JPH11169631A - Dedusting device of dusty high-temperature high-pressure gas and dedusting method therefor - Google Patents

Dedusting device of dusty high-temperature high-pressure gas and dedusting method therefor

Info

Publication number
JPH11169631A
JPH11169631A JP9364128A JP36412897A JPH11169631A JP H11169631 A JPH11169631 A JP H11169631A JP 9364128 A JP9364128 A JP 9364128A JP 36412897 A JP36412897 A JP 36412897A JP H11169631 A JPH11169631 A JP H11169631A
Authority
JP
Japan
Prior art keywords
dust
gas
particle size
temperature
size distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9364128A
Other languages
Japanese (ja)
Other versions
JP3168261B2 (en
Inventor
Rikiya Abe
力也 阿部
Koji Sasazu
浩司 笹津
Kazunori Kihara
和則 木原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Original Assignee
Electric Power Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd filed Critical Electric Power Development Co Ltd
Priority to JP36412897A priority Critical patent/JP3168261B2/en
Publication of JPH11169631A publication Critical patent/JPH11169631A/en
Application granted granted Critical
Publication of JP3168261B2 publication Critical patent/JP3168261B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a highly durable dedusting device which is capable of preventing the concentration of the fine ash dust to a precision dedusting device and is capable of stably executing the dedusting from a dusty high-temp. high- pressure gas. SOLUTION: This dedusting device for the dusty high-temp. high-pressure gas has a coarse dedusting device 3 which coarsely dedusts the dusty high-temp. high-pressure gas generated in a dusty high-temp. high-pressure gas generator 1 and the precision dedusting device 5 which precisely dedusts the gas subjected to the coarse dedusting. The dedusting device has a grain size distribution regulating pipe 9 for regulating the grain size distribution of the ash dust in the gas flowing into the precision dedusting device 5 between a combustion gas flow passage 2 and a coarse dedusted gas flow passage 41.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、石炭発電やゴミ発
電,若しくは都市ゴミ焼却炉等の固体燃料を主として使
用する燃焼装置や高炉,キルン等で発生する含塵高温高
圧ガス中の脱塵装置及び脱塵方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a deduster for a high temperature and high pressure gas containing dust generated in a blast furnace, a kiln or the like, which mainly uses solid fuel such as coal power generation, refuse power generation, or municipal waste incinerator. And a dust removal method.

【0002】[0002]

【従来の技術】近年、石炭などの固体燃料を主に使用す
る加圧流動床ボイラ、石炭直接燃焼装置等の加圧下で運
転される燃焼装置や都市ごみ焼却炉等の燃焼装置、高炉
やキルン等から排出される燃焼ガスでは、セラミックフ
ィルタを備えた脱塵装置、ルーバ脱塵装置、サイクロ
ン、マルチサイクロン、またはこれらを組み合わせた脱
塵装置を用いた脱塵が一般的に行われている。その中で
も加圧流動床複合発電システムは、圧力容器内に設置し
た流動床ボイラから発生する蒸気で駆動する蒸気タービ
ン発電と、ボイラの排ガスを利用するガスタービン発電
を組み合わせたシステムであり、エネルギー効率が高
く、脱硝、脱硫性能が優れているため、特に注目を集め
ている。この加圧流動床複合発電システムでは発電出力
の約80%を蒸気タービン、残り約20%をガスタービ
ンが分担している。以下、従来の加圧流動床複合発電シ
ステムと、加圧流動床ボイラから発生する含塵高温高圧
ガスの脱塵装置について図面を参照しながら説明する。
図11は従来の加圧流動床複合発電システムの要部模式
図であり、図12は複数のセラミックチューブフィルタ
を使用した精密脱塵装置の要部断面図である。図11に
おいて、1は高温高圧含塵ガス発生装置の加圧流動床ボ
イラ、1aは加圧流動床ボイラ1の流動床内に埋設され
た伝熱管、2は加圧流動床ボイラ1の頂部に配設された
燃焼ガス流路、3は燃焼ガス流路2の出口に配設された
粗脱塵装置、4は粗脱塵装置3で粗脱塵された粗脱塵ガ
ス流路、5はセラミックチューブフィルタで構成された
精密脱塵装置、6は精密脱塵装置で精密脱塵された清浄
ガス流路、7はガスタービン、8は発電機である。図1
2において、11は精密脱塵装置5の圧力容器、12は
セラミックチューブフィルタ、13はトップチャンバ
ー、14a,14b,14c,14dは支持板、15
a,15b,15cは脱塵室、16はホッパ、17a,
17b,17cはエゼクタ、18a,18b,18cは
逆洗ノズル、19a,19b,19cは高速逆洗弁、2
0a,20b,20cは逆洗空気流入路である。以上の
ように構成された従来の加圧流動床複合発電システムに
ついて、以下その動作を説明する。含塵高温高圧ガス発
生装置の加圧流動床ボイラ1内では、石炭と石灰石の混
合体がコンプレッサ(図示せず)からの空気により0.
6〜1.6MPaの加圧状態で流動化されて800〜9
50℃程度で燃焼する。燃焼により発生した熱は、流動
床内の伝熱管1aにより蒸気として回収され、蒸気ター
ビン発電機(図示せず)を駆動し発電する。一方、含塵
高温高圧ガス発生装置1から発生する大量の灰塵を含む
燃焼ガスは流動床上面から流速1.0±0.5m/sの
所定の速度で上昇し、燃焼ガス流路2で10数m/sの
流速となり、粗脱塵装置3に送られ含塵ガス中の灰塵の
大部分が除かれる。粗脱塵されたガスは粗脱塵ガス流路
4を経て精密脱塵装置5によって精密脱塵される。精密
脱塵されたガスは、清浄ガス流路6からガスタービン7
へ送られ発電機8を駆動し発電する。ここで、粗脱塵装
置3としては大量の灰塵の除去能力に優れるサイクロン
等が用いられ、粗脱塵装置から排出された粗脱塵ガスか
ら微細な灰塵を除くための精密脱塵装置5としてはセラ
ミックチューブフィルタの他、セラミックキャンドルフ
ィルタやセラミックハニカムフィルタ、金属フィルタ等
が用いられる。加圧流動床複合発電システムでは出力を
上昇させるため燃料と空気を増加させていくので炉内圧
力がガスタービン出力とほぼ比例することになる。脱塵
装置の圧力損失が大きい場合、出力を上げるとガスター
ビンの設計差圧を超えてしまうので脱塵装置の圧力損失
はできるだけ小さいことが要求される。
2. Description of the Related Art In recent years, a pressurized fluidized bed boiler mainly using solid fuel such as coal, a combustion device operated under pressure such as a direct coal combustion device, a combustion device such as a municipal solid waste incinerator, a blast furnace and a kiln. As for the combustion gas discharged from such devices, dust removal using a dust removal device provided with a ceramic filter, a louver dust removal device, a cyclone, a multi-cyclone, or a dust removal device combining these is generally performed. Among them, the pressurized fluidized bed combined cycle system is a system that combines steam turbine power generation driven by steam generated from a fluidized bed boiler installed in a pressure vessel and gas turbine power generation using boiler exhaust gas. And high denitrification and desulfurization performance, which has attracted particular attention. In this pressurized fluidized bed combined cycle system, a steam turbine shares about 80% of the power generation output, and a gas turbine shares the remaining about 20%. Hereinafter, a conventional pressurized fluidized-bed combined power generation system and a dust removing device for dust-containing high-temperature and high-pressure gas generated from a pressurized fluidized-bed boiler will be described with reference to the drawings.
FIG. 11 is a schematic diagram of a main part of a conventional combined pressurized fluidized bed power generation system, and FIG. 12 is a cross-sectional view of a main part of a precision dust removing device using a plurality of ceramic tube filters. 11, reference numeral 1 denotes a pressurized fluidized-bed boiler of a high-temperature and high-pressure dust-containing gas generator, 1a denotes a heat transfer tube buried in a fluidized bed of the pressurized fluidized-bed boiler 1, and 2 denotes a top of the pressurized fluidized-bed boiler 1. The provided combustion gas flow path, 3 is a coarse dust removal device provided at the outlet of the combustion gas flow path 2, 4 is a coarse dust removal gas flow path coarsely removed by the coarse dust removal device 3, and 5 is A precision dust removing device constituted by a ceramic tube filter, 6 is a clean gas passage precisely removed by the precision dust removing device, 7 is a gas turbine, and 8 is a generator. FIG.
In 2, 11 is a pressure vessel of the precision dust removing device 5, 12 is a ceramic tube filter, 13 is a top chamber, 14 a, 14 b, 14 c, and 14 d are support plates, 15
a, 15b, 15c are dust chambers, 16 is a hopper, 17a,
17b and 17c are ejectors, 18a, 18b and 18c are backwash nozzles, 19a, 19b and 19c are high-speed backwash valves, 2
Reference numerals 0a, 20b, and 20c denote backwash air inflow paths. The operation of the conventional pressurized fluidized bed combined cycle system configured as described above will be described below. In the pressurized fluidized-bed boiler 1 of the dust-containing high-temperature and high-pressure gas generator, a mixture of coal and limestone is cooled by air from a compressor (not shown).
Fluidized under pressure of 6 to 1.6 MPa and 800 to 9
Burns at about 50 ° C. The heat generated by the combustion is recovered as steam by the heat transfer tube 1a in the fluidized bed, and drives a steam turbine generator (not shown) to generate power. On the other hand, the combustion gas containing a large amount of ash dust generated from the dust-containing high-temperature and high-pressure gas generator 1 rises from the upper surface of the fluidized bed at a predetermined speed of 1.0 ± 0.5 m / s, The flow rate becomes several m / s, and most of the ash dust in the dust-containing gas sent to the coarse dust removal device 3 is removed. The coarsely-dusted gas passes through the coarse-dust gas flow path 4 and is precision-dusted by the precision dust-removing device 5. The finely-dusted gas is supplied from the clean gas passage 6 to the gas turbine 7.
To drive the generator 8 to generate power. Here, a cyclone or the like having excellent ability to remove a large amount of ash is used as the coarse dust removing device 3, and a precision dust removing device 5 for removing fine ash dust from the coarse dust gas discharged from the coarse dust removing device. In addition to ceramic tube filters, ceramic candle filters, ceramic honeycomb filters, metal filters, and the like are used. In the pressurized fluidized bed combined cycle system, the fuel and air are increased in order to increase the output, so that the furnace pressure is almost proportional to the gas turbine output. If the pressure loss of the dust removing device is large, increasing the output will exceed the design differential pressure of the gas turbine, so the pressure loss of the dust removing device is required to be as small as possible.

【0003】図12に示したように精密脱塵装置5は圧
力容器11内に複数のセラミックチューブフィルタ12
を並べた構造をしており、圧力容器11の内部は支持板
14a,14b,14c,14dによって3つの脱塵室
15a,15b,15cとトップチャンバー13、ホッ
パ16に区分けされており、それぞれの脱塵室にエゼク
タ17a,17b,17cが接続され清浄ガス排出管6
で一つにまとめられている。エゼクタ17a,17b,
17cの基部には逆洗ノズル18a,18b,18cが
接続されている。粗脱塵装置3で粗脱塵された粗脱塵ガ
スは、粗脱塵ガス流路4から数10m/sの流速で圧力
容器11内に流入し、トップチャンバー13からセラミ
ックチューブフィルタ12内へ流入する。セラミックチ
ューブフィルタ12は多孔質構造であるため、ガスは流
下しながらチューブフィルタ内面からチューブフィルタ
外面に濾過されて流出する。このようにして清浄化され
たガスはエゼクタ17a,17b,17cを経て清浄ガ
ス流路6で合流し、ガスタービン7へ送られ、発電機8
を駆動し発電する。セラミックチューブフィルタ12の
内面には、ガスから捕集した灰塵が付着するため、時間
の経過とともにセラミックチューブフィルタ内外の圧力
差が大きくなる。そこで、一定時間毎に高圧空気流路2
0a,20b,20cに接続された高速逆洗弁19a,
19b,19cを順に開き、逆洗ノズル18a,18
b,18cから超音速の高圧空気を圧力容器11内へ送
り込み、セラミックチューブフィルタ12の外面側から
吹きつけることによって内面に付着した灰塵を剥がして
除去する。剥がれた灰塵はセラミックチューブフィルタ
12内を落下し、ホッパ16から灰塵処理装置(図示せ
ず)に送られる。
As shown in FIG. 12, a precision dust removing device 5 includes a plurality of ceramic tube filters 12 in a pressure vessel 11.
The interior of the pressure vessel 11 is divided into three dust removal chambers 15a, 15b, 15c, a top chamber 13, and a hopper 16 by support plates 14a, 14b, 14c, 14d. Ejectors 17a, 17b, 17c are connected to the dust removal chamber and the clean gas discharge pipe 6
In one. The ejectors 17a, 17b,
Backwash nozzles 18a, 18b, 18c are connected to the base of 17c. The coarse dust gas coarsely dusted by the coarse dust removal device 3 flows into the pressure vessel 11 from the coarse dust gas flow path 4 at a flow rate of several tens m / s, and flows into the ceramic tube filter 12 from the top chamber 13. Inflow. Since the ceramic tube filter 12 has a porous structure, the gas is filtered and flows out from the inner surface of the tube filter to the outer surface of the tube filter while flowing down. The gas thus purified passes through the clean gas flow path 6 via the ejectors 17a, 17b, 17c, is sent to the gas turbine 7, and is supplied to the generator 8
To generate electricity. Since the ash dust collected from the gas adheres to the inner surface of the ceramic tube filter 12, the pressure difference between the inside and the outside of the ceramic tube filter increases with time. Therefore, the high-pressure air flow path 2
0a, 20b, 20c, high-speed backwash valve 19a,
19b and 19c are sequentially opened, and the backwash nozzles 18a and 18c are opened.
Supersonic high-pressure air is sent from b and 18c into the pressure vessel 11 and blown from the outer surface side of the ceramic tube filter 12 to peel off and remove ash dust attached to the inner surface. The separated ash falls in the ceramic tube filter 12 and is sent from the hopper 16 to an ash dust treatment device (not shown).

