JPH11168435A - Spatial optical transmission equipment - Google Patents

Spatial optical transmission equipment

Info

Publication number
JPH11168435A
JPH11168435A JP9334572A JP33457297A JPH11168435A JP H11168435 A JPH11168435 A JP H11168435A JP 9334572 A JP9334572 A JP 9334572A JP 33457297 A JP33457297 A JP 33457297A JP H11168435 A JPH11168435 A JP H11168435A
Authority
JP
Japan
Prior art keywords
light
receiving
signal
circuit
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9334572A
Other languages
Japanese (ja)
Inventor
Kazuki Mizuno
和貴 水野
Tomokazu Hatsutori
倫和 服部
Masahiro Soda
昌宏 曽田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOYO DENKI KK
Original Assignee
TOYO DENKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOYO DENKI KK filed Critical TOYO DENKI KK
Priority to JP9334572A priority Critical patent/JPH11168435A/en
Publication of JPH11168435A publication Critical patent/JPH11168435A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide spatial optical transmission equipment with which high quality data transmission is enabled by preventing the generation of a disturbance component for making present flood into return light and making it incident to a present photodetector. SOLUTION: Concerning the spatial optical transmission equipment provided with a flood chamber 3 arranged with a flood element 6, light reception chamber 4 arranged with a photodetector 7, transmission circuit connected to the floor element 6 and reception circuit connected to the photodetector 7, this equipment is further provided with a photodetector 11 for self-emission cancel arranged for photodetecting only one part of light flooding from the flood element 6, self-emission cancel circuit 26 for inverting a photodetecting signal outputted from the photodetector 11, attenuating its level and outputting an inverted signal at the same level as the outputted photodetecting signal when the photodetector of the reception circuit receives only the return light of flood light from the flood element 6, and adder 30 for adding the signal outputted from the self-emission cancel circuit 26 to the reception circuit.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、空間に放射した光
によりデータを伝送する空間光伝送装置に関し、特に、
離れた2点間で、全二重双方向方式により、データ伝送
を行う場合に好適な空間光伝送装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spatial light transmission device for transmitting data by light radiated into space,
The present invention relates to a spatial light transmission device suitable for performing data transmission between two distant points by a full-duplex bidirectional method.

【0002】[0002]

【従来の技術】離れた2点間で、空間に放射した光によ
りデータを伝送する空間光伝送装置は、ケーブル敷設を
必要としないため、工場内の無人搬送車、クレーン装
置、立体倉庫等、移動物体間或は固定物と移動物体間に
おいて、データ伝送を行う装置として普及しつつある。
2. Description of the Related Art A spatial light transmission device for transmitting data between two distant points by light radiated into a space does not require a cable laying, so that an automatic guided vehicle in a factory, a crane device, a three-dimensional warehouse, etc. It is becoming popular as a device for transmitting data between moving objects or between a fixed object and a moving object.

【0003】[0003]

【発明が解決しようとする課題】この種の空間光伝送装
置において、双方が同時にデータの送受信を行いたい場
合、全二重双方向の通信方式が採用されるが、この全二
重双方向方式は、受光器と投光器を同時に動作させるた
め、戻り光の影響が通信のクオリティーに少なからず影
響を与える。
In this type of spatial light transmission device, when both wish to transmit and receive data simultaneously, a full-duplex bidirectional communication system is adopted. Since the light receiver and the light transmitter are operated at the same time, the influence of the return light has a considerable effect on the communication quality.

【0004】特に、変調を行わずにデータを伝送するベ
ースバンド方式の場合、一方の装置の投光器から投光さ
れた赤外線がその受光器に直接戻り易く、投光と受光の
分離が完全に行えない場合、相手側からのデータを良好
に受信できないという問題が生じ易い。
In particular, in the case of the baseband system in which data is transmitted without performing modulation, the infrared light emitted from the light emitter of one device easily returns directly to the light receiver, and the light emission and light reception can be completely separated. Otherwise, a problem that data from the other party cannot be satisfactorily received tends to occur.

【0005】一方、FSK、ASK等の変調方式によ
り、搬送波をデータ信号で変調して送るブロードバンド
方式の場合、投光側と受光側で使用する搬送波周波数を
相違させて選択し、受信信号をバンドパスフィルタを通
して処理するため、条件が整えば、全二重双方向の通信
が実施可能である。
On the other hand, in the case of a broadband system in which a carrier is modulated by a data signal and transmitted by a modulation system such as FSK or ASK, the carrier frequency used on the light emitting side and the light receiving side are selected differently, and the received signal is banded. Since processing is performed through a pass filter, full-duplex bidirectional communication can be performed if conditions are met.

