JPH11173940A - Method and device for acoustically detecting leakage - Google Patents

Method and device for acoustically detecting leakage

Info

Publication number
JPH11173940A
JPH11173940A JP9345267A JP34526797A JPH11173940A JP H11173940 A JPH11173940 A JP H11173940A JP 9345267 A JP9345267 A JP 9345267A JP 34526797 A JP34526797 A JP 34526797A JP H11173940 A JPH11173940 A JP H11173940A
Authority
JP
Japan
Prior art keywords
acoustic
wave
tower
difference
received
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9345267A
Other languages
Japanese (ja)
Inventor
Izumi Yamada
泉 山田
Satoshi Okada
岡田  聡
Jun Kashiwakura
潤 柏倉
Takayuki Ishida
隆之 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9345267A priority Critical patent/JPH11173940A/en
Publication of JPH11173940A publication Critical patent/JPH11173940A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PROBLEM TO BE SOLVED: To improve the operational reliability of a plant by preventing malfunction of an acoustic leakage detector by realizing such a leakage monitoring function that is sensible to the occurrence of bubbles in an SG container without responding to the waveform variation of received acoustic waves caused by the operating condition. SOLUTION: The acoustic leakage detecting device is composed of transmitting sound sensors 11t and 12t and receiving sound sensors 11a, 11b, 12a, and 12b installed to the barrel 7 of an SG container, an acoustic wave generation controller 200, and a leakage detector 300. Thereby, the reliability of the operation, etc., of a plant can be improved because such leakage detection that is sensible to the variation of noise, etc., and to the occurrence of bubbles in the SG container becomes possible.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、監視領域周辺に設
置した送信音響センサの送信信号と受信音響センサの検
出信号を用いて、監視領域中の媒質の音響伝播特性変化
の監視を行うものであり、特に漏洩に伴い媒質中に生ず
る気泡の発生を高感度に捉えるのに好適な音響式漏洩検
出方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention monitors the change in the sound propagation characteristic of a medium in a monitoring area by using a transmission signal of a transmission acoustic sensor and a detection signal of a reception acoustic sensor installed around the monitoring area. In particular, the present invention relates to an acoustic leakage detection method and apparatus suitable for capturing, with high sensitivity, the generation of bubbles generated in a medium due to leakage.

【0002】[0002]

【従来の技術】特開昭62−115358号公報には、
監視媒質である液体中に超音波を送信する送信音響セン
サと、液体を通過した音響を受信する受信音響センサの
1組のセンサを用い、液体中の気泡の存在を送信音響セ
ンサの出力と、受信音響センサ出力を用いた超音波減衰
測定装置により検出する方法が開示されている。他の例
の特開平9−5203号公報には,断続的に液体中に音
響を送信し、送信に応じて受信する音響波のうち前回送
信に対応する受信音響波形と、その直後の送信に対応す
る受信音響波形の差の積分値を求め、差の積分値が設定
値を超えて変化したときに漏洩と判定する方法が開示さ
れている。
2. Description of the Related Art JP-A-62-115358 discloses that
Using a transmission acoustic sensor that transmits ultrasonic waves into the liquid that is the monitoring medium, and a set of reception acoustic sensors that receive sound that has passed through the liquid, using the output of the transmission acoustic sensor to determine the presence of bubbles in the liquid, A method of detecting by an ultrasonic attenuation measurement device using a received acoustic sensor output is disclosed. In another example, Japanese Unexamined Patent Application Publication No. 9-5203 discloses that a sound is intermittently transmitted into a liquid, and a reception acoustic waveform corresponding to the previous transmission among the acoustic waves received in response to the transmission and a transmission immediately after the reception. A method is disclosed in which an integrated value of a difference between corresponding received acoustic waveforms is obtained, and when the integrated value of the difference exceeds a set value, it is determined to be leakage.

【0003】上記他の例において、受信音響波の差の平
均値は一般的にはゼロであるため、積分値も一般的には
ゼロとなるはずであるが、何らかの特殊条件で成立する
検出方式と推定される。この他の例について具体的な装
置構成の開示はないが、前回送信に対応する受信音響波
形と、その直後の送信に対応する受信音響波形の差から
漏洩の有無を検出する考え方を示している。
In the above other example, since the average value of the difference between the received acoustic waves is generally zero, the integrated value should also be generally zero. It is estimated to be. Although no specific device configuration is disclosed for this other example, the concept of detecting the presence or absence of leakage from the difference between the received acoustic waveform corresponding to the previous transmission and the received acoustic waveform corresponding to the immediately following transmission is shown. .

【0004】文献(「アクティブ音響法によるFBR蒸
気発生器の水リーク検出」:日本原子力学会、1996
年 秋の大会 G55)では、1つの受信音響波で気泡
が発生したときに音圧変化が大きくなる時間帯を監視す
る方法が開示されている。
Reference (“Detection of water leak of FBR steam generator by active acoustic method”: Atomic Energy Society of Japan, 1996
A fall meeting G55) discloses a method of monitoring a time zone in which a change in sound pressure becomes large when a bubble is generated by one received acoustic wave.

【0005】上記のような監視領域にある液体中に音響
波を送信し、監視領域を透過した受信音響波の変化を検
知することで漏洩の有無を知る方法では、一般に液体は
何らかの容器に封じ込められており、送受信のための音
響センサは、その容器壁に直接取り付けられることが多
い。このため、受信音響波には必ず容器壁を回り込む音
響波(以下「回り込み波」という)と、液体中を透過伝
播した音響波(以下「液中透過波」という)とが重畳し
て検出されることになる。
In the above-described method of transmitting an acoustic wave into a liquid in a monitoring area and detecting a change in a received acoustic wave transmitted through the monitoring area to determine whether or not there is a leak, the liquid is generally contained in some kind of container. The acoustic sensors for transmission and reception are often mounted directly on the container wall. For this reason, the received acoustic wave is always detected by superimposing an acoustic wave that goes around the container wall (hereinafter referred to as “wraparound wave”) and an acoustic wave transmitted through and propagated in the liquid (hereinafter referred to as “transmitted wave in liquid”). Will be.

【0006】液体中に発生する気泡による影響を受ける
のは、受信音響波のうち液中の気泡領域を伝播する液中
透過波である。監視領域中に超音波を伝播させて、監視
領域の気泡の存在による超音波の減衰を検知するために
は、この液中透過波の減衰の有無を捉える必要がある。
What is affected by bubbles generated in the liquid is a transmitted wave in the liquid that propagates through a bubble region in the liquid among the received acoustic waves. In order to propagate ultrasonic waves in the monitoring area and detect the attenuation of the ultrasonic waves due to the presence of bubbles in the monitoring area, it is necessary to grasp the presence or absence of the attenuation of the transmitted wave in the liquid.

【0007】しかし、受信音響波そのものには、送信音
響波の回り込み波、液中透過波、雑音が含まれている。
回り込み波や雑音は、気泡が発生しない場合でも変化す
る。この原因としては、音響センサ取り付け状態の変
化、SG内部および外部の環境雑音変化、運転条件変化
に伴う温度変化等によるSG音響伝播特性変化が有る。
However, the received acoustic wave itself includes a wraparound wave of the transmitted acoustic wave, a transmitted wave in liquid, and noise.
Sneaking waves and noise change even when no bubbles are generated. The causes include a change in the acoustic sensor attachment state, a change in environmental noise inside and outside the SG, a change in the SG sound propagation characteristics due to a temperature change due to a change in operating conditions, and the like.