【0004】[0004]

【発明が解決しようとする課題】しかしながら上記従来
の脱塵装置や脱塵方法は、以下のような課題を有してい
た。 (1)石炭等の固体燃料中のアルカリ成分(Na,K
等)は燃焼の過程で塩化物として放出され、燃焼ガス中
の硫黄酸化物と(化1)(化2)に示すような反応でア
ルカリ硫酸塩を生成する。このアルカリ硫酸塩は低融点
化合物であり、灰塵粒子上で融解して、極めて付着性の
強い灰を生成する。
However, the above-mentioned conventional dust removing apparatus and dust removing method have the following problems. (1) Alkaline components (Na, K) in solid fuels such as coal
Etc.) are released as chlorides in the course of combustion and form alkali sulfates by a reaction as shown in Chemical Formulas 1 and 2 with sulfur oxides in the combustion gas. This alkali sulphate is a low melting point compound that melts on the ash dust particles to produce extremely adherent ash.

【化1】 Embedded image

【化2】 燃焼ガス中のアルカリ濃度は固体燃料中のアルカリ含有
量に左右されるが、その他にも燃焼温度や固体燃料中の
ハロゲン分に影響されることが確認されている。また、
精密脱塵装置5に流入する灰塵は平均3μmの微粒子で
あり、比表面積が増すために付着・圧密し易くなり、通
常濾過時のガス流による圧力でセラミックチューブフィ
ルタの内面に強固に付着することが知られている。ま
た、脱硫用として混入されている石灰石等の炭酸カルシ
ウムは燃焼装置内で(化3)に示すような反応で脱炭酸
するが、燃焼ガス中で(化4)に示すように炭酸ガスと
反応し付着性が高い炭酸カルシウムを生成することが知
られている。
Embedded image It has been confirmed that the alkali concentration in the combustion gas depends on the alkali content in the solid fuel, but is also affected by the combustion temperature and the halogen content in the solid fuel. Also,
The ash dust flowing into the precision dust removing device 5 is a fine particle having an average of 3 μm, which tends to adhere and consolidate due to an increase in the specific surface area, and firmly adheres to the inner surface of the ceramic tube filter by the pressure of the gas flow during normal filtration. It has been known. In addition, calcium carbonate such as limestone mixed for desulfurization decarboxylates in the combustion device by the reaction shown in (Chem. 3), but reacts with carbon dioxide gas in the combustion gas as shown in (Chem. 4). It is known to produce calcium carbonate with high adhesion.

【化3】 Embedded image

【化4】 これらの理由から、セラミックチューブフィルタ等の精
密脱塵装置の内面に灰塵が強固に付着し、脱塵効率を低
下させ、また、閉塞によって脱塵装置の破損等を生じ、
そのメンテナンスに多大の労力を要するとともに、付着
した灰塵により圧力損失が生じ、機器の運転効率を下げ
るという問題点があった。 (2)その対策として、上流側に粗脱塵装置としてサイ
クロン等が用いられるが、粒径数μm程度の微細な灰塵
の捕集能力には劣るため、サイクロンで捕集できなかっ
た微細な灰塵が精密脱塵装置に集中し前述のようにセラ
ミックチューブフィルタの内面に強固に付着しやすいと
いう問題点があった。 (3)セラミックチューブフィルタの内面に灰塵が付着
し圧力損失が大きくなると、ガスタービン出力が下がる
ため、発電出力が制限されたり、発電効率が下がるとい
う問題点があった。 (4)付着した灰塵を剥離させるためには逆洗の圧力や
時間、頻度を上げなければならず、逆洗空気と逆洗に伴
うホッパ等の窒素パージ量が増加するため、ユーティリ
ティが増大するという問題点があった。 (5)灰塵の付着によってセラミックチューブフィルタ
の内外温度差及び軸方向温度差が広がり熱応力が発生す
る。この熱応力と、逆洗の繰り返しによる応力等の合成
応力によりセラミックチューブフィルタの強度が低下し
て破損しやすいという問題点があった。 (6)逆洗の繰り返しによる衝撃によって、精密脱塵装
置の付属物であるエゼクタや逆洗ノズル等の寿命も低下
するという問題点があった。 (7)セラミックチューブフィルタの破損を防止するた
めにはフィルタの面積を拡大するか、フィルタを増設し
て濾過流速を下げなければならず、設備が大規模になる
とともに熱損失が増大するため、ガス温度が低下しガス
タービン出力が低下するという問題点があった。
Embedded image For these reasons, ash dust adheres firmly to the inner surface of a precision dust removal device such as a ceramic tube filter, lowering the dust removal efficiency, and also causing damage to the dust removal device due to blockage,
A great deal of labor is required for the maintenance, and there is a problem that pressure loss occurs due to the attached ash dust, thereby lowering the operation efficiency of the equipment. (2) As a countermeasure, a cyclone or the like is used as a coarse dust removing device on the upstream side, but the ability to collect fine ash dust having a particle size of about several μm is inferior. However, there is a problem that the dust is concentrated on the precision dust removing device and easily adheres firmly to the inner surface of the ceramic tube filter as described above. (3) If ash dust adheres to the inner surface of the ceramic tube filter and the pressure loss increases, the output of the gas turbine is reduced, so that the power generation output is limited or the power generation efficiency is reduced. (4) The pressure, time and frequency of backwashing must be increased in order to remove the attached ash dust, and the amount of nitrogen purge from the hopper and the like accompanying backwashing air and backwashing increases, thereby increasing utility. There was a problem. (5) Due to the adhesion of ash dust, the temperature difference between the inside and outside of the ceramic tube filter and the temperature difference in the axial direction are widened, and thermal stress is generated. There has been a problem that the strength of the ceramic tube filter is reduced due to the thermal stress and a combined stress such as a stress due to repeated backwashing and the ceramic tube filter is easily broken. (6) There is a problem that the life of the ejector, the backwash nozzle and the like, which are accessories of the precision dust removing device, is shortened by the impact due to the repetition of the backwash. (7) In order to prevent the breakage of the ceramic tube filter, it is necessary to increase the area of the filter or to increase the filter to reduce the filtration flow rate, so that the equipment becomes large-scale and the heat loss increases. There is a problem that the gas temperature decreases and the gas turbine output decreases.

【0005】(8)また、これらの問題点を解決するた
め、特開平7−96127号公報には、含塵ガス中の微
細な灰塵をステンレス製網によって凝集造粒し粗大化さ
せる飛灰造粒機と、セラミック製の精密脱塵装置と、を
備えた脱塵装置、及び該脱塵装置を用いた含塵ガスの脱
塵方法が開示されている。しかしながら、上記公報に開
示された脱塵装置、及び脱塵方法では、以下の課題を有
していることがわかった。 a.大型の飛灰造粒機を備えているため、装置が大型化
し、熱量や圧力損失が大きくなるため、発電等に利用す
る際のエネルギー効率が低下するとともに、既存の設備
への組み込みに大規模な工事を必要とするため設置作業
性に劣るという問題点があった。 b.ステンレス製網を使用しているため、800℃以上
になる加圧流動床複合発電システムでの含塵燃焼ガスを
流入させると劣化が大きく、耐久性が劣るという問題点
があった。
(8) To solve these problems, Japanese Unexamined Patent Publication No. 7-96127 discloses a fly ash method in which fine ash dust in a dust-containing gas is aggregated and granulated by a stainless steel net to make it coarse. There is disclosed a dust remover including a granulator and a precision dust remover made of ceramic, and a method of removing dust-containing gas using the dust remover. However, it has been found that the dust removing device and the dust removing method disclosed in the above publication have the following problems. a. The large size fly ash granulator makes the equipment larger and increases the calorific value and pressure loss, lowering the energy efficiency when used for power generation, etc., and integrating it into existing equipment on a large scale. However, there is a problem that the installation work is inferior due to the necessity of complicated construction. b. Since a stainless steel net is used, there is a problem that when dust-containing combustion gas flows in a pressurized fluidized bed combined power generation system at 800 ° C. or higher, deterioration is large and durability is poor.

【0006】本発明は上記従来の課題を解決するもの
で、精密脱塵装置へ微細な灰塵が集中することを防止
し、含塵高温高圧ガスから脱塵を安定的に行うことので
きる耐久性に優れた脱塵装置の提供、及びセラミックチ
ューブフィルタ等の精密脱塵装置の詰まりや閉塞を防止
し圧力損失を減少し、発電等のエネルギー効率を高める
とともに、セラミックチューブフィルタ等の精密脱塵装
置の破損を防止し長期間の安定運転を可能にすることの
できる含塵高温高圧ガスからの脱塵方法を提供すること
を目的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned conventional problems, and prevents the fine ash dust from concentrating on a precision dust removing device, and has a durability capable of stably removing dust from a dust-containing high-temperature and high-pressure gas. Provide high-quality dust removal equipment, and prevent clogging and blockage of precision dust removal equipment such as ceramic tube filters, reduce pressure loss, increase energy efficiency such as power generation, and provide precision dust removal equipment such as ceramic tube filters. It is an object of the present invention to provide a method for removing dust from high temperature and high pressure gas containing dust, which can prevent breakage of the gas and enable stable operation for a long period of time.

【0007】[0007]

【課題を解決するための手段】上記従来の課題を解決す
るため本発明の含塵高温高圧ガスの脱塵装置は、含塵高
温高圧ガス発生装置で発生した含塵高温高圧ガスを粗脱
塵する粗脱塵装置と、粗脱塵されたガスを精密脱塵する
精密脱塵装置と、を備えた含塵高温高圧ガスの脱塵装置
であって、前記精密脱塵装置に流入するガス中の灰塵の
粒径分布を調整する粒径分布調整管を燃焼ガス流路と粗
脱塵ガス流路間に備えた構成を有している。この構成に
より、大型の造粒装置等を必要とせず、装置を小型化で
きるため、熱量や圧力の損失が最小に抑えられ、発電等
に利用するエネルギー効率を高めることができる。ま
た、既存の設備の小規模な改良によって、上記のような
優れた効果を有する脱塵装置が得られる。また、本発明
の含塵高温高圧ガスからの脱塵方法は、含塵高温高圧ガ
ス発生装置から発生した含塵高温高圧ガスを粗脱塵装置
に通し粗脱塵する粗脱塵工程と、粗脱塵されたガスを精
密脱塵装置に通し精密脱塵する精密脱塵工程と、を備え
た含塵高温高圧ガスの脱塵方法であって、前記含塵高温
高圧ガス発生装置から発生した前記含塵高温高圧ガスの
一部を粒径分布調整管に通して前記精密脱塵装置に流入
させる構成を有している。この構成により、精密脱塵装
置に流入する灰塵の粒径分布の幅が広がり、粗大な灰塵
粒子の量が増えるため、セラミックチューブフィルタ等
の精密脱塵装置への灰塵の付着を防止することができ、
さらに圧力損失を下げることができるため、発電等の効
率を上げることができる。また、セラミックチューブフ
ィルタ等の精密脱塵装置の脱塵部への熱応力を下げるこ
とができるとともに、逆洗の頻度や時間、圧力等を低減
することができるため、精密脱塵装置の耐久性と信頼性
を向上させることができる。さらに、逆洗の頻度や時
間、圧力を低減することができるため、所内率を下げる
ことができ、送電端効率も向上させることができる。
SUMMARY OF THE INVENTION In order to solve the above-mentioned conventional problems, a dust-containing high-temperature and high-pressure gas dedusting apparatus according to the present invention is provided with a coarse dust-removing apparatus. A dust removing device for dust-containing high-temperature and high-pressure gas, comprising: a coarse dust removing device that performs dust removal; and a precision dust removing device that precisely removes the coarsely dusted gas. And a particle size distribution adjusting pipe for adjusting the particle size distribution of the ash dust is provided between the combustion gas flow path and the coarse dust gas flow path. With this configuration, a large-sized granulation device or the like is not required, and the device can be downsized. Therefore, loss of heat and pressure can be minimized, and energy efficiency used for power generation and the like can be increased. In addition, a small-scale improvement of existing equipment can provide a dust removing device having the above-described excellent effects. Further, the method for removing dust from the dust-containing high-temperature and high-pressure gas of the present invention includes a coarse dust-removing step in which the dust-containing high-temperature and high-pressure gas generated from the dust-containing high-temperature and high-pressure gas generator passes through a coarse dust remover to roughly remove the dust. A precision dust removal step of precision dust removal by passing the removed gas through a precision dust removal device, wherein the dust containing high temperature and high pressure gas generated from the dust containing high temperature and high pressure gas generator is provided. A configuration is provided in which a part of the dust-containing high-temperature and high-pressure gas is caused to flow through the particle size distribution adjusting tube and flow into the precision dust removing device. With this configuration, the width of the particle size distribution of the ash dust flowing into the precision dust removal device is widened, and the amount of coarse ash dust particles is increased. Therefore, it is possible to prevent ash dust from adhering to the precision dust removal device such as a ceramic tube filter. Can,
Since the pressure loss can be further reduced, the efficiency of power generation and the like can be increased. In addition, the thermal stress on the dust removal part of the precision dust removal device such as a ceramic tube filter can be reduced, and the frequency, time, pressure, etc. of backwashing can be reduced. And reliability can be improved. Further, since the frequency, time, and pressure of backwashing can be reduced, the internal rate can be reduced, and the power transmission end efficiency can be improved.