【0006】しかし、伝送距離が例えば数百mと長い場
合、投光の光強度が非常に強くなるため、投光器からそ
のユニットの受光器側に直接戻る戻り光が、データ伝送
に悪影響を与える場合がある。例えば、長距離伝送の場
合、図7に示すように、投光器30と受光器31の前に
集光用の凸レンズ32を配置すると共に、投光器30と
凸レンズ32及び受光器31と凸レンズ32を含む空間
を、隔壁等により包囲して、投光室と受光室を分離した
構造を採る。
However, when the transmission distance is long, for example, several hundreds of meters, the light intensity of the light projection becomes very high. Therefore, the return light directly returning from the light projector to the light receiver side of the unit adversely affects the data transmission. There is. For example, in the case of long-distance transmission, as shown in FIG. 7, a convex lens 32 for condensing is arranged in front of the light projector 30 and the light receiver 31, and a space including the light projector 30 and the convex lens 32, and the light receiver 31 and the convex lens 32. Is surrounded by a partition wall or the like, and a structure in which the light emitting chamber and the light receiving chamber are separated from each other is adopted.

【0007】しかし、デザイン上或は構成上から、前面
に一枚の近赤外線透過フィルタ(近赤外線のみを透過さ
せるアクリル板)33を配置する場合があり、そのよう
な場合には、図7に示すごとく、投光器30から放射さ
れた近赤外線がその近赤外線透過フィルタ33内を平面
方向に進み、自己の受光室内にレンズを通って侵入す
る。すると、その戻り光が自己の受光器31に受光さ
れ、それが外乱成分となって、正常なデータ伝送が阻害
される場合がある。
However, there is a case where a single near-infrared transmission filter (an acrylic plate that transmits only near-infrared light) 33 is disposed on the front surface in terms of design or configuration. In such a case, FIG. As shown, near infrared rays emitted from the projector 30 travel in a plane direction in the near infrared transmission filter 33 and enter the own light receiving chamber through the lens. Then, the returned light is received by its own light receiver 31 and becomes a disturbance component, which may hinder normal data transmission.

【0008】特に、長距離伝送の場合、投光器からは強
力な光を放射し、受光器は長距離を経て受光される微弱
な光を受けるために、高感度の受光を行うことから、少
しの戻り光が生じても、それが外乱成分となって、正常
なデータ伝送ができなくなる問題があった。
In particular, in the case of long-distance transmission, the projector emits strong light and the receiver receives weak light received over a long distance. Even if the return light is generated, it becomes a disturbance component, and there is a problem that normal data transmission cannot be performed.

【0009】一方、短距離伝送の場合、図8のように、
隔壁35により仕切られた投光室内に投光器36を配設
し、その隣の受光室内に受光器37を設置し、集光用の
レンズは使用せずに、投光室と受光室の前面に近赤外線
透過フィルタ38が配置され、比較的広い指向角で数m
程度の短距離伝送を行うことがある。この場合において
も、投光器36から投光された光が近赤外線透過フィル
タ38内を平面方向に伝わり、或は隔壁35の隙間を通
過して、自己の受光室に侵入して、その戻り光が受光器
37に受光され、それが外乱成分となって、正常なデー
タ伝送ができなくなる問題があった。
On the other hand, in the case of short-distance transmission, as shown in FIG.
A light emitter 36 is arranged in a light emitting room partitioned by a partition 35, and a light receiver 37 is installed in a light receiving room next to the light emitting room, and a light condensing lens is not used. A near-infrared transmission filter 38 is arranged, and a few meters with a relatively wide directional angle.
May be transmitted over short distances. Also in this case, the light projected from the light projector 36 is transmitted in the planar direction through the near-infrared transmission filter 38 or passes through the gap of the partition wall 35 and enters the own light receiving chamber, and the returned light is There is a problem that light is received by the light receiver 37 and becomes a disturbance component, so that normal data transmission cannot be performed.

