close contact with each other. A method for manufacturing the polarization independent optical isolator according to the above (1) is provided.

【0007】本発明によれば、寸法精度の悪い部品で偏
波無依存光アイソレータを構成しても、2枚の1/2波
長板の隙間(又は重なり)を実用上最小に調整すること
が可能となり、良好な光学特性のアイソレータが得られ
る。その結果、材料費の低減、組立歩留まりの向上が可
能となり、アイソレータの低価格化、小型化が実現でき
る。
According to the present invention, the gap (or overlap) between two half-wave plates can be adjusted to a practically minimum even if a polarization-independent optical isolator is constituted by components having poor dimensional accuracy. This makes it possible to obtain an isolator having good optical characteristics. As a result, the material cost can be reduced and the assembly yield can be improved, and the cost and size of the isolator can be reduced.

【0008】以下、本発明につき更に詳しく説明する
と、図1は本発明の対象となる偏波無依存光アイソレー
タの構造を示したもである。図において、1はファラデ
ー回転子であり、その両側にそれぞれ第一の1/2波長
板2、第二の1/2波長板3が配設されており、これら
2枚の1/2波長板2,3の前方及び後方には、それぞ
れレンズ4,5及び光ファイバー6,7が配設されてい
る。なお、図中、Lcは光軸(中心線)、Lは光路であ
る。
Hereinafter, the present invention will be described in more detail. FIG. 1 shows the structure of a polarization independent optical isolator to which the present invention is applied. In the figure, reference numeral 1 denotes a Faraday rotator, on each side of which a first half-wave plate 2 and a second half-wave plate 3 are provided. Lenses 4 and 5 and optical fibers 6 and 7 are provided in front of and behind 2, 3, respectively. In the drawing, Lc is an optical axis (center line), and L is an optical path.

【0009】この光アイソレータは、入射した光の1/
2が第一の1/2波長板2を透過し、残りの1/2の光
が第二の1/2波長板3を透過する構造であり、第一の
1/2波長板2の遅相軸と第二の1/2波長板3の遅相
軸のなす角が45°、ファラデー回転子1の回転角が4
5°である。
[0009] This optical isolator is 1/1 of the incident light.
2 is a structure that transmits the first half-wave plate 2 and the remaining half of the light is transmitted through the second half-wave plate 3. The angle between the phase axis and the slow axis of the second half-wave plate 3 is 45 °, and the rotation angle of the Faraday rotator 1 is 4 °.
5 °.

【0010】この光アイソレータは、図2に示したよう
に、2枚の1/2波長板2,3を光軸方向に投影したと
きに形成される隙間s(図2(A)参照)又は重なりp
(図2(B)参照)が限りなく小さいことが望まれる。
しかし、この隙間s(又は重なりp)を0にすることは
容易ではない。つまり、使用する部材の公差を0に近づ
けるか、もしくは顕微鏡レベルで隙間s(又は重なり
p)を0になるように調整するような工程が必要とな
る。
As shown in FIG. 2, this optical isolator has a gap s (see FIG. 2A) formed when two half-wave plates 2 and 3 are projected in the optical axis direction. Overlap p
(See FIG. 2B) is desired to be as small as possible.
However, it is not easy to make the gap s (or the overlap p) zero. In other words, a process is required in which the tolerance of the members to be used is close to zero, or the gap s (or the overlap p) is adjusted to zero at the microscope level.

【0011】そこで、寸法精度が±5μm程度である部
品を使用した場合においても、簡単な調整で良好な光学
特性が得られる光アイソレータの構造を検討した結果、
図2(A’),(B’)に示したように、アイソレータ
の光学面と光軸の角度を調整することで、2枚の1/2
波長板の隙間s(又は重なりp)を見かけ上極小にする
ことができる。しかし、この方法では、以下のような問
題が生じる。つまり、光学面と光軸のなす角が90°か
らずれるに従って、1/2波長板2,3の光軸側端面2
a,3aを通過する光が増加する。この端面2a,3a
を通過した光は、本来の1/2波長板を通過したことに
ならないため、図3に示したように、消光比及び挿入損
失の劣化の原因となる。
Therefore, as a result of examining the structure of an optical isolator that can obtain good optical characteristics with simple adjustment even when a component having a dimensional accuracy of about ± 5 μm is used,
As shown in FIGS. 2A and 2B, by adjusting the angle between the optical surface of the isolator and the optical axis, one half of the two
The gap s (or overlap p) between the wave plates can be apparently minimized. However, this method has the following problems. In other words, as the angle between the optical surface and the optical axis deviates from 90 °, the optical axis side end faces 2 of the half-wave plates 2 and 3
Light passing through a and 3a increases. These end faces 2a, 3a
Does not pass through the original half-wave plate, which causes deterioration of the extinction ratio and insertion loss as shown in FIG.

