JPH11169703A - Thermally reversible hydrogel forming composition - Google Patents
Thermally reversible hydrogel forming compositionInfo
- Publication number
- JPH11169703A JPH11169703A JP9347922A JP34792297A JPH11169703A JP H11169703 A JPH11169703 A JP H11169703A JP 9347922 A JP9347922 A JP 9347922A JP 34792297 A JP34792297 A JP 34792297A JP H11169703 A JPH11169703 A JP H11169703A
- Authority
- JP
- Japan
- Prior art keywords
- sol
- gel
- hydrogel
- temperature
- transition temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Materials For Medical Uses (AREA)
- Colloid Chemistry (AREA)
- Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、温度変化に対応し
てハイドロゲル状態と水溶液状態(ゾル)とが可逆的に
変化する熱可逆(性)ハイドロゲル形成性組成物であっ
て、更に種々の生理活性を示すことが可能な生理活性物
質を含有する熱可逆ハイドロゲル形成性組成物に関す
る。The present invention relates to a thermoreversible (gel) hydrogel-forming composition which reversibly changes between a hydrogel state and an aqueous solution state (sol) in response to a temperature change. The present invention relates to a thermoreversible hydrogel-forming composition containing a physiologically active substance capable of exhibiting physiological activity.
【0002】より詳しくは、本発明は、第1のゾル−ゲ
ル転移温度より低温側でゾル状態となり、該第1の転移
温度の高温側でゲル状態となるような「昇温時ゲル化タ
イプ」の特性を有する熱可逆ハイドロゲル形成性組成物
に関する。More specifically, the present invention relates to a "gelling type at elevated temperature" in which a sol state is formed at a temperature lower than the first sol-gel transition temperature and a gel state is formed at a temperature higher than the first transition temperature. And a thermoreversible hydrogel-forming composition having the characteristics of
【0003】本発明の熱可逆ハイドロゲル形成性組成物
は、その昇温時ゲル化タイプの特性を活かして、細胞
(組織)培養担体、創傷被覆材、生体接着剤等に、特に
好適に利用可能である。[0003] The thermoreversible hydrogel-forming composition of the present invention is particularly suitable for use as a carrier for cell (tissue) culture, a wound dressing, a bioadhesive, etc., by utilizing the properties of the gelling type when heated. It is possible.
【0004】[0004]
【従来の技術】熱可逆性を示すハイドロゲルとしては、
寒天やゼラチンのゲルがよく知られている。寒天やゼラ
チンの水溶液は、冷却により流動性を失ってゼリ−状の
ハイドロゲルとなり、加熱によって再び水溶液に戻るタ
イプ、すなわち、降温時ゲル化タイプの熱可逆ゾル−ゲ
ル転移を示す。2. Description of the Related Art As a thermoreversible hydrogel,
Agar and gelatin gels are well known. An aqueous solution of agar or gelatin loses fluidity upon cooling to form a jelly-like hydrogel, and exhibits a thermoreversible sol-gel transition of a type which returns to an aqueous solution by heating, that is, a gelling type at the time of cooling.
【0005】これらのハイドロゲルとは逆に、加熱によ
ってハイドロゲルとなる昇温時ゲル化タイプの性質を示
すものとしては、多糖類誘導体であるメチルセルロ−ス
の水溶液が知られている。しかしながら、メチルセルロ
−ス水溶液は45℃以上の高温でしかゲルとならないた
め、実用上の利用価値が殆どなく、従来より、その昇温
時ゲル化タイプの特性は殆ど活用されていない。[0005] Contrary to these hydrogels, an aqueous solution of methylcellulose, a polysaccharide derivative, is known as a type exhibiting a gelling property upon heating, which becomes a hydrogel upon heating. However, since the aqueous solution of methyl cellulose gels only at a high temperature of 45 ° C. or higher, it has little practical utility value, and the characteristics of the gelling type at the time of temperature rise have hardly been utilized.
【0006】一方、非イオン性界面活性剤の中にも、そ
の水溶液が昇温時ゲル化タイプの熱可逆ゾル−ゲル転移
を示すものがある。例えば、ポリプロピレンオキサイド
の両端にポリエチレンオキサイドが結合されてなるプル
ロニックF−127(商品名、BASF Wyandotte Chemica
ls Co. 製)の高濃度水溶液は、約20℃以上でハイド
ロゲルとなり、それより低い温度で水溶液となることが
知られている(例えば、 B. Chu, Langmuir, 11, 4
14−421 (1995)を参照.)。On the other hand, some nonionic surfactants exhibit a gel-type thermoreversible sol-gel transition when the aqueous solution is heated. For example, Pluronic F-127 (trade name, BASF Wyandotte Chemica) in which polyethylene oxide is bonded to both ends of polypropylene oxide
ls Co.) is known to be a hydrogel at about 20 ° C. or higher and an aqueous solution at a lower temperature (for example, B. Chu, Langmuir, 11, 4).
14-421 (1995)).
【0007】しかしながら、この材料(プルロニックF
−127)の場合、約20wt%以上の高濃度でしかハ
イドロゲルを形成せず、したがって生成したハイドロゲ
ル中の含水率が低いという問題があった。However, this material (Pluronic F)
In the case of -127), there was a problem that a hydrogel was formed only at a high concentration of about 20% by weight or more, and thus the water content in the produced hydrogel was low.
【0008】また、この材料を用いた場合、約20wt
%以上の高濃度でゲル化させ、ゲル化温度より高い温度
に保持した場合であっても、該ゲルに更に水を加えると
ゲルが溶解してしまう(すなわち、ハイドロゲルが水溶
性である)という問題があった。このような現象は、例
えば、該ゲルを創傷被覆材として使用した場合には、創
傷面から分泌される滲出液によって、該ハイドロゲルが
創傷面中に溶解・消失してしまうという重大な欠点につ
ながる。When this material is used, about 20 wt.
%, And gel is dissolved when water is further added to the gel even when the gel is kept at a temperature higher than the gelation temperature (that is, the hydrogel is water-soluble). There was a problem. Such a phenomenon is a serious disadvantage that, for example, when the gel is used as a wound dressing, the hydrogel dissolves and disappears in the wound surface due to exudate secreted from the wound surface. Connect.
【0009】[0009]
【発明が解決しようとする課題】本発明の目的は、上記
した従来の熱可逆ハイドロゲル形成性組成物の欠点を解
消した熱可逆ハイドロゲル形成性組成物を提供すること
にある。SUMMARY OF THE INVENTION An object of the present invention is to provide a thermoreversible hydrogel-forming composition which has solved the above-mentioned drawbacks of the conventional thermoreversible hydrogel-forming composition.
【0010】本発明の他の目的は、ゲル中に生理活性物
質を良好に保持し得る熱可逆ハイドロゲル形成性組成物
を提供することにある。Another object of the present invention is to provide a thermoreversible hydrogel-forming composition capable of favorably retaining a physiologically active substance in a gel.
【0011】本発明の更に他の目的は、ゲル中に保持さ
れた生理活性物質本来の活性を良好に維持可能な熱可逆
ハイドロゲル形成性組成物を提供することにある。It is still another object of the present invention to provide a thermoreversible hydrogel-forming composition capable of maintaining good activity of a physiologically active substance held in a gel.
【0012】[0012]
【課題を解決するための手段】本発明者らは鋭意研究の
結果、特定の熱可逆ハイドロゲル形成性高分子を含む組
成物が、該ハイドロゲル中に生理活性物質自体を好適に
保持可能であるのみならず、該ゲル中において該生理活
性物質本来の機能を実質的に保持可能であることを見出
した。Means for Solving the Problems As a result of intensive studies, the present inventors have found that a composition containing a specific thermoreversible hydrogel-forming polymer can suitably hold a physiologically active substance itself in the hydrogel. In addition, it has been found that the gel can substantially retain the original function of the physiologically active substance in the gel.
【0013】本発明の熱可逆ハイドロゲル形成性組成物
は上記知見に基づくものであり、より詳しくは、ハイド
ロゲル形成性高分子と、水と、生理活性物質とを少なく
とも含み;ゾル−ゲル転移温度(第1のゾル−ゲル転移
温度)が5℃以上40℃以下であり、該ゾル−ゲル転移
温度より高い温度で実質的に水不溶性のハイドロゲル状
態となり、且つ、該ゾル−ゲル転移温度より低い温度で
可逆的に水可溶性を示す熱可逆ハイドロゲル形成性組成
物であって;且つ、前記水不溶性のハイドロゲル状態に
おいて、該ゲル中の前記生理活性物質の初期含有量
(A)と、大過剰の水中に浸漬した後の該ゲル中の生理
活性物質の含有量(B)との比(B/A)が80%以上
であることを特徴とするものである。[0013] The thermoreversible hydrogel-forming composition of the present invention is based on the above findings, and more specifically, contains at least a hydrogel-forming polymer, water and a physiologically active substance; A temperature (first sol-gel transition temperature) of 5 ° C. or more and 40 ° C. or less, a substantially water-insoluble hydrogel state at a temperature higher than the sol-gel transition temperature, and the sol-gel transition temperature A thermoreversible hydrogel-forming composition that exhibits reversible water solubility at a lower temperature; and in the water-insoluble hydrogel state, the initial content (A) of the physiologically active substance in the gel; The ratio (B / A) to the content (B) of the physiologically active substance in the gel after immersion in a large excess of water is 80% or more.
【0014】本発明によれば、更に、ハイドロゲル形成
性高分子と、水と、生理活性物質とを少なくとも含み;
且つ、少なくとも第1および第2のゾル−ゲル転移温度
を有することを特徴とする熱可逆ハイドロゲル形成性組
成物が提供される。According to the present invention, the composition further comprises at least a hydrogel-forming polymer, water and a physiologically active substance;
Further, there is provided a thermoreversible hydrogel-forming composition having at least first and second sol-gel transition temperatures.
【0015】上記構成を有する本発明の熱可逆ハイドロ
ゲル形成性高分子を含む組成物は、該ハイドロゲル中に
生理活性物質自体を好適に保持可能であるのみならず、
該ゲル中において該生理活性物質本来の機能を実質的に
保持可能であるため、ゲル内に理活性物質を固定化する
ことにより、種々の用途に広く利用することが可能とな
る。[0015] The composition containing the thermoreversible hydrogel-forming polymer of the present invention having the above-mentioned constitution not only can suitably hold the physiologically active substance itself in the hydrogel, but also
Since the original function of the physiologically active substance can be substantially retained in the gel, by immobilizing the physiologically active substance in the gel, it can be widely used for various uses.
【0016】本発明者らはすでに、ゾル−ゲル転移温度
が5℃以上40℃以下であり、該転移温度より低い温度
でゾル、該転移温度より高い温度の温度でゲルとなり、
該ゲルが実質的に水不溶性であることを特徴とする昇温
時ゲル化タイプの熱可逆ハイドロゲル形成性組成物を開
発してきた(特開平5−262882)。上記熱可逆ハ
イドロゲル形成性組成物中に低分子量の生理活性物質を
含有させ、上記ハイドロゲルに様々な生理活性を付与さ
せることも提案されている(特願平8−29572、WO
95/15152)。The present inventors have already found that the sol-gel transition temperature is 5 ° C. or more and 40 ° C. or less, a sol is formed at a temperature lower than the transition temperature, and a gel is formed at a temperature higher than the transition temperature.
A thermoreversible hydrogel-forming composition of a gelling type at elevated temperature characterized in that the gel is substantially insoluble in water has been developed (JP-A-5-262882). It has also been proposed to add a low molecular weight bioactive substance to the thermoreversible hydrogel-forming composition to impart various bioactivity to the hydrogel (Japanese Patent Application No. 8-29572, WO
95/15152).
