JPH11173971A - Method and apparatus for detecting corrosion of high-pressure reaction vessel - Google Patents

Method and apparatus for detecting corrosion of high-pressure reaction vessel

Info

Publication number
JPH11173971A
JPH11173971A JP34544097A JP34544097A JPH11173971A JP H11173971 A JPH11173971 A JP H11173971A JP 34544097 A JP34544097 A JP 34544097A JP 34544097 A JP34544097 A JP 34544097A JP H11173971 A JPH11173971 A JP H11173971A
Authority
JP
Japan
Prior art keywords
pressure
fluid
reaction vessel
corrosion
vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34544097A
Other languages
Japanese (ja)
Other versions
JP3949800B2 (en
Inventor
Taro Oe
太郎 大江
Akira Suzuki
明 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP34544097A priority Critical patent/JP3949800B2/en
Publication of JPH11173971A publication Critical patent/JPH11173971A/en
Application granted granted Critical
Publication of JP3949800B2 publication Critical patent/JP3949800B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a method and an apparatus in which the corrosion state of a high-pressure reaction vessel is detected safely and surely by monitoring a change in a fluid for corrosion detection between the outer face of the reaction vessel and the inner face of a pressure-resistant vessel. SOLUTION: In order to detect the corrosion of a reaction vessel 1a, air as a fluid for corrosion detection is introduced into a pressure-resistant vessel 2 by a detecting- fluid supply line 6 via a flow control valve 10m a part of the fluid for corrosion detection is supplied to an analyzer 11 via a corrosion detecting fluid takeout line 8 and a flow control valve 9, and the concentration of O2 , CO2 and CO in the fluid for corrosion detection is monitored by the analyzer 11. When a pinhole is generated in the reaction vessel 1a, a fluid, to be treated, inside the reaction vessel 1a is leaked, the concentration of oxygen is lowered, and the concentration of carbon dioxide is raised. Consequently, when the composition of the fluid for corrosion detection is analyzed by the analyzer 11 so as to ne monitored, the generation of the pinhole is detected. In addition, as measures against the fracture of the reaction vessel 1a, a safety valve 12 is attached to the pressure-resistant vessel 2 so as to prevent a pressure inside the pressure-resistant vessel 2 from being raised suddenly.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高圧反応容器の腐
食検出方法および腐食検出装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for detecting corrosion of a high-pressure reactor.

【0002】[0002]

【従来の技術】難燃性の有機化合物を完全酸化分解する
方法として、有機化合物を超臨界水中で酸化分解する方
法が知られている(特公平1−38532号、米国特許
第4113446号、米国特許第4338199号、米
国特許第4543190号)。超臨界水酸化分解法は、
短時間で難燃性有機物の完全酸化分解が可能であり、有
機物は二酸化炭素と水にまで分解される。水を超臨界状
態とするためには、温度374℃以上、圧力22MPa
以上としなければならず、反応容器は管型、ベッセル型
を問わず耐圧性が必要となる。
2. Description of the Related Art As a method for completely oxidatively decomposing a flame-retardant organic compound, a method of oxidatively decomposing an organic compound in supercritical water is known (Japanese Patent Publication No. 38532/1993, U.S. Pat. No. 4,113,446; No. 4,338,199, U.S. Pat. No. 4,543,190). Supercritical hydroxylation decomposition method
It is possible to completely oxidatively decompose flame-retardant organic substances in a short time, and the organic substances are decomposed into carbon dioxide and water. In order to bring water to a supercritical state, a temperature of 374 ° C. or more and a pressure of 22 MPa
Therefore, the pressure resistance of the reaction vessel is required regardless of the tube type or the vessel type.

【0003】しかしながら、処理する有機物がハロゲン
原子や硫黄原子を含む場合、超臨界水中で酸化分解を行
うと、塩素イオンや硫酸イオンなどの酸性イオンが生成
し、反応器内の処理流体のpHが低下する結果、反応容
器が腐食される。そのため、ハロゲン原子や硫黄原子を
含む有機物を超臨界水酸化分解するための反応容器に
は、耐圧性とともに高度の耐食性が必要とされる。
However, when the organic matter to be treated contains halogen atoms and sulfur atoms, oxidative decomposition in supercritical water generates acidic ions such as chloride ions and sulfate ions, and the pH of the treatment fluid in the reactor increases. As a result, the reaction vessel corrodes. For this reason, a reaction vessel for supercritically hydrolyzing and decomposing an organic substance containing a halogen atom or a sulfur atom needs to have high pressure resistance and high corrosion resistance.

【0004】反応容器を耐腐食性の素材で製作しても、
反応容器が徐々に腐食することは避けられず、反応容器
にピンホールが発生すると、高圧の流体がピンホールか
ら急激に流出し、場合によっては、反応容器が破壊さ
れ、極めて危険である。
[0004] Even if the reaction vessel is made of a corrosion-resistant material,
It is unavoidable that the reaction vessel is gradually corroded. If a pinhole is generated in the reaction vessel, a high-pressure fluid rapidly flows out of the pinhole, and in some cases, the reaction vessel is destroyed, which is extremely dangerous.