【0012】これに対し、図4に示したように、1/2
波長板20とファラデー回転子10とが光学面で接着固
定された接合ユニットA,B2個を、その第一の接合ユ
ニットAと第二の接合ユニットBの各1/2波長板20
が互いに反対側に位置するように配置して上記各ユニッ
トA,Bの光学面に対し垂直な端面P,Q相互を密着し
て、図1(具体的には図6)に示す如き光アイソレータ
を得ることで、上記問題を解消し得たものである。
On the other hand, as shown in FIG.
The two joining units A and B in which the wave plate 20 and the Faraday rotator 10 are adhered and fixed on the optical surface are divided into the half wave plates 20 of the first joining unit A and the second joining unit B.
Are disposed on opposite sides of each other, and the end faces P and Q perpendicular to the optical surfaces of the units A and B are brought into close contact with each other to form an optical isolator as shown in FIG. 1 (specifically, FIG. 6). Thus, the above problem can be solved.

【0013】ここで、図4において、ファラデー回転子
10と1/2波長板20は、予め、接着剤30で貼り合
わされており、この貼り合わせユニットA,B2つが互
いの端面P,Qで密着されている。ファラデー回転子1
0と1/2波長板20は、互いに隣り合うように、各1
/2波長板20が反対側に位置するように配置される。
また、1/2波長板20の遅相軸Dと前記密着端面P,
Qの境界線のなす角は、22.5°であり、2枚の1/
2波長板20の遅相軸Dのなす角度は45°である。ま
た、ファラデー回転子の回転能は45°である。この場
合、上記密着端面P,Qと光軸Lc方向とは平行とな
る。
Here, in FIG. 4, the Faraday rotator 10 and the half-wave plate 20 are bonded together in advance with an adhesive 30, and the two bonding units A and B are brought into close contact with each other at end faces P and Q. Have been. Faraday rotator 1
The 0 and 波長 wavelength plates 20 are each 1 so that they are adjacent to each other.
The half-wave plate 20 is arranged on the opposite side.
Further, the slow axis D of the half-wave plate 20 and the close end face P,
The angle between the boundaries of Q is 22.5 °,
The angle formed by the slow axis D of the two-wavelength plate 20 is 45 °. The rotation capability of the Faraday rotator is 45 °. In this case, the contact end surfaces P and Q are parallel to the optical axis Lc direction.

【0014】従って、本発明の光アイソレータは、組立
時に端面を密着させるだけで、2枚の1/2波長板の隙
間を端面の面精度(面粗さや平坦度)のレベルまで小さ
くすることが可能である。一般に、面精度は、寸法精度
よりも1桁以上小さくすることが可能であり、2枚の1
/2波長板の隙間を十分に小さくすることが可能であ
る。
Therefore, in the optical isolator of the present invention, the gap between the two half-wave plates can be reduced to the level of the surface accuracy (surface roughness and flatness) of the end surfaces only by bringing the end surfaces into close contact during assembly. It is possible. In general, the surface accuracy can be made one or more digits smaller than the dimensional accuracy, and two
It is possible to make the gap between the half-wave plates sufficiently small.

【0015】なお、端面の密着には、接着剤を使用して
も良いし、機械的に押し付けただけでも構わない。端面
は、予め、端面研磨による平坦化を行った方が望ましい
が、切断面のままで使用しても良好な光学特性が得られ
る。
For the close contact of the end surfaces, an adhesive may be used, or it may be merely pressed mechanically. It is desirable that the end face is previously flattened by polishing the end face, but good optical characteristics can be obtained even when the end face is used as it is.