【0017】しかしながら、これらの従来の昇温時ゲル
化タイプ熱可逆ハイドロゲル形成性組成物と比較して、
上述した本発明の熱可逆ハイドロゲル形成性組成物に基
づいて形成されたハイドロゲルにおいては、比較的低分
子量の生理活性物質であっても該ハイドロゲル中の高分
子網目をすり抜けたり、容易にハイドロゲルの外部へ拡
散することがより効果的に抑制されているため、より長
い期間に渡って、生理活性物質を含有するハイドロゲル
が該生理活性を維持することが可能となる。However, as compared with these conventional gelling-type thermoreversible hydrogel-forming compositions at elevated temperatures,
In the hydrogel formed based on the thermoreversible hydrogel-forming composition of the present invention described above, even a relatively low-molecular-weight physiologically active substance can easily pass through the polymer network in the hydrogel, or easily. Since diffusion to the outside of the hydrogel is more effectively suppressed, the hydrogel containing a physiologically active substance can maintain the physiological activity for a longer period of time.
【0018】上記した先願の昇温時ゲル化タイプ熱可逆
ハイドロゲル形成性組成物のゾル−ゲル転移温度を室温
付近に設定すれば、室温以下でゾル、細胞培養温度や体
温(37℃)でハイドロゲルとなるので、室温液状で細
胞を取り込み、37℃に昇温してゲル化させ、細胞をゲ
ル内で3次元的に培養できる細胞(組織)培養担体(特
開平6−141851)や、室温液状で創面上に塗布
し、体温(37℃)でゲル化させ、創面を保護すること
のできる創傷被覆材(WO 95/07719)などが提供
される。When the sol-gel transition temperature of the gelling type thermoreversible hydrogel-forming composition at the time of the above-mentioned prior application is set at around room temperature, the sol, cell culture temperature and body temperature (37 ° C.) can be obtained at room temperature or lower. A cell (tissue) culture carrier (Japanese Unexamined Patent Publication No. 6-141851) which takes in cells in a liquid at room temperature, raises the temperature to 37 ° C. to form a gel, and allows cells to be cultured three-dimensionally in the gel. A wound dressing (WO 95/07719) which can be applied at room temperature to a wound surface and gelled at body temperature (37 ° C.) to protect the wound surface.
【0019】しかしながら、該従来の昇温時ゲル化タイ
プ熱可逆ハイドロゲル形成性組成物と比較して、本発明
の熱可逆ハイドロゲル形成性組成物は、生理活性物質を
も含有するため、細胞接着性等の生体に対する親和性に
おいて、これら従来のハイドロゲルより優れる特性を有
する。However, the thermoreversible hydrogel-forming composition of the present invention contains a physiologically active substance as compared with the conventional gelling-type thermoreversible hydrogel-forming composition at the time of temperature rise. It has properties superior to these conventional hydrogels in terms of affinity for living bodies such as adhesion.
【0020】加えて、従来の昇温時ゲル化タイプ熱可逆
ハイドロゲル形成性組成物は、そのゾル−ゲル転移温度
より低温側の氷点より高い温度では常に液状であるため
に、その利用が制限される場合があった。例えば、培養
細胞や組織等を保存する際に、その代謝活性を低く抑え
るためには、できるだけ低温で保存することが有利であ
る。ただし、氷点より低い温度では細胞等に対し凍結に
よるダメ−ジを与えるので、氷点より高い温度の、しか
もできる限り低温が望ましい。しかしながら、従来の昇
温時ゲル化タイプ熱可逆ハイドロゲル形成性組成物は、
そのゾル−ゲル転移温度より低温側の氷点より高い温度
では常に液状であるために、細胞等が沈降したり、輸送
中に細胞同士あるいは細胞と容器壁が衝突することによ
る物理的傷害を細胞等が被るという現象が生ずる場合が
あった。In addition, the conventional gelling type thermoreversible hydrogel-forming composition at elevated temperature is always in a liquid state at a temperature higher than the freezing point below the sol-gel transition temperature, so its use is limited. There was a case. For example, when storing cultured cells or tissues, it is advantageous to store the cells at as low a temperature as possible in order to keep their metabolic activity low. However, if the temperature is lower than the freezing point, the cells may be damaged by freezing. Therefore, a temperature higher than the freezing point and as low as possible is desirable. However, the conventional gelling type thermoreversible hydrogel-forming composition at elevated temperature,
Since the liquid is always liquid at a temperature higher than the freezing point below the sol-gel transition temperature, cells and the like sediment, and physical damage due to collision between cells or between cells and the container wall during transportation may be caused by cells and the like. In some cases.
【0021】これに対して、本発明の第1および第2の
ゾル−ゲル転移温度を有する熱可逆ハイドロゲル形成性
組成物を用いた場合には、第2のゾル−ゲル転移温度よ
り低温でゲル状態とすることができるため、上記した細
胞等の沈降や、細胞の傷害を効果的に抑制することが可
能となる。On the other hand, when the thermoreversible hydrogel-forming composition having the first and second sol-gel transition temperatures of the present invention is used, the temperature is lower than the second sol-gel transition temperature. Since it can be in a gel state, it becomes possible to effectively suppress sedimentation of the above-described cells and the like and damage to the cells.
【0022】[0022]
【発明の実施の形態】以下、本発明を詳細に説明する。
以下の記述において、量比を表す「%」および「部」
は、特に断らない限り重量基準(すなわち、重量%およ
び重量部)とする。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
In the following description, "%" and "parts"
Is based on weight (ie, weight% and parts by weight) unless otherwise specified.
【0023】(ハイドロゲル形成性の高分子)本発明に
使用可能な「ハイドロゲル形成性の高分子」は、その水
溶液または水分散液が5℃以上、40℃以下の温度領域
中のある特定の温度より高い温度でハイドロゲルとな
り、且つ、該温度より低い温度ではゾルないし液状とな
る特性を有する。本明細書においては、該「特定の温
度」を、(第1の)「ゾル−ゲル転移温度」と称する。(Hydrogel-forming polymer) The "hydrogel-forming polymer" which can be used in the present invention is an aqueous solution or aqueous dispersion of the polymer in a specific temperature range of 5 ° C or more and 40 ° C or less. It has the property that it becomes a hydrogel at a temperature higher than the above temperature, and that it becomes a sol or liquid at a temperature lower than this temperature. In this specification, the “specific temperature” is referred to as (first) “sol-gel transition temperature”.
【0024】本発明の熱可逆ハイドロゲル形成性組成物
が上記(第1の)ゾル−ゲル転移温度より低い温度で一
旦ゾル状態となり、更に冷却すると再びゲル状態となる
場合、本明細書においては、この際の転移温度を、「第
2のゾル−ゲル転移温度」と称する。In the case where the thermoreversible hydrogel-forming composition of the present invention is once in a sol state at a temperature lower than the above (first) sol-gel transition temperature, and is again in a gel state when further cooled, it is herein referred to. The transition temperature at this time is referred to as “second sol-gel transition temperature”.
【0025】(ゾル−ゲル転移温度)本発明において、
試料のゾル−ゲル転移温度の測定は、文献(H. Yoshiok
a ら、Journal of Macromolecular Science, A31
(1), 113 (1994))に記載された方法に従う。(Sol-gel transition temperature) In the present invention,
The measurement of the sol-gel transition temperature of the sample is described in the literature (H. Yoshiok
a et al., Journal of Macromolecular Science, A31
(1), 113 (1994)).
【0026】即ち、観測周波数1Hzにおける試料の動
的弾性率を徐々に温度を変化(低温側から高温側へ、ま
たは高温側から低温側へ1℃/1分)させて測定し、該
試料の貯蔵弾性率(G’、弾性項)と損失弾性率
(G”、粘性項)が交差する点の温度をゾル−ゲル転移
温度温度とする。一般に、G”>G’の状態がゾル、
G”<G’の状態がゲルと定義される。昇温時と降温時
でゾル−ゲル転移温度が(例えば、絶対値で2℃以上)
異なる場合には、その中間の温度をゾル−ゲル転移温度
とする。このゾル−ゲル転移温度の測定に際しては、下
記の測定条件が好適に使用可能である。That is, the dynamic elastic modulus of a sample at an observation frequency of 1 Hz is measured by gradually changing the temperature (from a low temperature side to a high temperature side, or from a high temperature side to a low temperature side at 1 ° C./1 minute). The temperature at the point where the storage elastic modulus (G ′, elastic term) and the loss elastic modulus (G ″, viscous term) intersect is referred to as a sol-gel transition temperature.
The state of G ″ <G ′ is defined as a gel. The sol-gel transition temperature at the time of temperature rise and the time of temperature fall (for example, 2 ° C. or more in absolute value)
If different, the intermediate temperature is taken as the sol-gel transition temperature. In measuring the sol-gel transition temperature, the following measurement conditions can be suitably used.
【0027】<動的弾性率の測定条件> 測定機器:商品名=ストレス制御式レオメ−タ−CSL
500、Carri−Med社製 試料溶液(ないし分散液)の濃度(ただし「ハイドロゲ
ル形成性高分子」の濃度として):10(重量)% 試料溶液の量:約0.8 g 測定用セルの形状・寸法:アクリル製平行円盤(直径
4.0cm)、ギャップ600μm。<Measurement conditions of dynamic elastic modulus> Measuring equipment: trade name = stress control type rheometer-CSL
500, Carri-Med's sample solution (or dispersion) concentration (as the concentration of “hydrogel-forming polymer”): 10 (weight)% Sample solution amount: about 0.8 g Shape and dimensions: Acrylic parallel disk (diameter 4.0 cm), gap 600 μm.
【0028】適用ストレス:線形領域内。Applied stress: within the linear region.
【0029】(実質的に水不溶)本発明の熱可逆ハイド
ロゲル形成性組成物は、そのゾル−ゲル転移温度より高
い温度で実質的に水不溶性のハイドロゲル状態となる
が、該ゲル化の後に、多量の水中に浸漬しても、該ゲル
は実質的に溶解しない。上記ハイドロゲルの上記特性
は、例えば、以下のようにして確認することが可能であ
る。(Substantially water-insoluble) The thermoreversible hydrogel-forming composition of the present invention becomes a substantially water-insoluble hydrogel state at a temperature higher than its sol-gel transition temperature. The gel does not dissolve substantially, even when subsequently immersed in a large amount of water. The properties of the hydrogel can be confirmed, for example, as follows.
【0030】すなわち、本発明のハイドロゲル形成性組
成物0.15gを、上記ゾル−ゲル転移温度より低い温
度(例えば氷冷下)で、蒸留水1.35gに溶解して1
0W%の水溶液を作製し、該水溶液を径が35mmのプ
ラスチックシャーレ中に注入し、ゾル−ゲル転移温度よ
り高い温度Th(例えば37℃)に加温することによっ
て、厚さ約1.5mmのゲルを該シャーレ中に形成させ
た後、該ゲルを含むシャーレ全体の重量(fグラム)を
測定する。次いで、該ゲルを含むシャーレ全体を250
ml中の水中に上記温度Thで10時間静置した後、該
ゲルを含むシャーレ全体の重量(gグラム)を測定し
て、ゲル表面からの該ゲルの溶解の有無を評価する。こ
の際、本発明のハイドロゲル形成性組成物においては、
上記ゲルの重量減少率、すなわち(f−g)/fが、
5.0%以下であることが好ましく、更には1.0%以
下(特に0.1%以下)であることが好ましい。That is, 0.15 g of the hydrogel-forming composition of the present invention is dissolved in 1.35 g of distilled water at a temperature lower than the above-mentioned sol-gel transition temperature (for example, under ice-cooling).
An aqueous solution having a thickness of about 1.5 mm was prepared by preparing an aqueous solution of 0 W%, injecting the aqueous solution into a plastic petri dish having a diameter of 35 mm, and heating the solution to a temperature Th (for example, 37 ° C) higher than the sol-gel transition temperature. After the gel is formed in the petri dish, the weight (f gram) of the whole petri dish including the gel is measured. Next, the whole petri dish containing the gel was washed for 250 minutes.
After standing in water in ml at the above temperature Th for 10 hours, the weight (g gram) of the whole petri dish containing the gel is measured to evaluate whether or not the gel is dissolved from the gel surface. At this time, in the hydrogel-forming composition of the present invention,
The weight loss rate of the gel, that is, (f−g) / f is
It is preferably at most 5.0%, more preferably at most 1.0% (particularly at most 0.1%).