【0010】本発明は、上記の点に鑑みてなされたもの
で、自己の投光が戻り光となって自己の受光素子に侵入
する外乱成分の発生を防止し、高品質のデータ伝送を行
うことができる空間光伝送装置を提供することを目的と
する。
The present invention has been made in view of the above points, and prevents high-quality data transmission by preventing the occurrence of a disturbance component in which its own light becomes return light and invades its own light receiving element. It is an object of the present invention to provide a spatial light transmission device capable of performing the above operation.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に、本発明の空間光伝送装置は、投光素子を配設した投
光室と、受光素子を配設した受光室と、該投光素子に接
続される送信回路と、該受光素子に接続される受信回路
と、を備え、空間に放射した光によりデータを伝送する
空間光伝送装置において、前記投光素子から投光される
光の一部のみを受光するように配設された自発光キャン
セル用の受光素子と、該受光素子から出力された受光信
号を反転すると共に、レベルを減衰させ、前記受信回路
の受光素子が前記投光素子からの投光の戻り光のみを受
光した時、出力される受光信号と同レベルで且つ反転し
た信号を出力する自発光キャンセル回路と、該自発光キ
ャンセル回路から出力された信号を前記受信回路に加え
る加算器と、を備えたことを特徴とする。
In order to achieve the above object, a spatial light transmission device according to the present invention comprises: a light emitting chamber in which a light emitting element is provided; a light receiving chamber in which a light receiving element is provided; In a spatial light transmission device that includes a transmitting circuit connected to an optical element and a receiving circuit connected to the light receiving element and transmits data by light emitted to the space, light emitted from the light emitting element And a light-receiving element for canceling self-emission arranged so as to receive only a part of the light-receiving element, inverting the light-receiving signal output from the light-receiving element, attenuating the level, and causing the light-receiving element of the receiving circuit to emit the light. A self-light-emission cancel circuit that outputs a signal at the same level as the light-receiving signal to be output and an inverted signal when only the return light of the light emitted from the optical element is received, and receiving the signal output from the self-light-emission cancel circuit. And an adder to be added to the circuit. Characterized in that was.

【0012】[0012]

【発明の作用・効果】このような構成の空間光伝送装置
は、投光室から漏れた光が戻り光として自己の受光素子
に侵入し受光される場合、自発光キャンセル回路から
は、受信回路の受光素子が投光素子からの投光の戻り光
のみを受光した時、出力される受光信号と同レベルで且
つ反転した信号が出力され、加算器を介してその信号が
受信回路に加えられる。このため、投光室から漏れた光
が戻り光として自己の受光素子に侵入し受光される場合
であっても、その戻り光による外乱成分の信号は受信回
路から消え、対向設置された相手側の空間光伝送装置か
らの送信信号のみを受信回路から出力し、受信した伝送
データを良好に得ることができる。
According to the spatial light transmission apparatus having the above-described structure, when the light leaking from the light emitting chamber enters the light receiving element of itself and is received as return light, the light emission canceling circuit removes the receiving circuit. When the light receiving element receives only the return light of the light emitted from the light emitting element, a signal having the same level as the light receiving signal to be output and inverted is output, and the signal is added to the receiving circuit via the adder. . For this reason, even when the light leaking from the light emitting chamber enters the own light receiving element as return light and is received, the signal of the disturbance component due to the return light disappears from the receiving circuit, and the oppositely installed counterpart. Only the transmission signal from the spatial light transmission device is output from the receiving circuit, and the received transmission data can be obtained favorably.

【0013】従って、長距離間の空間光伝送や前面にフ
ィルタ等の導光部分を配置した伝送装置であって、戻り
光の悪影響が出やすい場合でも、高品質のデータ伝送を
行うことができる。
Therefore, in a transmission device in which a spatial light transmission over a long distance or a light guide portion such as a filter is arranged on the front surface, high-quality data transmission can be performed even when adverse effects of return light are likely to occur. .

【0014】なお、自発光キャンセル用の受光素子は、
投光室及び受光室と隔壁を介して隣接した隣室に配設
し、隔壁に設けた窓を通して投光室からの投光を受光す
るようにすれば、自己の投光のみを受光することができ
る。
The light-receiving element for canceling self-emission is
If it is arranged in the adjacent room adjacent to the light emitting room and the light receiving room via the partition and receives light emitted from the light emitting room through the window provided in the partition, it can receive only its own light emitted. it can.

【0015】また、投光室と受光室の前面に透光板が配
設されるが、投光された光がその透光板内を平面方向に
伝わることにより、戻り光が自己の受光素子に侵入しや
すい。しかし、透光板の内側の隔壁に対応した箇所に、
略半円形断面の溝を形成し、溝に隔壁の先端を嵌合・配
置させた構造とすれば、透光板内の平面方向の光の伝搬
を抑え、戻り光を減少させることができる。
A light-transmitting plate is disposed in front of the light-emitting chamber and the light-receiving chamber, and the emitted light propagates in the light-transmitting plate in a plane direction, so that return light is transmitted to its own light-receiving element. Easy to invade. However, at the location corresponding to the partition inside the translucent plate,
If a groove having a substantially semicircular cross section is formed and the tip of the partition is fitted and arranged in the groove, propagation of light in a plane direction in the light transmitting plate can be suppressed, and return light can be reduced.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。図1は空間光伝送装置の正面図
を、図2はその右側面図を示し、図3はその断面図を示
している。この装置は、集光用レンズを使用しない短距
離用の空間光伝送装置であり、薄型のケース1内に、投
光部、受光部が配設されると共に、送信回路、受信回
路、自発光キャンセル回路等を内蔵して構成される。ケ
ース1には、図2に示すように、枢支部16を介して取
付けベース15が取り付けられる。
Embodiments of the present invention will be described below with reference to the drawings. 1 is a front view of the spatial light transmission device, FIG. 2 is a right side view thereof, and FIG. 3 is a sectional view thereof. This device is a short-distance spatial light transmission device that does not use a condensing lens. In a thin case 1, a light projecting unit and a light receiving unit are arranged, and a transmitting circuit, a receiving circuit, It has a built-in cancellation circuit and the like. As shown in FIG. 2, an attachment base 15 is attached to the case 1 via a pivot 16.