【0016】上記のような光アイソレータを製造する場
合は、図5に示したように、1/2波長板20とファラ
デー回転子10とを光学面で接着した大型の切り出し用
ユニットCを製造し、この切り出し用ユニットCを所定
のサイズに切断し、得られた切断ユニットC2個を第一
及び第二の接合ユニットA,Bとして使用し、第一の接
合ユニットAと第二の接合ユニットBの各1/2波長板
が互いに反対側に位置するように配置して上記各ユニッ
トA,Bの光学面に対して垂直な端面P,Q相互を密着
させることが好適であり、これにより製造工程が省力化
する。
In the case of manufacturing the optical isolator as described above, as shown in FIG. 5, a large cutout unit C in which the half-wave plate 20 and the Faraday rotator 10 are bonded on the optical surface is manufactured. The cutting unit C is cut into a predetermined size, and the obtained two cutting units C are used as the first and second joining units A and B, and the first joining unit A and the second joining unit B are used. It is preferable that the half-wave plates are disposed on opposite sides of each other so that the end surfaces P and Q perpendicular to the optical surfaces of the units A and B are in close contact with each other. The process is labor-saving.

【0017】[0017]

【実施例】以下、実施例及び比較例を示し、本発明を具
体的に説明するが、本発明は下記の実施例に制限される
ものではない。
EXAMPLES The present invention will be described below in detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.

【0018】図6は、本実施例のアイソレータの構造を
示したもので、1/2波長板として水晶板(厚み90μ
m、辺(端面P,Q)に対して22.5°の方向に遅相
軸)、ファラデー回転子(厚み350μm)としてBi
置換Feガーネットを使用した。それぞれの寸法は、4
mm×12mmである。また、それぞれの光学素子に
は、対空気反射防止膜と対接着反射防止膜を施した。
FIG. 6 shows the structure of the isolator according to the present embodiment. A quartz plate (90 μm thick) is used as a half-wave plate.
m, a side (slow axis in a direction of 22.5 ° with respect to end faces P and Q), and a Faraday rotator (thickness: 350 μm) Bi
Substituted Fe garnet was used. Each dimension is 4
mm × 12 mm. Each optical element was provided with an anti-reflection film for air and an anti-reflection film for adhesion.

【0019】1/2波長板とファラデー回転子をシリコ
ーン系接着剤で貼り合わせて切り出し用ユニットを作成
した後に、1.9mm×3.8mmの大きさに切断し、
計6個の接合ユニットを作成した。得られた接合ユニッ
ト1対を台座40に接着固定した。この際、接合ユニッ
トの端面P,Q同士が十分に密着するように両側面から
加圧しながら接着剤硬化を行った。台座に固定した接合
ユニット1対をマグネット50に挿入固定し、アイソレ
ータ機能部60とした。この機能部60をコリメータレ
ンズ4,5及びシングルモード光ファイバー6,7と組
み合わせて図6の光学系を形成した。消光比が最適とな
るようにアイソレータ機能部の位置を微調し、消光比を
測定した。
A half-wave plate and a Faraday rotator are bonded with a silicone adhesive to form a cutout unit, and then cut into a size of 1.9 mm × 3.8 mm.
A total of six joining units were created. One pair of the obtained joining units was bonded and fixed to the pedestal 40. At this time, the adhesive was cured while applying pressure from both sides so that the end faces P and Q of the joining unit were sufficiently adhered to each other. One pair of the joining units fixed to the pedestal was inserted and fixed in the magnet 50 to form an isolator function unit 60. The functional unit 60 was combined with the collimator lenses 4 and 5 and the single mode optical fibers 6 and 7 to form the optical system shown in FIG. The position of the isolator function was finely adjusted so that the extinction ratio was optimized, and the extinction ratio was measured.