【0031】本発明の熱可逆ハイドロゲル形成性組成物
の水溶液は、上記ゾル−ゲル転移温度より高い温度(T
h)でゲル化させた後、該温度Thで多量(体積比で、ゲ
ルの0.1〜100倍程度)の水中に浸漬しても、長期
間(例えば、3ヶ月間程度)に亘って該ゲルは溶解する
ことがない。The aqueous solution of the thermoreversible hydrogel-forming composition of the present invention may have a temperature (T) higher than the above sol-gel transition temperature.
h), after immersion in a large amount of water (at a volume ratio of about 0.1 to 100 times that of the gel) at the temperature Th, for a long period of time (for example, about 3 months). The gel does not dissolve.
【0032】上記したゾル−ゲル転移温度より高い温度
(Th)は、「ゾル−ゲル転移温度」より5℃以上高い
温度であることが好ましく、更には、10℃以上高い温
度であることが好ましい。The temperature (Th) higher than the above-mentioned sol-gel transition temperature is preferably 5 ° C. or more higher than the “sol-gel transition temperature”, and more preferably 10 ° C. or more. .
【0033】(共重合体)本発明に使用可能なハイドロ
ゲル形成性の高分子は、上記の特性を有するものであれ
ば特に制限はないが、特に、その水溶液が曇点を有する
高分子と親水性高分子を結合してなる共重合体であっ
て、且つ、分子量10万以上のものが好ましく用いられ
る。(Copolymer) The hydrogel-forming polymer that can be used in the present invention is not particularly limited as long as it has the above-mentioned properties. A copolymer obtained by binding a hydrophilic polymer and having a molecular weight of 100,000 or more is preferably used.
【0034】ここに分子量10万以上の共重合体とは、
該曇点より低い(例えば、絶対値で2℃以上低い)温度
において、その水溶液を分画分子量10万の限外濾過膜
(アミコン社製YM100)を用いて限外濾過した時、
実質的に濾過されないものをいう。より具体的には、下
記の条件下で分画分子量10万の限外濾過膜を用いて、
蒸留水中で限外濾過した場合に、濾液に検出される高分
子が高分子全体の10%以下(更には5%以下)である
ことを言う。Here, the copolymer having a molecular weight of 100,000 or more is
At a temperature lower than the cloud point (for example, 2 ° C. or lower in absolute value), when the aqueous solution was subjected to ultrafiltration using an ultrafiltration membrane having a molecular weight cut off of 100,000 (YM100 manufactured by Amicon),
A substance that is not substantially filtered. More specifically, using an ultrafiltration membrane having a molecular weight cut off of 100,000 under the following conditions,
When ultrafiltration is performed in distilled water, the amount of polymer detected in the filtrate is 10% or less (more preferably 5% or less) of the entire polymer.
【0035】<限外濾過方法>ハイドロゲル形成性の高
分子をその(第1の)ゾル−ゲル転移温度より低い温度
で蒸留水に濃度0.5wt%で溶解し、分画分子量10
万の限外濾過膜(アミコン社製YM100)を用いて1
kg/cm2の加圧下で濾過原液の量が1/2になるま
で限外濾過し、濾液を採取する。実質的に濾過されない
とは、該濾液中の高分子濃度を定量した時、その濃度が
0.05wt%以下(更には0.025wt%以下)で
あることを言う。<Ultrafiltration method> A hydrogel-forming polymer was dissolved in distilled water at a temperature lower than its (first) sol-gel transition temperature at a concentration of 0.5 wt%, and the molecular weight cutoff was 10%.
Using a 10,000 ultrafiltration membrane (YM100 manufactured by Amicon)
Ultrafiltration is performed under a pressure of kg / cm2 until the amount of the filtrate becomes 1/2, and the filtrate is collected. "Substantially not filtered" means that when the polymer concentration in the filtrate is quantified, the concentration is 0.05 wt% or less (further 0.025 wt% or less).
【0036】(曇点)曇点とは、透明な高分子の水溶液
(濃度1wt%)を徐々に(例えば、1℃/分程度で)
加熱した時、はじめて白濁を生じる温度を言う。本発明
においては、ハイドロゲル形成性の高分子の(第1の)
ゾル−ゲル転移温度を5℃〜40℃とするためには、こ
の曇点が5℃〜40℃であることが望ましい。すなわ
ち、その水溶液が曇点を有する高分子は曇点より低い温
度では水に溶解するが、曇点より高い温度では非水溶性
となり水から析出する。(Cloud point) The cloud point means that a transparent polymer aqueous solution (concentration: 1 wt%) is gradually (for example, at about 1 ° C./minute).
It is the temperature at which white turbidity occurs when heated. In the present invention, the hydrogel-forming polymer (first)
In order to make the sol-gel transition temperature 5 ° C. to 40 ° C., the cloud point is desirably 5 ° C. to 40 ° C. That is, a polymer whose aqueous solution has a cloud point dissolves in water at a temperature lower than the cloud point, but becomes insoluble in water at a temperature higher than the cloud point and precipitates from water.
【0037】(曇点を有する高分子)その水溶液が曇点
を有する高分子としては、ポリ−N−イソプロピルアク
リルアミド、ポリ−N−n−プロピルアクリルアミド、
ポリ−N−シクロプロピルアクリルアミド、ポリ−N,
N−ジエチルアクリルアミド、ポリ−N−アクリロイル
ピペリジン、ポリ−N−アクリロイルピロリジン、ポリ
−N,N−エチルメチルアクリルアミドなどのポリN置
換アクリルアミド誘導体、ポリ−N−イソプロピルメタ
アクリルアミド、ポリ−N−シクロプロピルメタアクリ
ルアミドなどのポリN置換メタアクリルアミド誘導体、
ポリプロピレンオキサイドなどのポリアルキレンオキサ
イド、ポリビニルメチルエ−テル、ポリビニルアルコ−
ル部分酢化物などが挙げられる。(Polymer Having Cloud Point) Examples of the polymer whose aqueous solution has a cloud point include poly-N-isopropylacrylamide, poly-Nn-propylacrylamide,
Poly-N-cyclopropylacrylamide, poly-N,
Poly-N-substituted acrylamide derivatives such as N-diethylacrylamide, poly-N-acryloylpiperidine, poly-N-acryloylpyrrolidine, poly-N, N-ethylmethylacrylamide, poly-N-isopropylmethacrylamide, poly-N-cyclopropyl Poly N-substituted methacrylamide derivatives such as methacrylamide,
Polyalkylene oxide such as polypropylene oxide, polyvinyl methyl ether, polyvinyl alcohol
And partially acetylated products.
【0038】上記の高分子化合物は単独でも、他の単量
体と共重合させて得たものでも良い。共重合する単量体
としては、親水性単量体、疎水性単量体のいずれも用い
ることができる。一般的にポリN置換(メタ)アクリル
アミド誘導体の曇点は親水性単量体と共重合すると上昇
し、疎水性単量体と共重合すると下降する。従って、こ
れらを選択することによっても、所望の曇点を有する高
分子を得ることができる。The above polymer compound may be used alone or may be obtained by copolymerization with another monomer. As the monomer to be copolymerized, any of a hydrophilic monomer and a hydrophobic monomer can be used. Generally, the cloud point of a poly (N) -substituted (meth) acrylamide derivative increases when copolymerized with a hydrophilic monomer, and decreases when copolymerized with a hydrophobic monomer. Therefore, a polymer having a desired cloud point can also be obtained by selecting them.
【0039】(親水性単量体)親水性単量体としては、
N−ビニルピロリドン、ビニルピリジン、アクリルアミ
ド、メタアクリルアミド、N−メチルアクリルアミド、
ヒドロキシエチルメタアクリレ−ト、ヒドロキシエチル
アクリレ−ト、ヒドロキシメチルメタアクリレ−ト、ヒ
ドロキシメチルアクリレ−ト、酸性基を有するアクリル
酸、メタアクリル酸およびそれらの塩、ビニルスルホン
酸、スチレンスルホン酸など、並びに塩基性基を有する
N,N−ジメチルアミノエチルメタクリレ−ト、N,N
−ジエチルアミノエチルメタクリレ−ト、N,N−ジメ
チルアミノプロピルアクリルアミドおよびそれらの塩な
どが挙げられるが、これらに限定されるものではない。(Hydrophilic monomer) As the hydrophilic monomer,
N-vinylpyrrolidone, vinylpyridine, acrylamide, methacrylamide, N-methylacrylamide,
Hydroxyethyl methacrylate, hydroxyethyl acrylate, hydroxymethyl methacrylate, hydroxymethyl acrylate, acrylic acid having an acidic group, methacrylic acid and salts thereof, vinyl sulfonic acid, styrene N, N-dimethylaminoethyl methacrylate having a basic group, such as sulfonic acid, N, N
-Diethylaminoethyl methacrylate, N, N-dimethylaminopropylacrylamide and salts thereof, but are not limited thereto.
【0040】(疎水性単量体)一方、疎水性単量体とし
ては、エチルアクリレ−ト、メチルメタクリレ−ト、n
−ブチルメタクリレ−ト、グリシジルメタクリレ−ト等
のアクリレ−ト誘導体およびメタクリレ−ト誘導体,N
−n−ブチルメタアクリルアミドなどのN置換アルキル
メタアクリルアミド誘導体、塩化ビニル、アクリロニト
リル、スチレン、酢酸ビニルなどが挙げられるが、これ
らに限定されるものではない。(Hydrophobic monomer) On the other hand, examples of the hydrophobic monomer include ethyl acrylate, methyl methacrylate, and n
Acrylate and methacrylate derivatives such as -butyl methacrylate and glycidyl methacrylate;
Examples include, but are not limited to, N-substituted alkyl methacrylamide derivatives such as -n-butyl methacrylamide, vinyl chloride, acrylonitrile, styrene, vinyl acetate, and the like.
【0041】(親水性高分子)本発明における親水性高
分子としては、例えば、メチルセルロ−ス、デキストラ
ン、ポリエチレンオキサイド、ポリビニルアルコ−ル、
ポリN−ビニルピロリドン、ポリビニルピリジン、ポリ
アクリルアミド、ポリメタアクリルアミド、ポリN−メ
チルアクリルアミド、ポリヒドロキシメチルアクリレ−
ト、ポリアクリル酸、ポリメタクリル酸、ポリビニルス
ルホン酸、ポリスチレンスルホン酸およびそれらの塩、
ポリN,N−ジメチルアミノエチルメタクリレ−ト、ポ
リN,N−ジエチルアミノエチルメタクリレ−ト、ポリ
N,N−ジメチルアミノプロピルアクリルアミドおよび
それらの塩などが挙げられる。さらに種々の水溶性の生
体高分子も本発明における親水性高分子として使用可能
である。例えば、ゼラチン、アルブミン、グロブリン、
フィブリノ−ゲン、インスリン、グルカゴンなどのタン
パク質やペプチド類、デンプン、アガロ−ス、グリコ−
ゲン、ヒアルロン酸、ヘパリンなどの多糖類、RNA、DNA
などの核酸類が挙げられる。(Hydrophilic polymer) Examples of the hydrophilic polymer in the present invention include methyl cellulose, dextran, polyethylene oxide, polyvinyl alcohol, and the like.
Poly N-vinyl pyrrolidone, polyvinyl pyridine, polyacrylamide, polymethacrylamide, poly N-methylacrylamide, polyhydroxymethyl acryle
, Polyacrylic acid, polymethacrylic acid, polyvinyl sulfonic acid, polystyrene sulfonic acid and salts thereof,
Examples thereof include poly N, N-dimethylaminoethyl methacrylate, poly N, N-diethylaminoethyl methacrylate, poly N, N-dimethylaminopropyl acrylamide, and salts thereof. Further, various water-soluble biopolymers can also be used as the hydrophilic polymer in the present invention. For example, gelatin, albumin, globulin,
Proteins and peptides such as fibrinogen, insulin, glucagon, starch, agarose, glyco-
Polysaccharides such as gen, hyaluronic acid and heparin, RNA and DNA
And nucleic acids.