【0017】ケース1の正面上部に開口部が形成され、
その開口部に透光板として、近赤外線のみを透過させる
近赤外線透過フィルタ2が開口を閉鎖するように取着さ
れる。その内側には、投光室3と受光室4が、隔壁5で
仕切られて形成され、投光室3には近赤外線を放射する
発光ダイオード等からなる複数の投光素子6が並設さ
れ、受光室4には近赤外線を受光して信号を出力するフ
ォトダイオード等の受光素子7が配設される。投光素子
6と受光素子7は基板8上に回路素子と共に実装され
る。
An opening is formed in the upper front part of the case 1,
A near-infrared transmission filter 2 that transmits only near-infrared rays is attached to the opening as a light-transmitting plate so as to close the opening. Inside, a light-emitting chamber 3 and a light-receiving chamber 4 are formed by being partitioned by a partition wall 5, and a plurality of light-emitting elements 6 formed of light-emitting diodes or the like that emit near-infrared rays are arranged in the light-emitting chamber 3. The light receiving chamber 4 is provided with a light receiving element 7 such as a photodiode for receiving a near infrared ray and outputting a signal. The light emitting element 6 and the light receiving element 7 are mounted on a substrate 8 together with circuit elements.

【0018】図4に示すように、隔壁5は平面視で略T
次状に形成され、投光室3と受光室4を仕切ると共に、
下側の隣室9とを仕切っている。その隣室9と投光室3
の間の隔壁5に窓10が形成され、その窓10に対向し
て自発光キャンセル用の受光素子11が隣室9内に配設
される。この受光素子11は基板8上に配置された第2
の基板12上に取り付けられ、この基板12には、図示
は省略されているが、後述の自発光キャンセル回路が実
装される。自発光キャンセル用の受光素子11は投光素
子6の投光のみを受光する構造である。
As shown in FIG. 4, the partition 5 has a substantially T shape in plan view.
It is formed in the following shape, and partitions the light emitting chamber 3 and the light receiving chamber 4
The lower adjacent room 9 is partitioned. Next door room 9 and floodlight room 3
A window 10 is formed in the partition wall 5 therebetween, and a light-receiving element 11 for canceling self-emission is disposed in the adjacent room 9 so as to face the window 10. The light receiving element 11 is provided on a second
The self-light emission cancel circuit, which is described later, is mounted on the substrate 12. The light receiving element 11 for canceling self-emission has a structure for receiving only the light emitted from the light emitting element 6.

【0019】隔壁5により仕切られた投光室3と受光室
4及びその隣室9の周囲はケース1の側部で包囲され、
投光室3と受光室4の前面は前述の近赤外線透過フィル
タ2を取り付けて閉鎖される。近赤外線透過フィルタ2
内側の隔壁5に対応した箇所には、図3に示すように、
断面半円状の溝2aが隔壁5に沿って形成され、組み付
けた状態で隔壁5の先端部が半円断面状の溝2aに嵌入
され密着される。この半円断面状の溝2aが投光室3と
受光室4の間の近赤外線透過フィルタ2内側に形成され
ることにより、平面方向に進む近赤外線をその溝2aで
効果的に減衰させることができ、投光室3側からの近赤
外線が受光室4側に伝わることを効果的に阻止すること
ができる。
The periphery of the light-emitting room 3, the light-receiving room 4, and the adjacent room 9 separated by the partition wall 5 is surrounded by the side of the case 1,
The front surfaces of the light emitting chamber 3 and the light receiving chamber 4 are closed by attaching the near infrared transmitting filter 2 described above. Near infrared transmission filter 2
At the location corresponding to the inner partition wall 5, as shown in FIG.
A groove 2a having a semicircular cross section is formed along the partition wall 5, and a tip end of the partition wall 5 is fitted into and closely adhered to the groove 2a having a semicircular cross section in an assembled state. By forming the groove 2a having a semicircular cross-section inside the near-infrared ray transmitting filter 2 between the light projecting chamber 3 and the light receiving chamber 4, the near-infrared ray traveling in the plane direction is effectively attenuated by the groove 2a. Thus, the transmission of near-infrared rays from the light-emitting chamber 3 to the light-receiving chamber 4 can be effectively prevented.