【0008】前掲特開昭62−115358号公報で開
示された送信音響波と受信音響波の違いの単なる比較だ
けでは、受信音響波が漏洩の有無による変化か他の要因
による変化か見分けることは、場合によっては難しい。
また、前掲特開平9−5203号公報に示す前回送信音
響波と、その直後の送信音響波に対応した受信音響波の
差をとる方式が開示されているが、一般的にはその差の
積分は0となるため、漏洩の有無に関わらずゼロとな
り、本事例では適用できない。
The mere comparison of the difference between the transmitted acoustic wave and the received acoustic wave disclosed in the above-mentioned Japanese Patent Application Laid-Open No. Sho 62-115358 cannot discriminate whether the received acoustic wave has changed due to the presence or absence of leakage or the change due to other factors. , Sometimes difficult.
Japanese Patent Application Laid-Open No. 9-5203 discloses a method of calculating a difference between a previously transmitted acoustic wave and a received acoustic wave corresponding to the immediately following transmitted acoustic wave. Is zero, so it is zero irrespective of the presence or absence of leakage, which is not applicable in this case.

【0009】また、上記文献(「アクティブ音響法によ
るFBR蒸気発生器の水リーク検出」:日本原子力学
会、1996年 秋の大会 G55)で開示されている
受信音響波形の漏洩発生に敏感な時間帯を監視する方式
では、漏洩発生に敏感な時間帯が漏洩位置で違うため、
漏洩位置が不明な場合は適用できない。すなわち、受信
音響波が漏洩の有無による変化か他の要因による変化か
見分けるための工夫については、ふれられていない。こ
のように、上記従来技術においては、漏出検出の誤動作
を防止するため、受信音響波の漏洩以外の要因の変化に
対して検出感度を鈍くする方策に関する配慮が十分では
なかった。
A time zone sensitive to the occurrence of leakage of the received acoustic waveform disclosed in the above-mentioned document (“Detection of water leak of FBR steam generator by active acoustic method”: Atomic Energy Society of Japan, Autumn Meeting G55, 1996). In the monitoring method, the time zone sensitive to the occurrence of the leak differs depending on the location of the leak.
Not applicable if the location of the leak is unknown. That is, there is no mention of a device for discriminating whether the received acoustic wave has changed due to the presence or absence of leakage or a change due to other factors. As described above, in the above-described related art, in order to prevent a malfunction of the leak detection, a measure for reducing the detection sensitivity with respect to a change in a factor other than the leak of the received acoustic wave has not been sufficiently considered.

【0010】[0010]

【発明が解決しようとする課題】従って、本発明の目的
は、液体中の漏洩に伴う気泡の存在を、送信音響波を液
体中に透過して漏洩音を検出する方法で、受信音響波が
漏洩以外で変化する場合の感度を低下させ、ひいては誤
動作を防止する信頼性の高い音響式漏洩検出方法及び装
置を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a method for detecting the presence of air bubbles due to leakage in a liquid by transmitting a transmission acoustic wave into the liquid and detecting the leakage sound. It is an object of the present invention to provide a highly reliable acoustic leak detection method and apparatus which lowers the sensitivity in the case of a change other than the leak and prevents malfunction.

【0011】[0011]

【課題を解決するための手段】上記目的を達成して、誤
動作の少ない信頼性の高い漏洩検出方法を実現するため
に、本発明では、以下の2つの手段を用いる。
In order to achieve the above object and to realize a highly reliable leak detection method with less malfunctions, the present invention uses the following two means.

【0012】(1)送信音響波発生で生じる回り込み波
を推定するステップと、受信音響波と推定回り込み波か
ら液中透過波を推定するステップと、液中透過波の大き
さがある設定値を超えて変化したら漏洩と判定するステ
ップからなる。具体的には、あらかじめ、壁の回り込み
波の伝達特性を求めておき,この伝達特性により時々刻
々の回り込み波を推定し,受信音響波と回り込み波から
液中透過波を推定し,この液中透過波がある設定値を超
えて変化したとき,漏洩と判定する。
(1) A step of estimating a wraparound wave generated by generation of a transmission acoustic wave, a step of estimating a transmitted wave in liquid from a received acoustic wave and an estimated wraparound wave, and setting a set value having a magnitude of the transmitted wave in liquid. If it changes beyond this, it is determined to be a leak. More specifically, the transfer characteristics of the looping wave on the wall are determined in advance, the looping wave is estimated from time to time, and the transmitted wave in the liquid is estimated from the received acoustic wave and the looping wave. When the transmitted wave changes beyond a certain set value, it is determined as leakage.

【0013】(2)断続的に発生する送信音響波に対応
する前後の受信音響波形の検波波形どうしの違いを算出
するステップと、前後の受信音響波形の違いの時間変化
(ゆらぎ)を算出するステップと、ゆらぎがある設定値
を超えて大きくなった時に漏洩と判定するステップから
なる。
(2) A step of calculating a difference between detection waveforms of the reception acoustic waveforms before and after corresponding to the intermittently generated transmission acoustic wave, and calculating a time change (fluctuation) of the difference between the reception acoustic waveforms before and after. And a step of determining leakage when the fluctuation exceeds a certain set value and becomes large.

【0014】[0014]

【作用】漏洩検出において、漏洩発生による気泡の影響
を大きく受けるのは、液中の気泡領域を伝播する液中透
過波である。このため、漏洩の発生によって、送信点か
らSG容器壁を伝播する回り込み波成分と比べて、液中透
過波成分が大きく変化することになる。このため、液中
透過波を監視する方が、相対的に雑音等の外乱に対して
強い。
In the leak detection, it is the transmitted wave in the liquid that propagates in the bubble region in the liquid that is greatly affected by the bubbles due to the occurrence of the leak. For this reason, due to the occurrence of leakage, the transmitted wave component in the liquid greatly changes as compared with the loop wave component propagating from the transmission point to the SG container wall. For this reason, monitoring the transmitted wave in liquid is relatively strong against disturbance such as noise.

【0015】また、従来例の文献でも明らかなように、
漏洩が発生しても受信音響波の変化がわずかであり、相
対的に回り込み波の方が大きいことがわかる。このた
め、液中透過波成分を抽出して、この液中透過波成分の
振幅評価により漏洩判別することで、漏洩以外の要因の
変化に影響を受けにくく出来る。
As is clear from the literature of the conventional example,
Even if leakage occurs, the change of the received acoustic wave is slight, and it can be seen that the wraparound wave is relatively larger. For this reason, by extracting the transmitted wave component in the liquid and performing the leakage determination by evaluating the amplitude of the transmitted wave component in the liquid, it is possible to make it less likely to be affected by changes in factors other than the leakage.

【0016】断続的に発生する受信音響波の検波信号の
前後の波形の差をとり、差の大きさの時間揺らぎの大き
さを監視することで、実機での運転条件変化に伴う雑音
等の変化に影響を受けにくく、真の漏洩を選択的に検出
できるようになる。
By taking the difference between the waveforms before and after the detection signal of the received acoustic wave generated intermittently and monitoring the magnitude of the time fluctuation of the magnitude of the difference, noise such as noise due to a change in operating conditions in the actual machine is obtained. It is less susceptible to change and can selectively detect true leaks.