【0005】反応容器の腐食状況を監視する方法とし
て、反応容器から排出される処理流体中の反応容器の材
質の一部として用いられている元素の濃度を計測して、
腐食状態を推定する方法がある。
[0005] As a method of monitoring the corrosion state of the reaction vessel, the concentration of an element used as a part of the material of the reaction vessel in the processing fluid discharged from the reaction vessel is measured.
There is a method to estimate the corrosion state.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記の
処理流体中の元素の濃度を計測して、腐食状態を推定す
る方法では、ピンホールのような局所的な腐食を検出す
ることは困難である。従って、実際の腐食状況を知るに
は、装置を停止し反応容器を非破壊検査するか、運転中
に腐食により高圧流体が漏れていることを目視により確
認するしかない。この目視による方法は、高圧流体が有
害物質である場合、特に危険である。
However, it is difficult to detect a local corrosion such as a pinhole by the method of estimating the corrosion state by measuring the concentration of the element in the processing fluid as described above. . Therefore, the only way to know the actual state of corrosion is to stop the apparatus and perform a nondestructive inspection of the reaction vessel, or to visually confirm that high-pressure fluid is leaking due to corrosion during operation. This visual method is particularly dangerous when the high pressure fluid is a harmful substance.

【0007】本発明が解決しようとする課題は、安全か
つ確実に高圧反応容器の腐食状態を検出する方法および
腐食検出装置を提供することである。
An object of the present invention is to provide a method and an apparatus for detecting a corrosion state of a high-pressure reaction vessel safely and reliably.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
の請求項1に記載の発明は、反応容器を耐圧容器内に配
置した構造を有する反応装置において、該反応容器内で
高圧反応を行うとともに、反応容器外面と耐圧容器内面
の間の空隙に腐食検出用流体を供給し、該腐食検出用流
体を取り出して該腐食検出用流体の変化を監視すること
を特徴とする高圧反応容器の腐食検出方法に関するもの
である。
According to the first aspect of the present invention, there is provided a reaction apparatus having a structure in which a reaction vessel is disposed in a pressure-resistant vessel, wherein a high-pressure reaction is performed in the reaction vessel. In addition, a corrosion detection fluid is supplied to a gap between the outer surface of the reaction vessel and the inner surface of the pressure-resistant vessel, the fluid for corrosion detection is taken out, and a change in the fluid for corrosion detection is monitored. It relates to a detection method.

【0009】上記課題を解決するための請求項2に記載
の発明は、腐食検出用流体が気体であり、腐食検出用流
体の変化が流体の化学組成の変化であることを特徴とす
るものである。
The invention according to claim 2 for solving the above problem is characterized in that the corrosion detection fluid is a gas, and the change in the corrosion detection fluid is a change in the chemical composition of the fluid. is there.

【0010】上記課題を解決するための請求項3に記載
の発明は、腐食検出用の流体が液体であり、腐食検出用
流体流体の変化が流体の導電率、pHまたはイオン濃度
の変化であることを特徴とすることを特徴とするもので
ある。
According to a third aspect of the present invention, a fluid for detecting corrosion is a liquid, and the change in the fluid for detecting corrosion is a change in conductivity, pH, or ion concentration of the fluid. It is characterized by the following.

【0011】上記課題を解決するための請求項4に記載
の発明は、高圧反応を行なう反応容器を耐圧容器内に配
置した構造を有する反応装置において、反応容器外面と
耐圧容器内面の間の空隙に液体または気体を充填し、該
空隙の圧力変動を監視することを特徴とする高圧反応容
器の腐食検出方法に関するものである。
According to a fourth aspect of the present invention, there is provided a reaction apparatus having a structure in which a reaction vessel for performing a high-pressure reaction is disposed in a pressure-resistant vessel, wherein a gap between an outer surface of the reaction vessel and an inner surface of the pressure-resistant vessel is provided. The present invention relates to a method for detecting corrosion of a high-pressure reaction vessel, characterized in that a liquid or a gas is filled in a liquid and a pressure fluctuation of the gap is monitored.

【0012】上記課題を解決するための請求項5に記載
の発明は、高圧反応を行う反応容器を耐圧容器内に配置
した構造を有する反応装置において、反応容器外面と耐
圧容器内面の間の空隙に腐食検出用流体を供給する流体
供給手段と、該腐食検出用流体を取り出す流体取出手段
と、取り出された腐食検出用流体の変化を監視する監視
手段を設けたことを特徴とする高圧反応容器の腐食検出
装置に関するものである。
According to a fifth aspect of the present invention, there is provided a reactor having a structure in which a reaction vessel for performing a high-pressure reaction is disposed in a pressure-resistant vessel, wherein a gap between an outer surface of the reaction vessel and an inner surface of the pressure-resistant vessel is provided. A high-pressure reaction vessel provided with fluid supply means for supplying a corrosion detection fluid to the fluid, fluid removal means for removing the corrosion detection fluid, and monitoring means for monitoring changes in the removed corrosion detection fluid. The present invention relates to a corrosion detection device.

【0013】上記課題を解決するための請求項6に記載
の発明は、高圧反応を行う反応容器を耐圧容器内に配置
した構造を有する反応装置において、反応容器外面と耐
圧容器内面の間の空隙に充填された液体または気体の圧
力の変化を監視する監視手段を設けたことを特徴とする
高圧反応容器の腐食検出装置に関するものである。
According to a sixth aspect of the present invention, there is provided a reaction apparatus having a structure in which a reaction vessel for performing a high-pressure reaction is disposed in a pressure-resistant vessel, wherein a gap between an outer surface of the reaction vessel and an inner surface of the pressure-resistant vessel is provided. The present invention relates to an apparatus for detecting corrosion of a high-pressure reactor, provided with a monitoring means for monitoring a change in the pressure of a liquid or a gas filled in the vessel.