【0020】図5は空間光伝送装置の電気回路の構成ブ
ロック図を示している。この装置は、ブロードバンド方
式の送信回路と受信回路を備え、更に、自己の投光素子
6から投光された近赤外線が自己の受光素子7に侵入し
て外乱成分となったものを消去する自発光キャンセル回
路26を備える。
FIG. 5 is a block diagram showing a configuration of an electric circuit of the spatial light transmission device. This device includes a broadband type transmitting circuit and a receiving circuit, and further has a self-erasing device that removes a near infrared ray emitted from its own light emitting element 6 into its own light receiving element 7 and becomes a disturbance component. The light emission cancel circuit 26 is provided.

【0021】送信回路は、所定周波数の搬送波を送信信
号に応じてを例えば周波数変調する変調部21、変調部
21から送られた変調信号に基づき投光素子6を駆動す
る投光駆動部22とから構成される。受信回路は、受光
素子7から出力された受光信号を増幅する受光アンプ2
3、増幅された受光信号と自発光キャンセル回路26か
らの自発光反転信号を加算する加算器30、加算器30
から出力された信号を増幅する増幅器24、及び増幅器
24から出力された信号を復調して受信データ信号を取
り出す復調部25とから構成される。
The transmitting circuit includes a modulating unit 21 for frequency-modulating a carrier of a predetermined frequency in accordance with the transmitting signal, for example, a light emitting driving unit 22 for driving the light emitting element 6 based on the modulated signal sent from the modulating unit 21; Consists of The receiving circuit includes a light receiving amplifier 2 for amplifying a light receiving signal output from the light receiving element 7.
3. an adder 30 that adds the amplified received light signal and a self-emission inversion signal from the self-emission cancellation circuit 26;
And a demodulation unit 25 for demodulating a signal output from the amplifier 24 and extracting a received data signal.

【0022】自発光キャンセル回路26は、上記隣室9
内に配置され自己の投光素子6の投光を受光する受光素
子11の受光信号を入力して増幅する受光アンプ27、
受光アンプ27から出力される受光信号を入力し反転し
て出力する反転回路28と、反転回路28から出力され
た反転信号のレベルを減衰させて出力する可変減衰器2
9とから構成される。
The self light emission cancel circuit 26 is provided in the adjacent room 9.
A light receiving amplifier 27 that receives and receives and amplifies a light receiving signal of the light receiving element 11 that receives light emitted from the light emitting element 6 of the light emitting element 6 disposed therein;
An inverting circuit 28 for inputting, inverting, and outputting the light receiving signal output from the light receiving amplifier 27, and a variable attenuator 2 for attenuating and outputting the level of the inverted signal output from the inverting circuit 28
9.

【0023】可変減衰器29の出力側は上記受信回路の
加算器30における一方の入力側に接続されるが、可変
減衰器29の信号減衰率は、そこから出力される反転信
号のレベルが、受光素子7の受光アンプ23から出力さ
れる受光信号のレベルと一致するように設定される。
The output side of the variable attenuator 29 is connected to one input side of the adder 30 of the receiving circuit. The signal attenuation rate of the variable attenuator 29 is such that the level of the inverted signal output therefrom is The setting is made so as to match the level of the light receiving signal output from the light receiving amplifier 23 of the light receiving element 7.

【0024】すなわち、図6は、相手側からのデータ信
号の伝送つまり相手側からの投光がない時に自己の送信
回路、受信回路を動作させたときの回路各部の波形図を
示している。図6のaは受光アンプ23の出力信号の波
形であり、この波形は自己の投光が戻り光として受光素
子7に侵入した部分に対応する。
That is, FIG. 6 is a waveform diagram of each part of the circuit when its own transmitting circuit and receiving circuit are operated when data signals are not transmitted from the other party, that is, when there is no light emission from the other party. FIG. 6A shows the waveform of the output signal of the light receiving amplifier 23, and this waveform corresponds to a portion where the own light has entered the light receiving element 7 as return light.

【0025】一方、bは、自発光キャンセル回路26の
受光アンプ27から出力される信号の波形であり、隣室
9に配置した受光素子11により窓10を通して受光し
た投光素子6の投光に対応した部分である。そして、こ
の信号bの波形は、反転回路28を経て反転されて、c
の波形となり、更に、信号cの波形は、可変減衰器29
を経て、上記受光回路側の信号aと同レベルの信号dと
なり、この信号dと信号aが加算器30で加算される。
On the other hand, b is the waveform of the signal output from the light receiving amplifier 27 of the self light emission cancel circuit 26 and corresponds to the light emission of the light emitting element 6 received through the window 10 by the light receiving element 11 arranged in the adjacent room 9. It is the part that did. Then, the waveform of the signal b is inverted through the inverting circuit 28 and c
And the waveform of the signal c is a variable attenuator 29
, A signal d having the same level as the signal a on the light receiving circuit side is obtained, and the signal d and the signal a are added by the adder 30.