【0020】なお、この光学系に使用した波長は、1.
31μmである。同様に作成したアイソレータ10個の
消光比を図8に示す。なお、比較として、図7に示す構
造のアイソレータの消光比をプロットした。図8より明
らかなように、本発明のアイソレータは、比較例よりも
消光比が高く、またバラツキが小さいことが確認され
た。
The wavelength used for this optical system is as follows.
31 μm. FIG. 8 shows the extinction ratio of ten isolators similarly prepared. For comparison, the extinction ratio of the isolator having the structure shown in FIG. 7 was plotted. As is clear from FIG. 8, it was confirmed that the isolator of the present invention had a higher extinction ratio and less variation than the comparative example.

【0021】なお、比較例のアイソレータの作成手順は
以下の通りである。1/2波長板とファラデー回転子
は、実施例と同材質のものを使用した。それぞれの光学
素子の両面に対空気反射防止膜を施した。1/2波長板
は1.9mm×3.8mm、ファラデー回転子は3.8
mm×3.8mmのサイズに切り出した。これらを1/
2波長板/スペーサー/ファラデー回転子/スペーサー
/1/2波長板の順に接着固定した(光路には接着剤が
介在しないように接着を行った)。上記のように構成さ
れ組立品を円筒磁石の中に設置してアイソレータの機能
部とした。このアイソレータ機能部をコリメータレンズ
と光ファイバーで構成された光学系に配置した。消光比
が最適となるようにアイソレータ機能部の位置を調整し
た。
The procedure for producing the isolator of the comparative example is as follows. The half-wave plate and the Faraday rotator used were of the same material as in the example. An antireflection film against air was applied to both surfaces of each optical element. The half-wave plate is 1.9 mm x 3.8 mm, and the Faraday rotator is 3.8
It was cut out to a size of mm × 3.8 mm. These are 1 /
The two-wavelength plate / spacer / Faraday rotator / spacer / 1/2 wavelength plate were adhered and fixed in this order (adhesion was performed without interposing an adhesive in the optical path). The assembly configured as described above was installed in a cylindrical magnet to function as an isolator. This isolator function part was arranged in an optical system composed of a collimator lens and an optical fiber. The position of the isolator function was adjusted so that the extinction ratio became optimal.

【0022】ここで、図7において、80はスペーサー
であり、図7(B)に示すような円形孔81を有するリ
ング状に形成されたものである。また、磁石50は図7
(C)に示す円筒状を有する。
Here, in FIG. 7, reference numeral 80 denotes a spacer which is formed in a ring shape having a circular hole 81 as shown in FIG. 7B. The magnet 50 is shown in FIG.
It has the cylindrical shape shown in (C).

【0023】この比較例において、2枚の1/2波長板
2,3を光軸方向に投影したときに形成される隙間s
は、1/2波長板の切断精度に依存し、5μm前後であ
ると予測される。光軸に対するアイソレータの傾斜は、
特に行っていない。
In this comparative example, a gap s formed when two half-wave plates 2 and 3 are projected in the optical axis direction.
Depends on the cutting accuracy of the half-wave plate and is expected to be around 5 μm. The tilt of the isolator with respect to the optical axis is
Not particularly

【0024】[0024]

【発明の効果】本発明によれば、接合ユニットの端面同
士を密着させることで、1/2波長板の隙間又は重なり
を極小にすることが可能であり、その結果、特殊な調整
をすることなしに良好な光学特性を有する光アイソレー
タが製造可能となる。また、大きなサイズの1/2波長
板とファラデー回転子を貼り合わせた後に、所定の大き
さに切断することで、大量生産にも対応可能である。
According to the present invention, it is possible to minimize the gap or overlap of the half-wave plate by bringing the end faces of the joining unit into close contact with each other, and as a result, special adjustment can be made. Without this, an optical isolator having good optical characteristics can be manufactured. Further, by laminating a large-sized half-wave plate and a Faraday rotator and then cutting it to a predetermined size, it is possible to cope with mass production.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の対象となる光アイソレータの構造の説
明図である。
FIG. 1 is an explanatory diagram of a structure of an optical isolator to which the present invention is applied.