【0008】[0008]

【発明の実施の形態】本発明の請求項1に記載の含塵高
温高圧ガスの脱塵装置は、含塵高温高圧ガス発生装置で
発生した含塵高温高圧ガスを粗脱塵する粗脱塵装置と、
粗脱塵されたガスを精密脱塵する精密脱塵装置と、を備
えた含塵高温高圧ガスの脱塵装置であって、前記精密脱
塵装置に流入するガス中の灰塵の粒径分布を調整する粒
径分布調整管を燃焼ガス流路と粗脱塵ガス流路間に備え
た構成を有している。この構成により、精密脱塵装置に
流入する灰塵の粒径分布の幅が広がり、粗大な灰塵粒子
量が増えるため、セラミックチューブフィルタへの灰塵
の付着が減るととともに、圧力損失を下げることができ
るため、発電等の効率を上げることができるという作用
を有する。また、セラミックチューブフィルタへの熱応
力を下げることができるとともに、逆洗頻度を下げるこ
とができるため、セラミックチューブフィルタの耐久性
と信頼性を向上させることができるという作用を有す
る。逆洗頻度を下げることができるため、所内率も下げ
ることができ、発電等の効率を向上させることができる
という作用を有する。既存の設備の小規模な改良によっ
て精密脱塵装置を安定動作させることができるととも
に、耐久性に優れた脱塵装置が得られるという作用を有
する。尚、粒径分布調整管内に、更に、1乃至複数個オ
リフィスを配設し、オリフィスの口径や配設する個数の
設定によって粒径分布調整用ガス流量とガス中の灰塵の
粒径分布を制御することができる。また、オリフィスを
備えない場合には、粒径分布調整用ガス流量を大きく設
定することにより、オリフィスによる粒径分布調整用ガ
ス流量と粒径分布調整の幅を大きくすることができる。
更に、粒径分布調整用ガス取り出し部の位置を変えるこ
とで粒径分布調整用ガス中の粒径分布を最適に設定する
ことができるので、燃焼装置の形式や大きさ等によって
設定位置を適宜設定する必要がある。
DETAILED DESCRIPTION OF THE INVENTION The dust-removing device for dust-containing high-temperature and high-pressure gas according to the first aspect of the present invention roughly removes dust-containing high-temperature and high-pressure gas generated by a dust-containing high-temperature and high-pressure gas generator. Equipment and
A precision dust removal device for precision dust removal of coarsely-dusted gas, comprising: a dust removal device for dust-containing high-temperature and high-pressure gas, comprising: a particle size distribution of ash dust in the gas flowing into the precision dust removal device. A configuration is provided in which a particle size distribution adjusting tube to be adjusted is provided between the combustion gas flow path and the coarse dust gas flow path. With this configuration, the width of the particle size distribution of the ash dust flowing into the precision dust removing device is widened, and the amount of coarse ash dust particles increases, so that the attachment of the ash dust to the ceramic tube filter decreases and the pressure loss can be reduced. Therefore, there is an effect that the efficiency of power generation and the like can be increased. In addition, since the thermal stress on the ceramic tube filter can be reduced and the frequency of backwashing can be reduced, there is an effect that the durability and reliability of the ceramic tube filter can be improved. Since the frequency of backwashing can be reduced, the in-house rate can also be reduced, which has the effect of improving the efficiency of power generation and the like. It is possible to stably operate the precision dust removing device by small-scale improvement of existing equipment, and to obtain a dust removing device excellent in durability. In addition, one or more orifices are further provided in the particle size distribution adjusting pipe, and the gas flow rate for particle size distribution adjustment and the particle size distribution of ash dust in the gas are controlled by setting the orifice diameter and the number of orifices to be provided. can do. When the orifice is not provided, the flow rate of the gas for adjusting the particle size distribution and the width of the adjustment of the particle size distribution can be increased by setting the flow rate of the gas for adjusting the particle size distribution to be large.
Further, by changing the position of the particle size distribution adjusting gas outlet, the particle size distribution in the particle size distribution adjusting gas can be set optimally, so that the set position is appropriately determined according to the type and size of the combustion device. Must be set.

【0009】本発明の請求項2に記載の含塵高温高圧ガ
スの脱塵装置は、含塵高温高圧ガス発生装置で発生した
含塵高温高圧ガスを粗脱塵する粗脱塵装置と、粗脱塵さ
れたガスを精密脱塵する精密脱塵装置と、を備えた含塵
高温高圧ガスの脱塵装置であって、前記精密脱塵装置に
流入するガス中の灰塵の粒径分布を調整する粒径分布調
整管を前記含塵高温高圧ガス発生装置の頂部と粗脱塵ガ
ス流路間に備えた構成を有している。この構成により、
請求項1に記載の作用に加え、粒径分布調整管を含塵高
温高圧ガス発生装置の頂部と粗脱塵ガス流路間に備える
ことによって、粒径分布調整管を短くすることができる
ため、装置全体を小型化できるとともに、粒径分布調整
管中を流れる粒径分布調整用ガスの流速や熱量の損失を
抑えることができ、発電効率を向上させることができる
とともに効率的に精密脱塵装置に流入する灰塵の粒径分
布を調整することができる。
According to a second aspect of the present invention, there is provided a dust removing device for dust-containing high-temperature and high-pressure gas, comprising: a coarse dust removing device for roughly removing dust-containing high-temperature and high-pressure gas generated by a dust-containing high-temperature and high-pressure gas generator; A dust removal device for dust-containing high-temperature and high-pressure gas, comprising: a precision dust removal device for precision dust removal of the removed gas, wherein a particle size distribution of ash dust in the gas flowing into the precision dust removal device is adjusted. A particle size distribution adjusting pipe is provided between the top of the dust-containing high-temperature and high-pressure gas generator and the coarsely-dusted gas flow path. With this configuration,
In addition to the function of claim 1, by providing a particle size distribution adjusting tube between the top of the dust-containing high-temperature and high-pressure gas generator and the coarsely-dusted gas passage, the particle size distribution adjusting tube can be shortened. In addition to reducing the size of the entire device, reducing the flow velocity and heat loss of the particle size distribution adjusting gas flowing through the particle size distribution adjusting tube, it is possible to improve power generation efficiency and efficiently remove dust accurately. The particle size distribution of the ash dust flowing into the apparatus can be adjusted.

【0010】本発明の請求項3に記載の含塵高温高圧ガ
スの脱塵装置は、含塵高温高圧ガス発生装置で発生した
含塵高温高圧ガスを粗脱塵する粗脱塵装置と、粗脱塵さ
れたガスを精密脱塵する精密脱塵装置と、を備えた含塵
高温高圧ガスの脱塵装置であって、前記粗脱塵装置で脱
塵された灰塵を前記含塵高温高圧ガス発生装置に循環す
る灰塵循環部と、前記高温高圧ガス発生装置の頂部と粗
脱塵ガス流路との間に連設され前記精密脱塵装置に流入
するガス中の灰塵の粒径分布を調整する粒径分布調整管
と、を備えた構成を有している。この構成により、空塔
速度が5〜7m/sの循環流動床のような含塵高温高圧
ガス発生装置においても精密脱塵装置へ流入する灰塵の
粒径分布を調整することができるため、精密脱塵装置へ
の負担を軽減化することができ、安定した運転を達成す
ることができるという作用を有する。また、含塵高温高
圧ガス発生装置で消費されなかった未反応酸化カルシウ
ム分を含有する灰塵を循環する等有効利用することがで
きるため、含塵高温高圧ガス発生装置内での脱硫効果を
向上させることができるという作用を有する。
According to a third aspect of the present invention, there is provided a dust-removing device for dust-containing high-temperature and high-pressure gas, comprising: a coarse dust-removing device for roughly removing dust-containing high-temperature and high-pressure gas generated by a dust-containing high-temperature and high-pressure gas generator; A precision dust removal device for precision dust removal of the dust-removed gas, comprising: a dust-containing high-temperature and high-pressure gas removal device, comprising: a ash dust removed by the coarse dust removal device; A dust circulating section circulating in the generator, and a particle size distribution of ash in the gas flowing into the precision dust removing device which is connected between the top of the high-temperature and high-pressure gas generating device and the coarse dust removing gas flow path. And a particle size distribution adjusting tube. With this configuration, even in a dust-containing high-temperature and high-pressure gas generator such as a circulating fluidized bed having a superficial velocity of 5 to 7 m / s, the particle size distribution of ash dust flowing into the precision dust remover can be adjusted. This has the effect of reducing the burden on the dust removal device and achieving stable operation. In addition, since the ash dust containing unreacted calcium oxide that has not been consumed in the dust-containing high-temperature and high-pressure gas generator can be effectively used, such as circulating, the desulfurization effect in the dust-containing high-temperature and high-pressure gas generator is improved. It has the effect of being able to.

【0011】本発明の請求項4に記載の含塵高温高圧ガ
スの脱塵装置は、請求項1乃至3の内いずれか1項に記
載の含塵高温高圧ガスの脱塵装置において、前記精密脱
塵装置での目詰まり度検出手段と、前記目詰まり度検出
手段で検出された目詰まり度に基づいてガス中の灰塵微
粒子の粒径分布を制御する粒径分布制御手段と、を備え
た構成を有している。この構成により、精密脱塵装置で
の目詰まり度検出手段によって検出された目詰まり度か
ら、粒径分布を制御することができるため、精密脱塵装
置への負荷を軽減し最適に設定することができ、長期安
定運転を達成できるという作用を有する。また、燃焼状
態の急激な変化に伴い目詰まりが発生した場合に粒径分
布調整を行うことで目詰まりを解消することができると
いう作用を有する。ここで、目詰まり度検出手段として
は、精密脱塵装置での圧力損失量の変化を圧力計等で測
定することが容易であるため好ましい。また、粒径分布
調整手段としては、粒径分布調整管の粒径分布調整用ガ
ス取り出し部に配設した空気等のガス注入装置やガス流
入量制御ダンパ、粒径分布調整管に配設したガス注入装
置や制御バルブ等が挙げられる。特に粒径分布調整を空
気等のガス注入装置で行った場合は、ガス注入によって
粒径が大きく、慣性力の大きな灰塵を主に選択的に精密
脱塵装置に流入させることができるため、精密脱塵装置
の目詰まりを防止する効果を大きくすることができる。
According to a fourth aspect of the present invention, there is provided a dust-removing apparatus for dust-containing high-temperature and high-pressure gas according to any one of the first to third aspects. Clogging degree detection means in the dust removal device, and particle size distribution control means for controlling the particle size distribution of ash dust particles in the gas based on the degree of clogging detected by the clogging degree detection means It has a configuration. With this configuration, it is possible to control the particle size distribution based on the degree of clogging detected by the degree of clogging of the precision dust removal device, so that the load on the precision dust removal device can be reduced and set optimally. And has the effect that long-term stable operation can be achieved. In addition, when clogging occurs due to a rapid change in the combustion state, the clogging can be eliminated by adjusting the particle size distribution. Here, the clogging degree detecting means is preferable because it is easy to measure a change in the pressure loss amount in the precision dust removing device with a pressure gauge or the like. Further, as the particle size distribution adjusting means, a gas injection device for air or the like, a gas inflow control damper, and a particle size distribution adjusting tube, which are provided in a particle size distribution adjusting gas take-out portion of the particle size distribution adjusting tube, are provided. Examples include a gas injection device and a control valve. In particular, when the particle size distribution is adjusted with a gas injection device such as air, the ash dust with a large particle size and large inertia can be mainly selectively introduced into the precision dust removal device by gas injection. The effect of preventing the dust removing device from being clogged can be increased.