【0017】受信音響波の検波信号としたのは、信号処
理上、差の大きさの評価等における取扱が音響信号をそ
のまま用いるよりも容易であることによる。受信音響波
の前後の検波信号の波形の差の大きさは、漏洩がある場
合でも、漏洩がない場合でも正負に変動する。このた
め、本発明では、差の大きさを監視するのではなく、差
の大きさの時間変化すなわち揺らぎを監視して漏洩検出
する。このことにより、単なる、運転条件変化等に伴う
時間的に緩やかな受信音響の変化に応答せず、音響伝播
経路に漏洩の発生に伴う気泡の複雑な振る舞いに対応し
た比較的速い変動に応じた受信音響信号変動を選択的に
検出できるようにした。
The detection signal of the received acoustic wave is used because, in signal processing, handling in evaluation of the magnitude of the difference is easier than using the acoustic signal as it is. The magnitude of the difference between the waveforms of the detection signals before and after the received acoustic wave fluctuates positively or negatively regardless of whether or not there is leakage. Therefore, in the present invention, instead of monitoring the magnitude of the difference, the leakage is detected by monitoring the time change, that is, fluctuation of the magnitude of the difference. As a result, it does not respond to a gradual change in received sound due to a change in driving conditions, etc., but responds to a relatively fast change corresponding to the complicated behavior of bubbles caused by leakage in the sound propagation path. A variation in received acoustic signal can be detected selectively.

【0018】[0018]

【発明の実施の形態】以下、本発明の第一の実施例につ
いて説明する。図1は、本発明の音響式漏洩検出方法及
び装置を高速増殖炉発電プラントのSG(蒸気発生器)
の水漏洩監視に適用した例である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a first embodiment of the present invention will be described. FIG. 1 shows an acoustic leak detection method and apparatus according to the present invention using an SG (steam generator) of a fast breeder reactor power plant.
This is an example of application to water leak monitoring.

【0019】図1において、SG容器胴7の外壁に送信
音響センサ11t及び12tを配置し、送信音響センサ
11t及び12tの近傍にそれぞれ受信用音響センサ1
1a及び12aを、送信音響センサ11t及び12tの
対向方向に離してそれぞれ受信用音響センサ11b及び
12bを設置する。音響は音響波発生制御器200で断
続的に電気信号を発生し、電気信号を送信音響センサ1
1t,12tで音響波に変換してSG容器内部に送出す
る。断続的に到達する音響波を、受信音響センサ11
a,11b,12a,12bで検出して電気信号に変換
する。漏洩検出器300では、受信音響センサ11a,
11b,12a,12bの出力信号を主体として、漏洩
に特徴的な受信音響波の変化の有無から漏洩の有無を検
出する。
In FIG. 1, transmission acoustic sensors 11t and 12t are arranged on the outer wall of the SG container body 7, and the reception acoustic sensors 1t are located near the transmission acoustic sensors 11t and 12t, respectively.
The receiving acoustic sensors 11b and 12b are respectively set apart from each other in the direction opposite to the transmitting acoustic sensors 11t and 12t. For the sound, the acoustic wave generation controller 200 intermittently generates an electric signal and transmits the electric signal.
It is converted into an acoustic wave at 1t and 12t and sent out into the SG container. The acoustic wave arriving intermittently is received by the receiving acoustic sensor 11.
a, 11b, 12a, and 12b, and converts them into electric signals. In the leak detector 300, the reception acoustic sensor 11a,
The presence / absence of a leak is detected from the presence / absence of a change in the received acoustic wave characteristic of the leak, mainly using the output signals of 11b, 12a and 12b.

【0020】ここで、SG容器胴7内部には高温流体で
あるナトリウムと低温流体の水が通っている。水は給水
入口配管2を通り、螺旋状に多層に配置した伝熱管3を
通って蒸気出口配管4からSG容器胴7外部に導かれて
いる。一方、ナトリウムはナトリウム入口配管6からS
G容器胴7に入り、ナトリウム出口配管8からSG容器
胴7の外に導かれる。水が通る伝熱管3は螺旋状にSG
容器胴7内部に設置されており、パイプサポート5で支
持されている。
Here, sodium, which is a high-temperature fluid, and water, which is a low-temperature fluid, pass through the SG container body 7. The water passes through the water supply inlet pipe 2, passes through the heat transfer pipes 3, which are spirally arranged in multiple layers, and is guided from the steam outlet pipe 4 to the outside of the SG container body 7. On the other hand, sodium is supplied from the sodium inlet pipe 6 through S
It enters the G container body 7 and is guided out of the SG container body 7 through the sodium outlet pipe 8. The heat transfer tube 3 through which water passes is spirally SG
It is installed inside the container body 7 and is supported by the pipe support 5.

【0021】つまり、ナトリウムと水はSG容器胴7内
部で伝熱管3の壁で隔てられている。原子炉運転中のナ
トリウム圧力は大気圧と大差ない程度であるのに対し、
伝熱管3内部の水は高圧である。このため、伝熱管3に
微細な亀裂等ができた場合、水はナトリウム側に漏れ出
す。このとき、水が吹き出し、ナトリウムと化学反応す
ることで水素気泡を発生する。
That is, sodium and water are separated by the wall of the heat transfer tube 3 inside the SG container body 7. Sodium pressure during reactor operation is not much different from atmospheric pressure,
The water inside the heat transfer tube 3 has a high pressure. For this reason, when a minute crack or the like is formed in the heat transfer tube 3, water leaks to the sodium side. At this time, water is blown out and chemically reacts with sodium to generate hydrogen bubbles.

【0022】この水素気泡の発生により、SG容器内部
を伝播する液中透過波の伝播減衰が大きくなる。本発明
においては、漏洩時の水素気泡の発生による音響伝播減
衰の変化から漏洩の有無が知られるようになっている。
Due to the generation of the hydrogen bubbles, the propagation attenuation of the transmitted wave in the liquid propagating inside the SG container increases. In the present invention, the presence or absence of leakage is known from the change in sound propagation attenuation due to the generation of hydrogen bubbles at the time of leakage.

【0023】図1において、受信音響センサ11a,1
1b,12a,12bで検出される受信音響波は、主に
SG容器壁の回り込み波と、SG容器内部を伝播する液
中透過波の2つが重畳したものである。この2つの波の
うち、SG容器壁の回り込み波は漏洩の有無にほとんど
影響を受けない。一方、液中透過波は、漏洩で発生する
水素気泡による影響を受ける。このため、受信音響波の
うち液中透過波を選別して、液中透過波のみの変化を捉
えることで不要な雑音等の外乱の影響を受けにくくな
る。
In FIG. 1, the receiving acoustic sensors 11a, 1
The reception acoustic waves detected by 1b, 12a, and 12b are mainly superpositions of two waves: a wraparound wave of the SG container wall and a transmitted wave in liquid propagating inside the SG container. Of these two waves, the wraparound wave on the SG container wall is hardly affected by the presence or absence of leakage. On the other hand, transmitted waves in liquid are affected by hydrogen bubbles generated by leakage. For this reason, the transmitted wave in the liquid is selected from the received acoustic waves, and the change in only the transmitted wave in the liquid is captured, so that it is less affected by disturbance such as unnecessary noise.