【0014】[0014]

【発明の実施の形態】本発明の高圧反応容器の腐食検出
方法および腐食検出装置における、反応装置は、高圧反
応を行う反応容器を耐圧容器で覆い密閉した構造を有し
ているものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the method and apparatus for detecting corrosion of a high-pressure reactor according to the present invention, the reactor has a structure in which a reaction vessel for performing a high-pressure reaction is covered with a pressure-resistant vessel and hermetically closed.

【0015】本発明は、高圧反応を行う反応容器のピン
ホール腐食を検出するために、高圧反応容器外面と耐圧
容器内面の間の空隙に腐食検出用の流体を供給し、腐食
検出用流体の変化を監視することにより反応容器の腐食
を検出することを特徴とするものである。
According to the present invention, in order to detect pinhole corrosion in a reaction vessel for performing a high-pressure reaction, a fluid for corrosion detection is supplied to a gap between the outer surface of the high-pressure reaction vessel and the inner surface of the pressure-resistant vessel, and the fluid for corrosion detection is supplied. It is characterized in that corrosion of the reaction vessel is detected by monitoring the change.

【0016】反応容器にピンホールの腐食が発生する
と、反応容器内の化合物が流出して腐食検出用流体に混
入するため、腐食検出用流体の化学組成や、pH、伝導
率が変化する。従って、検出用流体の化学組成、pH、
伝導率の変化を監視することにより、反応容器のピンホ
ールの発生を検出することができる。
When pinhole corrosion occurs in the reaction vessel, compounds in the reaction vessel flow out and mix into the corrosion detection fluid, so that the chemical composition, pH, and conductivity of the corrosion detection fluid change. Therefore, the chemical composition of the detection fluid, pH,
By monitoring the change in conductivity, the occurrence of pinholes in the reaction vessel can be detected.

【0017】検出用の流体としては、加水分解、熱分
解、酸化分解による組成変化がなく、高圧反応を行う反
応器内の組成と異なるものであればよく、例えば、空
気、窒素、酸素等の気体や水等の液体が挙げられる。
The detection fluid may be any fluid as long as it does not change its composition due to hydrolysis, thermal decomposition, or oxidative decomposition and has a different composition from that in the reactor that performs the high-pressure reaction. For example, air, nitrogen, oxygen, etc. Examples include liquids such as gas and water.

【0018】また検出を明確とするために、分解対象物
にトレーサーを混入してもよい。用いるトレーサーとし
ては、測定が容易で反応性のない物質が好ましく、希ガ
スやイオン等を挙げることができる。
Further, in order to clarify the detection, a tracer may be mixed into the decomposition object. As the tracer to be used, a substance which is easy to measure and has no reactivity is preferable, and examples thereof include rare gases and ions.

【0019】腐食検出用流体として空気等の気体を用い
て、気体の化学組成の変化を監視するための分析手段と
しては、ジルコニア、ガルバニ電池、磁気圧力式、磁気
ダンベル式もしくはポーラス式の酸素計、赤外線吸収式
の一酸化炭素計、二酸化炭素計が挙げられる。
As a means for monitoring changes in the chemical composition of a gas using a gas such as air as a fluid for detecting corrosion, zirconia, galvanic cells, a magnetic pressure type, a magnetic dumbbell type or a porous type oxygen meter are used. , An infrared absorption type carbon monoxide meter and a carbon dioxide meter.

【0020】例えば、高圧反応として、超臨界水酸化分
解反応を行う場合、高圧反応容器内の化学組成は、空気
と比べると酸素濃度が低く、二酸化炭素濃度が高いた
め、高圧反応容器にピンホールが発生して、高圧反応容
器内の流体が漏出すると、検出用流体の酸素濃度が減少
したり二酸化炭素濃度が増加する。従って、腐食検出用
流体として空気を用い、その酸素濃度や二酸化炭素濃度
を監視することにより、高圧反応容器の腐食を検出する
ことができる。
For example, when a supercritical hydroxylation decomposition reaction is performed as a high-pressure reaction, the chemical composition in the high-pressure reaction vessel has a lower oxygen concentration and a higher carbon dioxide concentration than air, so that a pinhole is formed in the high-pressure reaction vessel. Occurs and the fluid in the high-pressure reaction vessel leaks, the oxygen concentration of the detection fluid decreases or the carbon dioxide concentration increases. Therefore, corrosion of the high-pressure reactor can be detected by using air as the corrosion detection fluid and monitoring its oxygen concentration and carbon dioxide concentration.

【0021】反応容器内に塩化物イオン等のイオンが存
在している場合には、空気の代わりに水を腐食検出用流
体として用いれば、水のイオン濃度もしくはpHを監視
することにより、反応容器のピンホールの発生を検出す
ることができる。
In the case where ions such as chloride ions are present in the reaction vessel, if water is used as the corrosion detection fluid instead of air, the ion concentration or pH of the water is monitored, and the reaction vessel is monitored. Pinholes can be detected.

【0022】検出用流体として水等の液体を用いた場
合、高圧反応容器が冷却され、高圧反応容器内の反応場
温度が低下しやすいため、反応温度を下げたい場合に適
している。逆に反応場温度の低下を防ぎたい場合は、高
圧反応容器として断熱性および耐食性に優れたセラミッ
クス製が好ましい。
When a liquid such as water is used as the detection fluid, the high-pressure reaction vessel is cooled, and the temperature of the reaction field in the high-pressure reaction vessel tends to decrease. Conversely, when it is desired to prevent the reaction field temperature from lowering, a high pressure reactor is preferably made of ceramics having excellent heat insulation and corrosion resistance.