【0012】本発明の請求項5に記載の含塵高温高圧ガ
スの脱塵方法は、含塵高温高圧ガス発生装置から発生し
た含塵高温高圧ガスを粗脱塵装置に通し粗脱塵する粗脱
塵工程と、粗脱塵されたガスを精密脱塵装置に通し精密
脱塵する精密脱塵工程と、を備えた含塵高温高圧ガスの
脱塵方法であって、前記含塵高温高圧ガス発生装置から
発生した前記含塵高温高圧ガスの一部を粒径分布調整管
に通して前記精密脱塵装置に流入させる構成を有してい
る。この構成により、精密脱塵装置に流入する灰塵の粒
径分布の幅が広がり、粗大な灰塵粒子量が増えるため、
セラミックチューブフィルタへの灰塵の圧密付着を防止
し、圧力損失を下げることができ、発電等の効率を上げ
ることができるという作用を有する。また、セラミック
チューブフィルタ等の精密脱塵装置への熱応力を下げる
ことができるとともに、逆洗時間や逆洗頻度、逆洗圧力
を下げることができるため、セラミックチューブフィル
タ等の耐久性と信頼性を向上させることができるという
作用を有する。また、逆洗時間や逆洗頻度、逆洗圧力を
下げることができるため、所内率やユーティリティも下
げることができ、発電等の効率を向上させることができ
るという作用を有する。さらに、長期間の運転でも灰塵
によるセラミックチューブフィルタの閉塞が起こりにく
くなるとともに、応力の発生量が小さくなるため、破損
等の事故を防止することができるという作用を有する。
According to a fifth aspect of the present invention, there is provided a dust removing method for dust-containing high-temperature and high-pressure gas, wherein the dust-containing high-temperature and high-pressure gas generated from the dust-containing high-temperature and high-pressure gas generator is passed through a coarse dust removing device. A dust-removing high-temperature and high-pressure gas removing method, comprising: a dust-removing step; and a precision dust-removing step of precision-removing the coarsely-removed gas through a precision-removing device. A configuration is provided in which part of the dust-containing high-temperature and high-pressure gas generated from the generator passes through the particle size distribution adjusting tube and flows into the precision dust removing device. With this configuration, the width of the particle size distribution of the ash dust flowing into the precision dust removal device is widened, and the amount of coarse ash dust particles increases,
This has the effect of preventing ash dust from adhering to the ceramic tube filter in a compact manner, reducing the pressure loss and increasing the efficiency of power generation and the like. In addition to reducing the thermal stress on the precision dust removal device such as a ceramic tube filter, the backwashing time, backwash frequency and backwash pressure can be reduced, so that the durability and reliability of the ceramic tube filter etc. can be reduced. Can be improved. Further, since the backwashing time, the backwashing frequency, and the backwashing pressure can be reduced, the in-house ratio and utility can be reduced, and the efficiency of power generation and the like can be improved. Further, the ceramic tube filter is less likely to be clogged by ash dust even during long-term operation, and the amount of generated stress is reduced, so that an accident such as breakage can be prevented.

【0013】本発明の請求項6に記載の含塵高温高圧ガ
スの脱塵方法は、請求項5に記載の含塵高温高圧ガスの
脱塵方法において、前記粒径分布調整管を通る含塵高温
高圧ガス量が全含塵高温高圧ガス量の1〜95%好まし
くは3〜85%さらに好ましくは8〜50%である構成
を有している。この構成により、石炭の種類や燃焼状態
の変化によって異なる灰塵の粒径分布に適応して、精密
脱塵装置に流入する灰塵の粒径分布を調整することがで
きるという作用を有する。また、燃焼状態の急激な変化
に応じて前記範囲に粒径分布調整管に通すガス量と灰塵
量を制御することができるという作用を有する。ここ
で、粒径分布調整管を通る含塵高温高圧ガス量が8%よ
り少なくなるにつれ固体燃料の種類にもよるが粒径分布
を大きくすることが困難な場合が生じ易い傾向があり、
精密脱塵装置に対する負荷を軽減することができ難くな
る傾向を生じ、また、50%より多くなるにつれ灰塵量
が多くなるため、各ガス流路内部の磨耗度が大きくなる
とともに、粗脱塵装置へのガス流入量が少なくなるため
粗脱塵装置の効率が低下する傾向を生じるため、いずれ
も好ましくない。前記含塵高温高圧ガス量が3%より少
なくなるか、85%より多くなるにつれこの傾向が更に
大きくなり、1%より少なくなるか、95%より多くな
るにつれこの傾向が著しく大きくなるので好ましくな
い。以下に、本発明の実施の形態の具体例を図面を参照
しながら説明する。
According to a sixth aspect of the present invention, there is provided a dust removing method for a dust-containing high-temperature and high-pressure gas according to the fifth aspect, wherein the dust-containing high-temperature and high-pressure gas is removed through the particle size distribution adjusting tube. The high-temperature high-pressure gas amount is 1 to 95%, preferably 3 to 85%, more preferably 8 to 50% of the total dust-containing high-temperature high-pressure gas amount. This configuration has an effect that the particle size distribution of the ash dust flowing into the precision dust removing apparatus can be adjusted to adapt to the particle size distribution of the ash dust that varies depending on the type of coal and changes in the combustion state. In addition, there is an effect that the amount of gas and the amount of ash passing through the particle size distribution adjusting pipe can be controlled in the above range according to a rapid change in the combustion state. Here, as the amount of the dust-containing high-temperature and high-pressure gas passing through the particle size distribution adjusting pipe becomes smaller than 8%, it tends to easily occur that it is difficult to increase the particle size distribution depending on the type of the solid fuel,
Since the load on the precision dust removing device tends to be difficult to reduce, and as the amount exceeds 50%, the amount of ash dust increases, so that the degree of wear inside each gas passage increases and the coarse dust removing device increases. Since the amount of gas flowing into the device is reduced, the efficiency of the coarse dust removing device tends to decrease, and neither is preferable. The tendency is further increased as the amount of the dust-containing high-temperature and high-pressure gas is less than 3% or more than 85%, and this tendency is significantly increased as the amount is less than 1% or more than 95%. . Hereinafter, specific examples of the embodiments of the present invention will be described with reference to the drawings.

【0014】(実施の形態1)図1は本発明の実施の形
態1における含塵高温高圧ガスの脱塵装置の要部模式図
である。図1において、1は含塵高温高圧ガス発生装置
の加圧流動床ボイラ、1aは流動床内に配設された伝熱
管、2は燃焼ガス流路、3は粗脱塵装置、4は粗脱塵ガ
ス流路、5は精密脱塵装置、6は清浄ガス流路、7はガ
スタービン、8は発電機であり、これらはいずれも従来
例と同様のものであるので、同一の符号を付して説明を
省略する。9は燃焼ガス流路2と並設して、含塵高温高
圧ガス発生装置1から発生した燃焼ガスを粗脱塵装置3
を経由せずに精密脱塵装置5に流入させる粒径分布調整
管である。本実施の形態における脱塵装置が従来例と異
なる点は、粒径分布調整管9を燃焼ガス流路2と粗脱塵
ガス流路間に備えた点である。これにより、燃焼ガス中
の大粒径の灰塵の所定量が粗脱塵されないで精密脱塵装
置5へ流入するので、精密脱塵装置5に流入する灰塵の
粒径分布を調整することができ、粗大な灰塵粒子量が増
すため、比表面積が小さくなり、セラミックチューブフ
ィルタ内面に微小の灰塵が圧密して強固に付着すること
を抑制できるという作用を有する。その結果、セラミッ
クチューブフィルタでの目詰まりや閉塞を減少させるこ
とができるという作用を有する。更に、微小な灰塵がセ
ラミックチューブフィルタの内面に圧密に付着するのを
防止するので、逆洗により簡単に灰塵を剥離し除去でき
るとともに、逆洗頻度を減らすことができるという作用
を有する。
(Embodiment 1) FIG. 1 is a schematic diagram of a main part of a dust-containing high-temperature and high-pressure gas dedusting apparatus according to Embodiment 1 of the present invention. In FIG. 1, 1 is a pressurized fluidized-bed boiler of a dust-containing high-temperature and high-pressure gas generator, 1a is a heat transfer tube disposed in a fluidized bed, 2 is a combustion gas channel, 3 is a coarse dust removing device, and 4 is a coarse dust removing device. A dust removal gas passage, 5 is a precision dust removal device, 6 is a clean gas passage, 7 is a gas turbine, and 8 is a generator, all of which are the same as those in the conventional example. The description is omitted here. Reference numeral 9 denotes a coarse dust removal device 3 which is provided in parallel with the combustion gas flow path 2 to remove the combustion gas generated from the dust-containing high-temperature and high-pressure gas generator 1.
This is a particle size distribution adjusting tube that flows into the precision dust removing device 5 without passing through the pipe. The point that the dust removing apparatus in the present embodiment differs from the conventional example is that a particle size distribution adjusting pipe 9 is provided between the combustion gas flow path 2 and the coarse dust removing gas flow path. As a result, a predetermined amount of the large-size ash dust in the combustion gas flows into the precision dust removal device 5 without being coarsely removed, so that the particle size distribution of the ash dust flowing into the precision dust removal device 5 can be adjusted. In addition, since the amount of coarse ash particles increases, the specific surface area is reduced, and the ash dust has the effect of preventing the fine ash dust from being compacted and firmly attached to the inner surface of the ceramic tube filter. As a result, there is an effect that clogging and blockage in the ceramic tube filter can be reduced. Further, since fine ash dust is prevented from adhering to the inner surface of the ceramic tube filter in a compact manner, ash dust can be easily peeled off and removed by backwashing, and the frequency of backwashing can be reduced.

【0015】(実施の形態2)図2(a)、図2(b)
は本発明の実施の形態2における粒径分布調整管の要部
模式図である。図2(a)、図2(b)において、2a
は燃焼ガス流路、3は粗脱塵装置、4aは粗脱塵装置3
で粗脱塵された粗脱塵ガスが精密脱塵装置(図示せず)
へ流入する粗脱塵ガス流路、9aはボイラ頂部マニホー
ルド21に配設され粗脱塵ガス流路4aに連通された粒
径分布調整管、22はボイラ頂部マニホールド21の内
部にパイプの一端部を半割れにして形成された粒径分布
調整管9aの粒径分布調整用ガス取り出し部、23は粒
径分布調整管9a内に1乃至複数個配設された流量調整
用のオリフィスである。尚、オリフィス23は粒径分布
調整管9aの内径の大きさによっては設けなくてもよ
い。尚、粒径分布調整管9aの上下のエルボ部は、固体
燃料の種類にもよるが、灰塵による磨耗を防ぐためT字
型としてもよい。また、図2(b)において、9a’は
ボイラ頂部マニホールド21の上面に配設され粗脱塵ガ
ス流路4aに連設された直管状の粒径分布調整管であ
る。これにより、粒径分布調整管9aをボイラ(図示せ
ず)の上部に配設できるため、装置全体をコンパクトに
することができる。また、粒径分布調整管9a内に1乃
至複数のオリフィス23を配設し、オリフィスの口径や
配設する個数を適宜設定することによって粒径分布調整
用ガス流量を制御し、その結果、ガス中の灰塵の粒径分
布を調整することができ、精密脱塵装置へ流入するガス
中の灰塵の粒径を最適値に設定することができる。な
お、ここで、オリフィスの材料としては耐熱、耐磨耗性
の優れたセラミックスやアベスタ鋳鋼等が使用される。
オリフィス径は粒径分布調整管の径にもよるが、粒径分
布調整管の0.1〜0.9倍好ましくは、0.2〜0.
8倍が望ましい。流速を犠牲にせずに最大の効果を与え
るためである。ここで、オリフィスを備えない場合の粒
径分布調整用ガス流量を予め大きく設定しておくと、オ
リフィスによる粒径分布調整の幅を大きくすることがで
きるため、石炭の生産国や等級、脱硫剤の種類や投入
量、さらに燃焼条件によって大きく異なる灰塵量や粒径
分布に対して、あらかじめ最適な値に設定することがで
きる。また、図2(b)のように、直管状の粒径分布調
整管9a’をボイラ頂部マニホールド21の上面に配設
し、粗脱塵ガス流路4aに連設してもよい。粒径分布調
整管に曲管部がなく流路を短くでき、ガス流速や熱量の
損失を抑えることができるからである。
(Embodiment 2) FIGS. 2A and 2B
FIG. 4 is a schematic diagram of a main part of a particle size distribution adjusting tube according to Embodiment 2 of the present invention. 2 (a) and 2 (b), 2a
Is a combustion gas passage, 3 is a coarse dust remover, 4a is a coarse dust remover 3
The coarse dust gas that has been coarsely dusted by the precision dust removal device (not shown)
The coarse dust gas flow path flowing into the boiler top manifold 21 is disposed in the boiler top manifold 21 and communicated with the coarse dust gas flow path 4a, and 22 is one end of a pipe inside the boiler top manifold 21. Is a particle size distribution adjusting gas take-out portion of the particle size distribution adjusting tube 9a formed by splitting into half, and 23 is an orifice for adjusting a flow rate provided in the particle size distribution adjusting tube 9a. The orifice 23 may not be provided depending on the size of the inner diameter of the particle size distribution adjusting tube 9a. The upper and lower elbows of the particle size distribution adjusting tube 9a may be T-shaped to prevent abrasion due to ash dust, depending on the type of solid fuel. In FIG. 2 (b), reference numeral 9a 'denotes a straight tubular particle size distribution adjusting tube which is disposed on the upper surface of the boiler top manifold 21 and is connected to the coarse dust removal gas passage 4a. Thus, the particle size distribution adjusting pipe 9a can be disposed above the boiler (not shown), so that the entire apparatus can be made compact. Also, one or more orifices 23 are arranged in the particle size distribution adjusting pipe 9a, and the diameter of the orifices and the number of the orifices are appropriately set to control the gas flow rate for adjusting the particle size distribution. The particle size distribution of the ash dust can be adjusted, and the particle size of the ash dust in the gas flowing into the precision dust removing device can be set to an optimum value. Here, as the material of the orifice, ceramics having excellent heat resistance and abrasion resistance, Avesta cast steel, and the like are used.
The orifice diameter depends on the diameter of the particle size distribution adjusting tube, but it is preferably 0.1 to 0.9 times the particle size distribution adjusting tube, and more preferably 0.2 to 0.9 times.
Eight times is desirable. This is to give the maximum effect without sacrificing the flow rate. Here, if the gas flow rate for particle size distribution adjustment in the case where the orifice is not provided is set to a large value in advance, the range of particle size distribution adjustment by the orifice can be widened, so that the country or grade of coal production, desulfurization agent Optimum values can be set in advance for the amount of ash dust and particle size distribution that greatly vary depending on the type and input amount of ash and combustion conditions. Further, as shown in FIG. 2B, a straight tubular particle size distribution adjusting pipe 9a 'may be provided on the upper surface of the boiler top manifold 21, and may be connected to the coarse dust gas flow path 4a. This is because the particle size distribution adjusting tube does not have a curved portion and the flow path can be shortened, and the loss of gas flow rate and heat can be suppressed.