【0024】そこで、送信音響センサ11t及び12t
の近傍にそれぞれ設置した受信音響センサ11a及び1
2aと、対向方向に離してそれぞれ設置した受信音響セ
ンサ11b及び12bの検出信号を用いて、液中透過波
を推定し、推定した液中透過波から漏洩の有無を高い信
頼性で検出するのが、本実施例の特徴である。
Therefore, the transmission acoustic sensors 11t and 12t
Reception acoustic sensors 11a and 1
2a and the detection signals of the receiving acoustic sensors 11b and 12b which are separately installed in the facing direction to estimate the transmitted wave in the liquid and detect the presence or absence of leakage from the estimated transmitted wave in the liquid with high reliability. This is a feature of the present embodiment.

【0025】図2に、本発明の主要部である音響波発生
制御器200と漏洩検出器300の内部構成を示す。音
響波発生制御器200は、音響発信タイミング制御器2
11及び発信器212からなる。漏洩検出器300は、
増幅器311、312、検波器313、回り込み波推定
器314、偏差抽出器315、ローパスフィルタ316
及び漏洩判定器317からなる。なお、説明しやすくす
るために、SG容器は、内部機材の図示を省略した簡易
な表現としてある。
FIG. 2 shows an internal configuration of the acoustic wave generation controller 200 and the leak detector 300 which are main parts of the present invention. The acoustic wave generation controller 200 includes a sound transmission timing controller 2
11 and a transmitter 212. The leak detector 300 is
Amplifiers 311 and 312, detector 313, wraparound wave estimator 314, deviation extractor 315, low-pass filter 316
And a leak determiner 317. In addition, in order to make it easy to explain, the SG container is a simple expression in which illustration of the internal equipment is omitted.

【0026】音響発信タイミング制御器211から断続
的に電気信号を送出し、送信音響センサ11tにより超
音波に変換してSG容器内に伝播させる。受信音響セン
サ11bでは、容器壁を回り込む回り込み波と、容器内
部の液体中を伝播する液中透過波が合成されて検出され
る。図3は、発信器212の送信波形S10と、無漏洩
時の受信音響波S20、漏洩時の受信音響波S20の例
を示している。電気信号の発生は短時間であるが、音響
波は複雑な体系内の伝播で生じる多重反射により、複雑
な波形となっている。
An electric signal is intermittently transmitted from the sound transmission timing controller 211, converted into an ultrasonic wave by the transmission acoustic sensor 11t, and propagated into the SG container. In the reception acoustic sensor 11b, a wraparound wave wrapping around the container wall and a transmitted wave in liquid propagating in the liquid inside the container are synthesized and detected. FIG. 3 shows an example of the transmission waveform S10 of the transmitter 212, the received acoustic wave S20 at the time of no leakage, and the received acoustic wave S20 at the time of leakage. Although an electric signal is generated for a short time, an acoustic wave has a complicated waveform due to multiple reflections caused by propagation in a complex system.

【0027】また、漏洩が発生しても、影響を大きく受
けるのは液中を伝播する液中透過波だけであるため、回
り込み波と液中透過波が重畳した受信音響波の変化はか
なり小さい。図3の送信音響波を繰り返し発生すること
で、時間的に連続な漏洩監視を実現する。図2では、送
信音響センサ11tに対向して設置した受信音響センサ
11bの出力は増幅器312、検波器313を通って、
偏差抽出器315に入力される。
Also, even if a leak occurs, only the transmitted wave in the liquid that propagates in the liquid is greatly affected, so that the change of the received acoustic wave in which the wraparound wave and the transmitted wave in the liquid are superimposed is very small. . By repeatedly generating the transmission acoustic wave of FIG. 3, temporally continuous leakage monitoring is realized. In FIG. 2, the output of the receiving acoustic sensor 11 b installed opposite to the transmitting acoustic sensor 11 t passes through the amplifier 312 and the detector 313,
It is input to the deviation extractor 315.

【0028】一方、送信音響センサ11t近傍に設置し
た受信音響センサ11aの出力は増幅器311を通し、
回り込み波推定器314に入力され、推定した回り込み
波音響波の検波波形を出力し、偏差抽出器315に入力
される。ここで、受信音響センサ11aで検出される音
響波は、送信音響センサ11t近傍に設置されているた
め、送信波の影響を強く受ける。このため、あらかじめ
測定してある音響センサ11aと11b間の伝達特性を
用いることで、漏洩の有無に強く影響を受けない回り込
み波を推定することができる。
On the other hand, the output of the receiving acoustic sensor 11a installed near the transmitting acoustic sensor 11t passes through the amplifier 311 and
The signal is input to the wraparound wave estimator 314, outputs the estimated detection waveform of the wraparound acoustic wave, and is input to the deviation extractor 315. Here, since the acoustic wave detected by the receiving acoustic sensor 11a is installed near the transmitting acoustic sensor 11t, it is strongly affected by the transmitting wave. Therefore, by using the transfer characteristics between the acoustic sensors 11a and 11b measured in advance, it is possible to estimate a wraparound wave that is not strongly affected by the presence or absence of leakage.

【0029】回り込み波推定器314では、給水出入り
口温度と、ナトリウム出入り口温度から、音響センサ設
置高さの温度の値を算出し、その運転状態に応じた回り
込み波推定のための伝達特性を参照する。偏差抽出器3
15では、回り込み波の推定波形S40と受信音響波S
30から液中透過波レベルS50を、(1)式で推定す
る。受信音響波S30は、回り込み波S40と液中透過
波S50の2 乗和の平方根であるから、この関係を逆算
して求める。
The wraparound wave estimator 314 calculates the temperature of the acoustic sensor installation height from the feedwater inlet / outlet temperature and the sodium inlet / outlet temperature, and refers to the transfer characteristic for the wraparound wave estimation according to the operation state. . Deviation extractor 3
In 15, the estimated waveform S40 of the loop wave and the received acoustic wave S
From 30, the transmitted wave level S50 in the liquid is estimated by the equation (1). Since the received acoustic wave S30 is the square root of the sum of squares of the wraparound wave S40 and the transmitted wave S50 in the liquid, this relationship is calculated by back calculation.

【0030】[0030]

【数1】 (Equation 1)

【0031】ここで、tpは送信音響波の送信回数、τは
送信開始時間を基準にした時間、Tは漏洩検出で対象と
する音響信号の時間幅である。
Here, tp is the number of transmissions of the transmitted acoustic wave, τ is the time based on the transmission start time, and T is the time width of the acoustic signal targeted for leak detection.

【0032】ローパスフィルタ316の出力S60は、
推定した液中透過波のレベルS50の時間平均である。
漏洩判定器317では、この振幅の大きさが設定値を越
えて変化したときに、漏洩と判定する。なお、(1)式
で、平方根内の積分値の絶対値をとっているのは、平方
根内が負となって演算できなくなるのを回避するためで
ある。
The output S60 of the low-pass filter 316 is
It is a time average of the estimated level S50 of the transmitted wave in liquid.
The leak determiner 317 determines that a leak has occurred when the magnitude of the amplitude exceeds a set value. The reason for taking the absolute value of the integral value in the square root in the equation (1) is to avoid a situation where the square root becomes negative and the calculation cannot be performed.