【0042】(熱可逆ゾル−ゲル転移のメカニズム)本
発明のハイドロゲル形成性の高分子は転移温度の低温側
では流動性のある水溶液、高温側では流動性を失ってハ
イドロゲルとなる昇温時ゲル化タイプの熱可逆ゾル−ゲ
ル転移を示す。 本発明者の知見によれば、そのメカニ
ズムは以下のように推定される。(Mechanism of thermoreversible sol-gel transition) The hydrogel-forming polymer of the present invention is a fluid aqueous solution at a low transition temperature, and loses fluidity at a high transition temperature to become a hydrogel. Figure 2 shows a thermogelling type thermoreversible sol-gel transition. According to the findings of the present inventors, the mechanism is presumed as follows.
【0043】すなわち、共重合体中の曇点を有する高分
子部分の曇点より低い温度では、該曇点を有する高分子
部分、親水性高分子部分ともに水溶性であるので、該共
重合体は完全に水に溶解する。しかし、この水溶液の温
度を該曇点より高い温度に昇温すると、該曇点を有する
高分子部分が非水溶性となって凝集し分子間会合が起こ
る。一方、親水性高分子部分は該曇点より高い温度にお
いても水溶性を保つので、該曇点を有する高分子部分間
の凝集が巨視的な相分離に至ることを防止し、安定なハ
イドロゲルが形成される。That is, at a temperature lower than the cloud point of the polymer portion having a cloud point in the copolymer, both the polymer portion having the cloud point and the hydrophilic polymer portion are water-soluble. Completely dissolves in water. However, when the temperature of the aqueous solution is raised to a temperature higher than the cloud point, the polymer portion having the cloud point becomes water-insoluble and aggregates to cause intermolecular association. On the other hand, since the hydrophilic polymer portion maintains water solubility even at a temperature higher than the cloud point, it prevents aggregation between the polymer portions having the cloud point from leading to macroscopic phase separation, and provides a stable hydrogel. Is formed.
【0044】(曇点を有する高分子の含有量)本発明に
用いられるハイドロゲル形成性の高分子における、その
水溶液が曇点を有する高分子(A)と親水性高分子
(B)を結合してなる共重合体中の(A)の含有量は、
10〜90重量%(更には、30〜70重量%)の範囲
であることが好ましい。曇点を有する高分子(A)の含
有量が10重量%未満の場合、該曇点を有する高分子部
分間の凝集力が不充分なために、該曇点より高い温度で
もハイドロゲルとなり難い傾向が強まる。他方、高分子
(A)の含有量が90重量%を上回る場合は、曇点を有
する高分子部分間の凝集力が強すぎて、系全体が巨視的
な相分離(著しいゲルのシネレシス)を起こし、安定な
ハイドロゲルが得られ難くなる傾向が強まる。(Content of Polymer Having Cloud Point) In the hydrogel-forming polymer used in the present invention, the aqueous solution is combined with the polymer (A) having the cloud point and the hydrophilic polymer (B). The content of (A) in the resulting copolymer is
It is preferably in the range of 10 to 90% by weight (more preferably, 30 to 70% by weight). When the content of the polymer (A) having a cloud point is less than 10% by weight, the cohesive force between the polymer portions having the cloud point is insufficient, so that it is difficult to form a hydrogel even at a temperature higher than the cloud point. The tendency increases. On the other hand, when the content of the polymer (A) exceeds 90% by weight, the cohesive force between the polymer parts having a cloud point is too strong, and the entire system undergoes macroscopic phase separation (significant gel syneresis). And the tendency to obtain a stable hydrogel becomes stronger.
【0045】本発明者らは、上記親水性高分子部分
(B)に、例えば水素結合等により、その水溶液が曇点
を有する高分子(A)の曇点より低い温度で、親水性高
分子間に凝集力が生起するような高分子化合物(例えば
ゼラチン、アガロ−スなど)を用いた場合、前記第1の
ゾル−ゲル転移温度の他に、該第1のゾル−ゲル転移温
度より低温の領域に第2のゾル−ゲル転移温度を有し、
該第2のゾル−ゲル転移温度より低い以下温度でゲル状
態となり、該第2のゾル−ゲル転移温度より高い温度で
且つ前記第1のゾル−ゲル転移温度より低い温度でゾル
状態となる熱可逆ハイドロゲル形成性組成物が得られる
ことを見出した。細胞等の代謝を抑えてゲル中で保存す
るなどの点からは、このような第2のゾル−ゲル転移温
度は、通常0℃以上37℃以下(更には0℃以上30℃
以下)であることが好ましい。The present inventors have found that the aqueous solution of the hydrophilic polymer portion (B) has a hydrophilic polymer at a temperature lower than the cloud point of the polymer (A) having a cloud point due to, for example, hydrogen bonding. When a polymer compound (eg, gelatin, agarose, or the like) that generates cohesive force is used, a temperature lower than the first sol-gel transition temperature is used in addition to the first sol-gel transition temperature. Has a second sol-gel transition temperature in the region of
The heat which becomes a gel state at a temperature lower than the second sol-gel transition temperature and becomes a sol state at a temperature higher than the second sol-gel transition temperature and lower than the first sol-gel transition temperature. It has been found that a reversible hydrogel-forming composition can be obtained. From the viewpoint of suppressing the metabolism of cells and the like and storing in a gel, such a second sol-gel transition temperature is usually 0 ° C or more and 37 ° C or less (furthermore, 0 ° C or more and 30 ° C or less).
The following is preferred.
【0046】(2つのゾル−ゲル転移温度)2つのゾル
−ゲル転移温度を有する系(ゲル形成性組成物)は、従
来より知られていない。このように、ある系が「2つの
ゾル−ゲル転移温度を有する」メカニズムは、本発明者
の知見によれば、以下の様に推定される。(Two Sol-Gel Transition Temperatures) A system (gel-forming composition) having two sol-gel transition temperatures has not heretofore been known. Thus, the mechanism by which a certain system has “two sol-gel transition temperatures” is estimated as follows according to the findings of the present inventors.
【0047】すなわち、第1のゾル−ゲル転移温度より
高い温度では、前述の通り、曇点を有する高分子部分が
非水溶性となって凝集して、分子間会合が起こる。親水
性高分子部分は該曇点より高い温度においても水溶性を
保つので、該曇点を有する高分子部分間の凝集が巨視的
な相分離に至ることを防止し、安定なハイドロゲルが形
成される。That is, at a temperature higher than the first sol-gel transition temperature, as described above, the polymer portion having a cloud point becomes water-insoluble and aggregates to cause intermolecular association. Since the hydrophilic polymer portion maintains water solubility even at a temperature higher than the cloud point, it prevents aggregation between the polymer portions having the cloud point from leading to macroscopic phase separation, and a stable hydrogel is formed. Is done.
【0048】一方、第2のゾル−ゲル転移温度より低い
温度では、親水性高分子間に分子間会合が起こり、曇点
を有する高分子部分が低温では水溶性となるので、両者
が役割を逆転して安定なハイドロゲルが形成される。On the other hand, at a temperature lower than the second sol-gel transition temperature, intermolecular association occurs between the hydrophilic polymers, and the polymer portion having a cloud point becomes water-soluble at a low temperature. Reversal forms a stable hydrogel.
【0049】第1のゾル−ゲル転移温度より低温で、且
つ、第2のゾル−ゲル転移温度より高温の温度領域で
は、曇点を有する高分子部分間にも、親水性高分子部分
間にも相互作用力が生じないので、ハイドロゲル形成性
高分子は流動性のある水溶液状態となると推定される。In a temperature range lower than the first sol-gel transition temperature and higher than the second sol-gel transition temperature, between the polymer portions having a cloud point and between the hydrophilic polymer portions. Since no interaction force occurs, the hydrogel-forming polymer is assumed to be in a fluid aqueous state.
【0050】低温で分子間に凝集力が生じる系として、
例えばゼラチンのようにヘリックス−コイル転移に基づ
く凝集力を利用する場合、ゾル−ゲル転移挙動がヒステ
リシスを示し、昇温時と降温時でゾル−ゲル転移温度が
一致しないことがある。これは、ヘリックス−コイル転
移が速度論的に長時間を要する過程であることに起因す
る。この場合、便宜的に昇温時ゾル−ゲル転移温度と降
温時ゾル−ゲル転移温度の中間温度を、この系のゾル−
ゲル転移温度とみなすことができる。As a system in which cohesive force is generated between molecules at low temperature,
For example, when a cohesive force based on a helix-coil transition is used, as in gelatin, the sol-gel transition behavior shows hysteresis, and the sol-gel transition temperature may not coincide between when the temperature rises and when the temperature falls. This is because the helix-coil transition is a kinetically long process. In this case, for convenience, the intermediate temperature between the sol-gel transition temperature at the time of temperature rise and the sol-gel transition temperature at the time of temperature decrease is determined by the sol-gel of this system.
It can be considered as the gel transition temperature.
【0051】(共重合体の結合様式 )本発明に使用可
能なハイドロゲル形成性の高分子における、その水溶液
が曇点を有する高分子(A)と親水性高分子(B)を結
合してなる共重合体の結合様式は、特に制限されない。
該結合様式としては、例えば、AとBのブロック共重合
体、あるいは主鎖Aに側鎖Bが結合したグラフト共重合
体、または主鎖Bに側鎖Aが結合したグラフト共重合体
などの様式が挙げられる。(Coupling Mode of Copolymer) Among the hydrogel-forming polymers usable in the present invention, the aqueous solution is obtained by bonding a polymer (A) having a cloud point and a hydrophilic polymer (B). The bonding mode of the resulting copolymer is not particularly limited.
Examples of the bonding mode include a block copolymer of A and B, a graft copolymer in which side chain B is bonded to main chain A, and a graft copolymer in which side chain A is bonded to main chain B. Style.
【0052】(共重合体の製造方法)曇点を有する高分
子と親水性高分子とのブロック共重合体は、例えば予め
両者に反応活性な官能基(水酸基、カルボキシル基、ア
ミノ基、イソシアネ−ト基など)を複数導入し、両者を
化学反応により結合させることによって得られる。(Production Method of Copolymer) A block copolymer of a polymer having a cloud point and a hydrophilic polymer may be prepared by, for example, preparing a functional group (hydroxyl group, carboxyl group, amino group, isocyanate group) which is reactive to both in advance. ), And a plurality of these groups are combined by a chemical reaction.
【0053】一般に、グラフト共重合体の合成法として
は、1)重合体の連鎖移動反応を利用する方法、2)幹
重合体に遊離基に分裂し得る官能基を導入し、そこから
重合を開始する方法、3)幹重合体からイオン重合を開
始せしめる方法などが知られている。本発明のグラフト
共重合体をこれらの方法によって得ることもできるが、
側鎖の重合度を制御するという観点からは、曇点を有す
る高分子鎖中に1個の重合性官能基を導入し、親水性高
分子を与える単量体と共重合させるか;あるいは親水性
高分子鎖中に1個の重合性官能基を導入し、曇点を有す
る高分子を与える単量体と共重合させて得ることが有利
である。In general, the methods for synthesizing the graft copolymer include 1) a method utilizing a chain transfer reaction of the polymer, and 2) introduction of a functional group which can be split into free radicals into the backbone polymer, from which polymerization is carried out. There are known a method of initiating, 3) a method of initiating ionic polymerization from a trunk polymer, and the like. Although the graft copolymer of the present invention can be obtained by these methods,
From the viewpoint of controlling the degree of polymerization of the side chain, one polymerizable functional group is introduced into a polymer chain having a cloud point and copolymerized with a monomer that gives a hydrophilic polymer; It is advantageous to introduce one polymerizable functional group into the polymer chain and copolymerize it with a monomer that gives a polymer having a cloud point.