【図2】従来の光アイソレータの調整方法の説明図であ
り、(A)は1/2波長板の光軸側端面間に間隙がある
状態を示し、(A’)はこれを光軸に対し傾斜させた状
態を示し、(B)は1/2波長板の光軸側端面間に重な
りがある状態を示し、(B’)はこれを光軸に対し傾斜
させた状態である。
2A and 2B are explanatory diagrams of a conventional method for adjusting an optical isolator. FIG. 2A shows a state in which there is a gap between optical axis side end faces of a half-wave plate, and FIG. (B) shows a state in which there is an overlap between the end faces on the optical axis side of the half-wave plate, and (B ') shows a state in which it is inclined with respect to the optical axis.

【図3】(A)は1/2波長板の光軸側端面を光が通過
する状態の説明図、(B)はその部分説明図である。
FIG. 3A is an explanatory view of a state where light passes through an end face on the optical axis side of a half-wave plate, and FIG. 3B is a partial explanatory view thereof.

【図4】本発明の接合ユニットの接合態様を説明するも
ので、(A)は断面図、(B)は光学面の説明図であ
る。
4A and 4B are views for explaining a bonding mode of the bonding unit of the present invention, wherein FIG. 4A is a sectional view and FIG. 4B is an explanatory view of an optical surface.

【図5】本発明の製造方法の一例を説明するもので、
(A)は切り出し用ユニットの断面図、(B)はこれを
切断して得られた切断ユニットの断面図、(C)はこの
切断ユニット2個を密着、組立てした状態の断面図であ
る。
FIG. 5 illustrates an example of the production method of the present invention.
(A) is a cross-sectional view of a cutting unit, (B) is a cross-sectional view of a cutting unit obtained by cutting the cutting unit, and (C) is a cross-sectional view of a state in which two cutting units are closely attached and assembled.

【図6】本発明の一実施例の光アイソレータで、(A)
は側面断面図、(B)はアイソレータ機能部の正面図で
ある。
FIG. 6 shows an optical isolator according to one embodiment of the present invention, wherein (A)
FIG. 2 is a side sectional view, and FIG. 2B is a front view of an isolator function unit.

【図7】従来の光アイソレータを示し、(A)は側面断
面図、(B)はスペーサーの断面図、(C)は磁石の断
面図である。
7A and 7B show a conventional optical isolator, wherein FIG. 7A is a side sectional view, FIG. 7B is a sectional view of a spacer, and FIG. 7C is a sectional view of a magnet.

【図8】各試料の消光比を示すグラフである。FIG. 8 is a graph showing the extinction ratio of each sample.

【符号の説明】[Explanation of symbols]

1 ファラデー回転子 2 第一の1/2波長板 3 第二の1/2波長板 4,5 レンズ 6,7 光ファイバー 10 ファラデー回転子 20 1/2波長板 30 接着剤 A 第一の接合ユニット B 第二の接合ユニット P,Q 接合端面 D 遅相軸 L 光路 Lc 光軸 Lp 光学面に垂直な線 s 1/2波長板の光軸側端面間の離間距離 p 1/2波長板の光軸側端面間の重畳距離 DESCRIPTION OF SYMBOLS 1 Faraday rotator 2 1st 1/2 wavelength plate 3 2nd 1/2 wavelength plate 4, 5 Lens 6, 7 Optical fiber 10 Faraday rotator 20 1/2 wavelength plate 30 Adhesive A 1st joining unit B Second joining unit P, Q Joining end face D Slow axis L Optical path Lc Optical axis Lp Line perpendicular to optical surface s Separation distance between optical axis side end faces of 1/2 wavelength plate p Optical axis of 1/2 wavelength plate Overlap distance between side end faces