【0033】容器壁の回り込み波の推定のための具体的
な方法として、ニューラルネットワークによる方法、グ
リーン関数による方法、その他の関数近似の方法等があ
る。本実施例では、関数近似による方法を採用してい
る。
As a specific method for estimating the wraparound wave of the container wall, there are a method using a neural network, a method using a Green's function, and other function approximation methods. In this embodiment, a method based on function approximation is employed.

【0034】あらかじめ、温度等の運転条件毎に送信音
響波に対する受信音響波を測定し、測定値を基にした関
数近似により、一方の受信音響センサから、他方の受信
音響センサの出力を推定する。すなわち、液中透過波の
影響の小さい受信音響センサ11aの受信音響波から、
受信音響センサ11bの出力を推定し、受信音響センサ
11bの実出力から減じることで液中透過波の変化を感
度よく求める。検波器313、偏差抽出器315及びロ
ーパスフィルタ316は、一般的なアナログ回路技術
や、ディジタル回路技術を適用することで実現可能であ
る。
A received acoustic wave for a transmitted acoustic wave is measured in advance for each operating condition such as temperature, and the output of one received acoustic sensor is estimated from one received acoustic sensor by function approximation based on the measured values. . That is, from the reception acoustic wave of the reception acoustic sensor 11a having a small influence of the transmitted wave in the liquid,
The output of the reception acoustic sensor 11b is estimated and subtracted from the actual output of the reception acoustic sensor 11b to obtain a change in the transmitted wave in the liquid with high sensitivity. The detector 313, the deviation extractor 315, and the low-pass filter 316 can be realized by applying general analog circuit technology or digital circuit technology.

【0035】ニューラルネットワークによる方法も、関
数近似の場合と同様に、いわゆる多層型のニューラルネ
ットワークの学習機能を利用して、受信音響センサ11
aの受信音響波から、受信音響センサ11bの出力を学
習により推定するものである。グリーン関数による方法
は、事前に受信音響センサ11aの受信音響波と、受信
音響センサ11bの出力の伝達特性を求めて、受信音響
センサ11aの受信音響波から、この伝達特性を基に回
り込み波を推定する方法である。
In the neural network method, similarly to the case of the function approximation, the receiving acoustic sensor 11 is used by using the learning function of a so-called multilayer neural network.
The output of the reception acoustic sensor 11b is estimated by learning from the reception acoustic wave of a. The method using the Green's function obtains the transfer characteristics of the received acoustic wave of the received acoustic sensor 11a and the output of the received acoustic sensor 11b in advance, and calculates the wraparound wave from the received acoustic wave of the received acoustic sensor 11a based on the transfer characteristics. It is a method of estimating.

【0036】図4,5、6により、本実施例の漏洩検出
器の動作について説明する。図4に、無漏洩時の主要部
の波形を示す。図3で示した電気的な送信波形に対し、
受信音響波形である増幅器312の出力信号S20は、
図4や図5の上段に示すように全く違った波形となる。
これは、送信音響センサ11tの出力である音響波が、
SG容器壁面から受信音響センサ11bに伝播する過程
で反射、散乱、屈折を繰り返し、それらが重畳すること
で電気信号とは全く違った波形となる。この受信音響波
を検波器313を通すことで、検波信号S30を得る。
The operation of the leak detector of this embodiment will be described with reference to FIGS. FIG. 4 shows a waveform of a main part at the time of no leakage. For the electrical transmission waveform shown in FIG.
The output signal S20 of the amplifier 312, which is a received acoustic waveform, is
The waveforms are completely different as shown in the upper part of FIGS.
This is because the acoustic wave output from the transmitting acoustic sensor 11t is
In the process of propagating from the SG container wall surface to the reception acoustic sensor 11b, reflection, scattering, and refraction are repeated, and a superimposed waveform results in a waveform completely different from an electric signal. The detection signal S30 is obtained by passing the received acoustic wave through the detector 313.

【0037】一方、回り込み波推定器314は、受信音
響センサ11aの音響信号から推定した、SG容器壁を
伝播する回り込み波の検波信号S40を出力する。回り
込み波の検波信号S40と、受信音響波の検波信号S3
0の差は大きくない。図4の最下段の信号は、回り込み
波と受信音響波のそれぞれの検波信号の2乗差の平方根
であり、液中透過波の検波波形に相当する。この液中透
過波は、偏差抽出器315の内部演算の過程で算出され
るものであり、説明のために示したものである。
On the other hand, the wraparound wave estimator 314 outputs a detection signal S40 of the wraparound wave propagating through the SG container wall, which is estimated from the acoustic signal of the reception acoustic sensor 11a. Sneak wave detection signal S40 and reception acoustic wave detection signal S3
The difference of 0 is not large. The signal at the bottom of FIG. 4 is the square root of the square difference between the detection signals of the loop wave and the reception acoustic wave, and corresponds to the detection waveform of the transmitted wave in liquid. This transmitted wave in liquid is calculated in the process of the internal calculation of the deviation extractor 315, and is shown for explanation.

【0038】一方、漏洩が発生すると、図5に示すよう
に、受信音響波形がわずかに変化する。このときの検波
器313の出力は、図に示す検波信号S30である。回
り込み波推定器314の出力信号はS40である。S3
0とS40の2乗差の平方根である液中透過波の検波波
形は、図の最下段に示す。図4、5の最下段の信号波形
から、漏洩有無による信号波形違いが明瞭である。偏差
抽出器315の出力は、(1)式で示したように、図
4、5の最下段の信号波形の積分値であるため、図4の
漏洩なしの場合に比べて、図5の漏洩ありの場合は、そ
の出力は小さくなる。
On the other hand, when leakage occurs, the received acoustic waveform slightly changes as shown in FIG. The output of the detector 313 at this time is a detection signal S30 shown in the figure. The output signal of the loop interference estimator 314 is S40. S3
The detection waveform of the transmitted wave in liquid, which is the square root of the square difference between 0 and S40, is shown at the bottom of the figure. From the signal waveforms at the bottom of FIGS. 4 and 5, the signal waveform difference depending on the presence or absence of leakage is clear. Since the output of the deviation extractor 315 is the integrated value of the signal waveform at the lowermost stage in FIGS. 4 and 5 as shown by the equation (1), the output of the leak extractor 315 in FIG. If so, its output will be small.

【0039】漏洩の判定の様相を、図6で説明する。図
において、上段に受信音響波S20が漏洩が無い状態か
ら漏洩が発生した場合の変化を示す。これに応じて、偏
差抽出器315の出力S50のレベルも変化し、ローパ
スフィルタ316の出力S60も図のように変化する。
漏洩判定器317では、信号S60が設定値を超えて変
化したとき、漏洩と判定する。
FIG. 6 illustrates the manner of determining leakage. In the figure, the upper part shows a change in the case where the reception acoustic wave S20 has leaked from a state where no leak has occurred. In response, the level of the output S50 of the deviation extractor 315 also changes, and the output S60 of the low-pass filter 316 also changes as shown.
The leak determiner 317 determines that a leak has occurred when the signal S60 has changed beyond a set value.

【0040】なお、第一の実施例において、受信音響信
号の違いを(1)式で評価したが、単なる差や時間τに
応じた重みをかけて差をとる等でも評価可能である。
In the first embodiment, the difference between the received sound signals is evaluated by the equation (1). However, the difference can be evaluated by a simple difference or a difference obtained by weighting according to the time τ.