【0016】(実施の形態3)図3は本発明の実施の形
態3における粒径分布調整管の要部模式図である。図3
において、2aは燃焼ガス流路、3は粗脱塵装置、4a
は粗脱塵ガス流路、21はボイラ頂部マニホールド、2
3はオリフィスであり、実施の形態2と同様のものであ
るので、同一の符号を付して説明を省略する。9bはボ
イラ頂部マニホールド21に配設され粗脱塵ガス流路4
aに連通された粒径分布調整管、31はボイラ頂部マニ
ホールド21に嵌入された粒径分布調整管9bの一端部
を半割れにして形成された粒径分布調整用ガス取り出し
部、32は粒径分布調整用ガス取り出し部31の上部に
被設し、空気等のガスを注入するガス注入装置、32a
はガス取り出し部の上部のパイプに1乃至複数個穿孔さ
れたガス注入孔、33はガス注入装置32に配設された
ガス注入量の制御バルブ、34は精密脱塵装置(図示せ
ず)の目詰まり度(差圧等)を検知し、制御バルブ33
の開閉度を制御する粒径分布制御手段である。これによ
り、燃焼ガス中の灰塵の量や粒径分布の状態や、精密脱
塵装置(図示せず)の目詰まり度の変化に対応し、粒径
分布制御手段34の制御で、制御バルブ33の開閉度を
調節するという簡単な操作で粒径分布調整用ガス流量を
最適に制御することができるという作用を有する。ま
た、バルブ開閉に対する空気や窒素などのガスの流入は
応答が早いため、粒径分布を迅速に最適値に制御するこ
とができるという作用を有する。ガス注入装置32から
背圧をかけることによって、粒径が小さく慣性力の小さ
な灰塵粒子が粒径分布調整管9bへ流入することを防止
できるため、粒径が大きく慣性力の大きな灰塵粒子を選
択的に粒径分布調整管9bに流入させ、精密脱塵装置の
粒径分布を拡大し、これにより、目詰まりや閉塞を防止
する効果を高めることができるという作用を有する。こ
こで、ガス注入装置から注入するガスとしては加圧流動
床ボイラを内設した圧力容器(図示せず)内の圧縮空気
をそのまま使用することもでき、また、別途コンプレッ
サー等を使用し圧縮空気や窒素等を流入させることもで
きる。また、ガス注入装置のバルブを圧力容器(図示せ
ず)の外に配設すると、ガス注入量の制御が容易である
とともに、比較的耐熱性の低いバルブ材料でも使用する
ことができるため、さらに好ましい。
(Embodiment 3) FIG. 3 is a schematic diagram of a main part of a particle size distribution adjusting tube according to Embodiment 3 of the present invention. FIG.
2a is a combustion gas flow path, 3 is a coarse dust removing device, 4a
Is a coarse dust gas passage, 21 is a boiler top manifold, 2
Reference numeral 3 denotes an orifice, which is the same as that of the second embodiment, and therefore, is denoted by the same reference numeral and description thereof is omitted. Reference numeral 9b denotes a coarse dust removal gas passage 4 which is disposed on the boiler top manifold 21.
a, a particle size distribution adjusting gas outlet 31 formed by half-breaking one end of the particle size distribution adjusting tube 9b fitted into the boiler top manifold 21; A gas injection device 32a provided on the upper portion of the diameter distribution adjusting gas extraction portion 31 and injecting a gas such as air;
Is a gas injection hole formed by drilling one or more gas injection holes in the upper pipe of the gas outlet, 33 is a gas injection amount control valve provided in the gas injection device 32, and 34 is a precision dust removal device (not shown). The control valve 33 detects the degree of clogging (differential pressure, etc.).
Is a particle size distribution control means for controlling the degree of opening and closing. Accordingly, the control valve 33 is controlled by the particle size distribution control means 34 in response to the amount of ash dust in the combustion gas, the state of the particle size distribution, and the change in the degree of clogging of a precision dust removing device (not shown). This has the effect that the gas flow rate for adjusting the particle size distribution can be optimally controlled by a simple operation of adjusting the opening / closing degree of the gas. In addition, since the flow of gas such as air or nitrogen to the opening and closing of the valve has a quick response, there is an effect that the particle size distribution can be quickly controlled to an optimum value. By applying a back pressure from the gas injection device 32, it is possible to prevent ash dust particles having a small particle size and a small inertia force from flowing into the particle size distribution adjusting tube 9b, so that ash dust particles having a large particle size and a large inertia force are selected. In this case, the particle size distribution of the precision dust removing device is expanded by flowing the particles into the particle size distribution adjusting pipe 9b, thereby improving the effect of preventing clogging and clogging. Here, as the gas to be injected from the gas injection device, compressed air in a pressure vessel (not shown) in which a pressurized fluidized-bed boiler is installed can be used as it is, or a compressed air can be separately used by using a compressor or the like. And nitrogen or the like can be introduced. Further, when the valve of the gas injection device is disposed outside the pressure vessel (not shown), the gas injection amount can be easily controlled, and a valve material having relatively low heat resistance can be used. preferable.

【0017】(実施の形態4)図4は本発明の実施の形
態4における粒径分布調整管の要部模式図である。図4
において、2aは燃焼ガス流路、3は粗脱塵装置、4a
は粗脱塵ガス流路、21はボイラ頂部マニホールド、2
2は粒径分布調整用ガス取り出し部であり、実施の形態
2と同様のものであるので、同一の符号を付して説明を
省略する。9cは粒径分布調整管、41a,41bは粒
径分布調整管9cの上下のエルボ部に配設した空気や窒
素等のガス注入装置、42a,42bはガス注入装置4
1a,41bの制御バルブである。これにより、燃焼ガ
スの状態や精密脱塵装置(図示せず)の状況の変化に迅
速に対応し、粒径分布調整用ガス流量を最適に制御する
ことができる。特に、急激に灰塵量が増加し、粒径分布
調整管9cへのガス流量が過大になった時に、制御バル
ブ42a,42bを開けて空気や窒素等のガスを注入す
ることによって粒径分布調整管9cに流入する粒径分布
調整用ガスの流量を制御することにより、慣性力の大き
い大粒径の灰塵を選択的に精密脱塵装置に流入させて灰
塵の量と粒径分布とを効果的に制御することができる。
ここで、ガス注入装置から注入するガスとしては前述の
ものを用いることができる。なお、粗脱塵装置3から回
収される粒径分布の粗大な灰塵をガス注入装置から注入
されるガスに同伴させてもよい。粒径分布調整の幅を大
きくすることもできるとともに、未反応酸化カルシウム
等を有効利用することができるからである。
(Embodiment 4) FIG. 4 is a schematic view of a main part of a particle size distribution adjusting tube according to Embodiment 4 of the present invention. FIG.
2a is a combustion gas flow path, 3 is a coarse dust removing device, 4a
Is a coarse dust gas passage, 21 is a boiler top manifold, 2
Numeral 2 denotes a particle size distribution adjusting gas take-out unit, which is the same as that of the second embodiment. 9c is a particle size distribution adjusting tube, 41a and 41b are gas injection devices such as air and nitrogen arranged in upper and lower elbows of the particle size distribution adjusting tube 9c, and 42a and 42b are gas injection devices 4
These are the control valves 1a and 41b. This makes it possible to quickly respond to changes in the state of the combustion gas and the state of the precision dust removal device (not shown), and to optimally control the gas flow rate for adjusting the particle size distribution. In particular, when the amount of ash dust increases rapidly and the gas flow rate to the particle size distribution adjusting pipe 9c becomes excessive, the control valves 42a and 42b are opened to inject a gas such as air or nitrogen to adjust the particle size distribution. By controlling the flow rate of the gas for adjusting the particle size distribution flowing into the pipe 9c, large-size ash dust having a large inertia force can be selectively introduced into the precision dust removing device, and the amount and size distribution of the ash dust can be reduced. Can be controlled.
Here, the above-mentioned gas can be used as the gas to be injected from the gas injection device. Note that coarse ash dust having a particle size distribution collected from the coarse dust removing device 3 may be accompanied by the gas injected from the gas injection device. This is because the width of the particle size distribution adjustment can be increased, and unreacted calcium oxide and the like can be effectively used.

【0018】(実施の形態5)図5は本発明の実施の形
態5における粒径分布調整管の要部模式図である。図5
において、2aは燃焼ガス流路、3は粗脱塵装置、4a
は粗脱塵ガス流路、9aは粒径分布調整管、21はボイ
ラ頂部マニホールド、23はオリフィスであり、本発明
の他の実施の形態と同様のものであるので、同一の符号
を付して説明を省略する。51は粒径分布調整管9aに
流入する粒径分布調整用ガスの取り入れ口22の下部に
配設され、粒径分布調整用ガスの流入量を制御すること
ができる回動可能なガス流入量制御ダンパである。これ
により、空気やガス等のユーティリティを消費せずに、
ガス流入量制御ダンパ51を回動させるだけで粒径分布
調整用ガスの流量を調整することができる。ここで、ガ
ス流入量制御ダンパとしては耐熱性と耐磨耗性に優れた
セラミックやアベスタ鋳鋼等製のものが用いられ、油圧
や空気圧等によって粒径分布制御手段で回動が制御され
る。
(Embodiment 5) FIG. 5 is a schematic diagram of a main part of a particle size distribution adjusting tube according to Embodiment 5 of the present invention. FIG.
2a is a combustion gas flow path, 3 is a coarse dust removing device, 4a
Is a coarse dust removal gas passage, 9a is a particle size distribution adjusting tube, 21 is a boiler top manifold, and 23 is an orifice, which are the same as those of the other embodiments of the present invention. The description is omitted. Reference numeral 51 denotes a rotatable gas inflow which is provided below the inlet 22 for the particle size distribution adjusting gas flowing into the particle size distribution adjusting pipe 9a and which can control the amount of inflow of the particle size distribution adjusting gas. It is a control damper. As a result, without consuming utilities such as air and gas,
The flow rate of the particle size distribution adjusting gas can be adjusted only by rotating the gas inflow control damper 51. Here, as the gas inflow control damper, a damper made of ceramic, castor steel, or the like having excellent heat resistance and wear resistance is used, and the rotation is controlled by the particle size distribution control means by hydraulic pressure or air pressure.

【0019】(実施の形態6)図6は本発明の実施の形
態6における粒径分布調整管の要部模式図である。図6
において、2aは燃焼ガス流路、3は粗脱塵装置、4a
は粗脱塵ガス流路、21はボイラ頂部マニホールドであ
り、実施の形態2と同様のものであるので、同一の符号
を付して説明を省略する。9dは粒径分布調整管、61
は粒径分布調整管9d内に配設した1乃至複数個の制御
バルブである。これにより、空気やガス等のユーティリ
ティを消費せずに、制御バルブ61を開閉するだけで、
粒径分布調整用ガス流量を最適に制御することができ
る。ここで制御バルブ61としては、アベスタ鋳鋼やイ
ンコネル等製のものが用いられ、油圧や空気圧等によっ
て開閉が制御される。
(Embodiment 6) FIG. 6 is a schematic diagram of a main part of a particle size distribution adjusting tube according to Embodiment 6 of the present invention. FIG.
2a is a combustion gas flow path, 3 is a coarse dust removing device, 4a
Is a coarse dust gas passage, and 21 is a boiler top manifold, which is the same as that of the second embodiment, and therefore, is denoted by the same reference numerals and description thereof is omitted. 9d is a particle size distribution adjusting tube, 61
Is one or more control valves disposed in the particle size distribution adjusting pipe 9d. This allows the user to simply open and close the control valve 61 without consuming utilities such as air and gas.
The flow rate of the particle size distribution adjusting gas can be optimally controlled. Here, as the control valve 61, a valve made of vester cast steel, Inconel, or the like is used, and its opening and closing are controlled by hydraulic pressure, air pressure, and the like.