【0026】次に、上記空間光伝送装置の使用態様につ
いて説明すると、この装置は、例えば、2台のコンピュ
ータ端末装置間において、データ伝送を行う場合に使用
され、一台の装置が一方の端末装置のデータ出力端子に
接続され、他方の装置が他方の端末装置に接続される。
2台の空間光伝送装置は、各々の投光側と受光側の光軸
を、対向側の光軸に合わせるように、対向して設置され
る。
Next, the mode of use of the spatial light transmission device will be described. This device is used, for example, when performing data transmission between two computer terminal devices, and one device is connected to one terminal. The other device is connected to the data output terminal of the device, and the other device is connected to the other terminal device.
The two spatial light transmission devices are installed facing each other such that the optical axes on the light projecting side and the light receiving side are aligned with the optical axes on the opposite side.

【0027】全二重双方向通信を行う1対の空間光伝送
装置は、各々の装置に入力されたデータが送信信号とし
て送信回路の変調部21に送られ、送信信号によって所
定周波数の搬送波が例えば周波数変調され、変調された
送信用の信号が投光駆動部22に送られる。投光駆動部
22はその信号に基づき、投光素子6を駆動し、投光素
子6から送信信号を重畳させた近赤外線が放射され、そ
の近赤外線は投光室3から近赤外線透過フィルタ2を通
り、相手の装置に向けて放出される。
In a pair of spatial light transmission apparatuses for performing full-duplex two-way communication, data input to each apparatus is transmitted as a transmission signal to a modulation unit 21 of a transmission circuit, and a carrier having a predetermined frequency is converted by the transmission signal. For example, a frequency-modulated and modulated transmission signal is sent to the light emission drive unit 22. The light emitting drive unit 22 drives the light emitting element 6 based on the signal, and emits near infrared light on which the transmission signal is superimposed from the light emitting element 6, and the near infrared light is transmitted from the light emitting chamber 3 to the near infrared light transmitting filter 2. And is released toward the other device.

【0028】一方、相手側の装置から本空間光伝送装置
に向けて、上記と同様に放射された近赤外線は、近赤外
線透過フィルタ2を通して受光室4内に入り、受光素子
7に受光される。受光素子7から出力される受光信号は
受光アンプ23で増幅され、加算器30に送られる。
On the other hand, near-infrared rays radiated in the same manner as above from the other party's apparatus toward the spatial light transmission apparatus enter the light receiving chamber 4 through the near-infrared transmitting filter 2 and are received by the light receiving element 7. . The light receiving signal output from the light receiving element 7 is amplified by the light receiving amplifier 23 and sent to the adder 30.

【0029】同時に、隣室9に配置された自発光キャン
セル用の受光素子11は、窓10を通して受光した投光
素子6の近赤外線に応じた受光信号を出力し、受光アン
プ27を経た受光信号は、次の反転回路28で反転さ
れ、次の可変減衰器29において、所定の減衰率で減衰
され、反転され且つ減衰された受光信号は受信回路の加
算器30に入力される。
At the same time, the light-receiving element 11 for canceling self-light emission arranged in the adjacent room 9 outputs a light-receiving signal corresponding to the near-infrared light of the light-emitting element 6 received through the window 10, and the light-receiving signal passed through the light-receiving amplifier 27 is The received light signal is inverted by the next inverting circuit 28 and attenuated at a predetermined attenuation rate in the next variable attenuator 29, and the inverted and attenuated light receiving signal is input to the adder 30 of the receiving circuit.

【0030】投光室3から受光室4内に漏れる近赤外線
つまり戻り光がある場合、自発光キャンセル回路26か
ら出力される信号は、その戻り光に対応した受光信号と
同レベルで反転した信号であるため、受信回路おける加
算器30の出力側には戻り光に対応した外乱成分が消さ
れ、相手側の装置から送信された信号のみが増幅器24
に入力されて増幅される。そして、増幅された信号は復
調器25において復調され、復調器25から受信データ
を取り出すことができる。
When there is near-infrared rays, that is, return light, leaking from the light projecting chamber 3 into the light receiving chamber 4, the signal output from the self-light emission cancel circuit 26 is a signal inverted at the same level as the light receiving signal corresponding to the return light. Therefore, the disturbance component corresponding to the return light is eliminated at the output side of the adder 30 in the receiving circuit, and only the signal transmitted from the device on the other end is amplified by the amplifier 24.
And is amplified. Then, the amplified signal is demodulated in the demodulator 25, and the received data can be extracted from the demodulator 25.