【0041】以上説明したように、第一の実施例におい
ては、回り込み波の推定機構を備えることで、漏洩に伴
う伝播減衰の影響を直接受ける液中透過波のみを抽出
し、漏洩判定に用いることができるようになるため、回
り込み波の正常時の変動を受けにくくなり、漏洩検出の
誤動作の防止が可能になる。また、回り込み波推定精度
に影響する因子である運転条件データを取り込み、各種
の運転条件における回り込み波の推定精度を高めること
でも、漏洩検出の誤動作防止を可能としている。本実施
例特有の効果としては、受信音響センサを複数用いるこ
とで、運転条件によるSG音響伝播特性の変化だけでな
く、送信電気信号の変化や送信音響センサ取り付け状況
変化の補正も可能となる。
As described above, in the first embodiment, by providing a wraparound wave estimating mechanism, only a submerged transmitted wave which is directly affected by the propagation attenuation accompanying leakage is extracted and used for leakage determination. Therefore, it is difficult to receive the fluctuation of the loop wave at the normal time, and it is possible to prevent the malfunction of the leak detection. In addition, erroneous operation of leak detection can be prevented by taking in operating condition data, which is a factor that influences the estimation accuracy of the loop interference, and increasing the estimation accuracy of the loop interference under various operating conditions. As an effect peculiar to the present embodiment, by using a plurality of reception acoustic sensors, not only a change in SG acoustic propagation characteristics due to operating conditions, but also a change in a transmission electric signal and a change in the installation state of the transmission acoustic sensor can be corrected.

【0042】図7に第二の実施例を示す。この第二の実
施例も、本発明の音響式漏洩検出方法及び装置を高速増
殖炉発電プラントのSGの水漏洩監視に適用した例であ
る。第一の実施例では、事前に代表的な運転状態におけ
る回り込み波の伝達特性評価や正常時の受信音響波の測
定等が必要であるが、本実施例は、それらの事前準備が
不要となることが特徴である。
FIG. 7 shows a second embodiment. This second embodiment is also an example in which the acoustic leak detection method and device of the present invention are applied to the monitoring of water leaks from the SG of a fast breeder reactor power plant. In the first embodiment, it is necessary to evaluate in advance the transfer characteristics of the loop wave in a typical operating state and to measure the received acoustic wave in a normal state, but in the present embodiment, these advance preparations are unnecessary. It is characteristic.

【0043】これらの特徴を付与するため、断続的に液
体中に音響波を送信し、送信に応じて受信する音響波の
うちN 回前の送信に対応する受信音響波形と、現受信音
響波形の検波波形同士の差を求め、差の揺らぎの実効値
が設定値を超えて変化したときに漏洩と判定する方式と
する。これは、SG容器内部は、正常時、ナトリウムが
安定して存在するのに対し、漏洩発生時は水素気泡がナ
トリウム中に混在し、その気泡を噴出した高圧水が攪乱
し、その混合状態が時間的、場所的に変動する。このた
め、漏洩が発生するとSG容器の音響伝播特性が時間的
に変動することになるので、この時間変動を捉えて漏洩
を検出する。
In order to provide these characteristics, an acoustic wave is intermittently transmitted into a liquid, and a received acoustic waveform corresponding to the Nth previous transmission among the acoustic waves received in response to the transmission, and a current received acoustic waveform. Of the detected waveforms, and when the effective value of the fluctuation of the difference exceeds a set value, it is determined to be a leak. This is because, during normal operation, sodium is stably present inside the SG container, but when leakage occurs, hydrogen bubbles are mixed in the sodium, and the high-pressure water ejected from the bubbles is disturbed, and the mixing state is changed. It fluctuates in time and place. For this reason, when leakage occurs, the sound propagation characteristics of the SG container fluctuate with time, and the leakage is detected by capturing this time fluctuation.

【0044】図7に、本実施例の主要部である音響波発
生制御器200と漏洩検出器300の内部構成を示す。
音響波発生制御器200は、音響発信タイミング制御器
211、発信器212からなる。漏洩検出器300は増
幅器312、検波器313、N段シフトレジスタ33
1、偏差抽出器315、ゆらぎ演算器332及び漏洩判
定器317からなる。
FIG. 7 shows the internal configuration of the acoustic wave generation controller 200 and the leak detector 300 which are the main parts of the present embodiment.
The acoustic wave generation controller 200 includes a sound transmission timing controller 211 and a transmitter 212. The leak detector 300 includes an amplifier 312, a detector 313, and an N-stage shift register 33.
1, a deviation extractor 315, a fluctuation calculator 332, and a leak determiner 317.

【0045】音響発信タイミング制御器211から断続
的に電気信号を送出し、送信音響センサ11tにより超
音波に変換してSG容器内に伝播させる。送信音響セン
サ11tに対向して設置した受信音響センサ11bの出
力は増幅器312、検波器313を通って、偏差抽出器
315に入力される。
An electric signal is intermittently transmitted from the sound transmission timing controller 211, converted into an ultrasonic wave by the transmission acoustic sensor 11t, and propagated into the SG container. The output of the receiving acoustic sensor 11b installed facing the transmitting acoustic sensor 11t passes through the amplifier 312 and the detector 313 and is input to the deviation extractor 315.

【0046】遅延回路331は、受信音響検波波形を記
憶し、1パルス遅れた検波信号を出力する。偏差抽出器
315は、受信音響波の検波信号S30と1個前の受信
音響波の検波信号S41の差を演算して、結果である差
信号S51を出力する。ここで採用した、S51の演算
式を以下に示す。
The delay circuit 331 stores the reception acoustic detection waveform and outputs a detection signal delayed by one pulse. The deviation extractor 315 calculates a difference between the detection signal S30 of the received acoustic wave and the detection signal S41 of the immediately preceding received acoustic wave, and outputs a difference signal S51 as a result. The operation formula of S51 adopted here is shown below.

【0047】[0047]

【数2】 (Equation 2)

【0048】この差信号をゆらぎ演算器332で振幅に
変換する。ゆらぎ演算器332は、差信号S51の実効
値を演算する機能を有する。漏洩判定器317では、こ
のゆらぎの大きさが設定値よりも大きくなったときに、
漏洩と判定する。
The difference signal is converted into an amplitude by the fluctuation calculator 332. The fluctuation calculator 332 has a function of calculating the effective value of the difference signal S51. In the leak determiner 317, when the magnitude of the fluctuation becomes larger than the set value,
Judge as a leak.

【0049】作用の項目でも記載したように、SG内部
で漏洩が発生すると、水素気泡が漏洩した高圧水及びナ
トリウムの流れにより攪乱されて、SG内部の局部的な
水素気泡量は、比較的高速に変化する。一方、運転条件
変化等に伴う受信音響信号の変化は緩やかな変動であ
る。前後の受信音響波の差の大きさの揺らぎをとる本実
施例は、見方によれば受信音響信号の微分をとる方式で
あり、結局、漏洩による受信音響波の変化に感度が高く
なる。
As described in the item of operation, when leakage occurs inside the SG, the hydrogen bubbles are disturbed by the leaked high-pressure water and sodium flow, and the amount of the local hydrogen bubbles inside the SG is relatively high. Changes to On the other hand, a change in the received acoustic signal due to a change in the driving conditions is a gradual change. According to the present embodiment, in which the magnitude of the difference between the front and rear reception acoustic waves is fluctuated, the reception acoustic signal is differentiated from the viewpoint, and the sensitivity to the change of the reception acoustic wave due to leakage is increased.