【0020】(実施の形態7)図7は本発明の実施の形
態7における粒径分布調整管の要部模式図である。図7
において、2bは燃焼ガス流路、3’はボイラ頂部マニ
ホールド(図示せず)に並設されている1乃至複数個の
サイクロンからなる粗脱塵装置、4bは粗脱塵ガス排出
流路、71は各々の粗脱塵装置への燃焼ガス流路2bか
ら分岐して粗脱塵ガス排出流路4bに連設された小口径
の粒径分布調整管である。これにより、粗脱塵装置3’
に流入するガス中の大粒径の灰塵を粗脱塵ガス流路4b
に流入させ精密脱塵装置に流入する灰塵の粒径分布を調
整することができるという作用を有する。また、既存の
複数のサイクロンのレイアウトを大幅に変更する事なく
粒径分布の調整を行うことができるとともに、配管が小
口径で軽量であるため、配設や取り替え等の作業性に優
れるという作用を有する。ここで、1乃至複数のサイク
ロン毎に配設した小口径の粒径分布調整管71には、各
々のサイクロンに流入するガス量の8〜50%のガス量
となるように設定し、かつサイクロン毎の差が生じない
ように設計することが好ましい。尚、小口径の粒径分布
調整管71にバルブを配設し、ガス流量を調整してもよ
い。サイクロンの性能や磨耗に偏差が生じないためであ
る。
(Embodiment 7) FIG. 7 is a schematic view of a main part of a particle size distribution adjusting tube according to Embodiment 7 of the present invention. FIG.
Reference numeral 2b denotes a combustion gas flow path, 3 'denotes a coarse dust removal device comprising one or a plurality of cyclones arranged side by side in a boiler top manifold (not shown), 4b denotes a coarse dust gas discharge flow path, 71 Is a small-diameter particle size distribution adjusting pipe branched from the combustion gas flow path 2b to each coarse dust removal device and connected to the coarse dust removal gas discharge flow path 4b. Thereby, the coarse dust removing device 3 '
Ash dust with a large particle diameter in the gas flowing into
Has the function of adjusting the particle size distribution of ash dust flowing into the precision dust removing device. In addition, it is possible to adjust the particle size distribution without significantly changing the layout of existing cyclones, and because the piping is small and lightweight, it is excellent in workability such as installation and replacement. Having. Here, the small-diameter particle size distribution adjusting pipe 71 provided for each of one or a plurality of cyclones is set to have a gas amount of 8 to 50% of the gas amount flowing into each cyclone. It is preferable to design so as not to cause a difference between the two. In addition, a valve may be provided in the small diameter particle size distribution adjusting pipe 71 to adjust the gas flow rate. This is because there is no deviation in the performance and wear of the cyclone.

【0021】(実施の形態8)図8は本発明の実施の形
態8における循環加圧流動床ボイラに配設した粒径分布
調整管の要部模式図である。図8において、81は空塔
速度が5〜7m/sである循環加圧流動床ボイラ、81
aは循環加圧流動床ボイラ81の内部に配設された伝熱
管、82は燃焼ガス流路、83はサイクロン等で構成し
た粗脱塵装置、83aは粗脱塵装置83から循環加圧流
動床ボイラ81の流動床内に灰塵を循環させる灰塵循環
部、84は粗脱塵装置83から排出される粗脱塵ガス排
出流路、81bはボイラ頂部、85は粒径分布調整管、
86はオリフィスである。本実施の形態が実施の形態1
乃至8と異なるのは、加圧流動床ボイラ81が循環式で
あり、流動床内の空塔速度が5〜7m/sである点と、
ボイラ頂部81bにオリフィス86を備えた粒径分布調
整管85を配設し、粗脱塵ガス流路84に連通している
点である。これによって、粗脱塵装置83から粗脱塵さ
れた灰塵を循環加圧流動床に環流することにより、灰塵
を大粒径化することができるので、更に容易に精密脱塵
装置(図示せず)に流入する灰塵の粒径分布を調整する
ことができるという作用を有する。また、循環加圧流動
床ボイラ81で消費されなかった未反応酸化カルシウム
分を含有する灰塵を循環する等有効利用することができ
るため、脱硫効果を更に向上させることができるという
作用を有する。
(Embodiment 8) FIG. 8 is a schematic diagram of a main part of a particle size distribution adjusting pipe disposed in a circulating pressurized fluidized-bed boiler according to Embodiment 8 of the present invention. In FIG. 8, reference numeral 81 denotes a circulating pressurized fluidized-bed boiler having a superficial velocity of 5 to 7 m / s;
a is a heat transfer tube disposed inside the circulating pressurized fluidized-bed boiler 81, 82 is a combustion gas flow path, 83 is a coarse dust removing device composed of a cyclone or the like, and 83a is a circulating pressurizing fluid from the coarse dust removing device 83. A dust circulating unit for circulating ash dust in the fluidized bed of the floor boiler 81; 84, a coarse dust removal gas discharge channel discharged from the coarse dust removal device 83; 81b, a boiler top; 85, a particle size distribution adjusting pipe;
86 is an orifice. Embodiment 1 is Embodiment 1.
8 is different from that of the first embodiment in that the pressurized fluidized-bed boiler 81 is of a circulation type and the superficial velocity in the fluidized bed is 5 to 7 m / s.
The point is that a particle size distribution adjusting tube 85 provided with an orifice 86 is provided at the boiler top 81b and communicates with the coarse dust gas flow path 84. As a result, the ash dust, which has been coarsely evacuated from the coarse dust removing device 83, is returned to the circulating pressurized fluidized bed, so that the ash dust can be made larger in particle size. ) Has the effect of adjusting the particle size distribution of the ash dust flowing into the ash dust. In addition, since ash dust containing unreacted calcium oxide that has not been consumed in the circulating pressurized fluidized-bed boiler 81 can be circulated and effectively used, the desulfurization effect can be further improved.

【0022】[0022]

【実施例】次に、本発明を比較例及び実施例により詳細
に説明する。 (比較例1)粗脱塵装置3としてサイクロン7基(脱塵
効率約90%)と、精密脱塵装置5としてセラミックチ
ューブフィルタを2基備えた71MW加圧流動床発電シ
ステムで、各種の測定を行った。100%負荷時で、ボ
イラ出口ガスは層温度が860℃、ガス圧11kg/c
2 g、含まれる灰塵の平均粒径は15〜20μm、最
大で300μm、含有量は28.8g/Nm3 であっ
た。サイクロンを経由してセラミックチューブフィルタ
に流入するガス温度は850℃、ガス圧は9kg/cm
2 g、灰塵含有量は1g/Nm3 であった。セラミック
チューブフィルタでの粒径と捕捉灰塵量との関係を測定
し、その結果を図9に示した。これにより、粒径は約
0.5μm〜20μm、平均粒径は2〜3μmであり、
粒径が小さいものが集中し、粒径分布の幅が狭いことが
わかる。このようにセラミックチューブフィルタに流入
する灰塵の粒径が小さく、粒径分布の幅が狭いため、セ
ラミックチューブフィルタ内に灰が付着しやすく、圧力
損失は3000mmAq程度あった。このため、逆洗は
9分のインターバルで行う必要があり、2週間程度の運
転でもセラミックチューブフィルタに閉塞が生じること
がわかった。
Next, the present invention will be described in detail with reference to comparative examples and examples. (Comparative Example 1) Various measurements were performed using a 71 MW pressurized fluidized-bed power generation system equipped with seven cyclones (dust removal efficiency: about 90%) as the coarse dust remover 3 and two ceramic tube filters as the fine dust remover 5. Was done. At 100% load, the boiler outlet gas has a bed temperature of 860 ° C and a gas pressure of 11 kg / c.
m 2 g, the average particle size of the contained ash dust was 15 to 20 μm, the maximum was 300 μm, and the content was 28.8 g / Nm 3 . The temperature of the gas flowing into the ceramic tube filter via the cyclone is 850 ° C, and the gas pressure is 9 kg / cm
The content of 2 g and ash dust was 1 g / Nm 3 . The relationship between the particle size and the amount of trapped ash dust in the ceramic tube filter was measured, and the results are shown in FIG. Thereby, the particle size is about 0.5 μm to 20 μm, the average particle size is 2 to 3 μm,
It can be seen that particles having a small particle size are concentrated, and the width of the particle size distribution is narrow. Since the particle size of the ash dust flowing into the ceramic tube filter is small and the width of the particle size distribution is narrow, ash easily adhered to the ceramic tube filter, and the pressure loss was about 3000 mmAq. For this reason, it was found that the backwashing had to be performed at intervals of 9 minutes, and even when the operation was performed for about two weeks, the ceramic tube filter was clogged.

【0023】(実施例1)比較例と同様の71MW加圧
流動床発電システムで、加圧流動床ボイラ頂部から粗脱
塵ガス流路に粒径分布調整管を設け、オリフィスによっ
て粒径分布調整用ガス流量が含塵ガス全量の8%となる
ように設定し、セラミックチューブフィルタでの粒径と
捕捉灰塵量との関係を測定し、その結果を図9に示し
た。これによると比較例1の粒径分布図と同様に粒径が
10μm以下の灰塵による小ピークを有しているが、新
たに粒径約50μm付近に大ピークが生じ粒径分布を著
しく広げていることがわかった。また、灰塵の平均粒径
は約6μm、最大粒径は約100μmであった。セラミ
ックチューブフィルタに流入する灰塵含有量は約2g/
Nm3 となり、比較例の粒径分布調整管を設けない場合
の約2倍に増加することがわかった。このように粒径分
布調整管を設けることによって、大粒径の灰塵が選択的
に粗脱塵ガスに混ざり、セラミックチューブフィルタに
流入していることがわかる。その結果、セラミックチュ
ーブフィルタでのシステムとしての圧力損失は2800
mmAqとなり、粒径分布調整管を備えない場合の比較
例1と比べ圧力損失を約7%減少できることがわかっ
た。逆洗は12分に1回のインターバルにしても圧力損
失がほとんど変わらず、また、24分に1回のインター
バルでも圧力損失は約2900mmAqで安定している
ことがわかった。加圧流動床ボイラの燃焼ガスの増減に
殆ど影響を受けずに安定して動作することが確認され
た。また、1カ月の連続運転後においてもセラミックチ
ューブフィルタ内に灰塵の付着や閉塞は発生せず、長期
間にわたって安定運転が可能であることが確認された。
(Example 1) In the same 71 MW pressurized fluidized bed power generation system as in the comparative example, a particle size distribution adjusting pipe was provided from the top of the pressurized fluidized bed boiler to the coarse dust gas flow path, and the particle size distribution was adjusted by an orifice. The use gas flow rate was set to be 8% of the total amount of the dust-containing gas, and the relationship between the particle size and the amount of trapped ash dust in the ceramic tube filter was measured. The results are shown in FIG. According to this, as in the particle size distribution chart of Comparative Example 1, there is a small peak due to ash dust having a particle size of 10 μm or less, but a large peak is newly formed around a particle size of approximately 50 μm, and the particle size distribution is significantly expanded. I knew it was there. The average particle size of the ash dust was about 6 μm, and the maximum particle size was about 100 μm. The ash dust content flowing into the ceramic tube filter is about 2 g /
Nm 3 , which was about twice as large as that of the comparative example in which the particle size distribution adjusting tube was not provided. By providing the particle size distribution adjusting tube in this manner, it can be seen that ash dust having a large particle size is selectively mixed with the coarse dust gas and flows into the ceramic tube filter. As a result, the pressure loss as a system with a ceramic tube filter is 2800
mmAq, and it was found that the pressure loss can be reduced by about 7% as compared with Comparative Example 1 without the particle size distribution adjusting tube. It was found that the pressure loss hardly changed even if the backwashing was performed once every 12 minutes, and the pressure loss was stable at about 2900 mmAq even once every 24 minutes. It has been confirmed that the pressurized fluidized-bed boiler operates stably without being largely affected by the increase or decrease of the combustion gas. Further, even after one month of continuous operation, no ash dust adhered or clogged in the ceramic tube filter, and it was confirmed that stable operation was possible for a long period of time.