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 1/2波長板とファラデー回転子とが光
学面で接着固定された接合ユニット2個を、その第一の
接合ユニットと第二の接合ユニットの各1/2波長板が
互いに反対側に位置するように配置して上記各ユニット
の光学面に対し垂直な端面相互を密着してなり、入射し
た光の1/2が第一の接合ユニットの1/2波長板を透
過し、残りの1/2の光が第二の接合ユニットの1/2
波長板を透過する構造であり、第一の接合ユニットの1
/2波長板の遅相軸と第二の接合ユニットの1/2波長
板の遅相軸のなす角が45°、ファラデー回転子の回転
角が45°であることを特徴とする偏波無依存光アイソ
レータ。
1. A bonding unit comprising a half-wave plate and a Faraday rotator bonded and fixed on an optical surface, and a half-wave plate of a first bonding unit and a half-wave plate of a second bonding unit. It is arranged so as to be located on the opposite side, and the end faces perpendicular to the optical surface of each unit are in close contact with each other, and half of the incident light is transmitted through the half-wave plate of the first junction unit. , The remaining half of the light is 1 / of the second joint unit
It is a structure that transmits the wave plate, and is one of the first joining units.
The angle between the slow axis of the half-wave plate and the slow axis of the half-wave plate of the second joining unit is 45 °, and the rotation angle of the Faraday rotator is 45 °. Dependent optical isolator.
【請求項2】 1/2波長板とファラデー回転子とを光
学面で接着した切り出し用ユニットを製造し、この切り
出し用ユニットを所定のサイズに切断し、得られた切断
ユニット2個を第一及び第二の接合ユニットとして使用
し、第一の接合ユニットと第二の接合ユニットの各1/
2波長板が互いに反対側に位置するように配置して上記
各ユニットの光学面に対して垂直な端面相互を密着させ
たことを特徴とする請求項1記載の偏波無依存光アイソ
レータの製造方法。
2. A cutout unit in which a half-wave plate and a Faraday rotator are bonded on an optical surface is manufactured, and the cutout unit is cut into a predetermined size. And the second joint unit, each 1 / of the first joint unit and the second joint unit
2. The polarization-independent optical isolator according to claim 1, wherein the two wavelength plates are arranged on opposite sides of each other, and the end faces perpendicular to the optical surfaces of the respective units are brought into close contact with each other. Method.
JP35617297A 1997-12-09 1997-12-09 Optical isolator and its manufacture Pending JPH11174378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35617297A JPH11174378A (en) 1997-12-09 1997-12-09 Optical isolator and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35617297A JPH11174378A (en) 1997-12-09 1997-12-09 Optical isolator and its manufacture

Publications (1)

Publication Number Publication Date
JPH11174378A true JPH11174378A (en) 1999-07-02

Family

ID=18447702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35617297A Pending JPH11174378A (en) 1997-12-09 1997-12-09 Optical isolator and its manufacture

Country Status (1)

Country Link
JP (1) JPH11174378A (en)

Similar Documents

Publication Publication Date Title
JP2795295B2 (en) Spherical optical isolator
US5402260A (en) Element for optical isolator and optical isolator employing the same, together with semiconductor laser module employing the optical isolator element
JP2774467B2 (en) Polarization independent optical isolator
US5040863A (en) Optical isolator
JP4008064B2 (en) Optical isolator and manufacturing method thereof
JP2001281598A (en) Complex optical element, optical isolator, light attenuator and their manufacturing methods
JP3130499B2 (en) Three-port optical circulator and method of manufacturing the same
JP3517657B2 (en) Embedded optical non-reciprocal circuit device
JP2008310068A (en) In-line optical isolator
JPH11174378A (en) Optical isolator and its manufacture
JPS6170516A (en) Semiconductor laser module with optical isolator
JP3973975B2 (en) Optical isolator
JPH06324289A (en) Polarization beam splitter and optical circulator using this splitter and optical switch
JPH11174379A (en) Optical isolator and its manufacture
JP3739686B2 (en) Embedded optical isolator
JP2775499B2 (en) Optical isolator
JP2000310749A (en) Polarization-independent optical isolator and its manufacture
JPH08184727A (en) Optical connector
JP3426665B2 (en) Method of manufacturing optical isolator element having optical fiber support
JPH10339849A (en) Optical circulator
CN113805279A (en) Integrated device with isolation and wavelength division multiplexing functions
JPH11183841A (en) Element for optical isolator and its manufacture, and optical module
JPH10239637A (en) Optical isolator and optical module using the isolator
JPH10333096A (en) Element for optical isolator and its production
JPH0255313A (en) Optical isolator