【0054】(生理活性物質)生理活性物質とは、生物
の営む精妙な生命現象に、微量で関与し影響を与える有
機物質、無機イオンを総称する。本発明においては、分
子量が1,000以上、更には3,000以上(特に5,
000以上)の生理活性物質が好適に使用可能である。
該生理活性物質は、単一分子、または重合体のいずれで
あってもよい。必要に応じて、2種以上の生理活性物質
を用いてもよいが、このような態様においては、該2種
以上の生理活性物質のうち、少なくとも1種の分子量が
1,000以上であることが好ましい。(Physiologically Active Substances) The physiologically active substances are a general term for organic substances and inorganic ions which are involved in minute amounts and affect minute living phenomena operated by living organisms. In the present invention, the molecular weight is 1,000 or more, more preferably 3,000 or more (particularly,
000 or more) can be suitably used.
The bioactive substance may be a single molecule or a polymer. If necessary, two or more physiologically active substances may be used. In such an embodiment, at least one of the two or more physiologically active substances has a molecular weight of 1,000 or more. Is preferred.
【0055】本発明に使用可能な生理活性物質の一態様
たる生体高分子の具体例としては、例えば、コラ−ゲ
ン、ゼラチン、アルブミン、グロブリン、フィブリノ−
ゲン、インスリン、グルカゴンなどのタンパク質やペプ
チド類、デンプン、グリコ−ゲン、ヒアルロン酸、セル
ロ−ル、ヘパリンなどの多糖類、RNA、DNAなどの核酸が
挙げられる。Specific examples of the biopolymer which is one embodiment of the physiologically active substance usable in the present invention include, for example, collagen, gelatin, albumin, globulin and fibrino-protein.
Examples include proteins and peptides such as gene, insulin and glucagon, polysaccharides such as starch, glycogen, hyaluronic acid, cellulol and heparin, and nucleic acids such as RNA and DNA.
【0056】(生理活性物質の含有方法)上記の生理活
性物質を、熱可逆ハイドロゲル形成性組成物に含有させ
る方法は、特に制限されない。(Method of Containing Physiologically Active Substance) The method for incorporating the above-mentioned physiologically active substance into the thermoreversible hydrogel-forming composition is not particularly limited.
【0057】このような含有手法の最も簡便なものして
は、生理活性物質の水溶液または水分散液を、ハイドロ
ゲル形成性高分子の水溶液とそのゾル−ゲル転移温度よ
り低い温度で混合する方法が挙げられる。該混合の後、
混合系の温度をゾル−ゲル転移温度より高い温度に昇温
することにより、ハイドロゲル形成性高分子が疎水相互
作用によって形成される3次元網目構造中に生理活性物
質が取り込まれ保持される。ここで、生理活性物質の分
子量が1,000未満の場合、一旦網目構造中に保持さ
れた生理活性物質が上記3次元網目構造を容易にすり抜
けて拡散してしまう傾向が強まり、ハイドロゲルが生理
活性を長期間維持し難くなる。The simplest method of such a content is to mix an aqueous solution or aqueous dispersion of a physiologically active substance with an aqueous solution of a hydrogel-forming polymer at a temperature lower than its sol-gel transition temperature. Is mentioned. After the mixing,
By raising the temperature of the mixed system to a temperature higher than the sol-gel transition temperature, the physiologically active substance is taken in and held in the three-dimensional network structure in which the hydrogel-forming polymer is formed by the hydrophobic interaction. Here, when the molecular weight of the physiologically active substance is less than 1,000, the tendency that the physiologically active substance once retained in the network structure easily passes through the three-dimensional network structure and diffuses is increased, and the hydrogel is physiologically active. It becomes difficult to maintain the activity for a long time.
【0058】他方、上記した生理活性物質が分子量の大
きい高分子である場合には、該生理活性物質の水溶液相
と、ハイドロゲル形成性高分子の水溶液相が相分離を起
こし易くなり、両者を均一に混合することの困難性が高
くなりやすい。On the other hand, when the above-mentioned physiologically active substance is a polymer having a large molecular weight, the aqueous phase of the physiologically active substance and the aqueous phase of the hydrogel-forming polymer are liable to undergo phase separation. Difficulty of mixing uniformly tends to increase.
【0059】本発明者らは、鋭意研究の結果、生理活性
物質をハイドロゲル形成性高分子に結合させることが、
該生理活性物質を熱可逆ハイドロゲル形成性組成物に含
有させる点から、極めて効果的な方法であることを見い
出した。The present inventors have conducted intensive studies and found that a physiologically active substance can be bonded to a hydrogel-forming polymer.
It has been found that this is an extremely effective method in that the physiologically active substance is contained in the thermoreversible hydrogel-forming composition.
【0060】このように生理活性物質をハイドロゲル形
成性高分子に結合させる方法によれば、低分子量の生理
活性物質であってもハイドロゲルからの拡散、溶出とい
った問題を防止できる。しかあしながらこの場合、低分
子量の生理活性物質はハイドロゲル形成性高分子に結合
させることによって、その生理活性が損なわれることも
起こり得る。このような点からも、本発明で用いる生理
活性物質の分子量は1,000以上であることが好まし
い。この理由は、生理活性物質が高分子である場合、そ
の一部の官能基がハイドロゲル形成性高分子との結合に
使用されても、生理活性を発現する部位がその活性を維
持したまま残存する可能性が高くなるためと推定され
る。According to such a method of binding a physiologically active substance to a hydrogel-forming polymer, problems such as diffusion and elution from a hydrogel can be prevented even for a low-molecular-weight physiologically active substance. However, in this case, the bioactivity may be impaired by binding the low molecular weight bioactive substance to the hydrogel-forming polymer. From such a point, it is preferable that the molecular weight of the physiologically active substance used in the present invention is 1,000 or more. The reason is that, when the bioactive substance is a polymer, even if some of the functional groups are used for binding to the hydrogel-forming polymer, the site that expresses the bioactivity remains while maintaining that activity. This is presumed to be due to a high possibility of performing.
【0061】生理活性物質とハイドロゲル形成性高分子
の結合方法としては、共有結合による結合が最も強固で
あるので望ましい。他方、生理活性物質が高分子電解質
である場合には、ハイドロゲル形成性高分子に反対符号
の電荷を導入し、静電的な相互作用を介する高分子間コ
ンプレックスとして結合させても良い。例えば、生理活
性物質がヘパリンのようなポリアニオンである場合、ハ
イドロゲル形成性高分子中の曇点を有する高分子ブロッ
クまたは親水性高分子ブロックをポリカチオンとしてお
くことで、ポリイオンコンプレックスを形成させること
ができる。As a method for bonding the physiologically active substance and the hydrogel-forming polymer, covalent bonding is the strongest, and is therefore preferable. On the other hand, when the physiologically active substance is a polymer electrolyte, a charge having an opposite sign may be introduced into the hydrogel-forming polymer, and the hydrogel-forming polymer may be bound as an interpolymer complex via electrostatic interaction. For example, when the physiologically active substance is a polyanion such as heparin, forming a polyion complex by setting a polymer block having a cloud point or a hydrophilic polymer block in the hydrogel-forming polymer as a polycation. Can be.
【0062】生理活性物質をハイドロゲル形成性高分子
に共有結合させる方法としては、例えば、生理活性物質
中の官能基と結合反応しうる反応活性な官能基を、ハイ
ドロゲル形成性高分子中の曇点を有する高分子ブロック
または親水性高分子ブロック中に導入し、両者を結合反
応させる方法がある。また、生理活性物質中に重合性官
能基(例えばアクリロイル基)を導入しておき、ハイド
ロゲル形成性高分子を与える単量体と共重合させても良
い。更には、生理活性物質とハイドロゲル形成性高分子
の混合物(望ましくは混合水溶液)に放射線を照射し
て、両分子間に架橋構造を導入することもできる。As a method of covalently binding a physiologically active substance to a hydrogel-forming polymer, for example, a reactive functional group capable of binding with a functional group in the physiologically active substance is added to the hydrogel-forming polymer. There is a method in which a polymer is introduced into a polymer block having a cloud point or a hydrophilic polymer block, and both are bonded to each other. Alternatively, a polymerizable functional group (for example, an acryloyl group) may be introduced into the physiologically active substance, and copolymerized with a monomer that gives a hydrogel-forming polymer. Furthermore, a mixture of a physiologically active substance and a hydrogel-forming polymer (preferably, a mixed aqueous solution) can be irradiated with radiation to introduce a crosslinked structure between the two molecules.
【0063】(生理活性物質の含有量)生理活性物質の
含有量(ないし導入率)は、ハイドロゲルが生理活性機
能を発現でき、熱可逆的なゾル−ゲル転移挙動が損なわ
れない範囲であれば特に制限はない。通常、生理活性を
十分発揮できハイドロゲルの物性に重大な影響を及ぼさ
ない範囲として、含有される生理活性物質の重量をC、
ハイドロゲル形成性高分子の重量をDとした場合、生理
活性物質の重量Aは、該生理活性物質を含めたハイドロ
ゲル形成性高分子全体(C+D)との比C/(C+D)
で0.1〜70wt%、更には0.5〜10wt%(特に
1〜5wt%)の範囲であることが好ましい。(Content of Physiologically Active Substance) The content (or introduction rate) of the physiologically active substance is within a range in which the hydrogel can exhibit a physiologically active function and the thermoreversible sol-gel transition behavior is not impaired. There are no particular restrictions. Usually, the weight of the contained physiologically active substance is defined as C, as a range in which the physiological activity can be sufficiently exhibited and the physical properties of the hydrogel are not significantly affected.
Assuming that the weight of the hydrogel-forming polymer is D, the weight A of the physiologically active substance is the ratio C / (C + D) to the entire hydrogel-forming polymer including the physiologically active substance (C + D).
Is preferably in the range of 0.1 to 70 wt%, more preferably 0.5 to 10 wt% (particularly 1 to 5 wt%).
【0064】(生理活性物質の保持性)本発明の熱可逆
ハイドロゲル形成性組成物は、前述したように第1のゾ
ル−ゲル転移温度より高い温度で実質的に水不溶性のハ
イドロゲル状態となるが、この水不溶性のハイドロゲル
状態において、該ゲルの前記生理活性物質の初期含有量
を(A)とし、該ゲルを大過剰の水中に浸漬した後の該
生理活性物質の含有量を(B)とした際に、これら含有
量の比(B/A)が80%以上であることが好ましい。
生理活性をより長期間維持するという点からは、この含
有量の比(B/A)は、90%以上、更には95%以下
であることが好ましい。(Retention of Physiologically Active Substance) As described above, the thermoreversible hydrogel-forming composition of the present invention exhibits a hydrogel state substantially insoluble in water at a temperature higher than the first sol-gel transition temperature. In this water-insoluble hydrogel state, the initial content of the bioactive substance in the gel is defined as (A), and the content of the bioactive substance after immersing the gel in a large excess of water is defined as (A). In the case of B), the content ratio (B / A) is preferably 80% or more.
From the viewpoint of maintaining the physiological activity for a longer period, the content ratio (B / A) is preferably 90% or more, and more preferably 95% or less.
【0065】上記初期含有量(A)および浸漬後の含有
量(B)は、以下の方法で好適に測定可能である。The initial content (A) and the content after immersion (B) can be suitably measured by the following method.