【0024】(実施例2)実施例1と同様のシステム
で、オリフィス板を取り外し、粒径分布調整用ガス流量
が含塵ガス全量の12%となるように設定した。この結
果、図9に示したように、セラミックチューブフィルタ
に流入する灰塵の粒径と捕捉灰塵量との関係は実施例1
の場合の粒径分布調整用ガス流量が8%の場合よりも、
さらに大粒径の灰塵が増加していることがわかった。な
お、灰塵の平均粒径は7μm、最大粒径は約150μm
であった。灰塵含有量は3g/Nm3 に増加したがセラ
ミックチューブフィルタでの圧力損失は2600mmA
qとなり、粒径分布調整管を備えない場合と比較して1
3%以上も圧力損失量を減少できることがわかった。逆
洗は圧力損失量をほとんど変えずに12分に1回のイン
ターバルにすることができ、また、24分に1回のイン
ターバルにしても、圧力損失は2700〜2900mm
Aqの間で安定していることが確認された。また、30
分に1回のインターバルでもほぼ同等の圧力損失で運転
できることがわかった。更に、逆洗のインターバルを伸
ばす事で、逆洗用の高圧空気の消費量を低減できるとと
もに、高圧空気用のコンプレッサーの運転を2台から1
台に減らすことができ、所内率を0.5%も改善できる
ことがわかった。また、加圧流動床ボイラの燃焼状態の
変化に伴う燃焼ガスの増減の影響はほとんど受けず、動
作が安定していることが確認された。さらに、1カ月の
連続運転でもセラミックチューブフィルタ内面の灰塵付
着による詰まりや閉塞は発生しないことが確認された。
Example 2 In the same system as in Example 1, the orifice plate was removed, and the gas flow rate for adjusting the particle size distribution was set to be 12% of the total amount of the dust-containing gas. As a result, as shown in FIG. 9, the relationship between the particle size of the ash dust flowing into the ceramic tube filter and the amount of captured ash dust was determined in Example 1.
The flow rate of the gas for adjusting the particle size distribution in the case of
Furthermore, it was found that the ash dust having a large particle diameter increased. The average particle size of the ash dust is 7 μm, and the maximum particle size is about 150 μm.
Met. Ash dust content increased to 3g / Nm 3 but pressure loss at ceramic tube filter was 2600mmA
q, which is 1 compared to the case without the particle size distribution adjusting tube.
It has been found that the pressure loss can be reduced by 3% or more. Backwashing can be performed once every 12 minutes without substantially changing the pressure loss amount, and even when performed once every 24 minutes, the pressure loss is 2700 to 2900 mm.
It was confirmed that it was stable between Aq. Also, 30
It has been found that even at intervals of one minute, operation can be performed with almost the same pressure loss. Further, by extending the backwashing interval, the consumption of high-pressure air for backwashing can be reduced, and the operation of the compressor for high-pressure air can be reduced from two to one.
It has been found that the number can be reduced to the number of stations, and the in-house rate can be improved by 0.5%. In addition, it was confirmed that the operation of the pressurized fluidized-bed boiler was stable with almost no influence of the change in the combustion gas due to the change in the combustion state. In addition, it was confirmed that no clogging or blockage due to the adhesion of ash dust on the inner surface of the ceramic tube filter occurred even after one month of continuous operation.

【0025】(比較例2)(実施例3、4) 次に、50%負荷時でのセラミックチューブフィルタに
ついて、灰塵の粒径と捕捉灰塵量との関係を測定した。
その結果を図10に示した。この図10から明らかなよ
うに50%負荷時でも同一の結果が得られることがわか
った。
Comparative Example 2 (Examples 3 and 4) Next, the relationship between the particle size of ash dust and the amount of trapped ash dust was measured for the ceramic tube filter under a 50% load.
The results are shown in FIG. As is apparent from FIG. 10, the same result was obtained even when the load was 50%.

【0026】[0026]

【発明の効果】本発明の請求項1に記載の含塵高温高圧
ガスの脱塵装置によれば、a.粒径分布調整管を備えた
ことにより、精密脱塵装置に流入する灰塵の粒径分布が
広がり、粗大な灰塵粒子量が増えるため、セラミックチ
ューブフィルタ等の精密脱塵装置への灰塵の付着が減る
ととともに、圧力損失を下げることができるため、発電
等の効率を上げることができる。b.また、セラミック
チューブフィルタ等の精密脱塵装置への熱応力を下げる
ことができるとともに、逆洗頻度を下げることができる
ため、精密脱塵装置の耐久性や信頼性を向上させること
ができる。c.逆洗頻度を下げることができるため、所
内率も下げることができ、発電等の効率を向上させるこ
とができる。
According to the dust removing device for dust-containing high-temperature and high-pressure gas according to claim 1 of the present invention, a. The provision of a particle size distribution adjusting tube broadens the particle size distribution of the ash dust flowing into the precision dust removal device and increases the amount of coarse ash dust particles, so that ash dust adheres to the precision dust removal device such as a ceramic tube filter. Since the pressure loss can be reduced and the pressure loss can be reduced, the efficiency of power generation and the like can be increased. b. Further, the thermal stress on the precision dust removing device such as a ceramic tube filter can be reduced, and the frequency of backwashing can be reduced, so that the durability and reliability of the precision dust removing device can be improved. c. Since the frequency of backwashing can be reduced, the internal rate can also be reduced, and the efficiency of power generation and the like can be improved.

【0027】本発明の請求項2に記載の含塵高温高圧ガ
スの脱塵装置によれば、請求項1に記載の効果に加え
て、粒径分布調整管を含塵高温高圧ガス発生装置の頂部
と粗脱塵ガス流路間に備えたため、粒径分布調整管を短
くすることができるため、粒径分布調整管中を流れる粒
径分布調整用ガスの流速や熱量を損失せずに有効に精密
脱塵装置に流入する灰塵の粒径分布を調整することがで
きる。
According to the dust-removing device for dust-containing high-temperature and high-pressure gas according to the second aspect of the present invention, in addition to the effect of the first aspect, the particle size distribution adjusting tube is provided with a dust-containing high-temperature and high-pressure gas generating device. Since it is provided between the top and the coarse dust gas flow path, the particle size distribution adjusting tube can be shortened, so it is effective without losing the flow rate and heat of the particle size distribution adjusting gas flowing through the particle size distribution adjusting tube. The particle size distribution of the ash dust flowing into the precision dust removing device can be adjusted.

【0028】本発明の請求項3に記載の含塵高温高圧ガ
スの脱塵装置によれば、a.空塔速度が5〜7m/sの
循環流動床のような含塵高温高圧ガス発生装置において
も精密脱塵装置へ流入する灰塵の粒径分布を調整するこ
とができるため、精密脱塵装置への負担を軽減すること
ができ、安定した運転を達成することが出来る。b.ま
た、含塵高温高圧ガス発生装置で消費されなかった未反
応酸化カルシウム分を含有する灰塵を循環する等有効利
用することができるため、含塵高温高圧ガス発生装置内
での脱硫効果を向上させることができる。
According to the dust-containing high-temperature and high-pressure gas dedusting apparatus according to claim 3 of the present invention, a. Even in a dust-containing high-temperature and high-pressure gas generator such as a circulating fluidized bed with a superficial velocity of 5 to 7 m / s, it is possible to adjust the particle size distribution of ash dust flowing into the precision dust remover. Can be reduced, and stable operation can be achieved. b. In addition, since the ash dust containing unreacted calcium oxide that has not been consumed in the dust-containing high-temperature and high-pressure gas generator can be effectively used, such as circulating, the desulfurization effect in the dust-containing high-temperature and high-pressure gas generator is improved. be able to.

【0029】本発明の請求項4に記載の含塵高温高圧ガ
スの脱塵方法によれば、請求項1乃至3の内いずれか1
項に記載の発明の効果に加えて、精密脱塵装置での目詰
まり度検出手段によって検出された目詰まり度から、粒
径分布を制御することができるため、精密脱塵装置への
負荷を軽減し最適に設定することができる。また、燃焼
状態の急激な変化に伴い目詰まりが発生した場合に粒径
分布調整を行うことで目詰まりを解消することができ
る。
According to the method for removing dust-containing high-temperature and high-pressure gas according to claim 4 of the present invention, any one of claims 1 to 3 is provided.
In addition to the effect of the invention described in the paragraph, the particle size distribution can be controlled from the degree of clogging detected by the degree of clogging detection in the precision dust removal device, so that the load on the precision dust removal device is reduced. It can be reduced and set optimally. Further, when clogging occurs due to a rapid change in the combustion state, the clogging can be eliminated by adjusting the particle size distribution.

【0030】本発明の請求項5に記載の含塵高温高圧ガ
スの脱塵方法によれば、a.精密脱塵装置に流入する灰
塵の粒径分布が広がり、粗大な灰塵粒子量が増えるた
め、セラミックチューブフィルタ等の精密脱塵装置への
灰塵の付着が減るととともに、圧力損失を下げることが
できるため、発電等の効率を上げることができる。b.
精密脱塵装置への熱応力を下げることができるととも
に、逆洗時間や頻度、圧力を下げることができるため、
セラミックチューブフィルタの耐久性と信頼性を向上さ
せることができる。c.逆洗時間や頻度、圧力を下げる
ことができるため、所内率やユーティリティも下げるこ
とができ、発電等の効率を向上させることができる。
d.長期間の運転でも灰塵によるセラミックチューブフ
ィルタの閉塞が起こりにくくなるとともに、応力の発生
量が小さくなるため、破損等の事故を防止することがで
きる。
According to the method for removing dust-containing high-temperature and high-pressure gas according to claim 5 of the present invention, a. Since the particle size distribution of the ash dust flowing into the precision dust removal device expands and the amount of coarse ash dust particles increases, the adhesion of ash dust to the precision dust removal device such as a ceramic tube filter decreases, and the pressure loss can be reduced. Therefore, the efficiency of power generation and the like can be improved. b.
Since the thermal stress on the precision dust removal device can be reduced and the backwashing time, frequency and pressure can be reduced,
The durability and reliability of the ceramic tube filter can be improved. c. Since the backwashing time, frequency, and pressure can be reduced, the in-house ratio and utility can be reduced, and the efficiency of power generation and the like can be improved.
d. Even if the operation is performed for a long period of time, the ceramic tube filter is less likely to be blocked by ash dust and the amount of generated stress is reduced, so that accidents such as breakage can be prevented.

【0031】本発明の請求項6に記載の含塵高温高圧ガ
スの脱塵方法によれば、請求項5に記載の発明の効果に
加えて、a.石炭の種類や燃焼状態の変化によって異な
る灰塵の粒径分布に適応して、精密脱塵装置に流入する
灰塵の粒径分布を調整することができる。b.燃焼状態
の急激な変化に応じて前記範囲に粒径分布調整管に通す
ガス量と灰塵量を制御することによって最適な脱塵方法
を提供することができる。
According to the dust removing method for dust-containing high-temperature and high-pressure gas described in claim 6 of the present invention, in addition to the effects of the invention described in claim 5, a. It is possible to adjust the particle size distribution of the ash dust flowing into the precision dust removing device by adapting to the particle size distribution of the ash dust that varies depending on the type of coal and changes in the combustion state. b. An optimal dust removal method can be provided by controlling the amount of gas and the amount of ash dust passing through the particle size distribution adjusting tube in the above range according to a sudden change in the combustion state.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1における脱塵装置の要部
模式図
FIG. 1 is a schematic diagram of a main part of a dust removing device according to a first embodiment of the present invention.

【図2】(a)本発明の実施の形態2における粒径分布
調整管の要部模式図 (b)本発明の実施の形態2における粒径分布調整管の
要部模式図
FIG. 2A is a schematic diagram of a main part of a particle size distribution adjusting tube according to a second embodiment of the present invention. FIG. 2B is a schematic diagram of a main part of a particle size distribution adjusting tube according to a second embodiment of the present invention.

【図3】本発明の実施の形態3における粒径分布調整管
の要部模式図
FIG. 3 is a schematic diagram of a main part of a particle size distribution adjusting tube according to a third embodiment of the present invention.

【図4】本発明の実施の形態4における粒径分布調整管
の要部模式図
FIG. 4 is a schematic diagram of a main part of a particle size distribution adjusting tube according to a fourth embodiment of the present invention.

【図5】本発明の実施の形態5における粒径分布調整管
の要部模式図
FIG. 5 is a schematic diagram of a main part of a particle size distribution adjusting tube according to a fifth embodiment of the present invention.

【図6】本発明の実施の形態6における粒径分布調整管
の要部模式図
FIG. 6 is a schematic diagram of a main part of a particle size distribution adjusting tube according to a sixth embodiment of the present invention.

【図7】本発明の実施の形態7における粒径分布調整管
の要部模式図
FIG. 7 is a schematic diagram of a main part of a particle size distribution adjusting tube according to a seventh embodiment of the present invention.

【図8】本発明の実施の形態8における循環加圧流動床
ボイラに配設した粒径分布調整管の要部模式図
FIG. 8 is a schematic diagram of a main part of a particle size distribution adjusting tube disposed in a circulating pressurized fluidized bed boiler according to an eighth embodiment of the present invention.

【図9】100%負荷時におけるセラミックチューブフ
ィルタでの捕捉灰塵量と粒径の関係を示す図
FIG. 9 is a graph showing the relationship between the amount of ash trapped in a ceramic tube filter and the particle size under a 100% load.