【0023】反応容器外面と耐圧容器内面との間に形成
される空隙と高圧反応容器内部が流体的に連絡し、空隙
部内の圧力と反応容器内の圧力が実質的に同じ圧力とな
るような構造の反応装置の場合、反応容器に発生したピ
ンホール程度の腐食では、空隙部の化学組成は変化しな
い。反応容器が大きな割れ等による著しい腐食が発生し
たときに空隙部の化学組成が変化する。
A gap formed between the outer surface of the reaction vessel and the inner face of the pressure vessel is in fluid communication with the inside of the high-pressure reaction vessel, so that the pressure in the gap and the pressure in the reaction vessel become substantially the same. In the case of a reactor having a structure, the chemical composition of the void does not change due to the corrosion of a pinhole or the like generated in the reaction vessel. When significant corrosion occurs due to a large crack in the reaction vessel, the chemical composition of the void changes.

【0024】また、腐食検出用流体を供給せずに、反応
容器外面と耐圧容器内面の間の空隙に液体または気体を
充填し、この空隙部内の気体または液体の圧力の変化を
監視することによっても、反応容器の腐食を検出するこ
とができる。すなわち、反応容器にピンホールが発生す
ると、空隙部内の圧力が、高圧反応容器内の圧力より高
い場合は、空隙部内の圧力が減少し、また空隙部内の圧
力が高圧反応容器内の圧力より低い場合は空隙部内の圧
力が増加する。この空隙部内の圧力変化を監視する方法
は、反応容器内の高圧流体の噴出による外部流体の組成
変化が乏しい場合や、モニタリングできない場合に好適
である。
Further, by supplying a liquid or gas into the space between the outer surface of the reaction vessel and the inner surface of the pressure-resistant container without supplying the corrosion detection fluid, and monitoring the change in the pressure of the gas or liquid in the space. Can also detect corrosion of the reaction vessel. That is, when a pinhole occurs in the reaction vessel, if the pressure in the gap is higher than the pressure in the high-pressure reaction vessel, the pressure in the gap decreases, and the pressure in the gap is lower than the pressure in the high-pressure reaction vessel. In this case, the pressure in the gap increases. This method of monitoring the pressure change in the void is suitable when the change in the composition of the external fluid due to the ejection of the high-pressure fluid in the reaction vessel is poor or cannot be monitored.

【0025】本発明では、高圧反応を行う反応容器を耐
圧容器内に設置しているため、反応容器にピンホールが
発生して、反応容器内の高圧の内容物が漏出しても、系
外に漏れることがないので安全である。
In the present invention, since the reaction vessel for performing the high-pressure reaction is installed in the pressure-resistant vessel, even if a pinhole is generated in the reaction vessel and the high-pressure content in the reaction vessel leaks out of the system, It is safe because it does not leak.

【0026】以下、図面に基づいて、本発明の実施形態
を説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.

【0027】(第1の実施形態)図1に、本発明の第1
の実施形態を示す。
(First Embodiment) FIG. 1 shows a first embodiment of the present invention.
An embodiment will be described.

【0028】図1は、超臨界水酸化分解装置の腐食検出
方法の一実施形態を示すフロー図である。超臨界水酸化
分解反応を行うコイル状の反応容器1aは、耐圧容器2
内に密閉状態で配置されている。分解対象物4と酸化剤
としての空気3を超臨界水5と共に、反応容器1aに供
給する。反応容器1a内では、水の超臨界条件下で超臨
界水酸化分解反応が進行し、分解処理物は水と二酸化炭
素に分解され、超臨界水酸化分解処理流体取り出しライ
ン7より取り出した後、冷却し減圧して系外に排出す
る。
FIG. 1 is a flow chart showing one embodiment of a method for detecting corrosion of a supercritical hydroxylation decomposition apparatus. The coil-shaped reaction vessel 1a for performing the supercritical hydroxylation decomposition reaction includes a pressure-resistant vessel 2
It is arranged in a sealed state inside. The decomposition target 4 and the air 3 as the oxidizing agent are supplied to the reaction vessel 1a together with the supercritical water 5. In the reaction vessel 1a, the supercritical hydroxylation reaction proceeds under the supercritical condition of water, and the decomposition product is decomposed into water and carbon dioxide. Cool, depressurize and discharge outside the system.

【0029】反応容器1aの腐食を検出するために、腐
食検出流体として空気を流量制御弁10を介して検出流
体供給ライン6により耐圧容器2に導入し、腐食検出流
体取り出しライン8により取り出し、流量制御弁9を経
て腐食検出用流体の一部を分析装置11に供給し、本分
析装置11で、腐食検出用流体のO2,CO2,COの濃
度をモニタリングする。
In order to detect the corrosion of the reaction vessel 1a, air as a corrosion detection fluid is introduced into the pressure-resistant vessel 2 through the flow control valve 10 through the detection fluid supply line 6, and is taken out through the corrosion detection fluid take-out line 8, and A part of the corrosion detection fluid is supplied to the analyzer 11 via the control valve 9, and the analyzer 11 monitors the concentrations of O 2 , CO 2 , and CO in the corrosion detection fluid.