【0050】なお、本実施例において、受信音響信号の
違いを(2)式で評価したが、2乗差の平方根や、双方
の検波信号に時間τに応じた重みをかけて、その違いを
演算する方式でも評価できる。また、本実施例では、連
続した受信音響波の検波信号の差をとっているが、2個
以上隔てた受信音響波の差をとっても、同様の効果が期
待できる。
In this embodiment, the difference between the received acoustic signals is evaluated by the equation (2). The difference between the square root of the squared difference and the weights according to the time τ is applied to both the detected signals. It can also be evaluated by a calculation method. Further, in the present embodiment, the difference between the detection signals of the continuous reception acoustic waves is obtained, but the same effect can be expected even if the difference between the reception acoustic waves separated by two or more is obtained.

【0051】第二の実施例に特有の効果として、第一の
実施例のような設置前準備が不要になるとともに、回り
込み波の変動要因は時間的に緩やかであるから、その除
去に積極的な対策をうつ必要がなく、経済的に有利な点
が挙げられる。
As an effect peculiar to the second embodiment, the pre-installation preparation as in the first embodiment becomes unnecessary, and since the fluctuation factor of the wraparound wave is slow in time, it is positive to remove it. There is no need to take appropriate measures, which is economically advantageous.

【0052】[0052]

【発明の効果】以上述べたように、液体中の漏洩に伴う
気泡の存在を、音響波を液体中に透過して漏洩を検出す
る方式において、受信音響波が漏洩以外で変化する場合
の感度を低下させることで、結果的に漏洩検出装置の信
頼性向上の効果がある。
As described above, in the method of detecting the leak by transmitting the acoustic wave into the liquid to detect the presence of the air bubbles accompanying the leak in the liquid, the sensitivity when the received acoustic wave changes except for the leak. As a result, there is an effect of improving the reliability of the leak detection device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の音響式漏洩検出方法及び装置のFBR
・SGの伝熱管漏洩監視装置への適用例。
FIG. 1 is an FBR of an acoustic leak detection method and apparatus according to the present invention.
-Application example of SG to heat transfer tube leak monitoring device.

【図2】本発明の第一の実施例の音響式漏洩検出装置の
ブロック線図。
FIG. 2 is a block diagram of an acoustic leak detection device according to a first embodiment of the present invention.

【図3】送信波と受信音響波のタイムチャート例。FIG. 3 is a time chart example of a transmission wave and a reception acoustic wave.

【図4】正常時の主要部の信号波形を示したタイムチャ
ート。
FIG. 4 is a time chart showing a signal waveform of a main part in a normal state.

【図5】漏洩時の各部の信号波形を示したタイムチャー
ト。
FIG. 5 is a time chart showing a signal waveform of each part at the time of leakage.

【図6】正常から漏洩に変化した場合の各部の信号波形
を示したタイムチャート。
FIG. 6 is a time chart showing signal waveforms at various parts when the state changes from normal to leakage.

【図7】第二の実施例の音響式漏洩検出装置のブロック
線図。
FIG. 7 is a block diagram of an acoustic leak detection device according to a second embodiment.

【符号の説明】[Explanation of symbols]

1…SG(蒸気発生器) 7…SG容器胴 11t、12t…送信音響センサ 11a、11b、12a,12b…受信音響センサ 200…音響波発生制御器 211…音響発
信タイミング制御器 212…発信器 300…漏洩検
出器 311、312…増幅器 313…検波器 314…回り込み波推定器 315…偏差抽
出器 316…ローパスフィルタ 317…漏洩判
定器 331…遅延回路 332…ゆらぎ
演算器
DESCRIPTION OF SYMBOLS 1 ... SG (steam generator) 7 ... SG container body 11t, 12t ... Transmission acoustic sensor 11a, 11b, 12a, 12b ... Reception acoustic sensor 200 ... Acoustic wave generation controller 211 ... Sound transmission timing controller 212 ... Transmitter 300 ... Leakage detector 311, 312 ... Amplifier 313 ... Detector 314 ... Loop wave estimator 315 ... Deviation extractor 316 ... Low-pass filter 317 ... Leakage determiner 331 ... Delay circuit 332 ... Fluctuation calculator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石田 隆之 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Takayuki Ishida 3-1-1, Sakaicho, Hitachi City, Ibaraki Prefecture Inside Hitachi, Ltd. Hitachi Plant