【0066】<生理活性物質含有量の測定方法>初期含
有量(A)の生理活性物質を含有する熱可逆ハイドロゲ
ル形成性組成物1.5gを第1のゾル−ゲル転移温度よ
り低い温度でゾル状態とし、直径35mmのプラスチッ
ク製シャーレ中に注入し、該ゾル−ゲル転移温度より高
い温度でゲル化させ、該ゾル−ゲル転移温度より5℃高
い温度の蒸留水250mlに該ゲルを含むシャーレを浸
漬する。そのまま該ゾル−ゲル転移温度より5℃高い温
度で1時間静置した後、水中から上記ゲルを含むシャー
レを取り出し、余剰の水分を除去した後、該ゲル中の該
生理活性物質の含有量(B)を測定する。生理活性物質
含有量は、該生理活性物質の生理活性を生物学的あるい
は生化学的手法(例えば、細胞増殖機能、細胞分化機
能、酵素活性など)により定量しても良いし、物理化学
的あるいは分光学的な手法(例えば、元素分析、IR、
NMR、紫外可視吸光分析、液体クロマトグラフィーな
ど)を用いて適宜、定量することができる。このような
生物学的、生化学的、物理化学的ないしは分光学的な手
法の詳細に関しては、文献(例えば、実験生物学講座、
1〜17巻、1982年〜1985年、丸善(株))を参照する
ことができる。<Method of Measuring Content of Physiologically Active Substance> 1.5 g of a thermoreversible hydrogel-forming composition containing a physiologically active substance having an initial content (A) was prepared at a temperature lower than the first sol-gel transition temperature. A sol state is poured into a plastic petri dish having a diameter of 35 mm, gelled at a temperature higher than the sol-gel transition temperature, and a petri dish containing the gel in 250 ml of distilled water at a temperature 5 ° C. higher than the sol-gel transition temperature. Immerse. After allowing to stand still at a temperature 5 ° C. higher than the sol-gel transition temperature for 1 hour, taking out a petri dish containing the gel from water and removing excess water, the content of the physiologically active substance in the gel ( Measure B). The content of the physiologically active substance may be determined by quantifying the physiological activity of the physiologically active substance by a biological or biochemical method (for example, cell growth function, cell differentiation function, enzyme activity, etc.), Spectroscopic techniques (eg, elemental analysis, IR,
NMR, ultraviolet-visible absorption analysis, liquid chromatography, etc.). For details of such biological, biochemical, physicochemical or spectroscopic methods, see the literature (eg, Laboratory for Experimental Biology,
1-17, 1982-1985, Maruzen Co., Ltd.).
【0067】以下に実施例を示し、本発明を具体的に説
明するが、本発明は以下の実施例によって限定されるも
のではない。The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to the following examples.
【0068】[0068]
【実施例】実施例1 ゼラチン(ウシ骨製、和光純薬(株))1gを蒸留水9
gに37℃で溶解し、N−アクリロイルスクシンイミド
(国産化学(株))17mgを加えて37℃で4日間反
応させることにより、ゼラチンに重合性基を導入してな
る重合性ゼラチンの水溶液を得た。 EXAMPLE 1 1 g of gelatin (bovine bone, Wako Pure Chemical Industries, Ltd.) was added to distilled water 9
g at 37 ° C., and 17 mg of N-acryloyl succinimide (Kokusan Chemical Co., Ltd.) was added and reacted at 37 ° C. for 4 days to obtain an aqueous solution of polymerizable gelatin having a polymerizable group introduced into gelatin. Was.
【0069】N−イソプロピルアクリルアミド2.0g
を蒸留水390gに溶解して得られた水溶液に、上記で
得た重合性ゼラチン水溶液を加え、窒素気流下70℃に
加熱して、10wt%過硫酸アンモニウム(APS)水
溶液1mL及びN,N,N’,N’−テトラメチルエチ
レンジアミン(TEMED)0.1mLを加えた。窒素
気流下27℃に保持したまま、4時間重合させた。2.0 g of N-isopropylacrylamide
Was dissolved in 390 g of distilled water, the aqueous polymerizable gelatin solution obtained above was added to an aqueous solution obtained above, and the mixture was heated to 70 ° C. under a nitrogen stream, and 1 mL of a 10 wt% ammonium persulfate (APS) aqueous solution and N, N, N 0.1 mL of ', N'-tetramethylethylenediamine (TEMED) was added. The polymerization was carried out for 4 hours while maintaining the temperature at 27 ° C. under a nitrogen stream.
【0070】上記反応後の反応液に、室温で蒸留水1.
5Lを加え、該水溶液を室温(27℃)で限外濾過膜
(HP−01、アミコン社製)を用いて300mLまで濃
縮した。該濃縮液に蒸留水1.5Lを加えて希釈し、再
度300mLまで限外濾過濃縮を行った。この希釈、濃
縮操作を更に4回(合計5回)繰り返し、未反応物及び
低分子量物を除去した。The reaction solution after the above reaction was mixed with distilled water 1.
5 L was added, and the aqueous solution was concentrated to 300 mL at room temperature (27 ° C.) using an ultrafiltration membrane (HP-01, manufactured by Amicon). The concentrated solution was diluted by adding 1.5 L of distilled water, and ultrafiltration was performed again to 300 mL. This dilution and concentration operation was further repeated four times (total five times) to remove unreacted substances and low molecular weight substances.
【0071】上記により最終濃縮液を凍結乾燥すること
により、ゼラチンを結合したハイドロゲル形成性高分子
1.74gを得た。元素分析(C、H、およびN)によ
りハイドロゲル形成性高分子中のゼラチン含有量を求め
たところ、43wt%であった。By freeze-drying the final concentrate as described above, 1.74 g of a gelatin-bound hydrogel-forming polymer was obtained. When the gelatin content in the hydrogel-forming polymer was determined by elemental analysis (C, H, and N), it was 43 wt%.
【0072】得られたゼラチン結合ハイドロゲル形成性
高分子0.50gに蒸留水を加えて全体を10gとし、
室温(27℃)下で溶解して濃度5wt%の均一水溶液
とした。この水溶液の動的粘弾性挙動をストレス制御式
レオメ−タ−(Carri−Med社製、CSL−500)により
観測したところ、1℃/分の速度で加温すると35℃で
貯蔵弾性率G’が損失弾性率G”を上回ってハイドロゲ
ルとなった(第1のゾル−ゲル転移温度=35℃)。更
に、該ハイドロゲルを45℃まで加温した後に、1℃/
分の速度で冷却すると、35℃でゾルとなった(ゾル−
ゲル転移温度=35℃)。更に該ゾルを1℃/分の速度
で冷却すると、14℃でゲル化した(降温時ゾル−ゲル
転移温度=14℃)。更に5℃まで冷却した後、1℃/
分の速度で加温すると、28℃でゾルとなった(昇温時
ゾル−ゲル転移温度=28℃)。従って第2のゾル−ゲ
ル転移温度は21℃であった(14℃と28℃の中間温
度として)。Distilled water was added to 0.50 g of the resulting gelatin-bound hydrogel-forming polymer to make the whole 10 g,
It was dissolved at room temperature (27 ° C.) to obtain a homogeneous aqueous solution having a concentration of 5 wt%. The dynamic viscoelastic behavior of this aqueous solution was observed with a stress-controlling rheometer (CSL-500, manufactured by Carri-Med), and when heated at a rate of 1 ° C./min, the storage modulus G ′ at 35 ° C. Became a hydrogel exceeding the loss elastic modulus G ″ (first sol-gel transition temperature = 35 ° C.). After the hydrogel was heated to 45 ° C., 1 ° C. /
When cooled at a rate of minutes, it became a sol at 35 ° C (sol-
Gel transition temperature = 35 ° C). When the sol was further cooled at a rate of 1 ° C./min, it gelled at 14 ° C. (sol-gel transition temperature at the time of cooling = 14 ° C.). After further cooling to 5 ° C, 1 ° C /
Heating at a rate of minutes resulted in a sol at 28 ° C. (sol-gel transition temperature at elevated temperature = 28 ° C.). Thus, the second sol-gel transition temperature was 21 ° C (as an intermediate temperature between 14 ° C and 28 ° C).
【0073】実施例2 ゼラチン(ウシ骨製、和光純薬(株))1gを蒸留水9
gに37℃で溶解し、N−アクリロイルスクシンイミド
(国産化学(株))17mgを加えて37℃で4日間反
応させ、ゼラチンに重合性基を導入して、重合性ゼラチ
ンの水溶液を得た。 Example 2 1 g of gelatin (manufactured by bovine bone, Wako Pure Chemical Industries, Ltd.) was mixed with distilled water 9
g was dissolved at 37 ° C., and 17 mg of N-acryloylsuccinimide (Kokusan Chemical Co., Ltd.) was added and reacted at 37 ° C. for 4 days to introduce a polymerizable group into gelatin to obtain an aqueous solution of polymerizable gelatin.
【0074】N−イソプロピルアクリルアミド14.8
g及びn−ブチルメタクリレ−ト0.76gをエタノ−
ル135.7gに溶解し、ポリエチレングリコ−ルジメ
タクリレ−ト(PDE−6000、日本油脂(株))6.
2gを蒸留水89.2gに溶解した水溶液、及び上記の
重合性ゼラチンの水溶液10gを加え、窒素気流下70
℃に加熱して10wt%過硫酸アンモニウム(APS)
水溶液1mL及びN,N,N’,N’−テトラメチルエ
チレンジアミン(TEMED)0.1mLを加えた。窒
素気流下70℃に保持したまま、上記APS水溶液及び
TEMEDの添加を30分おきに5回繰り返し、重合さ
せた。反応液を室温まで冷却し、4℃の蒸留水3Lに撹
拌下で混合し、反応物を溶解させた。該水溶液を4℃で
限外濾過膜(HP−01、アミコン社製)を用いて300
mLまで濃縮した。濃縮液に蒸留水3Lを加えて希釈、
再度4℃で300mLまで限外濾過濃縮を行った。この
希釈、濃縮操作を更に4回(合計5回)繰り返し、未反
応物及び低分子量物を除去した。N-isopropylacrylamide 14.8
g and n-butyl methacrylate 0.76 g in ethanol
5.5.7 g of polyethylene glycol dimethacrylate (PDE-6000, NOF Corporation).
An aqueous solution obtained by dissolving 2 g in 89.2 g of distilled water and 10 g of an aqueous solution of the above-mentioned polymerizable gelatin were added thereto.
10% by weight ammonium persulfate (APS)
1 mL of an aqueous solution and 0.1 mL of N, N, N ', N'-tetramethylethylenediamine (TEMED) were added. While maintaining the temperature at 70 ° C. under a nitrogen stream, the addition of the above-mentioned APS aqueous solution and TEMED was repeated 5 times every 30 minutes to carry out polymerization. The reaction solution was cooled to room temperature and mixed with 3 L of distilled water at 4 ° C. with stirring to dissolve the reaction product. The aqueous solution was treated with an ultrafiltration membrane (HP-01, manufactured by Amicon) at 4 ° C. for 300 minutes.
Concentrated to mL. Dilute the concentrate with 3 L of distilled water,
Ultrafiltration and concentration were performed again at 4 ° C to 300 mL. This dilution and concentration operation was further repeated four times (total five times) to remove unreacted substances and low molecular weight substances.
【0075】得られた最終濃縮液を凍結乾燥して、ゼラ
チンを結合した熱可逆ハイドロゲル形成性組成物形成性
高分子13.8gを得た。得られたゼラチン結合熱可逆
ハイドロゲル形成性組成物形成性高分子0.75gに蒸
留水を加えて全体を10gとし、冷却下(4℃)で溶解
して濃度7.5wt%の均一水溶液とした。この水溶液
を加温すると室温でハイドロゲルとなり、動的粘弾性の
測定によりゾル−ゲル転移温度を求めると、昇温時およ
び降温時ともに15℃であった。該水溶液は0℃以上1
5℃より低い温度では常に液状であって、ゲル化するこ
とはなかった。The obtained final concentrate was freeze-dried to obtain 13.8 g of a thermoreversible hydrogel-forming composition-forming polymer having gelatin bonded thereto. Distilled water was added to 0.75 g of the resulting gelatin-bonded thermoreversible hydrogel-forming composition-forming polymer to make a total of 10 g, which was dissolved under cooling (4 ° C.) to give a uniform aqueous solution having a concentration of 7.5 wt%. did. When this aqueous solution was heated, a hydrogel was formed at room temperature, and the sol-gel transition temperature was determined by measuring dynamic viscoelasticity. The aqueous solution should be at
At a temperature lower than 5 ° C., it was always liquid and did not gel.
【0076】比較例 N−イソプロピルアクリルアミド14.8g及びn−ブ
チルメタクリレ−ト0.76gをエタノ−ル135.7
gに溶解して得られた溶液に、ポリエチレングリコ−ル
ジメタクリレ−ト(PDE−6000、日本油脂(株))
6.2gを蒸留水89.2gに溶解した水溶液を加え、
窒素気流下70℃に加熱して、10wt%過硫酸アンモ
ニウム(APS)水溶液1mL及びN,N,N’,N’
−テトラメチルエチレンジアミン(TEMED)0.1
mLを加えた。 Comparative Example 14.8 g of N-isopropylacrylamide and 0.76 g of n-butyl methacrylate were added to 135.7 of ethanol.
g of polyethylene glycol dimethacrylate (PDE-6000, NOF Corporation)
An aqueous solution obtained by dissolving 6.2 g in 89.2 g of distilled water is added,
The mixture was heated to 70 ° C. under a nitrogen stream, and 1 mL of a 10 wt% ammonium persulfate (APS) aqueous solution and N, N, N ′, N ′
-Tetramethylethylenediamine (TEMED) 0.1
mL was added.