【0030】反応容器1aにピンホールが発生すると、
反応容器内の処理流体が漏出するため、酸素濃度が低下
し二酸化炭素濃度が上昇する。従って、分析装置11で
腐食検出流体の組成を分析し、モニタリングすることに
より、ピンホールの発生を検出することができる。な
お、反応容器1aが激しく腐食して、破断した場合に備
えて、安全弁12を耐圧容器2に取り付けて耐圧容器内
の圧力が急激に上昇するのを防げばよい。
When a pinhole is generated in the reaction vessel 1a,
Since the processing fluid in the reaction vessel leaks, the oxygen concentration decreases and the carbon dioxide concentration increases. Therefore, by analyzing and monitoring the composition of the corrosion detection fluid with the analyzer 11, the occurrence of pinholes can be detected. The safety valve 12 may be attached to the pressure vessel 2 to prevent the pressure inside the pressure vessel from rapidly increasing in case the reaction vessel 1a is severely corroded and broken.

【0031】(第2の実施形態)図2に、本発明の第2
の実施形態を示す。
(Second Embodiment) FIG. 2 shows a second embodiment of the present invention.
An embodiment will be described.

【0032】図2は、超臨界水酸化分解装置の腐食検出
方法の一実施形態を示すフロー図である。超臨界水酸化
分解反応を行う反応容器1bは、耐圧容器2内に配置さ
れている。ベッセル型の反応容器1bは流通経路1cに
より、耐圧容器2内と流体的に連絡している。まず、分
解対象物4と酸化剤としての空気3を超臨界水5と共
に、反応容器1bに供給する。反応容器1b内では水の
超臨界条件となり、超臨界水酸化分解反応が進行する。
水と二酸化炭素に分解した処理流体は、反応容器1bの
上部の処理流体取り出しライン7より取り出した後、冷
却し減圧して系外に排出する。
FIG. 2 is a flow chart showing one embodiment of a method for detecting corrosion of a supercritical hydroxylation decomposition apparatus. The reaction vessel 1 b for performing the supercritical hydroxylation decomposition reaction is disposed in the pressure-resistant vessel 2. The vessel-type reaction vessel 1b is in fluid communication with the inside of the pressure-resistant vessel 2 via a circulation path 1c. First, the decomposition object 4 and the air 3 as the oxidizing agent are supplied to the reaction vessel 1b together with the supercritical water 5. In the reaction vessel 1b, water becomes supercritical, and the supercritical hydroxylation decomposition reaction proceeds.
The process fluid decomposed into water and carbon dioxide is taken out from the process fluid take-out line 7 at the upper part of the reaction vessel 1b, and then cooled, decompressed and discharged out of the system.

【0033】反応容器1bの腐食を検出するために、超
臨界水酸化分解に用いる空気の一部をバイパスし、耐圧
容器2内面と反応容器1b外面の間の空隙部に導入し、
検出流体取り出しライン8より取り出し、流量制御弁9
を経てその一部を分析装置11に供給し、本分析装置1
1で、腐食検出用流体のO2,CO2,COの濃度をモニ
タリングする。
In order to detect the corrosion of the reaction vessel 1b, a part of the air used for the supercritical hydroxylation decomposition is bypassed and introduced into the gap between the inner surface of the pressure vessel 2 and the outer surface of the reaction vessel 1b.
Take out from the detection fluid take-out line 8 and flow control valve 9
Is supplied to the analyzer 11 through the
In step 1, the concentrations of O 2 , CO 2 , and CO in the corrosion detection fluid are monitored.

【0034】図2の装置では、内側の反応容器1bと外
側の耐圧容器2とは、流通経路1cにより流体的に連絡
しているため、反応容器1bにピンホール程度の腐食が
発生しても、検出流体の空気の組成は大きく変化しな
い。反応容器1bに大きな割れ等による激しい腐食が発
生すると、検出流体の空気の組成が大きく変化し、腐食
を検出することができる。
In the apparatus shown in FIG. 2, the inner reaction vessel 1b and the outer pressure vessel 2 are in fluid communication with each other through the flow path 1c, so that even if pinhole-like corrosion occurs in the reaction vessel 1b. The composition of the air of the detection fluid does not change significantly. When severe corrosion due to a large crack or the like occurs in the reaction vessel 1b, the composition of the air of the detection fluid changes greatly, and the corrosion can be detected.

【0035】(第3の実施形態)図3に、本発明の第3
の実施形態を示す。
(Third Embodiment) FIG. 3 shows a third embodiment of the present invention.
An embodiment will be described.

【0036】図3は、超臨界水酸化分解装置の腐食検出
方法の一実施形態を示すフロー図である。超臨界水酸化
分解反応を行うコイル状の反応容器1aは、耐圧容器2
内に密閉状態で配置されている。分解対象物4と酸化剤
としての空気3を超臨界水5と共に、反応容器1aに供
給する。反応容器1a内では、超臨界水酸化分解反応が
進行し、分解対象物は水と二酸化炭素に分解され、処理
流体取り出しライン7より取り出した後、冷却し減圧し
て系外に排出する。
FIG. 3 is a flow chart showing one embodiment of a method for detecting corrosion of a supercritical hydroxylation decomposition apparatus. The coil-shaped reaction vessel 1a for performing the supercritical hydroxylation decomposition reaction includes a pressure-resistant vessel 2
It is arranged in a sealed state inside. The decomposition target 4 and the air 3 as the oxidizing agent are supplied to the reaction vessel 1a together with the supercritical water 5. In the reaction vessel 1a, the supercritical hydroxylation decomposition reaction proceeds, and the decomposition target is decomposed into water and carbon dioxide. After being taken out from the processing fluid take-out line 7, it is cooled, decompressed, and discharged out of the system.