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 塔槽類の内部に配設された配管と該塔槽
類とに、それぞれ異なる媒質が流れる監視対象領域に、
前記塔槽類の外壁に設置した送信音響センサより音響波
を伝播させ、伝播した音響波を前記塔槽類の外壁に設置
した受信音響センサで受信し、受信音響波の変化を捉え
て前記配管から前記塔槽類への媒質の漏洩に伴って発生
する気泡を検知する音響式漏洩検出方法において、 前記塔槽類の外壁の複数点に受信音響センサを設置し、
送信音響センサに隣接した受信音響センサから送信音響
センサに対向した受信音響センサに対し、前記塔槽類の
外壁を伝わる回り込み波を主成分とする受信音響波を推
定し、推定した該受信音響波と、送信音響センサに対向
した受信音響センサの受信音響波とのそれぞれの検波信
号の違いを演算し、媒質中の液中透過波を主成分とする
該違いの大きさと無漏洩時の正常値である設定値との比
較から漏洩の有無を検知することを特徴とする音響式漏
洩検出方法。
Claims: 1. A monitoring target area through which different media flow through pipes disposed inside a tower and tanks and the tower and tanks, respectively.
An acoustic wave is propagated from a transmitting acoustic sensor installed on the outer wall of the tower, and the propagated acoustic wave is received by a receiving acoustic sensor installed on the outer wall of the tower, and a change in the received acoustic wave is captured to form the pipe. In an acoustic leak detection method for detecting bubbles generated due to leakage of a medium from the tower to the tanks, receiving acoustic sensors are installed at a plurality of points on the outer wall of the tower,
From the receiving acoustic sensor adjacent to the transmitting acoustic sensor to the receiving acoustic sensor facing the transmitting acoustic sensor, a receiving acoustic wave mainly composed of a wraparound wave transmitted through the outer wall of the tower is estimated, and the estimated receiving acoustic wave is estimated. Calculates the difference between the respective detected signals of the received acoustic wave of the receiving acoustic sensor facing the transmitting acoustic sensor and the magnitude of the difference mainly containing the transmitted wave in the liquid in the medium and the normal value at the time of no leakage. An acoustic leak detection method characterized by detecting the presence or absence of a leak from a comparison with a set value.
【請求項2】 塔槽類の内部に配設された配管と該塔槽
類とに、それぞれ異なる媒質が流れる監視対象領域に、
前記塔槽類の外壁に設置した送信音響センサより音響波
を伝播させ、伝播した音響波を前記塔槽類の外壁に設置
した受信音響センサで受信し、受信音響波の変化を捉え
て前記配管から前記塔槽類への媒質の漏洩に伴って発生
する気泡を検知する音響式漏洩検出方法において、 断続的に音響波を送信し、断続する受信音響波間の検波
信号の違いを演算し、該違いの大きさと無漏洩時の正常
値である設定値との比較から漏洩の有無を検知すること
を特徴とする音響式漏洩検出方法。
2. A monitoring target area through which a different medium flows through a pipe disposed inside the tower and the tank and the tower and the tank,
An acoustic wave is propagated from a transmitting acoustic sensor installed on the outer wall of the tower, and the propagated acoustic wave is received by a receiving acoustic sensor installed on the outer wall of the tower, and a change in the received acoustic wave is captured to form the pipe. In the acoustic leak detection method for detecting air bubbles generated due to leakage of a medium from the apparatus to the towers, intermittently transmitting an acoustic wave, calculating a difference in a detection signal between intermittently received acoustic waves, An acoustic leak detection method characterized by detecting the presence or absence of a leak by comparing the magnitude of the difference with a set value that is a normal value at the time of no leak.
【請求項3】 塔槽類の内部に配設された配管と該塔槽
類とに、それぞれ異なる媒質が流れる監視対象領域に、
前記塔槽類の外壁に設置した送信音響センサより音響波
を伝播させ、伝播した音響波を前記塔槽類の外壁に設置
した受信音響センサで受信し、受信音響波の変化から前
記配管から前記塔槽類への媒質の漏洩に伴って発生する
気泡を検知する音響式漏洩検出装置において、 音響波を監視対象に送信する手段と、その伝播音を同期
して複数点で受信する手段と、一方の受信音響センサか
ら他方の受信音響センサの回り込み波を推定する手段
と、推定受信波と検出受信波の違いを検出する手段と、
該違いの大きさから漏洩を判定する手段と、を備えたこ
とを特徴とする音響式漏洩検出装置。
3. A monitoring target area through which different media flow through a pipe disposed inside the tower and the tank and the tower and the tank, respectively.
An acoustic wave is propagated from a transmitting acoustic sensor installed on the outer wall of the tower, and the propagated acoustic wave is received by a receiving acoustic sensor installed on the outer wall of the tower. In an acoustic leak detection device that detects bubbles generated due to leakage of a medium to towers, means for transmitting an acoustic wave to a monitoring target, means for synchronously receiving the propagated sound at a plurality of points, Means for estimating a wraparound wave of the other reception acoustic sensor from one reception acoustic sensor, and means for detecting a difference between the estimated reception wave and the detection reception wave,
Means for determining leakage from the magnitude of the difference.
【請求項4】 前記違いの大きさを前記推定受信波と、
前記検出受信波のそれぞれの検波信号の二乗値の差を積
分し、絶対値の平方根で表すことを特徴とする請求項3
に記載の音響式漏洩検出装置。
4. The method according to claim 1, wherein the magnitude of the difference is determined by the estimated reception wave.
4. The method according to claim 3, wherein a difference between square values of the detected signals of the detected reception wave is integrated and represented by a square root of an absolute value.
3. The acoustic leak detection device according to claim 1.
【請求項5】 塔槽類の内部に配設された配管と該塔槽
類とに、それぞれ異なる媒質が流れる監視対象領域に、
前記塔槽類の外壁に設置した送信音響センサより音響波
を伝播させ、伝播した音響波を前記塔槽類の外壁に設置
した受信音響センサで受信し、受信音響波の変化から前
記配管から前記塔槽類への媒質の漏洩に伴って発生する
気泡を検知する音響式漏洩検出装置において、 音響を監視対象に断続的に送信する手段と、その伝播音
を同期して受信する手段と、1個以上前の受信音響波と
現在の受信音響波の違いを演算する手段と、違いの時間
的な変動を演算する手段と、違いの時間的な変動の大き
さを設定値と比較することで漏洩を判定する手段を備え
た音響式漏洩検出装置。
5. A monitoring target area through which a different medium flows through a pipe disposed inside a tower and tanks and the tower and tanks,
An acoustic wave is propagated from a transmitting acoustic sensor installed on the outer wall of the tower, and the propagated acoustic wave is received by a receiving acoustic sensor installed on the outer wall of the tower. An acoustic leak detection device for detecting air bubbles generated due to leakage of a medium into towers, means for intermittently transmitting sound to a monitoring target, means for synchronously receiving the propagation sound thereof, Means for calculating the difference between the previous received acoustic wave and the current received acoustic wave by more than one unit, means for calculating the temporal variation of the difference, and comparing the magnitude of the temporal variation of the difference with the set value. An acoustic leak detection device comprising means for determining a leak.
【請求項6】 前記違いの大きさを1個以上隔てた前後
の受信音響波の検波信号の差の積分値の実効値で表すこ
とを特徴とする請求項5記載の音響式漏洩検出装置。
6. The acoustic leak detection device according to claim 5, wherein the magnitude of the difference is represented by an effective value of an integral value of a difference between detection signals of received acoustic waves before and after the one or more separated acoustic waves.
JP9345267A 1997-12-15 1997-12-15 Method and device for acoustically detecting leakage Pending JPH11173940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9345267A JPH11173940A (en) 1997-12-15 1997-12-15 Method and device for acoustically detecting leakage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9345267A JPH11173940A (en) 1997-12-15 1997-12-15 Method and device for acoustically detecting leakage

Publications (1)

Publication Number Publication Date
JPH11173940A true JPH11173940A (en) 1999-07-02

Family

ID=18375453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9345267A Pending JPH11173940A (en) 1997-12-15 1997-12-15 Method and device for acoustically detecting leakage

Country Status (1)

Country Link
JP (1) JPH11173940A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006317172A (en) * 2005-05-10 2006-11-24 Toshiba Corp Water leakage detector
CN113776747A (en) * 2021-08-31 2021-12-10 歌尔科技有限公司 Air tightness testing method, device and equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006317172A (en) * 2005-05-10 2006-11-24 Toshiba Corp Water leakage detector
CN113776747A (en) * 2021-08-31 2021-12-10 歌尔科技有限公司 Air tightness testing method, device and equipment

Similar Documents

Publication Publication Date Title
JP2020091269A (en) Delivery pipe leakage monitoring device and method
JP3129121B2 (en) Pipe line obstruction detector
JPH06129940A (en) Method and device for monitoring pipe line
CN105865551A (en) Ultrasonic flow sensor and flow detection method
JP4581881B2 (en) Gas meter device
JPH11173940A (en) Method and device for acoustically detecting leakage
JP2575810B2 (en) Valve leak monitoring device
JP2003194604A (en) Acoustic wave type temperature and flow measuring meter, and method of detecting propagation time of sound wave in gas
JP2533699B2 (en) Acoustic leak detector
JPH07198362A (en) Method and apparatus for measurement of decrease in wall thickness of pipe
JP4582105B2 (en) Equipment discrimination system
JP4930001B2 (en) Gas meter device
JP2000258281A (en) Acoustic leakage monitoring apparatus
JP3469405B2 (en) Temperature measurement device
JP4674007B2 (en) Liquid level measuring device in pipe and liquid level measuring method
JP3117841B2 (en) Gas leak detection method
JP4273519B2 (en) Ultrasonic flow meter
JP4704536B2 (en) Liquid level measuring device in pipe and liquid level measuring method
CN113514199B (en) Method for detecting and locating fluid leakage
JP3596085B2 (en) Flow measurement device
JPH09318463A (en) Acoustic measurement device for gas temperature
JP2005098865A (en) Meter apparatus
JP3376531B2 (en) Leak monitoring device and leak monitoring method
JP2004108809A (en) Ultrasonic flowmeter having leakage detection function
JPH1073575A (en) Bubble inspector in structure