【0077】窒素気流下70℃に保持したまま、上記A
PS水溶液及びTEMEDの添加を30分おきに5回繰
り返し、重合させた。反応液を室温まで冷却し、4℃の
蒸留水3Lに撹拌下で混合し、反応物を溶解させた。該
水溶液を4℃で限外濾過膜(HP−01、アミコン社製)
を用いて300mLまで濃縮した。濃縮液に蒸留水3L
を加えて希釈、再度4℃で300mLまで限外濾過濃縮
を行った。この希釈、濃縮操作を更に4回(合計5回)
繰り返し、未反応物及び低分子量物を除去した。最終濃
縮液を凍結乾燥して、熱可逆ハイドロゲル形成性組成物
形成性高分子13.8gを得た。While maintaining the temperature at 70 ° C. in a nitrogen stream, the above A
The addition of the PS aqueous solution and TEMED was repeated 5 times every 30 minutes to polymerize. The reaction solution was cooled to room temperature and mixed with 3 L of distilled water at 4 ° C. with stirring to dissolve the reaction product. The aqueous solution is subjected to an ultrafiltration membrane (HP-01, manufactured by Amicon) at 4 ° C.
And concentrated to 300 mL. 3 L of distilled water in the concentrate
For ultrafiltration again at 4 ° C. to 300 mL. This dilution and concentration operation is performed 4 more times (5 times in total).
Unreacted substances and low molecular weight substances were repeatedly removed. The final concentrate was freeze-dried to obtain 13.8 g of a thermoreversible hydrogel-forming composition-forming polymer.
【0078】得られた熱可逆ハイドロゲル形成性組成物
形成性高分子0.75gに蒸留水を加えて全体を10g
とし、冷却下(4℃)で溶解して濃度7.5wt%の均
一水溶液とした。この水溶液を加温すると室温でハイド
ロゲルとなり、動的粘弾性の測定によりゾル−ゲル転移
温度を求めると、昇温時および降温時ともに15℃であ
った。該水溶液は0℃以上15℃より低い温度では常に
液状で、ゲル化することはなかった。Distilled water was added to 0.75 g of the resulting thermoreversible hydrogel-forming composition-forming polymer to give a total of 10 g.
And dissolved under cooling (4 ° C.) to obtain a uniform aqueous solution having a concentration of 7.5 wt%. When this aqueous solution was heated, a hydrogel was formed at room temperature, and the sol-gel transition temperature was determined by measuring dynamic viscoelasticity. The aqueous solution was always liquid at a temperature of 0 ° C. or higher and lower than 15 ° C., and did not gel.
【0079】実施例3 実施例2および比較例で得られたハイドロゲル形成性高
分子をエチレンオキサイドガス滅菌(エチレンオキサイ
ドガス濃度:20%、温度:55℃、4時間)した後、
それぞれのハイドロゲル形成性高分子を、冷却下(4
℃)で10%ウシ胎仔血清含有RPMI1640培地(ギブ
コ社製)に溶解して、濃度7.5wt%の均一水溶液と
した。 Example 3 The hydrogel-forming polymers obtained in Example 2 and Comparative Example were sterilized with ethylene oxide gas (ethylene oxide gas concentration: 20%, temperature: 55 ° C., 4 hours).
Each hydrogel-forming polymer was cooled (4
C.) and dissolved in RPMI1640 medium (manufactured by Gibco) containing 10% fetal bovine serum to obtain a uniform aqueous solution having a concentration of 7.5 wt%.
【0080】上記のより得られた培地(2種類)のそれ
ぞれに、正常ヒト肺由来繊維芽細胞(商品名:NHL
F、宝酒造(株)社製)を冷却下(4℃)で分散させ
(細胞濃度2×104個/mL)、37℃に昇温してゲ
ル化させた。5%炭酸ガス培養器中で37℃、3日間培
養したところ、実施例2のハイドロゲル形成性高分子を
用いた場合には繊維芽細胞の増殖が認められたのに対
し、比較例のハイドロゲル形成性高分子を用いた場合に
は、繊維芽細胞の増殖が認められなかった。該増殖の有
無は、光学顕微鏡観察およびSDI法(コハク酸脱水素酵
素活性測定法)により判定した。ここで用いた光学顕微
鏡観察およびSDI法の詳細については、文献(例えば、
実験生物学講座、1〜17巻、1982年〜1985年、丸善
(株))を参照することができる。In each of the media (two types) obtained above, normal human lung-derived fibroblasts (trade name: NHL)
F, manufactured by Takara Shuzo Co., Ltd.) was dispersed under cooling (4 ° C.) (cell concentration: 2 × 10 4 cells / mL), and the temperature was raised to 37 ° C. to gel. When cultured in a 5% carbon dioxide incubator at 37 ° C. for 3 days, when the hydrogel-forming polymer of Example 2 was used, fibroblast proliferation was observed. When the gel-forming polymer was used, fibroblast proliferation was not observed. The presence or absence of the proliferation was determined by observation with an optical microscope and SDI method (succinate dehydrogenase activity measuring method). For details on the optical microscope observation and SDI method used here, refer to the literature (for example,
Experimental Biology Course, Vol. 1-17, 1982-1985, Maruzen Co., Ltd.).
【0081】実施例4 実施例2および比較例で得られたハイドロゲル形成性高
分子をエチレンオキサイドガス滅菌し、冷却下(4℃)
で、それぞれ10%ウシ胎仔血清含有RPMI1640培地(ギ
ブコ社製)に溶解して濃度10wt%の均一水溶液とし
た。 Example 4 The hydrogel-forming polymers obtained in Example 2 and Comparative Example were sterilized with ethylene oxide gas and cooled (4 ° C.)
Then, each was dissolved in RPMI1640 medium (manufactured by Gibco) containing 10% fetal bovine serum to obtain a uniform aqueous solution having a concentration of 10 wt%.
【0082】この培地0.1mLにC3H/Heマウス
のランゲルハンス島(ラ氏島)細胞100個を冷却下
(4℃)で分散させ、37℃に昇温してゲル化させた。
ラ氏島含有ハイドロゲルに10%ウシ胎仔血清含有RPMI
1640培地3mLを加え、5%炭酸ガス培養器中37℃で
30日間培養し、2日ごとに替えた培養液中のインスリ
ン濃度を測定した。実施例2のハイドロゲル形成性高分
子を用いた場合はインスリン濃度が培養初期に5.8m
U/mL、30日後に5.6mU/mLと高値を維持し
た(すなわち、ラ氏島細胞は、その活性を維持した)。
他方、比較例のハイドロゲル形成性高分子を用いた場合
には、インスリン濃度が培養初期に3.5mU/mL、
30日後に1.0mU/mLと低値で推移した。In 0.1 mL of this medium, 100 C3H / He mouse islets of Langerhans (La Islet) cells were dispersed under cooling (4 ° C.), and the temperature was raised to 37 ° C. to gel.
RPMI containing 10% fetal bovine serum in hydrogel containing Lajishima
3 mL of 1640 medium was added, the cells were cultured in a 5% carbon dioxide incubator at 37 ° C. for 30 days, and the insulin concentration in the culture solution changed every two days was measured. When the hydrogel-forming polymer of Example 2 was used, the insulin concentration was 5.8 m in the early stage of the culture.
U / mL, maintained a high value of 5.6 mU / mL after 30 days (that is, Lajit cell maintained its activity).
On the other hand, when the hydrogel-forming polymer of the comparative example was used, the insulin concentration was 3.5 mU / mL in the early stage of the culture,
After 30 days, the value changed to a low value of 1.0 mU / mL.
【0083】上記により、細胞接着因子を有するゼラチ
ンを熱可逆ハイドロゲル形成性組成物に含有させること
で、細胞組織(ラ氏島)のインスリン分泌能を長期間に
渡ってハイドロゲル中で発現、維持させうることが明ら
かとなった。As described above, by including gelatin having a cell adhesion factor in a thermoreversible hydrogel-forming composition, the insulin secretion ability of cell tissues (Lajishima) is expressed in the hydrogel for a long period of time. It became clear that it could be maintained.
【0084】[0084]
【発明の効果】上述したように本発明によれば、ハイド
ロゲル形成性高分子と、水と、生理活性物質とを少なく
とも含み;ゾル−ゲル転移温度(第1のゾル−ゲル転移
温度)が5℃以上40℃以下であり、該ゾル−ゲル転移
温度より高い温度で実質的に水不溶性のハイドロゲル状
態となり、且つ、該ゾル−ゲル転移温度より低い温度で
可逆的に水可溶性を示す熱可逆ハイドロゲル形成性組成
物であって;且つ、前記水不溶性のハイドロゲル状態に
おいて、該ゲル中の前記生理活性物質の初期含有量
(A)と、大過剰の水中に浸漬した後の該ゲル中の生理
活性物質の含有量(B)との比(B/A)が80%以上
であることを特徴とする熱可逆ハイドロゲル形成性組成
物が提供される。As described above, according to the present invention, the sol-gel transition temperature (first sol-gel transition temperature) contains at least a hydrogel-forming polymer, water and a physiologically active substance. 5 ° C. or higher and 40 ° C. or lower, a heat-insoluble hydrogel state at a temperature higher than the sol-gel transition temperature, and reversibly water-soluble at a temperature lower than the sol-gel transition temperature. A reversible hydrogel-forming composition; and in the water-insoluble hydrogel state, the initial content (A) of the bioactive substance in the gel, and the gel after being immersed in a large excess of water. A thermoreversible hydrogel-forming composition, wherein the ratio (B / A) to the content (B) of the physiologically active substance in the composition is 80% or more.
【0085】本発明によれば、更に、ハイドロゲル形成
性高分子と、水と、生理活性物質とを少なくとも含み;
且つ、少なくとも第1および第2のゾル−ゲル転移温度
を有することを特徴とする熱可逆ハイドロゲル形成性組
成物が提供される。According to the present invention, the composition further comprises at least a hydrogel-forming polymer, water and a physiologically active substance;
Further, there is provided a thermoreversible hydrogel-forming composition having at least first and second sol-gel transition temperatures.
【0086】本発明の熱可逆ハイドロゲル形成性組成物
を用いれば、従来の昇温時ゲル化タイプ熱可逆ハイドロ
ゲル形成性組成物に様々な生理活性機能(例えば、生体
適合性、細胞接着性、細胞増殖能促進、細胞分化能促進
などの機能)を付加することが可能となる。したがっ
て、これらの生理活性機能を利用する用途、例えば、細
胞(組織)培養器材、創傷被覆材、生体接着剤、DDS
用基材、塞栓剤、関節易滑剤などとして、特に制限なく
利用することが可能である。When the thermoreversible hydrogel-forming composition of the present invention is used, various physiologically active functions (eg, biocompatibility, cell adhesion, etc.) can be added to the conventional gelled thermoreversible hydrogel-forming composition at elevated temperature. , Cell proliferation ability, cell differentiation ability, etc.). Therefore, applications utilizing these physiologically active functions, for example, cell (tissue) culture equipment, wound dressing, bioadhesive, DDS
It can be used without particular limitation as a base material for use, an embolic agent, a joint lubricating agent, and the like.
【0087】また本発明の熱可逆ハイドロゲル形成性組
成物には、従来の昇温時ゲル化タイプ熱可逆ハイドロゲ
ル形成性組成物に、降温時ゲル化タイプの特性を付与す
ることも可能であるため、上記のような生化学ないし医
学領域に革新的な製品をもたらすことも可能となる。Further, the thermoreversible hydrogel-forming composition of the present invention can be provided with a gelling property at the time of cooling to the conventional gelling type thermoreversible hydrogel-forming composition at the time of heating. Therefore, it is possible to bring innovative products to the biochemistry or medical fields as described above.