【0037】第3の実施態様においては、耐圧容器2に
は腐食検出用流体を供給せず、空隙部の圧力を圧力計1
4で監視する。反応容器2にピンホールが発生すると、
空隙部の圧力が反応容器2内の圧力より高い場合は、空
隙部の圧力が低下し、空隙部の圧力が反応容器2内の圧
力より低い場合は、空隙部の圧力が上昇するので、空隙
部の圧力の変動を監視することにより反応容器の腐食を
検出することができる。
In the third embodiment, the corrosion detecting fluid is not supplied to the pressure-resistant container 2 and the pressure in the gap is measured by the pressure gauge 1.
Monitor at 4. When a pinhole occurs in the reaction vessel 2,
When the pressure in the gap is higher than the pressure in the reaction vessel 2, the pressure in the gap decreases. When the pressure in the gap is lower than the pressure in the reaction vessel 2, the pressure in the gap increases. The corrosion of the reaction vessel can be detected by monitoring the fluctuation of the pressure in the section.

【0038】[0038]

【実施例】実施例1 図1に示したような腐食検出装置を用いて、腐食検出試
験を行った。反応器は、外径10.5mm×厚み1.8
5mm×長さ10mのハステロイC−276製のコイル
型反応器を、耐圧容器は外径300mm×厚み6mm×
長さ0.5mのsus316製の円筒状のものを用い
た。表1に示したような条件で、トリクロロエチレン
(以下、「TCE」と略称する)とイソプロピルアルコ
ール(以下、「IPA」と略称する)の混合水溶液(T
CE濃度:0.5wt%、IPA濃度:20wt%)を
超臨界水酸化分解した。なお、反応器内の温度・圧力は
600℃、25MPa、空隙部の温度、圧力は、50
℃、0.5MPaであった。
EXAMPLE 1 A corrosion detection test was performed using a corrosion detection apparatus as shown in FIG. The reactor had an outer diameter of 10.5 mm and a thickness of 1.8.
A 5 mm x 10 m length Hastelloy C-276 coil reactor was used. The pressure vessel was 300 mm outer diameter x 6 mm thickness x
A cylinder made of SUS316 having a length of 0.5 m was used. Under the conditions shown in Table 1, a mixed aqueous solution (T) of trichloroethylene (hereinafter abbreviated as “TCE”) and isopropyl alcohol (hereinafter abbreviated as “IPA”)
(CE concentration: 0.5 wt%, IPA concentration: 20 wt%) was subjected to supercritical hydroxylation decomposition. The temperature and pressure in the reactor were 600 ° C. and 25 MPa, and the temperature and pressure in the air gap were 50 ° C.
° C and 0.5 MPa.

【0039】[0039]

【表1】 [Table 1]

【0040】腐食検出用流体としての空気は、取り出し
ラインより取り出し、圧力制御弁で0.001Nm3
Hrの流量に調整した後、島津製作所製「CGT−70
00」により、O2,CO2,COの各濃度を測定した。
測定結果を表2に示す。
Air as a fluid for detecting corrosion was taken out from a take-out line, and 0.001 Nm 3 /
After adjusting to the flow rate of Hr, "CGT-70" manufactured by Shimadzu Corporation
00, the respective concentrations of O 2 , CO 2 , and CO were measured.
Table 2 shows the measurement results.

【0041】[0041]

【表2】 [Table 2]

【0042】表2に示した結果から明らかなように、コ
イル型反応容器にピンホールの腐食が発生すると、空隙
部に供給した空気の化学組成が変化(O2が減少し、C
2が増加する)するため、反応容器の腐食を検出する
ことができる。
As is clear from the results shown in Table 2, when pinhole corrosion occurs in the coil-type reaction vessel, the chemical composition of the air supplied to the gap changes (O 2 decreases, C
O 2 increases), so that corrosion of the reaction vessel can be detected.

【0043】実施例2 図2に示したような腐食検出装置を用いて、腐食検出試
験を行った。反応器は、外径200mm×厚み6mm×
長さ1mのハステロイC−276製のベッセル型反応器
を、耐圧容器(ベッセル型)は外径450mm×厚み5
0mm×長さ1.5mのsus316製のものを用い
た。表3に示したような条件で、TCEとIPAの混合
水溶液(TCE濃度:0.5wt%、IPA濃度:20
wt%)を超臨界水酸化分解した。なお、反応器内の温
度・圧力は600℃、25MPaであった。
Example 2 A corrosion detection test was performed using a corrosion detection apparatus as shown in FIG. The reactor has an outer diameter of 200 mm x thickness of 6 mm x
A 1 m long Hastelloy C-276 vessel reactor was used. The pressure vessel (vessel type) had an outer diameter of 450 mm and a thickness of 5 mm.
The one made of sus316 having a length of 0 mm and a length of 1.5 m was used. Under the conditions shown in Table 3, a mixed aqueous solution of TCE and IPA (TCE concentration: 0.5 wt%, IPA concentration: 20
wt%) was subjected to supercritical hydroxylic decomposition. The temperature and pressure in the reactor were 600 ° C. and 25 MPa.