【0031】このように、投光室3から漏れた光や近赤
外線透過フィルタ2を平面方向に進む光が、戻り光とし
て受光室4に侵入し受光素子7で受光される場合であっ
ても、その戻り光による外乱成分の信号は受信回路から
消え、対向設置された相手側の空間光伝送装置からの送
信信号のみを受信回路から出力する。従って、受信した
伝送データを良好に取り出すことができ、高品質のデー
タ伝送を行うことができる。
As described above, even when the light leaking from the light projecting chamber 3 or the light traveling in the plane direction through the near infrared transmitting filter 2 enters the light receiving chamber 4 as return light and is received by the light receiving element 7. The signal of the disturbance component due to the return light disappears from the receiving circuit, and only the transmission signal from the opposing spatial optical transmission device installed oppositely is output from the receiving circuit. Therefore, the received transmission data can be satisfactorily taken out, and high-quality data transmission can be performed.

【0032】なお、本発明の空間光伝送装置は、上記の
実施形態に限定されるものではなく、以下のような態様
でも実施することができる。
The spatial light transmission device of the present invention is not limited to the above embodiment, but can be implemented in the following modes.

【0033】上記ブロードバンド方式の光伝送では、
周波数変調の他に振幅変調、位相変調等を用いることも
でき、また、変調を行わないベースバンド方式を用いる
こともできる。
In the above-mentioned broadband optical transmission,
In addition to frequency modulation, amplitude modulation, phase modulation, or the like can be used, and a baseband system that does not perform modulation can be used.

【0034】上記実施例では集光レンズを使用しない
短距離伝送用の装置を説明したが、集光レンズを用いた
長距離伝送用の装置に適用することもできる。
In the above embodiment, the apparatus for short-distance transmission without using a condenser lens has been described. However, the present invention can be applied to an apparatus for long-distance transmission using a condenser lens.

【0035】伝送光としては、近赤外線の他、波長の
光を使用することもできる。
As the transmission light, light having a wavelength other than near-infrared light can be used.

【0036】透光板として近赤外線透過フィルタを用
いたが、波長選択性のない、透明な或は着色した通常の
透光性を持つ、透光板を使用することもできる。
Although a near-infrared transmission filter is used as the light-transmitting plate, a transparent or colored light-transmitting plate having no wavelength selectivity and having a normal light-transmitting property can also be used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態を示す空間光伝送装置の正
面図である。
FIG. 1 is a front view of a spatial light transmission device according to an embodiment of the present invention.

【図2】同装置の右側面図である。FIG. 2 is a right side view of the device.

【図3】図1の III− III断面図である。FIG. 3 is a sectional view taken along the line III-III of FIG. 1;

【図4】装置内部の投光室3、受光室4近傍を示す概略
斜視図である。
FIG. 4 is a schematic perspective view showing the vicinity of a light emitting chamber 3 and a light receiving chamber 4 inside the apparatus.

【図5】空間光伝送装置の電気回路の構成ブロック図で
ある。
FIG. 5 is a configuration block diagram of an electric circuit of the spatial light transmission device.

【図6】相手側からの投光がない時に送・受信回路を動
作させたときの回路各部の波形図である。
FIG. 6 is a waveform diagram of each part of the circuit when the transmitting / receiving circuit is operated when there is no light emission from the other party.

【図7】従来の空間光伝送装置の断面図である。FIG. 7 is a sectional view of a conventional spatial light transmission device.

【図8】従来の空間光伝送装置の断面図である。FIG. 8 is a sectional view of a conventional spatial light transmission device.

【符号の説明】[Explanation of symbols]

3−投光室 4−受光室 5−隔壁 6−投光素子 7−受光素子 9−隣室 10−窓 11−受光素子 26−自発光キャンセル回路 3-light-emitting room 4-light-receiving room 5-partition wall 6-light-emitting device 7-light-receiving device 9-adjacent room 10-window 11-light-receiving device 26-self light emission cancel circuit

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H04B 10/18 10/28 10/26 10/14 10/04 10/06 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI H04B 10/18 10/28 10/26 10/14 10/04 10/06

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 投光素子を配設した投光室と、受光素子
を配設した受光室と、該投光素子に接続される送信回路
と、該受光素子に接続される受信回路と、を備え、空間
に放射した光によりデータを伝送する空間光伝送装置に
おいて、 前記投光素子から投光される光の一部のみを受光するよ
うに配設された自発光キャンセル用の受光素子と、 該受光素子から出力された受光信号を反転すると共に、
レベルを減衰させ、前記受信回路の受光素子が前記投光
素子からの投光の戻り光のみを受光した時、出力される
受光信号と同レベルで且つ反転した信号を出力する自発
光キャンセル回路と、 該自発光キャンセル回路から出力された信号を前記受信
回路に加える加算器と、 を備えたことを特徴とする空間光伝送装置。
A light emitting chamber in which a light emitting element is arranged, a light receiving chamber in which a light receiving element is arranged, a transmitting circuit connected to the light emitting element, and a receiving circuit connected to the light receiving element. In a spatial light transmission device for transmitting data by light radiated into space, a light-emitting element for canceling self-light emission arranged to receive only a part of the light emitted from the light-emitting element Inverting the light receiving signal output from the light receiving element,
A self-luminous canceling circuit that attenuates the level and outputs a signal at the same level as the received light signal to be output and an inverted signal when the light receiving element of the receiving circuit receives only the return light of the light emitted from the light emitting element. An adder for adding a signal output from the self-light emission canceling circuit to the receiving circuit.
【請求項2】 前記自発光キャンセル用の受光素子は、
前記投光室及び受光室と隔壁を介して隣接した隣室に配
設され、該隔壁に設けた窓を通して投光室からの投光の
みを受光することを特徴とする請求項1記載の空間光伝
送装置。
2. The light-receiving element for canceling self-emission,
The spatial light according to claim 1, wherein the spatial light is disposed in an adjacent room adjacent to the light-emitting room and the light-receiving room via a partition, and receives only light emitted from the light-emitting room through a window provided in the partition. Transmission equipment.
【請求項3】 前記投光室と受光室の前面に透光板が配
設され、該透光板の内側の前記隔壁に対応した箇所に、
略半円形断面の溝が形成され、該溝に該隔壁の先端が嵌
合・配置されたことを特徴とする請求項2記載の空間光
伝送装置。
3. A light-transmitting plate is provided in front of the light-transmitting chamber and the light-receiving chamber, and at a position inside the light-transmitting plate corresponding to the partition,
3. The spatial light transmission device according to claim 2, wherein a groove having a substantially semicircular cross section is formed, and the tip of the partition wall is fitted and arranged in the groove.
JP9334572A 1997-12-04 1997-12-04 Spatial optical transmission equipment Pending JPH11168435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9334572A JPH11168435A (en) 1997-12-04 1997-12-04 Spatial optical transmission equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9334572A JPH11168435A (en) 1997-12-04 1997-12-04 Spatial optical transmission equipment

Publications (1)

Publication Number Publication Date
JPH11168435A true JPH11168435A (en) 1999-06-22

Family

ID=18278911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9334572A Pending JPH11168435A (en) 1997-12-04 1997-12-04 Spatial optical transmission equipment

Country Status (1)

Country Link
JP (1) JPH11168435A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2372389A (en) * 2001-02-19 2002-08-21 Bookham Technology Ltd A package with a light shield for an optical chip
US7269355B2 (en) 2003-05-30 2007-09-11 Sharp Kabushiki Kaisha Optical space communications device and control method thereof
JP2017050637A (en) * 2015-08-31 2017-03-09 リンナイ株式会社 Optical communication device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2372389A (en) * 2001-02-19 2002-08-21 Bookham Technology Ltd A package with a light shield for an optical chip
US7269355B2 (en) 2003-05-30 2007-09-11 Sharp Kabushiki Kaisha Optical space communications device and control method thereof
JP2017050637A (en) * 2015-08-31 2017-03-09 リンナイ株式会社 Optical communication device

Similar Documents

Publication Publication Date Title
JP7303925B2 (en) Multi-wavelength lidar design
US5416627A (en) Method and apparatus for two way infrared communication
US5060303A (en) Optical data link system, and methods of constructing and utilizing same
KR970003526B1 (en) Data transmission method and apparatus having the communication medium for computer interconnections
US4633522A (en) Apparatus for emitting and receiving light signals, more particularly infrared signals
US7751716B2 (en) Open-path/free-space optical communication system and method using reflected or backscattered light
CN111665486A (en) Laser radar system
JPH11168435A (en) Spatial optical transmission equipment
US5317354A (en) Remote control for a camera having an optical fiber
Okoumassoun et al. Free Space Optics Link Performance Estimation Under Diverse Conditions.
JPS6123427A (en) Information transmitter
Bosu et al. Analysis of dichroic mirror assisted free space optical link performance in turbulent channel
Younus et al. Subcarrier multiplexing for parallel data transmission in indoor visible light communication systems
JPS58171138A (en) Optical transmission and reception system
JPS5920115B2 (en) Obstacle detection device
JP2000332698A (en) Optical communication apparatus
JP3647628B2 (en) Satellite-type full-duplex infrared LAN system
JPH0119481Y2 (en)
CN111211836A (en) Symmetrical carrier cancellation optical communication method, visible light transceiver and visible light communication terminal
JPH07235906A (en) Optical communication equipment
JPH04245240A (en) Remote control device for camera
JP3732578B2 (en) Optical space transmission equipment
JPH10322276A (en) Space light transmitter
JPH02228138A (en) Remote operating device using laser
JPS6166427A (en) Optical communication equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060815