Claims (7)
理活性物質とを少なくとも含み;ゾル−ゲル転移温度
(第1のゾル−ゲル転移温度)が5℃以上40℃以下で
あり、該ゾル−ゲル転移温度より高い温度で実質的に水
不溶性のハイドロゲル状態となり、且つ、該ゾル−ゲル
転移温度より低い温度で可逆的に水可溶性を示す熱可逆
ハイドロゲル形成性組成物であって;且つ、 前記水不溶性のハイドロゲル状態において、該ゲル中の
前記生理活性物質の初期含有量(A)と、大過剰の水中
に浸漬した後の該ゲル中の生理活性物質の含有量(B)
との比(B/A)が80%以上であることを特徴とする
熱可逆ハイドロゲル形成性組成物。1. A sol-gel transition temperature (first sol-gel transition temperature) of at least 5 ° C. and not more than 40 ° C., comprising at least a hydrogel-forming polymer, water and a physiologically active substance. A thermoreversible hydrogel-forming composition which becomes a substantially water-insoluble hydrogel state at a temperature higher than the sol-gel transition temperature, and which is reversibly water-soluble at a temperature lower than the sol-gel transition temperature. And in the water-insoluble hydrogel state, the initial content (A) of the bioactive substance in the gel, and the content (B) of the bioactive substance in the gel after immersion in a large excess of water. )
A thermoreversible hydrogel-forming composition having a ratio (B / A) of at least 80%.
以上である請求項1記載の熱可逆ハイドロゲル形成性組
成物。2. The biologically active substance having a molecular weight of 1,000.
The thermoreversible hydrogel-forming composition according to claim 1, which is the above.
形成性高分子に結合されている請求項1記載の熱可逆ハ
イドロゲル形成性組成物。3. The thermoreversible hydrogel-forming composition according to claim 1, wherein the physiologically active substance is bound to the hydrogel-forming polymer.
求項1ないし3のいずれかに記載の熱可逆ハイドロゲル
形成性組成物。4. The thermoreversible hydrogel-forming composition according to claim 1, wherein the physiologically active substance is a biopolymer.
の領域であって、且つ0℃以上37℃以下の領域に第2
のゾル−ゲル転移温度を有し、 該第2のゾル−ゲル転移温度より低い温度でゲル状態と
なり、且つ、 該第2のゾル−ゲル転移温度より高く、且つ前記第1の
ゾル−ゲル転移温度より低い温度でゾル状態となる請求
項1記載の熱可逆ハイドロゲル形成性組成物。5. The method according to claim 1, wherein the second sol-gel transition temperature is lower than the first sol-gel transition temperature and the second sol-gel transition temperature is not lower than 0 ° C. and not higher than 37 ° C.
A gel state at a temperature lower than the second sol-gel transition temperature, and higher than the second sol-gel transition temperature, and the first sol-gel transition The thermoreversible hydrogel-forming composition according to claim 1, which is in a sol state at a temperature lower than the temperature.
理活性物質とを少なくとも含み;且つ、 少なくとも第1のゾル−ゲル転移温度、および該第1の
ゾル−ゲル転移温度より低い第2のゾル−ゲル転移温度
を有することを特徴とする熱可逆ハイドロゲル形成性組
成物。6. At least a hydrogel-forming polymer, water and a physiologically active substance; and at least a first sol-gel transition temperature and a second sol-gel transition temperature lower than the first sol-gel transition temperature. A thermoreversible hydrogel-forming composition having a sol-gel transition temperature of
温度で実質的に水不溶性のハイドロゲル状態となり、該
ゾル−ゲル転移温度より低い温度で可逆的に水可溶性を
示し;前記第2のゾル−ゲル転移温度より低い温度でゲ
ル状態となり;且つ、 該第2のゾル−ゲル転移温度より高く、且つ前記第1の
ゾル−ゲル転移温度より低い温度領域でゾル状態となる
請求項6記載の熱可逆ハイドロゲル形成性組成物。7. A substantially water-insoluble hydrogel state at a temperature higher than the first sol-gel transition temperature, and reversibly water-soluble at a temperature lower than the sol-gel transition temperature; 7. A gel state at a temperature lower than the sol-gel transition temperature of; and a sol state at a temperature range higher than the second sol-gel transition temperature and lower than the first sol-gel transition temperature. The thermoreversible hydrogel-forming composition according to the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9347922A JPH11169703A (en) | 1997-12-17 | 1997-12-17 | Thermally reversible hydrogel forming composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9347922A JPH11169703A (en) | 1997-12-17 | 1997-12-17 | Thermally reversible hydrogel forming composition |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11169703A true JPH11169703A (en) | 1999-06-29 |
Family
ID=18393531
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9347922A Pending JPH11169703A (en) | 1997-12-17 | 1997-12-17 | Thermally reversible hydrogel forming composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11169703A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001030411A1 (en) * | 1999-10-26 | 2001-05-03 | Kaken Pharmaceutical Co., Ltd. | Vessel embolic material comprising hydrogel and therapy with the use thereof |
WO2001070022A1 (en) * | 2000-03-21 | 2001-09-27 | Yuichi Mori | Coating materials for biological tissues, coated biological tissues and method of coating biological tissues |
WO2001090252A1 (en) * | 2000-05-22 | 2001-11-29 | Yuichi Mori | Gelling composition |
WO2003006081A1 (en) * | 2001-07-13 | 2003-01-23 | Mebiol Inc. | Material for tissue/organ regeneration and method of tissue/organ regeneration |
WO2004076610A1 (en) * | 2003-02-26 | 2004-09-10 | Japan Science And Technology Agency | Apparatus and method for machining microchamber for cell culture |
WO2004096309A1 (en) * | 2003-05-02 | 2004-11-11 | Rimon Therapeutics Ltd. | Thermally reversible implant |
JP2006288251A (en) * | 2005-04-08 | 2006-10-26 | Kawamura Inst Of Chem Res | Cell culture substrate and method for culturing cell |
JP2006525093A (en) * | 2003-04-30 | 2006-11-09 | ドゥレクセル ユニヴァーシティ | Thermally gelled polymer blends for biomaterial applications |
US7160931B2 (en) | 2000-03-15 | 2007-01-09 | Yu-Ling Cheng | Thermally reversible implant and filler |
US7456275B2 (en) | 2002-04-18 | 2008-11-25 | Chugai Seiyaku Kabushiki Kaisya | Hyaluronic acid modification product |
US20220229050A1 (en) * | 2019-05-30 | 2022-07-21 | Beckman Coulter, Inc. | Methods and systems for immobilizing a biological specimen for microscopic imaging |
-
1997
- 1997-12-17 JP JP9347922A patent/JPH11169703A/en active Pending
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001030411A1 (en) * | 1999-10-26 | 2001-05-03 | Kaken Pharmaceutical Co., Ltd. | Vessel embolic material comprising hydrogel and therapy with the use thereof |
JP4856339B2 (en) * | 1999-10-26 | 2012-01-18 | 泰彦 田畑 | Vascular embolization material comprising hydrogel and treatment method using the same |
US7476648B1 (en) | 1999-10-26 | 2009-01-13 | Kaken Pharmaceutical Company, Ltd. | Vessel embolic material comprising hydrogel and therapy with the use thereof |
US7160931B2 (en) | 2000-03-15 | 2007-01-09 | Yu-Ling Cheng | Thermally reversible implant and filler |
WO2001070022A1 (en) * | 2000-03-21 | 2001-09-27 | Yuichi Mori | Coating materials for biological tissues, coated biological tissues and method of coating biological tissues |
WO2001090252A1 (en) * | 2000-05-22 | 2001-11-29 | Yuichi Mori | Gelling composition |
WO2003006081A1 (en) * | 2001-07-13 | 2003-01-23 | Mebiol Inc. | Material for tissue/organ regeneration and method of tissue/organ regeneration |
US7456275B2 (en) | 2002-04-18 | 2008-11-25 | Chugai Seiyaku Kabushiki Kaisya | Hyaluronic acid modification product |
WO2004076610A1 (en) * | 2003-02-26 | 2004-09-10 | Japan Science And Technology Agency | Apparatus and method for machining microchamber for cell culture |
US8008069B2 (en) | 2003-02-26 | 2011-08-30 | Japan Science And Technology Agency | Apparatus and method for machining microchamber for cell culture |
US8247222B2 (en) | 2003-02-26 | 2012-08-21 | Japan Science And Technology Agency | Micro-chamber processing apparatus for cell culture and method |
JP2006525093A (en) * | 2003-04-30 | 2006-11-09 | ドゥレクセル ユニヴァーシティ | Thermally gelled polymer blends for biomaterial applications |
JP4917885B2 (en) * | 2003-04-30 | 2012-04-18 | ドゥレクセル ユニヴァーシティ | Thermally gelled polymer blends for biomaterial applications |
WO2004096309A1 (en) * | 2003-05-02 | 2004-11-11 | Rimon Therapeutics Ltd. | Thermally reversible implant |
JP2006288251A (en) * | 2005-04-08 | 2006-10-26 | Kawamura Inst Of Chem Res | Cell culture substrate and method for culturing cell |
US20220229050A1 (en) * | 2019-05-30 | 2022-07-21 | Beckman Coulter, Inc. | Methods and systems for immobilizing a biological specimen for microscopic imaging |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang | Programmable hydrogels | |
Benton et al. | Photocrosslinking of gelatin macromers to synthesize porous hydrogels that promote valvular interstitial cell function | |
JP5846584B2 (en) | Temperature-responsive substrate for cell culture and method for producing the same | |
US11441120B2 (en) | Cell culture substrate | |
Casadio et al. | Biodegradation of Poly (2-hydroxyethyl methacrylate)(PHEMA) and Poly {(2-hydroxyethyl methacrylate)-co-[poly (ethylene glycol) methyl ether methacrylate]} Hydrogels Containing Peptide-Based Cross-Linking Agents | |
US6897064B2 (en) | Cell or tissue-culturing carrier, and culturing method | |
Hoffman | Conventional and environmentally-sensitive hydrogels for medical and industrial uses: a review paper | |
JP2001329183A (en) | Gelling composition | |
EP1266570A1 (en) | Coating materials for biological tissues, coated biological tissues and method of coating biological tissues | |
JPWO2003006081A1 (en) | Tissue / organ regeneration material and tissue / organ regeneration method | |
JPH11169703A (en) | Thermally reversible hydrogel forming composition | |
Reddy et al. | Simultaneous and sequential micro-porous semi-interpenetrating polymer network hydrogel films for drug delivery and wound dressing applications | |
Kumar et al. | Synthetic polymer hydrogels | |
US11499136B2 (en) | Cell culture substrate | |
KR100492652B1 (en) | Composition for hydrogel, hydrogel, and use thereof | |
US20230010001A1 (en) | Photocrosslinked hydrogels blended composition, preparation and use thereof | |
JP4439221B2 (en) | Thermoreversible hydrogel-forming composition | |
Reddy et al. | Monosaccharide-responsive phenylboronate-polyol cell scaffolds for cell sheet and tissue engineering applications | |
Gümüşderelioğlu et al. | Superporous polyacrylate/chitosan IPN hydrogels for protein delivery | |
Godoy-Gallardo et al. | Nucleoside-based supramolecular hydrogels: From synthesis and structural properties to biomedical and tissue engineering applications | |
US20210170038A1 (en) | Biocampatible and Biodegradable Anionic Hydrogel System | |
KR102076909B1 (en) | Hydrogel containing alginate graftcopolymer and method for preparing the same | |
US11427803B2 (en) | Cell culture substrate | |
Denizli et al. | Collagen and fibronectin immobilization on PHEMA microcarriers for hepatocyte attachment | |
WO2018043153A1 (en) | Cell culture carrier, cell culture carrier preparation kit, and method for producing gel/cell hybrid tissue using cell culture carrier and cell culture carrier preparation kit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041014 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080513 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080714 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080819 |