【図10】50%負荷時におけるセラミックチューブフ
ィルタでの捕捉灰塵量と粒径の関係を示す図
FIG. 10 is a graph showing the relationship between the amount of ash trapped in a ceramic tube filter and the particle size under a 50% load.

【図11】従来の加圧流動床複合発電システムの要部模
式図
FIG. 11 is a schematic diagram of a main part of a conventional pressurized fluidized bed combined cycle system.

【図12】精密脱塵装置の要部断面図FIG. 12 is a sectional view of a main part of the precision dust removing device.

【符号の説明】[Explanation of symbols]

1 含塵高温高圧ガス発生装置 1a 伝熱管 2,2a 燃焼ガス流路 3,3’ 粗脱塵装置 4,4a 粗脱塵ガス流路 4b 粗脱塵ガス排出流路 5 精密脱塵装置 6 清浄ガス流路 7 ガスタービン 8 発電機 9,9a,9a’,9b,9c,9d 粒径分布調整管 11 圧力容器 12 セラミックチューブフィルタ 13 トップチァンバ 14a,14b,14c,14d 支持板 15a,15b,15c 脱塵室 16 ホッパ 17a,17b,17c エゼクタ 18a,18b,18c 逆洗ノズル 19a,19b,19c 高速逆洗弁 20a,20b,20c 逆洗空気流入路 21 ボイラ頂部マニホールド 22 粒径分布調整用ガス取り出し部 23 オリフィス 31 粒径分布調整用ガス取り出し部 32 ガス注入装置 32a ガス注入口 33 制御バルブ 34 粒径分布制御手段 41a,41b ガス注入装置 42a,42b 制御バルブ 51 ガス流入量制御ダンパ 61 制御バルブ 71 小口径の粒径分布調整管 81 循環加圧流動床ボイラ 81a 伝熱管 81b ボイラ頂部 82 燃焼ガス流路 83 粗脱塵装置 83a 灰塵循環部 84 粗脱塵ガス排出流路 85 粒径分布調整管 86 オリフィス DESCRIPTION OF SYMBOLS 1 Dust-containing high-temperature and high-pressure gas generator 1a Heat transfer tube 2, 2a Combustion gas flow path 3, 3 'Coarse dust removal device 4, 4a Coarse dust removal gas passage 4b Coarse dust removal gas discharge passage 5 Precision dust removal device 6 Clean Gas flow path 7 Gas turbine 8 Generator 9, 9a, 9a ', 9b, 9c, 9d Particle size distribution adjusting tube 11 Pressure vessel 12 Ceramic tube filter 13 Top chamber 14a, 14b, 14c, 14d Support plate 15a, 15b, 15c Removal Dust chamber 16 Hopper 17a, 17b, 17c Ejector 18a, 18b, 18c Backwash nozzle 19a, 19b, 19c High-speed backwash valve 20a, 20b, 20c Backwash air inflow passage 21 Boiler top manifold 22 Gas extraction part for particle size distribution adjustment 23 Orifice 31 Particle Size Distribution Adjustment Gas Outlet 32 Gas Injector 32a Gas Inlet 33 Control Valve 34 Particle Size Distribution Control Means 41a, 41b Gas Injector 42a, 42b Control Valve 51 Gas Inflow Control Damper 61 Control Valve 71 Small Diameter Particle Size Distribution Adjusting Tube 81 Circulating Pressurized Fluidized Bed Boiler 81a Heat Transfer Tube 81b Boiler Top 82 Combustion Gas passage 83 Coarse dust removal device 83a Ash dust circulation section 84 Coarse dust removal gas discharge passage 85 Particle size distribution adjusting tube 86 Orifice

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B01D 50/00 502 B01D 50/00 502Z 51/02 51/02 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI B01D 50/00 502 B01D 50/00 502Z 51/02 51/02

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 含塵高温高圧ガス発生装置で発生した含
塵高温高圧ガスを粗脱塵する粗脱塵装置と、粗脱塵され
たガスを精密脱塵する精密脱塵装置と、を備えた含塵高
温高圧ガスの脱塵装置であって、前記精密脱塵装置に流
入するガス中の灰塵の粒径分布を調整する粒径分布調整
管を燃焼ガス流路と粗脱塵ガス流路間に備えたことを特
徴とする含塵高温高圧ガスの脱塵装置。
1. A coarse dust removing device for roughly removing dust-containing high temperature and high pressure gas generated by a dust containing high temperature and high pressure gas generator, and a precision dust removing device for precisely removing coarsely dusted gas. A dust-removing device for dust-containing high-temperature and high-pressure gas, comprising a particle size distribution adjusting tube for adjusting the particle size distribution of ash dust in the gas flowing into the precision dust removing device, a combustion gas channel and a coarse dust gas channel. A dust-removing device for dust-containing high-temperature and high-pressure gas, provided in between.
【請求項2】 含塵高温高圧ガス発生装置で発生した含
塵高温高圧ガスを粗脱塵する粗脱塵装置と、粗脱塵され
たガスを精密脱塵する精密脱塵装置と、を備えた含塵高
温高圧ガスの脱塵装置であって、前記精密脱塵装置に流
入するガス中の灰塵の粒径分布を調整する粒径分布調整
管を前記含塵高温高圧ガス発生装置の頂部と粗脱塵ガス
流路間に備えたことを特徴とする含塵高温高圧ガスの脱
塵装置。
2. A coarse dust remover for roughly removing dust-containing high-temperature and high-pressure gas generated by a dust-containing high-temperature and high-pressure gas generator, and a precision dust remover for precisely removing coarsely-dusted gas. A dust-removing device for dust-containing high-temperature and high-pressure gas, comprising a particle size distribution adjusting pipe for adjusting the particle size distribution of ash dust in the gas flowing into the precision dust removing device; A dust removing device for dust-containing high-temperature and high-pressure gas, which is provided between coarse dust removing gas passages.
【請求項3】 含塵高温高圧ガス発生装置で発生した含
塵高温高圧ガスを粗脱塵する粗脱塵装置と、粗脱塵され
たガスを精密脱塵する精密脱塵装置と、を備えた含塵高
温高圧ガスの脱塵装置であって、前記粗脱塵装置で脱塵
された灰塵を前記含塵高温高圧ガス発生装置に循環する
灰塵循環部と、前記高温高圧ガス発生装置の頂部と粗脱
塵ガス流路との間に連設され前記精密脱塵装置に流入す
るガス中の灰塵の粒径分布を調整する粒径分布調整管
と、を備えたことを特徴とする含塵高温高圧ガスの脱塵
装置。
3. A coarse dust removing device for roughly removing dust-containing high-temperature and high-pressure gas generated by a dust-containing high-temperature and high-pressure gas generator, and a precision dust removing device for precisely removing coarsely-dusted gas. A dust-removing device for dust-containing high-temperature and high-pressure gas, wherein an ash-dust circulating unit that circulates ash dust removed by the coarse dust-removing device to the dust-containing high-pressure and high-pressure gas generator, and a top of the high-temperature and high-pressure gas generator A particle size distribution adjusting pipe connected between the gas flow path and the coarse dust removal gas flow path and configured to adjust the particle size distribution of ash dust in the gas flowing into the precision dust removal device. Dust removal device for high temperature and high pressure gas.
【請求項4】 前記精密脱塵装置での目詰まり度検出手
段と、前記目詰まり度検出手段で検出された目詰まり度
に基づいてガス中の灰塵微粒子の粒径分布を制御する粒
径分布制御手段と、を備えたことを特徴とする請求項1
乃至3の内いずれか1項に記載の含塵高温高圧ガスの脱
塵装置。
4. A particle size distribution for controlling a particle size distribution of fine ash dust particles in a gas based on a degree of clogging detected by the precision dust removing device, and a degree of clogging detected by the degree of clogging detected by the degree of clogging. 2. A control means, comprising:
The dust removing device for dust-containing high-temperature and high-pressure gas according to any one of Items 1 to 3.
【請求項5】 含塵高温高圧ガス発生装置から発生した
含塵高温高圧ガスを粗脱塵装置に通し粗脱塵する粗脱塵
工程と、粗脱塵されたガスを精密脱塵装置に通し精密脱
塵する精密脱塵工程と、を備えた含塵高温高圧ガスの脱
塵方法であって、前記含塵高温高圧ガス発生装置から発
生した前記含塵高温高圧ガスの一部を粒径分布調整管に
通して前記精密脱塵装置に流入させることを特徴とする
含塵高温高圧ガスの脱塵方法。
5. A coarse dust removing step in which the dust-containing high-temperature high-pressure gas generated from the dust-containing high-temperature high-pressure gas generator passes through a coarse dust removing device, and a coarse dust removing gas passes through a precision dust removing device. A dust-removing high-temperature and high-pressure gas, comprising: a precision dust-removing step of performing precise dust removal, wherein a part of the dust-containing high-temperature and high-pressure gas generated from the dust-containing high-temperature and high-pressure gas generator has a particle size distribution. A method for removing dust-containing high-temperature and high-pressure gas through a regulating pipe and flowing into the precision dust removing device.
【請求項6】 前記粒径分布調整管を通る含塵高温高圧
ガス量が全含塵高温高圧ガス量の1〜95%好ましくは
3〜85%さらに好ましくは8〜50%であることを特
徴とする請求項5に記載の含塵高温高圧ガスの脱塵方
法。
6. The dust-containing high-temperature and high-pressure gas amount passing through the particle size distribution adjusting tube is 1 to 95%, preferably 3 to 85%, more preferably 8 to 50% of the total dust-containing high-temperature and high-pressure gas amount. The method for removing dust-containing high-temperature and high-pressure gas according to claim 5.
JP36412897A 1997-12-16 1997-12-16 Dust removal device and method for dust containing high temperature and high pressure gas Expired - Fee Related JP3168261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36412897A JP3168261B2 (en) 1997-12-16 1997-12-16 Dust removal device and method for dust containing high temperature and high pressure gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36412897A JP3168261B2 (en) 1997-12-16 1997-12-16 Dust removal device and method for dust containing high temperature and high pressure gas

Publications (2)

Publication Number Publication Date
JPH11169631A true JPH11169631A (en) 1999-06-29
JP3168261B2 JP3168261B2 (en) 2001-05-21

Family

ID=18481042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36412897A Expired - Fee Related JP3168261B2 (en) 1997-12-16 1997-12-16 Dust removal device and method for dust containing high temperature and high pressure gas

Country Status (1)

Country Link
JP (1) JP3168261B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011194321A (en) * 2010-03-19 2011-10-06 Chugoku Electric Power Co Inc:The Method and device for controlling clogging of bag filter
CN103468323A (en) * 2013-09-13 2013-12-25 神木富油能源科技有限公司 Raw coke oven gas dedusting device and raw coke oven gas dedusting method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011194321A (en) * 2010-03-19 2011-10-06 Chugoku Electric Power Co Inc:The Method and device for controlling clogging of bag filter
CN103468323A (en) * 2013-09-13 2013-12-25 神木富油能源科技有限公司 Raw coke oven gas dedusting device and raw coke oven gas dedusting method

Also Published As

Publication number Publication date
JP3168261B2 (en) 2001-05-21

Similar Documents

Publication Publication Date Title
US8236071B2 (en) Methods and apparatus for cooling syngas within a gasifier system
EP2131939B1 (en) Filter apparatus and method
CN102143795A (en) A method and a device for removing nitrogen oxides and sulphur trioxide from a process gas
CN108970396A (en) A kind of high temperature fume dust removal denitrification integrated device and its technique
CN105944463B (en) A kind of energy-saving SCR denitration combination unit
EP1325773A1 (en) Method and device for cooling and collecting dust from exhaust gas containing soot and dust
CN208852556U (en) A kind of purification separation system for blast furnace gas thermal energy recycling
US8151716B2 (en) Feed injector cooling apparatus and method of assembly
JP2006063098A (en) Coal gasification-combined electric power plant
JP3168261B2 (en) Dust removal device and method for dust containing high temperature and high pressure gas
Xiong et al. Advances in the treatment of multi-pollutant flue gas in China's building materials industry
CN202099256U (en) One-step flue gas and coal gas semi-dry cooling and dedusting system of converter
JP2018138636A (en) Method for regeneration of filter apparatus, filter apparatus, and gasification compound powder generating facility
CN102851084B (en) Converter flue gas coal gas semi-dry cooling and dedusting system
CN112316593A (en) Flue gas dust removal denitration integrated device
JPH0655102A (en) Cyclone
US4432778A (en) Fluidic switched fluid cleaning
JP3572148B2 (en) Dust removal device
CN110274486A (en) A kind of cement kiln heat exchanger bobbin carriage
CN201535615U (en) Special device for direct dust removal of arc furnace high-temperature flue gas
JPH0647226A (en) Dust removing device for high temperature gas
CN218307025U (en) Calcium carbide furnace clean system ash removal device
CN109381991A (en) A kind of low temperature SCR denitration dust removal integrated plant
CN220558816U (en) High-efficient filtration equipment
WO2001032293A1 (en) Exhaust gas dust collecting device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010206

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090309

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090309

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140309

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees