JPH1116741A - Static induction equipment - Google Patents

Static induction equipment

Info

Publication number
JPH1116741A
JPH1116741A JP16235097A JP16235097A JPH1116741A JP H1116741 A JPH1116741 A JP H1116741A JP 16235097 A JP16235097 A JP 16235097A JP 16235097 A JP16235097 A JP 16235097A JP H1116741 A JPH1116741 A JP H1116741A
Authority
JP
Japan
Prior art keywords
insulating
tank
iron core
charge
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16235097A
Other languages
Japanese (ja)
Inventor
Hiroshi Miyao
博 宮尾
Keimei Kojima
啓明 小島
Sadao Furukawa
貞夫 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16235097A priority Critical patent/JPH1116741A/en
Publication of JPH1116741A publication Critical patent/JPH1116741A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transformer Cooling (AREA)
  • Elimination Of Static Electricity (AREA)

Abstract

PROBLEM TO BE SOLVED: To protect a static induction equipment against dielectric failures caused by flow charge by a method, wherein a porous low-charge member is provided to the surface of an insulating member where insulating liquid flows. SOLUTION: Flow changing rings 35 to 38 which enable insulating oil 7 flowing through a vertical cooling path 100B to flow through a horizontal fooling path 100A are provided to the inner circumferential surfaces of an insulating cylinder on a core 1 side and another insulating cylinder on a tank side respectively. Porous fluororesin layers 104, 111, and 112 of porous low- charge member are provided to the surfaces of insulating members near the inlets and outlets of the flow-changing rings 35 to 38 and provided to the inner circumference of an intermediate cooling hole as indicated by circles. The porous fluororesin layer is formed through such a manner that polytetrafluoroethylene(PTFE) films are pasted together. A PTFE pipe is of resistivity 10<14> (Ω.cm) in a current density range of 1 to 10 (pA/cm<2> ).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は静止誘導電器、特に
タンク内に収納した静止誘導電器本体の発熱部に冷却用
通路を構成し、冷却器を介してポンプで絶縁性液体を循
環する構造に係り、高電圧大容量変圧器などの静止誘導
電器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a static induction device, in particular, to a structure in which a cooling passage is formed in a heating portion of a stationary induction device main body accommodated in a tank, and an insulating liquid is circulated by a pump through the cooler. In particular, it relates to a static induction device such as a high-voltage large-capacity transformer.

【0002】[0002]

【従来の技術】一般に油入内鉄型変圧器などの静止誘導
電器は鉄心脚周囲に低圧巻線、その周囲に主絶縁距離を
とって高圧巻線が同心状に配置される。それぞれの巻線
が円板コイルで構成される場合にはコイル間スペーサを
介在させて絶縁を保持すると共に、絶縁油を循環させて
巻線を冷却する水平冷却通路を確保する。また主絶縁間
には絶縁筒バリヤと直線スペーサが巻線に沿って配置さ
れ、絶縁保持と巻線冷却のための垂直冷却通路が構成さ
れる。また、変圧器本体タンクの外側には冷却器とポン
プが配置され、配管で接続されて変圧器巻線内を通して
絶縁油が循環される。
2. Description of the Related Art In general, a static induction device such as an oil-filled iron-type transformer has a low-voltage winding around an iron core leg and a high-voltage winding concentrically arranged around the iron leg with a main insulation distance. When each winding is formed of a disc coil, the insulation is maintained by interposing a spacer between the coils, and a horizontal cooling passage for cooling the winding by circulating the insulating oil is secured. In addition, an insulating cylinder barrier and a linear spacer are arranged along the winding between the main insulations, and a vertical cooling passage for holding the insulation and cooling the winding is formed. In addition, a cooler and a pump are arranged outside the transformer main tank, connected by piping, and the insulating oil is circulated through the inside of the transformer winding.

【0003】循環経路、例えば巻線内通路では絶縁油と
絶縁物の境界面で電荷分離が生じ、絶縁油は正電荷、絶
縁物は負電荷を帯び、所謂静電気帯電が起こる。絶縁油
の性質、流速の速い箇所や絶縁物の表面状態によって帯
電の大きさが変化するが、蓄積した電荷密度が高くなる
とその部分の電界が高くなり、静電気放電を起し、交流
電圧での変圧器運転時に絶縁破壊事故へと進展する。
In a circulation path, for example, a passage in a winding, charge separation occurs at a boundary surface between the insulating oil and the insulator, and the insulating oil has a positive charge and the insulator has a negative charge, so-called electrostatic charging occurs. The magnitude of the charge changes depending on the properties of the insulating oil, the places where the flow velocity is fast, and the surface condition of the insulator, but when the accumulated charge density increases, the electric field in that part increases, causing electrostatic discharge, and the AC voltage During the operation of the transformer, a dielectric breakdown accident progresses.

【0004】これらのことは変圧器の流動帯電現象とし
て一般に知られており、文献(公知例1とする)、電気
学会誌99巻、913頁、1979年(「大容量変圧器
における流動帯電現象」田村他)に述べられている。ま
た、特開昭52−156335号公報(公知例2とす
る)では変圧器巻線への油道となる絶縁物の縁端部及び
曲がり部に5〜50mmの丸みを設け、静電気帯電が起ら
ないようにしたものが記載されている。
[0004] These are generally known as a flow charging phenomenon of a transformer, and are described in a literature (referred to as a known example 1), IEEJ, Vol. 99, p. 913, 1979 ("Flow charging phenomenon in a large capacity transformer"). Tamura et al.). In Japanese Patent Application Laid-Open No. 52-156335 (hereinafter referred to as "known example 2"), the edge and the bend of the insulator serving as an oil path to the transformer winding are provided with a roundness of 5 to 50 mm to cause electrostatic charging. The ones that are not included are described.

【0005】また、特開昭53−15518号公報(公
知例3とする)では絶縁物となる電気絶縁紙にエーテル
結合またはチオエーテルを付加、あるいはメチルセルロ
ース、エチルセルロース、ポリエチレンサルファイド、
ポリサルファイド、エチルセルロースとポリエーテルの
混合物などを塗布、あるいは電気絶縁紙をホルマル化す
るなどして電気絶縁紙の固有抵抗を適当な値にして静電
気蓄積を抑制するようにしたものが記載されている。
In Japanese Patent Application Laid-Open No. 53-15518 (hereinafter referred to as "known example 3"), an ether bond or a thioether is added to an electrically insulating paper serving as an insulator, or methyl cellulose, ethyl cellulose, polyethylene sulfide,
It describes a method of applying a mixture of polysulfide, ethylcellulose and polyether or the like, or formalizing an electric insulating paper to make the specific resistance of the electric insulating paper an appropriate value to suppress the accumulation of static electricity.

【0006】[0006]

【発明が解決しようとする課題】大容量油入変圧器では
より大容量でかつ小型化するために冷却効率を上げる必
要があり、そのため冷却用の絶縁油の流速を上げる必要
がある。しかし、流速を上げると流動帯電による静電荷
の発生量が増加し、油中放電の危険性が大きくなる。公
知例2のように冷却ダクトの曲がり部に丸みを持たせて
流れをスムーズにし、乱流になるのを抑制したとして
も、さらなる流量の増大や高流速に対応した静電気帯電
を防止するには不十分である。
In a large-capacity oil-filled transformer, it is necessary to increase the cooling efficiency in order to increase the capacity and reduce the size, and therefore it is necessary to increase the flow rate of the insulating oil for cooling. However, when the flow velocity is increased, the amount of static charge generated by the flow electrification increases, and the risk of discharge in oil increases. Even if the curved portion of the cooling duct is rounded to smooth the flow and the turbulence is suppressed as in the known example 2, even if the turbulence is suppressed, it is necessary to further increase the flow rate and to prevent electrostatic charging corresponding to a high flow rate. Not enough.

【0007】また公知例3に記載されているように、電
気絶縁紙の表面に電荷が残らないように表面処理して
も、電荷の発生に対しては効果が無く、絶縁性流体が大
量の過剰電荷を持って流動し、流れの遅い部分で電荷緩
和が起り、電荷が蓄積されて静電気帯電を生じる。ま
た、静電荷発生の小さい材料を流速が速く、発生電荷量
の大きな油道表面に貼り付け静電気発生量を抑制するこ
とも考えられるが、一般的に流動帯電を生じにくい無極
性高分子材料は発生電荷量は小さいが、抵抗率が非常に
大きく、発生した電荷が蓄積されやすく、静電気放電を
生じやすい欠点を有する。
Further, as described in the known example 3, even if the surface treatment is performed so that no electric charge remains on the surface of the electrically insulating paper, there is no effect on the generation of the electric charge, and a large amount of the insulating fluid is used. It flows with excess charge, charge relaxation occurs in the slow flow areas, and the charge is accumulated, causing electrostatic charging. It is also conceivable to attach a material with low static charge generation to the oil passage surface with a high flow rate and a large amount of generated charge to suppress the amount of generated static electricity. Although the amount of generated electric charge is small, it has a disadvantage that the resistivity is very large, the generated electric charge is easily accumulated, and electrostatic discharge easily occurs.

【0008】本発明の目的は、絶縁性液体が高速で絶縁
物を流動する時に生じる流動帯電による絶縁事故を防止
した静止誘導電器を提供することにある。
An object of the present invention is to provide a stationary induction device which prevents an insulation accident due to flow electrification that occurs when an insulating liquid flows through an insulator at high speed.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明の静止誘導電器は、タンク内に鉄心と鉄心に
装着した導体を絶縁部材で被覆した巻線とを収納し、タ
ンクの外側に配置した冷却器とタンクとの間を連通した
配管及びこれらに設けたポンプを運転し、絶縁性液体を
タンク内と冷却器との間で循環させ、鉄心及び巻線等を
冷却するものにおいて、絶縁性液体が流れる絶縁部材表
面に多孔質の低帯電度部材を備えていことにある。
In order to achieve the above-mentioned object, a static induction device according to the present invention comprises a tank in which an iron core and a winding in which a conductor attached to the iron core is covered with an insulating member are housed. Pipes communicating between the cooler and the tank arranged outside and the pumps provided in these are operated to circulate the insulating liquid between the tank and the cooler to cool the iron core and windings , A porous low-charge member is provided on the surface of the insulating member through which the insulating liquid flows.

【0010】[0010]

【発明の実施の形態】以下、本発明の一実施例を図1〜
図7により説明する。図1は、本発明の一実施例となる
変圧器の構成を示すもので、鉄心1に巻線2を同心状に
巻回し、その外側に絶縁筒3を設け、流量調整板14に
固定している。鉄心1は下部の共通冷却通路12と上部
締金具13とで締め付け固定し、タンク4に収納してい
る。また、タンク4の上部にはコンサベータ5を設け、
タンク4と連通させて絶縁性液体である絶縁油7を仕切
り膜6まで充填している。仕切り膜6は絶縁油7の膨張
収縮に応動し、その上部面に気体を封入し圧力を調整す
るようにしている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will now be described with reference to FIGS.
This will be described with reference to FIG. FIG. 1 shows a configuration of a transformer according to one embodiment of the present invention. A winding 2 is wound concentrically around an iron core 1, an insulating cylinder 3 is provided outside the winding 2, and the transformer is fixed to a flow rate adjusting plate 14. ing. The iron core 1 is fastened and fixed by a lower common cooling passage 12 and an upper fastener 13 and housed in a tank 4. In addition, a conservator 5 is provided on the upper part of the tank 4,
An insulating oil 7 as an insulating liquid is filled up to the partition film 6 in communication with the tank 4. The partition film 6 responds to the expansion and contraction of the insulating oil 7, and fills a gas into the upper surface thereof to adjust the pressure.

【0011】また、タンク4の側面からは上部配管10
と下部配管11を導出し、冷却器8と循環ポンプ9に接
続し、絶縁油7の流れを矢印で示したように循環ポンプ
9⇒下部配管11⇒共通冷却通路12⇒巻線2⇒上部締
め金具13⇒上部配管10⇒冷却器8へと絶縁油7が循
環するようにしている。鉄心1の表面の液の流れは図示
していないが、巻線2との間および鉄心内に通路を設け
て鉄心内に通路を設けて鉄心1を冷却するようにしてい
る。
From the side of the tank 4, the upper pipe 10
And the lower pipe 11 are led out, connected to the cooler 8 and the circulation pump 9, and the flow of the insulating oil 7 is indicated by the arrow as the circulation pump 9 → the lower pipe 11 → the common cooling passage 12 → the winding 2 → the upper part is tightened. The insulating oil 7 is circulated from the metal fitting 13 to the upper pipe 10 to the cooler 8. Although the flow of the liquid on the surface of the iron core 1 is not shown, a passage is provided between the winding 2 and the iron core, and a passage is provided in the iron core to cool the iron core 1.

【0012】図2は図1の巻線2の下部の部分を拡大し
た断面図である。巻線2は円板コイル25と円板コイル
26の複数を積み重ねて構成し、内周側の円板コイル2
5と25との間に水平冷却通路100Aを形成し、円板
コイル間の水平冷却通路100Aはスペーサ(図示しな
い)で支持している。又外周側の円板コイル26と26
との間にも水平冷却通路100Aを形成している。変圧
器油は下部配管11から共通冷却通路12に入り、絶縁
リング131と絶縁筒32の間、および絶縁リング13
3と絶縁筒33の間を上部に流れ、円板コイル25,2
6へ流れる。
FIG. 2 is an enlarged sectional view of a lower portion of the winding 2 of FIG. The winding 2 is formed by stacking a plurality of disc coils 25 and disc coils 26, and the inner peripheral disc coil 2
A horizontal cooling passage 100A is formed between 5 and 25, and the horizontal cooling passage 100A between the disk coils is supported by a spacer (not shown). Also, the outer-side disk coils 26 and 26
A horizontal cooling passage 100A is also formed between them. The transformer oil enters the common cooling passage 12 from the lower pipe 11, and flows between the insulating ring 131 and the insulating cylinder 32, and the insulating ring 13.
3 and the insulating tube 33 flows upward, and the disk coils 25, 2
Flow to 6.

【0013】円板コイル25及び円板コイル26をそれ
ぞれ内周側の絶縁筒31、32および外周側の絶縁筒3
3、34で囲み、水平冷却通路100Aに連通すると共
に、絶縁筒31〜34と対応する複数の円板コイル2
5,26の積層方向に沿って垂直冷却通路100Bを形
成している。折流リング35,36,37,38を垂直
冷却通路100Bを流れを阻止するよう絶縁筒32〜3
3に所定間隔で取付け、絶縁油7を複数の円板コイル2
5,26のブロック毎に巻線内の流れを矢印で示したよ
うに蛇行させ、巻線内の冷却が均等になるようにしてい
る。
The disk coil 25 and the disk coil 26 are respectively connected to the inner insulating cylinders 31 and 32 and the outer insulating cylinder 3.
3 and 34, a plurality of disk coils 2 communicating with the horizontal cooling passage 100A and corresponding to the insulating cylinders 31 to 34.
Vertical cooling passages 100B are formed along the stacking directions of the cooling layers 5 and 26. Insulating cylinders 32 to 3 are formed so that flow paths 35, 36, 37 and 38 are prevented from flowing through vertical cooling passage 100B.
3 at predetermined intervals and apply insulating oil 7 to a plurality of disc coils 2
The flow in the winding is meandered as indicated by the arrows in each of the blocks 5 and 26 so that the cooling in the winding is uniform.

【0014】円板コイル25,26の表面の絶縁油流速
は冷却効率を上げるため流量を増すと速くなり、その分
電荷分離が起りやすくなる。従って、本発明の実施例で
は、円板コイルを構成する被覆電線を図3に示すよう
に、導体210に絶縁紙211を巻回し、最外層表面に
多孔質フッ素樹脂からなるフィルム212を巻回して構
成している。このように絶縁油7が流動する部位にフッ
素系樹脂を使用すれば、電荷分離が起りにくい理由を説
明する。多孔質フッ素樹脂は電子顕微鏡で観察すると繊
維212Aと繊維とが絡合った間隙が多孔212Bと云
える。つまり乾燥した糸瓜のように絡み合っている。
The flow rate of the insulating oil on the surfaces of the disk coils 25 and 26 increases as the flow rate increases in order to increase the cooling efficiency, and the charge separation easily occurs accordingly. Therefore, in the embodiment of the present invention, as shown in FIG. 3, the insulated wire constituting the disc coil is formed by winding the insulating paper 211 around the conductor 210 and winding the film 212 made of porous fluororesin on the outermost layer surface. It is composed. The reason why charge separation is unlikely to occur when a fluorine-based resin is used in a portion where the insulating oil 7 flows as described above will be described. When the porous fluororesin is observed with an electron microscope, a gap where the fibers 212A are entangled with each other can be referred to as a pore 212B. In other words, they are intertwined like a dried gourd.

【0015】即ち、絶縁油7を絶縁性液体の一つの例と
してパイプモデルを用いて帯電電荷量を調べた。図4は
パイプに絶縁油を流した時のパイプ内壁面の単位面積当
りの電流密度(pA/cm2)を示しており、パイプ材
質によってその大きさは変化している。これらの中で電
流密度が最も小さかったのは、多孔質フッ素樹脂である
ポリテトラフロロエチレン(以下PTFEと略す)パイ
プであり、通常の変圧器の油道を構成するプレスボード
等の紙の約1/20である。このようにPTFEパイプ
の流動電流が小さいのは、分子内に極性基を持たない無
極性高分子材料であるため、イオンの吸着が生じにくい
ためと考えられる。PTFEパイプの電流密度(pA/
cm2)は電流密度が1〜10(pA/cm2)の範囲で
あれば良い。この理由は10(pA/cm2)で以上で
あれば余計に電流が流れ過ぎて表面電位が上がり過ぎ、
絶縁破壊になりやすい。また電流密度が1以下であれ
ば、特別生産となりコスト高と成り使用出来ない。
That is, the charge amount was examined using a pipe model using the insulating oil 7 as an example of the insulating liquid. FIG. 4 shows the current density (pA / cm 2 ) per unit area of the inner wall surface of the pipe when the insulating oil flows through the pipe, and the size changes depending on the pipe material. Among these, the one having the lowest current density is a polytetrafluoroethylene (hereinafter abbreviated as PTFE) pipe, which is a porous fluororesin, which is about the same as paper of a press board or the like constituting an oil passage of a normal transformer. It is 1/20. It is considered that the reason why the flowing current of the PTFE pipe is small as described above is that it is a nonpolar polymer material having no polar group in the molecule, and thus it is difficult for ions to be adsorbed. Current density of PTFE pipe (pA /
cm 2 ) as long as the current density is in the range of 1 to 10 (pA / cm 2 ). The reason for this is that if it is 10 (pA / cm 2 ) or more, excessive current will flow excessively and the surface potential will rise too much,
Dielectric breakdown easily occurs. On the other hand, if the current density is 1 or less, it is not possible to use because of special production and high cost.

【0016】次に材料の油浸状態での抵抗率(Ω.c
m)を比較した結果を図5に示す。図5は代表的値を比
較したものである。油浸プレスボードの抵抗率に較べて
PTFEの抵抗率は2桁以上大きいが、多孔質のPTF
Eの場合には油浸プレスボードの場合よりも約2桁小さ
く、絶縁油なみになっている。多孔質のPTFEの抵抗
率が1014(Ω.cm)であれば、流動電流が小さくま
た抵抗率が多孔質のため油に近い値のため、電荷分離が
起りにくく、且つ電荷蓄積しにくいため、静電気帯電を
抑制することができる。抵抗率と図4の流動電流密度の
積が表面電位に相当するものであるが、これを図6に比
較して示す。PTEEが表面電位の値でみると油浸プレ
スボードを上回るが、多孔質PTFEでは約1桁プレス
ボードより小さい値を示すことがわかる。
Next, the resistivity of the material in the oil immersion state (Ω.c)
m) are shown in FIG. FIG. 5 shows a comparison of representative values. Although the resistivity of PTFE is more than two orders of magnitude higher than the resistivity of oil immersion press board, porous PTFE
In the case of E, it is about two orders of magnitude smaller than the case of the oil immersion press board, and is comparable to insulating oil. If the resistivity of the porous PTFE is 10 14 (Ω.cm), the flow current is small, and the resistivity is close to that of oil because of the porosity, so that charge separation hardly occurs and charge accumulation is difficult. In addition, electrostatic charging can be suppressed. The product of the resistivity and the flowing current density in FIG. 4 corresponds to the surface potential, which is shown in comparison with FIG. It can be seen that the PTFE has a surface potential value higher than that of the oil immersion press board, but the porous PTFE shows a value smaller than that of the press board by about one digit.

【0017】このように多孔質PTFEの表面電位が小
さいのは、流動電流が小さくまた抵抗率が多孔質のため
油に近い値になっているためである。従って、静止誘導
電器に冷却器を接続して循環ポンプで絶縁油を循環する
冷却経路を構成する場合、絶縁油と接する表面を多孔質
の流動帯電抑制部材、例えば多孔質フッ素系樹脂で構成
するようにすれば、電荷分離が起りにくく、且つ電荷蓄
積しにくいため、静電気帯電を抑制することができる。
The reason why the surface potential of the porous PTFE is small is that the flowing current is small and the resistivity is close to that of oil due to the porous nature. Therefore, when a cooling device is connected to a stationary induction device to form a cooling path for circulating insulating oil with a circulating pump, a surface in contact with the insulating oil is formed of a porous flow-charging suppressing member, for example, a porous fluororesin. In this case, since charge separation hardly occurs and charge is hardly accumulated, electrostatic charging can be suppressed.

【0018】上述の図3では導体210に絶縁紙211
を巻回し、最外層表面に多孔質フッ素樹脂からなるフィ
ルム212を巻回し、絶縁性液体が流れに絶縁紙211
の表面を多孔質フッ素系樹脂フィルムで覆い、その境界
面で電荷分離が起りにくくすると共に、電荷蓄積しにく
くし静電気帯電を抑制するようにしている。多孔質フッ
素樹脂フィルムまたはシートは、PTFEフィルムまた
はシートを一軸延伸または二軸延伸して多孔質化したも
のが用いられる。またその他の方法で微細な孔をPTE
Eフィルムまたはシートにあけて多孔質化したものを用
いることができる。
In FIG. 3 described above, the insulating paper 211 is attached to the conductor 210.
Is wound, and a film 212 made of a porous fluororesin is wound on the outermost layer surface, so that the insulating liquid flows into the insulating paper 211.
Is covered with a porous fluororesin film so that electric charge separation hardly occurs at the boundary surface thereof, electric charge is hardly accumulated, and electrostatic charging is suppressed. As the porous fluororesin film or sheet, a porous PTFE film or sheet obtained by uniaxially stretching or biaxially stretching is used. In addition, fine holes are formed by PTE using other methods.
It is possible to use an E film or a sheet that has been made porous by opening it.

【0019】電線被覆の具体的実施例として、多孔質フ
ッ素樹脂系フィルムを全層巻回してコイルを形成して
も、静電気帯電の抑制効果は同じであるが、液流速が遅
く電荷分離が起らない部分のコイルは従来の絶縁電線と
し、流れの乱れの大きい部分や流速の速い部分、例え
ば、液の流入口となる巻線下部のコイルだけに多孔質フ
ッ素系樹脂フィルムを被覆しても、静電気帯電は抑制で
きる。従って、部分的に多孔質フッ素系樹脂フィルムを
適用することにより、安価な静止誘導電器を提供でき
る。
As a specific example of the electric wire coating, even if a coil is formed by winding a porous fluororesin film in all layers, the effect of suppressing electrostatic charging is the same, but the liquid flow rate is slow and charge separation occurs. The part of the coil that is not used is a conventional insulated wire, and a part with a large turbulence or a part with a high flow velocity, for example, a porous fluorine resin film is coated only on the coil at the lower part of the winding that becomes the liquid inlet. In addition, electrostatic charging can be suppressed. Therefore, an inexpensive static induction device can be provided by partially applying the porous fluororesin film.

【0020】一方側配管と連通する共通冷却路上に絶縁
リングを設け、共通冷却路及び絶縁リングの中間に中間
冷却穴を有し、上記絶縁リング上に一部が中間冷却穴に
連通するようにタンクと鉄心との間に内周側絶縁筒及び
外周側絶縁筒とを配置し、各円板コイル間の水平冷却通
路及び中間冷却穴に連通する円板コイルの積層方向に形
成した垂直冷却通路とを備え、折流リングの入口及び出
口付近と中間冷却穴の内周面との絶縁部材表面に多孔質
の低帯電度部材を使用する。
An insulating ring is provided on a common cooling passage communicating with the one-side pipe, and an intermediate cooling hole is provided between the common cooling passage and the insulating ring so that a part of the insulating ring communicates with the intermediate cooling hole. A vertical cooling passage formed in the stacking direction of the disc coils connected to the inner cooling tube and the outer insulating tube between the tank and the iron core, and formed in the horizontal cooling passage between the respective disc coils and the intermediate cooling holes. And a porous low-charge member is used on the surface of the insulating member between the inlet and outlet of the flow ring and the inner peripheral surface of the intermediate cooling hole.

【0021】例えば図2の下部配管11と連通する共通
冷却通路12上に絶縁リング131,132を配置し、
共通冷却通路12及び絶縁リング131,133の中間
に冷却穴120Aを設け、上記絶縁リング上に一部が中
間冷却穴120Aに連通するようにタンク4と鉄心1と
の間に内周側の絶縁筒31,32及び外周側の絶縁筒3
3,34とを配置し、両絶縁筒内に複数の上記円板コイ
ル25,26を積層し、各円板コイル間の水平冷却通路
100A及び中間冷却穴120Aに連通する円板コイル
25,26の積層方向と両絶縁筒と間に形成した垂直冷
却通路100Bとを備えている。
For example, insulating rings 131 and 132 are arranged on the common cooling passage 12 communicating with the lower pipe 11 of FIG.
A cooling hole 120A is provided between the common cooling passage 12 and the insulating rings 131 and 133, and insulation on the inner peripheral side between the tank 4 and the iron core 1 is provided on the insulating ring so that a part thereof communicates with the intermediate cooling hole 120A. Cylinders 31 and 32 and insulating cylinder 3 on the outer peripheral side
3 and 34, a plurality of the above-mentioned disk coils 25 and 26 are laminated in both insulating cylinders, and the disk coils 25 and 26 communicate with the horizontal cooling passage 100A and the intermediate cooling hole 120A between the disk coils. And a vertical cooling passage 100B formed between the two insulating cylinders.

【0022】垂直冷却通路100Bの絶縁油7を水平冷
却通路100Aに流す折流リング35〜38は、両絶縁
筒の鉄心1側絶縁筒部分の内周面及びタンク側絶縁筒部
分の内周面に設け、丸印で示した折流リング35〜38
の入口及び出口付近と中間冷却穴の内周面との絶縁部材
表面に多孔質の低帯電度部材である多孔質フッ素樹脂層
104,111,112を設けた。云換れば、鉄心1側
及びタンク側の垂直冷却通路100Bを塞ぐ絶縁油7を
水平冷却通路100Aに流す折流リング35〜38を両
絶縁筒内周面に設け、折流リング35〜38の入口及び
出口付近と中間冷却穴の内周面との絶縁部材表面に多孔
質の低帯電度部材を設けもるである。また本発明では単
属の絶縁筒を使用した変圧器にも適用できることは云う
までもない。
The flow-circulation rings 35 to 38 for flowing the insulating oil 7 in the vertical cooling passage 100B to the horizontal cooling passage 100A are formed on the inner peripheral surface of the core-side insulating cylindrical portion of both insulating cylinders and the inner peripheral surface of the tank-side insulating cylindrical portion. And the folding rings 35 to 38 indicated by circles.
The porous fluororesin layers 104, 111 and 112, which are porous low-charge members, are provided on the surface of the insulating member between the entrance and exit of the substrate and the inner peripheral surface of the intermediate cooling hole. In other words, the flow rings 35 to 38 for flowing the insulating oil 7 blocking the vertical cooling passage 100B on the iron core 1 side and the tank side to the horizontal cooling passage 100A are provided on the inner peripheral surfaces of both insulating cylinders. A porous low-charge member is provided on the surface of the insulating member between the inlet and outlet and the inner peripheral surface of the intermediate cooling hole. Needless to say, the present invention can be applied to a transformer using a single insulating cylinder.

【0023】この結果、絶縁油7の流速がより速い個所
での流動帯電が抑制でき、高速液循環が可能となり、高
効率の冷却ができるようになり、多孔質PTFEフィル
ムを使用しない従来の静止誘導電器に比べて、本発明の
静止誘導電器の容量を大幅に増加することが出来るよう
になった。
As a result, it is possible to suppress the flow electrification at a place where the flow rate of the insulating oil 7 is higher, to enable high-speed liquid circulation, to perform high-efficiency cooling, and to use a conventional static electricity without using a porous PTFE film. The capacity of the static induction device of the present invention can be greatly increased as compared with the induction device.

【0024】図7は図2に示した絶縁筒32の具体的構
成を示すもので、厚手の絶縁紙ボードを成形した絶縁筒
32の表面に多孔質フッ素樹脂膜320を設け、多孔質
フッ素樹脂膜320は薄手の多孔質PTFEフィルムを
貼り合わせて構成したものである。
FIG. 7 shows a specific structure of the insulating tube 32 shown in FIG. 2. A porous fluororesin film 320 is provided on the surface of the insulating tube 32 formed by molding a thick insulating paper board. The membrane 320 is formed by laminating a thin porous PTFE film.

【0025】図8は図2に示した絶縁リング131の具
体的構成を示すもので、絶縁板136の間に所定間隔で
絶縁ピース135を配置して絶縁リング131を構成す
る。また、液流量調節板132はコイル2と絶縁リング
131の間に配置され、絶縁リング131からの突き出
し寸法を調整して、上部コイルに流れる液量を調整して
いる。絶縁リング131および液流量調整板132の表
面は液体が高速で流動する部位であり、静電気発生量を
小さくするため表面を多孔質フッ素樹脂で覆うようにし
ている。即ち、多孔質PTFEフィルムを貼り合わせて
構成するようにしたものである。多孔質PTFEフィル
ムを用いることにより、液含浸性も阻害されず、電荷蓄
積も抑え、静電気帯電の抑制を効果的に行うことができ
る。
FIG. 8 shows a specific configuration of the insulating ring 131 shown in FIG. 2. Insulating pieces 135 are arranged at predetermined intervals between insulating plates 136 to form the insulating ring 131. Further, the liquid flow rate adjusting plate 132 is disposed between the coil 2 and the insulating ring 131, and adjusts a protrusion size from the insulating ring 131 to adjust a liquid amount flowing to the upper coil. The surfaces of the insulating ring 131 and the liquid flow rate adjusting plate 132 are portions where the liquid flows at high speed, and the surfaces are covered with a porous fluororesin in order to reduce the amount of generated static electricity. That is, a porous PTFE film is bonded and configured. By using the porous PTFE film, the liquid impregnation property is not hindered, the charge accumulation is suppressed, and the electrostatic charge can be effectively suppressed.

【0026】図9は本発明のその他の一実施例となる変
圧器の構造を示すものである。鉄心1、巻線2、共通冷
却通路12、上部締め金具13で構成した変圧器本体を
上部にゴム膜60を有する絶縁容器21に収納して絶縁
油7で満たし、その上部よりタンク4を貫通して上部配
管10を引き出して冷却器8に接続し、共通冷却通路1
2からタンクを貫通して下部配管11を引き出して循環
ポンプ9に接続し、矢印で示したように絶縁油7を循環
するようにしている。
FIG. 9 shows the structure of a transformer according to another embodiment of the present invention. The transformer main body composed of the iron core 1, the winding 2, the common cooling passage 12, and the upper fastener 13 is housed in an insulating container 21 having a rubber film 60 on the upper part, filled with insulating oil 7, and penetrates the tank 4 from the upper part. And pull out the upper pipe 10 and connect it to the cooler 8 to make the common cooling passage 1
2, the lower pipe 11 is drawn out through the tank and connected to the circulation pump 9, so that the insulating oil 7 is circulated as indicated by the arrow.

【0027】このように構成した変圧器の絶縁容器21
は内側が絶縁油7、外側はガス側50となり、内側とな
る巻線2との間は液体が流動する部位である。絶縁容器
21はある程度の機械的強度を必要とするため、GFR
P(ガラスファイバー強化プラスチック)で製作してい
る。GFRPは帯電度が大きな材質であり、変圧器の絶
縁容器の材質としては流動帯電抑制の観点では不適当で
ある。本実施例では、静電気帯電を小さくするため、多
孔質フッ素系樹脂でGFRPの液体側を覆うようにして
いる。
The insulating container 21 of the transformer constructed as described above.
Is an insulating oil 7 on the inner side, a gas side 50 on the outer side, and a portion where the liquid flows between the winding 2 and the inner side. Since the insulating container 21 requires a certain level of mechanical strength, the GFR
Made of P (glass fiber reinforced plastic). GFRP is a material having a high degree of charge, and is unsuitable as a material for an insulating container of a transformer from the viewpoint of suppressing flow charge. In this embodiment, the liquid side of the GFRP is covered with a porous fluororesin in order to reduce electrostatic charging.

【0028】図10は絶縁容器21の内側に多孔質フッ
素樹脂層22を設けている。多孔質フッ素樹脂層22は
多孔質PTFEフィルムの貼り合わせで実施できる。こ
のようにすることにより絶縁容器21の内側での電荷分
離を抑制でき絶縁容器21の静電気帯電を低減できる。
FIG. 10 shows that a porous fluororesin layer 22 is provided inside an insulating container 21. The porous fluororesin layer 22 can be implemented by bonding a porous PTFE film. By doing so, charge separation inside the insulating container 21 can be suppressed, and electrostatic charging of the insulating container 21 can be reduced.

【0029】本発明に適用した絶縁性液体は変圧器油に
限るものではなく、パーフロロカーボン液あるいはパー
フロロカーボン液と他の液体、例えば、パークロロエチ
レンとの混合液などであっても有効に流動帯電を抑制で
き、またフッ素系樹脂以外の帯電度の小さい多孔質材質
で液体との接触面を覆うようにすれば流動帯電を抑制で
きる。
The insulating liquid applied to the present invention is not limited to transformer oil, but can effectively flow even if it is a perfluorocarbon liquid or a mixture of a perfluorocarbon liquid and another liquid such as perchlorethylene. The charge can be suppressed, and the flow charge can be suppressed by covering the contact surface with the liquid with a porous material having a small charge degree other than the fluororesin.

【0030】[0030]

【発明の効果】以上のように本発明の静止誘導電器によ
れば、流動帯電抑制部材例えば多孔質PTFEフィルム
を流動する絶縁液体との接触する絶縁部材表面に配置し
ているので、冷却液循環系での流動帯電を抑制でき、高
速液循環が可能であるため、高効率の冷却ができるよう
になり、多孔質PTFEフィルムを使用しない従来の静
止誘導電器に比べて、本発明の静止誘導電器の容量を大
幅に増加することが出来るようになった。また、静電気
帯電が小さいために流動帯電による絶縁事故が起らない
信頼性の高い高電圧大容量変圧器等に好適な静止誘導電
器を得ることができる。
As described above, according to the static induction device of the present invention, since the flow-charging suppressing member, for example, the porous PTFE film is disposed on the surface of the insulating member that comes into contact with the flowing insulating liquid, the circulation of the cooling liquid is achieved. The static induction device according to the present invention can suppress the flow electrification in the system and can perform high-speed liquid circulation, so that high-efficiency cooling can be performed and compared with the conventional static induction device not using a porous PTFE film. Capacity can be greatly increased. Further, it is possible to obtain a static induction device suitable for a high-voltage large-capacity transformer or the like which is highly reliable and does not cause an insulation accident due to flow electrification due to small electrostatic charging.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例である静止誘導電器の説明図
である。
FIG. 1 is an explanatory diagram of a stationary induction device according to an embodiment of the present invention.

【図2】図1に使用した巻線付近の部分拡大断面図であ
る。
FIG. 2 is a partially enlarged cross-sectional view of the vicinity of a winding used in FIG.

【図3】図1に使用した巻線の拡大斜視図である。FIG. 3 is an enlarged perspective view of a winding used in FIG. 1;

【図4】静止誘導電器の各種材料の流動帯電特性の比較
図である。
FIG. 4 is a comparison diagram of flow charging characteristics of various materials of the stationary induction device.

【図5】静止誘導電器の各種材料の油浸時の抵抗率の比
較図である。
FIG. 5 is a comparison diagram of the resistivity of various materials of the stationary induction device during oil immersion.

【図6】静止誘導電器の各種材料の流動帯電特性の比較
図である。
FIG. 6 is a comparison diagram of the flow charging characteristics of various materials of the stationary induction device.

【図7】本発明の他の実施例の絶縁筒の構成を示す斜視
図である。
FIG. 7 is a perspective view illustrating a configuration of an insulating cylinder according to another embodiment of the present invention.

【図8】本発明の他の実施例の絶縁リングの構成を示す
斜視図である。
FIG. 8 is a perspective view showing a configuration of an insulating ring according to another embodiment of the present invention.

【図9】本発明の他の実施例の静止誘導電器の説明図で
ある。
FIG. 9 is an explanatory view of a stationary induction device according to another embodiment of the present invention.

【図10】本発明の他の実施例の絶縁容器の構成を示す
斜視図である。
FIG. 10 is a perspective view showing a configuration of an insulating container according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1… 鉄心、2… 巻線、3… 絶縁筒、4… タンク、7
… 絶縁油、8… 冷却器、9… 循環ポンプ、10 …
上部配管、11 … 下部配管、22 … 多孔質フッ素樹
脂層、212,320… 多孔質フッ素樹脂フィルム。
DESCRIPTION OF SYMBOLS 1 ... Iron core, 2 ... Winding, 3 ... Insulating cylinder, 4 ... Tank, 7
... insulating oil, 8 ... cooler, 9 ... circulation pump, 10 ...
Upper piping, 11: Lower piping, 22: Porous fluororesin layer, 212, 320 ... Porous fluororesin film.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 タンク内に鉄心と、鉄心に装着された導
体を絶縁部材で被覆した巻線とを収納し、タンクの外側
に配置した冷却器とタンクとの間を連通した配管及びこ
れらに設けたポンプを運転し、絶縁性液体をタンク内と
冷却器との間で循環させ、鉄心及び巻線等を冷却するも
のにおいて、絶縁性液体が流れる絶縁部材表面に多孔質
の低帯電度部材を備えていることを特徴とする静止誘導
電器。
1. A tank containing an iron core and a winding in which a conductor attached to the iron core is covered with an insulating member in a tank, and a pipe communicating between a tank and a cooler disposed outside the tank, and a pipe connected thereto. The pump provided is operated to circulate the insulating liquid between the inside of the tank and the cooler to cool the iron core and the windings, etc., wherein a porous low-charge member is provided on the surface of the insulating member through which the insulating liquid flows. A static induction device characterized by comprising:
【請求項2】 タンク内に鉄心と、鉄心に装着された導
体を絶縁部材で被覆した円板コイルとを収納し、タンク
の外側に配置した冷却器とタンクとの間を連通した配管
及びこれらに設けたポンプを運転し、絶縁性液体をタン
ク内と冷却器との間で循環させ、鉄心及び巻線を冷却す
るものにおいて、一方側配管と連通する共通冷却路上に
絶縁リングを設け、共通冷却路及び絶縁リングの中間に
中間冷却穴を有し、上記絶縁リング上に一部が中間冷却
穴に連通するようにタンクと鉄心との間に絶縁筒を配置
し、絶縁筒内に複数の上記円板コイルを積層し、各円板
コイル間の水平冷却通路及び中間冷却穴に連通する円板
コイルの積層方向と絶縁筒との間に形成した垂直冷却通
路とを設け、鉄心側及びタンク側垂直冷却通路の一部を
塞ぎ絶縁性液体を水平冷却通路に流す折流リングを絶縁
筒の内周面に設け、折流リングの入口及び出口付近と中
間冷却穴の内周面との絶縁部材表面に多孔質の低帯電度
部材を備えたことを特徴とする静止誘導電器。
2. A pipe which accommodates an iron core and a disk coil in which a conductor attached to the iron core is covered with an insulating member in a tank, and which communicates between a tank and a cooler disposed outside the tank, and By operating the pump provided in the above, the insulating liquid is circulated between the inside of the tank and the cooler to cool the iron core and the winding, and an insulating ring is provided on a common cooling path communicating with one side pipe, An intermediate cooling hole is provided between the cooling path and the insulating ring, and an insulating cylinder is disposed between the tank and the iron core such that a part thereof communicates with the intermediate cooling hole on the insulating ring. The disk coils are stacked, and a horizontal cooling passage between the disk coils and a vertical cooling passage formed between an insulating cylinder and a stacking direction of the disk coils communicating with the intermediate cooling holes are provided. Block part of the vertical cooling passage on the side A folding ring for flowing in the flat cooling passage was provided on the inner peripheral surface of the insulating cylinder, and a porous low-charge member was provided on the insulating member surface near the inlet and outlet of the folding ring and the inner peripheral surface of the intermediate cooling hole. A static induction device characterized by the following.
【請求項3】 前記多孔質の低帯電度部材はフッ素系樹
脂を含むことを特徴とする請求項1又は2記載の静止誘
導電器。
3. The static induction device according to claim 1, wherein the porous low-charge member contains a fluorine-based resin.
【請求項4】 前記多孔質の低帯電度部材が多孔質ポリ
テトラフロロエチレンであることを特徴とする請求項1
又は2記載の静止誘導電器。
4. The method according to claim 1, wherein said porous low-charge member is porous polytetrafluoroethylene.
Or the static induction device according to 2.
【請求項5】 前記多孔質の低帯電度部材として絶縁性
液体が流れる絶縁部材面に電流密度が1〜10(pA/
cm2)の範囲で抵抗率が1014(Ω.cm)である多
孔質ポリテトラフロロエチレンを使用することを特徴と
する請求項1又は2記載の静止誘導電器。
5. A current density of 1 to 10 (pA / p.m.) On the surface of the insulating member through which the insulating liquid flows as the porous low-charge member.
The static induction device according to claim 1 or 2, wherein a porous polytetrafluoroethylene having a resistivity of 10 < 14 > ([Omega] .cm) in a range of 2 cm <2> is used.
JP16235097A 1997-06-19 1997-06-19 Static induction equipment Pending JPH1116741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16235097A JPH1116741A (en) 1997-06-19 1997-06-19 Static induction equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16235097A JPH1116741A (en) 1997-06-19 1997-06-19 Static induction equipment

Publications (1)

Publication Number Publication Date
JPH1116741A true JPH1116741A (en) 1999-01-22

Family

ID=15752901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16235097A Pending JPH1116741A (en) 1997-06-19 1997-06-19 Static induction equipment

Country Status (1)

Country Link
JP (1) JPH1116741A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013008812A (en) * 2011-06-24 2013-01-10 Hitachi Ltd Insulating material, and stationary induction apparatus using the same
CN107993807A (en) * 2018-01-24 2018-05-04 江苏东晔电气设备有限公司 A kind of transformer cooling system
CN108281251A (en) * 2018-01-24 2018-07-13 江苏东晔电气设备有限公司 A kind of transformer cooling system for capableing of resource reutilization

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013008812A (en) * 2011-06-24 2013-01-10 Hitachi Ltd Insulating material, and stationary induction apparatus using the same
CN107993807A (en) * 2018-01-24 2018-05-04 江苏东晔电气设备有限公司 A kind of transformer cooling system
CN108281251A (en) * 2018-01-24 2018-07-13 江苏东晔电气设备有限公司 A kind of transformer cooling system for capableing of resource reutilization
CN107993807B (en) * 2018-01-24 2019-07-09 江苏东晔电气设备有限公司 A kind of transformer cooling system
CN108281251B (en) * 2018-01-24 2019-07-26 江苏东晔电气设备有限公司 A kind of transformer cooling system for capableing of resource reutilization

Similar Documents

Publication Publication Date Title
JP6411647B2 (en) Method and apparatus for insulating fuel tank of high voltage generator
US6351202B1 (en) Stationary induction apparatus
JP5522658B2 (en) Static induction equipment
JP2000511393A (en) A rotating electric machine that cools axially
JP2008153665A (en) Insulation system and insulation method for transformer
US11557428B2 (en) Medium-frequency transformer with dry core
JPH1116741A (en) Static induction equipment
JP2012113836A (en) Insulation coating conductor wire and rotary electric machine
KR100447489B1 (en) Insulated conductor for high-voltage windings
JP2001525653A (en) High voltage rotating electric machine
JPH0945551A (en) Gas insulated stationary induction apparatus
JPH0950920A (en) Stationary induction electric apparatus
JP3158025B2 (en) Rotating machine
JP2007515067A (en) Power capacitor
WO2023195126A1 (en) Stationary induction apparatus
CN110915107A (en) Electrical machine having a conductor arrangement and an insulation for the conductor arrangement
JPH1092660A (en) Transformer for conversion
JPH0737724A (en) Stationary induction equipment winding and its manufacture
JPS62125838A (en) Water cooling winding for electromagnetic stirring apparatus
JPH03233808A (en) Oil-doped insulator for electric appliance
CN117809947A (en) Transformer coil
JP2001084848A (en) Dc o.f. power cable
SE520775C3 (en) switchgear Station
JPH0917648A (en) Stationary induction electric device
JPH03138816A (en) Pipe type oil-filled electric power cable