【0044】[0044]

【表3】 [Table 3]

【0045】腐食検出用流体としての空気は、検出用流
体取り出しラインより取り出し、圧力制御弁で1Nm3
/Hrの流量に調整した後、島津製作所製「CGT−7
000」により、O2,CO2,COの各濃度を測定し
た。測定結果を表4に示す。表4中「腐食あり」の値
は、ベッセル型反応容器に大きな割れのあるものを用い
た場合の空気組成である。
Air as a corrosion detection fluid is taken out from a detection fluid take-out line, and 1 Nm 3 is supplied to the pressure control valve.
/ Hr flow rate is adjusted to "CGT-7" manufactured by Shimadzu Corporation.
000 ", the respective concentrations of O 2 , CO 2 , and CO were measured. Table 4 shows the measurement results. The value of "corrosion" in Table 4 is an air composition when a vessel having a large crack is used in the vessel type reaction vessel.

【0046】[0046]

【表4】 [Table 4]

【0047】表4に示した結果から明らかなように、反
応容器に割れ等の大きな腐食が発生すると、空隙部に供
給した空気の化学組成が変化し(O2が減少し、CO2
増加する)、反応容器の腐食を検出することができる。
As is clear from the results shown in Table 4, when a large corrosion such as a crack occurs in the reaction vessel, the chemical composition of the air supplied to the gap changes (O 2 decreases and CO 2 increases). And the corrosion of the reaction vessel can be detected.

【0048】[0048]

【発明の効果】本発明により、高圧反応を行う反応容器
のピンホール腐食の発生を、安全かつ確実に検出するこ
とができ、高圧反応の内容物がピンホールより激しく漏
出しても耐圧容器より漏れ出すことがないので安全であ
る。
According to the present invention, the occurrence of pinhole corrosion in a reaction vessel for performing a high-pressure reaction can be detected safely and reliably. It is safe because it does not leak.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態の一例を示すフロー
図。
FIG. 1 is a flowchart showing an example of a first embodiment of the present invention.

【図2】本発明の第2の実施形態の一例を示すフロー
図。
FIG. 2 is a flowchart showing an example of a second embodiment of the present invention.

【図3】本発明の第3の実施形態の一例を示すフロー
図。
FIG. 3 is a flowchart showing an example of a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1a、1b 高圧反応容器 1c 流通経路 2 耐圧容器 3 空気 4 分解対象物 5 超臨界水 6 腐食検出用流体供給ライン 7 超臨界水酸化分解処理流体取り出しライン 8 腐食検出用流体取り出しライン 9 圧力制御弁 10 流量制御弁 11 分析装置 12 安全弁 13 空気バイパス 14 圧力計 1a, 1b High-pressure reaction vessel 1c Distribution path 2 Pressure vessel 3 Air 4 Decomposition target 5 Supercritical water 6 Corrosion detection fluid supply line 7 Supercritical hydroxylation decomposition treatment fluid take-out line 8 Corrosion detection fluid take-out line 9 Pressure control valve Reference Signs List 10 flow control valve 11 analyzer 12 safety valve 13 air bypass 14 pressure gauge

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 反応容器を耐圧容器内に配置した構造を
有する反応装置において、該反応容器内で高圧反応を行
うとともに、反応容器外面と耐圧容器内面の間の空隙に
腐食検出用流体を供給し、該腐食検出用流体を取り出し
て該腐食検出用流体の変化を監視することを特徴とする
高圧反応容器の腐食検出方法。
In a reaction apparatus having a structure in which a reaction vessel is arranged in a pressure vessel, a high-pressure reaction is performed in the reaction vessel and a corrosion detection fluid is supplied to a gap between an outer surface of the reaction vessel and an inner face of the pressure vessel. A method for detecting corrosion of the high-pressure reaction vessel, wherein the method detects the corrosion detection fluid and monitors a change in the corrosion detection fluid.
【請求項2】 腐食検出用流体が気体であり、腐食検出
用流体の変化が流体の化学組成の変化であることを特徴
とする請求項1に記載の高圧反応容器の腐食検出方法。
2. The method for detecting corrosion of a high-pressure reaction vessel according to claim 1, wherein the corrosion detection fluid is a gas, and the change in the corrosion detection fluid is a change in the chemical composition of the fluid.
【請求項3】 腐食検出用の流体が液体であり、腐食検
出用流体流体の変化が流体の導電率、pHまたはイオン
濃度の変化であることを特徴とする請求項1に記載の高
圧反応容器の腐食検出方法。
3. The high-pressure reactor according to claim 1, wherein the fluid for corrosion detection is a liquid, and the change in the fluid for corrosion detection is a change in conductivity, pH, or ion concentration of the fluid. Corrosion detection method.
【請求項4】 高圧反応を行なう反応容器を耐圧容器内
に配置した構造を有する反応装置において、反応容器外
面と耐圧容器内面の間の空隙に液体または気体を充填
し、該空隙の圧力変動を監視することを特徴とする高圧
反応容器の腐食検出方法。
4. A reactor having a structure in which a reaction vessel for performing a high-pressure reaction is arranged in a pressure-resistant vessel, wherein a gap between the outer surface of the reaction vessel and the inner face of the pressure-resistant vessel is filled with a liquid or a gas to reduce pressure fluctuation in the gap. A method for detecting corrosion of a high-pressure reactor, characterized by monitoring.
【請求項5】 高圧反応を行う反応容器を耐圧容器内に
配置した構造を有する反応装置において、反応容器外面
と耐圧容器内面の間の空隙に腐食検出用流体を供給する
流体供給手段と、該腐食検出用流体を取り出す流体取出
手段と、取り出された腐食検出用流体の変化を監視する
監視手段を設けたことを特徴とする高圧反応容器の腐食
検出装置。
5. A reactor having a structure in which a reaction vessel for performing a high-pressure reaction is disposed in a pressure-resistant vessel, a fluid supply means for supplying a corrosion detection fluid to a gap between an outer surface of the reaction vessel and an inner surface of the pressure-resistant vessel; A corrosion detecting device for a high-pressure reactor, comprising: a fluid extracting means for extracting a corrosion detecting fluid; and a monitoring means for monitoring a change in the extracted corrosion detecting fluid.
【請求項6】 高圧反応を行う反応容器を耐圧容器内に
配置した構造を有する反応装置において、反応容器外面
と耐圧容器内面の間の空隙に充填された液体または気体
の圧力の変化を監視する監視手段を設けたことを特徴と
する高圧反応容器の腐食検出装置。
6. A reaction apparatus having a structure in which a reaction vessel for performing a high-pressure reaction is disposed in a pressure-resistant vessel, and monitors a change in pressure of a liquid or a gas filled in a gap between an outer surface of the reaction vessel and an inner surface of the pressure-resistant vessel. An apparatus for detecting corrosion of a high-pressure reactor, comprising a monitoring means.
JP34544097A 1997-12-15 1997-12-15 Corrosion detection method and corrosion detection apparatus for high pressure reaction vessel Expired - Fee Related JP3949800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34544097A JP3949800B2 (en) 1997-12-15 1997-12-15 Corrosion detection method and corrosion detection apparatus for high pressure reaction vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34544097A JP3949800B2 (en) 1997-12-15 1997-12-15 Corrosion detection method and corrosion detection apparatus for high pressure reaction vessel

Publications (2)

Publication Number Publication Date
JPH11173971A true JPH11173971A (en) 1999-07-02
JP3949800B2 JP3949800B2 (en) 2007-07-25

Family

ID=18376617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34544097A Expired - Fee Related JP3949800B2 (en) 1997-12-15 1997-12-15 Corrosion detection method and corrosion detection apparatus for high pressure reaction vessel

Country Status (1)

Country Link
JP (1) JP3949800B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10472428B2 (en) 2016-05-10 2019-11-12 Basell Polyolefine Gmbh High-pressure polymerization process of ethylenically unsaturated monomers carred out in a polymerization reactor installed within a protective enclosure
US10562986B2 (en) 2016-05-10 2020-02-18 Basell Polyolefine Gmbh High-pressure polymerization process of ethylenically unsaturated monomers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10472428B2 (en) 2016-05-10 2019-11-12 Basell Polyolefine Gmbh High-pressure polymerization process of ethylenically unsaturated monomers carred out in a polymerization reactor installed within a protective enclosure
US10562986B2 (en) 2016-05-10 2020-02-18 Basell Polyolefine Gmbh High-pressure polymerization process of ethylenically unsaturated monomers

Also Published As

Publication number Publication date
JP3949800B2 (en) 2007-07-25

Similar Documents

Publication Publication Date Title
EP2912452B1 (en) Method for permeation hydrogen measurements
JP4334298B2 (en) Organic waste treatment apparatus and treatment method
Totsuka et al. Effect of electrode potential on the hydrogen-induced IGSCC of alloy 600 in an aqueous solution at 350 C
US7208117B2 (en) Automated process for inhibiting corrosion in an inactive boiler containing an aqueous system
Macdonald et al. Corrosion potential measurements on type 304 SS and alloy 182 in simulated BWR environments
EP0666237A1 (en) Water generating method
Mendez et al. Effect of Acetic Acid, pH and MEG on the CO2 Top of the Line Corrosion
Konys et al. Corrosion of high-temperature alloys in chloride-containing supercritical water oxidation systems
JPH11173971A (en) Method and apparatus for detecting corrosion of high-pressure reaction vessel
Sun et al. Unraveling the effect of O2, NO2 and SO2 impurities on the stress corrosion behavior of X65 steel in water-saturated supercritical CO2 streams
Zhang et al. Pitting mechanism of mild steel in marginally sour environments–part ii: pit initiation based on the oxidation of the chemisorbed iron sulfide layers
US4882122A (en) Method and apparatus for obtaining a water sample from the core of a boiling water reactor
EP1390082B1 (en) Method for detecting ozone consuming agents
JP4716898B2 (en) Compressed gas supply equipment and method
Berge et al. Effect of hydrogen on the corrosion of steels in high temperature water
CN106841530A (en) Solid engines state monitoring apparatus based on chemical atmosphere sensor
JP2009300203A (en) Sulfur analyzing method and sulfur analyzer
CN113884429A (en) Method for detecting hydrogen induced cracking of steel
US7572636B2 (en) Method of detecting a leakage in an apparatus
KR102422847B1 (en) Waste water traetment monitoring apparatus and operation method thereof
Das An ultrasensitive hydrogen detector
Georgy Experiment for determination of residual stresses in pipes
Macdonald et al. Electrochemical Noise Measurements on Carbon and Stainless Steels in High Subcritical and Supercritical Aqueous Environments
Herbert et al. Zero resistance ammetry-its application in preventing the corrosion of stainless steel in cooling waters
JP2617981B2 (en) Metal corrosion protection method

Legal Events

Date Code Title Description
A02 Decision of refusal

Effective date: 20040810

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Effective date: 20070216

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Effective date: 20070419

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20110427

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20120427

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees