JPH11165375A - Material having fluoroplastic formed on surface fluorinated passivated film and various devices and parts using the same - Google Patents

Material having fluoroplastic formed on surface fluorinated passivated film and various devices and parts using the same

Info

Publication number
JPH11165375A
JPH11165375A JP34866197A JP34866197A JPH11165375A JP H11165375 A JPH11165375 A JP H11165375A JP 34866197 A JP34866197 A JP 34866197A JP 34866197 A JP34866197 A JP 34866197A JP H11165375 A JPH11165375 A JP H11165375A
Authority
JP
Japan
Prior art keywords
gas
fluorinated
film
fluororesin
passivation film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34866197A
Other languages
Japanese (ja)
Other versions
JP4168209B2 (en
Inventor
Tadahiro Omi
忠弘 大見
Takehisa Nitta
雄久 新田
Yoji Yazaki
洋史 矢崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ULTLA CLEAN TECHNOLOGY KAIHATS
ULTLA CLEAN TECHNOLOGY KAIHATSU KENKYUSHO KK
Original Assignee
ULTLA CLEAN TECHNOLOGY KAIHATS
ULTLA CLEAN TECHNOLOGY KAIHATSU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ULTLA CLEAN TECHNOLOGY KAIHATS, ULTLA CLEAN TECHNOLOGY KAIHATSU KENKYUSHO KK filed Critical ULTLA CLEAN TECHNOLOGY KAIHATS
Priority to JP34866197A priority Critical patent/JP4168209B2/en
Publication of JPH11165375A publication Critical patent/JPH11165375A/en
Application granted granted Critical
Publication of JP4168209B2 publication Critical patent/JP4168209B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a material capable of being inexpensively and easily produced within a short time, capable of forming a thick fluorocarbon film only on an objective surface, having sufficient corrosion resistance against corrosive gas or semiconductor process gas such as special gas or the like, especially, against plasma and a chemical soln. and having fluoroplastic formed on the surface of a fluorinated passivated film transmitting ultrasonic waves. SOLUTION: A fluorinated passivated film is provided on the surface of a base metal material and fluoroplastic is formed on the surface of the fluorinated passivated film by electrostatic powder coating. Or, the fluorinated passivated film is provided on the surface of the base metal material and fluoroplastic is formed on the surface of the fluorinated passivated film by electrostatic powder coating to be irradiated with plasma.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、フッ化不動態膜表面に
フッ素樹脂を形成した材料およびその材料を用いた各種
装置及び部品に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a material in which a fluororesin is formed on the surface of a fluorinated passivation film, and various devices and parts using the material.

【0002】[0002]

【関連技術】従来、半導体ドライプロセスでは、ステン
レスやアルミニウム製のプロセスチャンバー等の装置を
表面処理せずに使用されていた。しかし、多種多様の腐
食性のガスを使用するためチャンバー内表面が腐食を受
け、毎回のプロセス均一性に問題が生じる。また、Ni
2を表面とするチャンバーを用いると水素ラジカルを
有するガス、例えばSiH4等のガスに対して触媒性を
有し、NiF2膜が減少するという問題がある。
2. Related Art Conventionally, in a semiconductor dry process, an apparatus such as a process chamber made of stainless steel or aluminum has been used without surface treatment. However, the use of various corrosive gases causes corrosion of the inner surface of the chamber, which causes a problem in process uniformity every time. Also, Ni
When a chamber having F 2 as a surface is used, there is a problem that a gas having hydrogen radicals, for example, a gas such as SiH 4 has catalytic properties, and the NiF 2 film is reduced.

【0003】一方、半導体ウェットプロセスでは超純水
や薬液等の供給やこれらを用いて洗浄等の処理を行う装
置は、テフロン(4フッ化エチレン重合体)等の耐腐食性
を有する樹脂材料が一般的に用いられている。しかしな
がら、樹脂材料は、金属に比べ柔らかく、破損しやすい
という問題がある。また、テフロン等の樹脂材料は薬品
の蒸気が透過するため、透過した薬品蒸気によって計器
や外部の金属部品が腐食される等の問題がある。さら
に、テフロン等の樹脂材料を用いた装置では超音波を吸
収する為、超音波を用いた洗浄が不可能という問題があ
る。
On the other hand, in a semiconductor wet process, an apparatus for supplying ultrapure water or a chemical solution or performing cleaning or the like using such a substance is made of a resin material having corrosion resistance such as Teflon (tetrafluoroethylene polymer). Commonly used. However, there is a problem that the resin material is softer than metal and is easily broken. In addition, since a resin material such as Teflon is permeable to chemical vapor, there is a problem in that the transmitted chemical vapor corrodes instruments and external metal parts. Furthermore, since an apparatus using a resin material such as Teflon absorbs ultrasonic waves, there is a problem that cleaning using ultrasonic waves is impossible.

【0004】上記の問題点を解決する為に、金属基板に
フッ化不働態表面処理を施したり、さらにフッ化不働態
表面にCF4,C26,C38等のフロロカーボンガス
を供給し熱CVD、或いはプラズマCVDにより形成さ
れるフロロカーボン膜を施す技術が知られている(特開
平5−104672号公報)。
In order to solve the above problems, a metal substrate is subjected to a fluoridation passivation surface treatment, and a fluorocarbon gas such as CF 4 , C 2 F 6 , C 3 F 8 is applied to the fluoridation passivation surface. There is known a technique of supplying a fluorocarbon film formed by thermal CVD or plasma CVD (JP-A-5-104672).

【0005】しかし、これらの技術では将来、装置の大
型化あるいは形状の複雑な装置には、均一にフロロカー
ボン膜を形成することが不可能である。
However, with these techniques, it is impossible to form a fluorocarbon film uniformly on a device having a large size or a complicated shape in the future.

【0006】また、従来技術により数ミクロンのオーダ
ーのフッ素樹脂膜をフッ化不動態膜上に形成しようとす
ると多大の時間がかかってしまう。また、CVD装置自
体効果でありそれにともないフッ素樹脂膜の形成にコス
トがかかってしまう。
Further, it takes a lot of time to form a fluororesin film on the order of several microns on a fluorinated passivation film by the conventional technique. Further, this is an effect of the CVD apparatus itself, and accordingly, the formation of the fluororesin film increases costs.

【0007】[0007]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、短時間でしかも安価かつ容易に作製が可能
であり、且つ目的の表面のみフロロカーボン膜を厚く形
成する事が可能なフッ化不動態膜表面にフッ素樹脂を形
成した材料、およびその材料を用いた各種装置及び部品
を提供することを目的とする。
SUMMARY OF THE INVENTION The problem to be solved by the present invention is to provide a fluorocarbon film which can be manufactured in a short time, at a low cost and easily, and which can form a thick fluorocarbon film only on a target surface. An object is to provide a material in which a fluororesin is formed on the surface of a passivation film, and various devices and parts using the material.

【0008】本発明は、特殊ガス等の腐食性ガスや半導
体用プロセスガス、特にプラズマ並びに薬液に対して充
分な耐食性を有し、超音波を透過するフッ化不動態膜表
面にフッ素樹脂を形成した材料、およびその材料を用い
た各種装置及び部品を提供することを目的とする。
The present invention forms a fluororesin on the surface of a fluorinated passivation film which has sufficient corrosion resistance to corrosive gases such as special gases and process gases for semiconductors, especially plasma and chemicals, and which transmits ultrasonic waves. It is an object of the present invention to provide a material obtained and various devices and parts using the material.

【0009】[0009]

【課題を解決するための手段】本発明のフッ素樹脂を
形成した材料は、基盤金属材料の表面にフッ素化したフ
ッ化不動態膜を有し、該フッ化不動態膜の表面に静電粉
体塗装により形成したフッ素樹脂が形成されていること
を特徴とする。
The fluororesin-forming material of the present invention has a fluorinated fluorinated passivation film on the surface of a base metal material, and the surface of the fluorinated passivation film has an electrostatic powder. It is characterized in that a fluororesin formed by body painting is formed.

【0010】本発明のフッ素樹脂を形成した材料は、
基盤金属材料の表面にフッ素化したフッ化不動態膜を有
し、該フッ化不動態膜の表面に静電粉体塗装により形成
後プラズマ照射が行われたフッ素樹脂が形成されている
ことを特徴とする。
The material on which the fluororesin of the present invention is formed is
It has a fluorinated fluorinated passivation film on the surface of the base metal material, and the surface of the fluorinated passivation film is formed by electrostatic powder coating, and is formed of a fluororesin that has been subjected to plasma irradiation. Features.

【0011】本発明の薬液装置は、薬液貯蔵用、薬液
配送用、または薬液反応用、洗浄用装置である薬液装置
の接液部に、上記あるいはのフッ素樹脂を形成した
材料を用いたことを特徴とする。
The chemical liquid device of the present invention is characterized in that the above-mentioned or the above-mentioned fluororesin-formed material is used for a liquid contact portion of a chemical liquid device which is a device for storing, distributing, or reacting or cleaning a chemical solution. Features.

【0012】本発明のガス装置は、ガス貯蔵用、ガス
配送用、真空ポンプ用、またはガス反応用装置であるガ
ス装置の接ガス部に上記あるいはのフッ化不働態膜
上にフッ素樹脂を塗布した材料を用いたことを特徴とす
る。
In the gas device of the present invention, a fluororesin is applied to the gas-contacting portion of a gas device, which is a gas storage, gas delivery, vacuum pump, or gas reaction device, on the above-mentioned fluoridation passive film. It is characterized by using a material that has been used.

【0013】本発明の接流体部品は、少なくとも接流
体部が請求項1記載の材料から形成されていることを特
徴とする。
A fluid contact part according to the present invention is characterized in that at least a fluid contact part is formed from the material described in claim 1.

【0014】[0014]

【作用】本発明は、ウェットプロセスにおいて薬液に接
する金属材料の表面にフロロカーボン膜を形成する事に
より、薬液による装置並びに部品の腐食を防ぐばかりで
なく、薬液への汚染を防ぐ事が可能となる。また、基盤
に金属材料を用いているため超音波を用いた洗浄が可能
となる。ドライプロセスではプロセスチャンバや配管等
が腐食性ガスやプラズマに対して耐性を有する事が可能
となる。
According to the present invention, by forming a fluorocarbon film on the surface of a metal material in contact with a chemical solution in a wet process, it is possible not only to prevent corrosion of devices and components by the chemical solution but also to prevent contamination of the chemical solution. . Further, since a metal material is used for the base, cleaning using ultrasonic waves becomes possible. In a dry process, a process chamber, piping, and the like can have resistance to corrosive gas and plasma.

【0015】本発明の基盤金属としては各種金属が含ま
れるが、特にステンレス、ニッケル、アルミニウムまた
はこれらと他の金属との合金等であり、これらの表面上
にニッケルを含む半金属、たとえばニッケル-リンめっ
きを施したものも用いられる。
The base metal of the present invention includes various metals, particularly, stainless steel, nickel, aluminum or an alloy of these with other metals, and a semimetal containing nickel on the surface thereof, such as nickel-metal. Phosphorus-plated ones are also used.

【0016】フッ化不動態の形成はたとえば、次の手法
によればよい。
The formation of fluorinated passivation may be carried out, for example, by the following method.

【0017】すなわち、表面に存在する自然酸化膜を除
去した金属材料を、高純度(好ましくは不純物濃度は数
ppb以下)の不活性ガス中でベーキングし、金属表面
に吸着している水分などを脱離した後フッ素化し、少な
くともその表面の一部または全面に金属フッ化物からな
るフッ化不動態膜を形成せしめ、更に再度高純度(好ま
しくは不純物濃度は数ppb以下)の不活性ガス雰囲気
下で熱処理を行う。
That is, the metal material from which the natural oxide film existing on the surface has been removed is baked in an inert gas of high purity (preferably, the impurity concentration is several ppb or less) to remove moisture adsorbed on the metal surface. After elimination, it is fluorinated to form a fluorinated passivation film made of metal fluoride on at least a part or the entire surface thereof, and again under an inert gas atmosphere of high purity (preferably, impurity concentration is several ppb or less). Heat treatment.

【0018】ベーキング温度は、付着水分を除去し得る
温度ならば特に限定されない。たとえば、ステンレス、
ニッケル、ニッケル合金、銅、銅合金、クロム、コバル
ト、コバルト合金、チタン、チタン合金においては35
0〜600℃が好ましく、400〜500℃がより好ま
しい。ベーキングの時間は1〜5時間が好ましい。ベー
キング温度が350℃未満では、金属材料の母材表面の
付着水分が完全には除去されず、このような状態でフッ
素化を行うと形成されたフッ化不動態膜は、たとえばニ
ッケルの場合、NiF2・4H2Oとなり化学量論比を満
足した完全なフッ化不動態膜は得られないことがある。
アルミニウム、アルミニウム合金のベーキング温度は1
50〜400℃が好ましく、200〜300℃がより好
ましい。
The baking temperature is not particularly limited as long as it can remove adhering moisture. For example, stainless steel,
35 for nickel, nickel alloy, copper, copper alloy, chromium, cobalt, cobalt alloy, titanium, titanium alloy
0-600 degreeC is preferable and 400-500 degreeC is more preferable. The baking time is preferably 1 to 5 hours. When the baking temperature is lower than 350 ° C., the moisture adhering to the surface of the base material of the metal material is not completely removed, and the fluorinated passivation film formed by performing fluorination in such a state is, for example, nickel. NiF 2 .4H 2 O, and a perfect fluorinated passivation film satisfying the stoichiometric ratio may not be obtained.
Baking temperature of aluminum and aluminum alloy is 1
50-400 ° C is preferred, and 200-300 ° C is more preferred.

【0019】フッ素化温度については、ニッケル、モネ
ル、銅、銅合金、クロムに於いては200〜500℃が
好ましく、250〜450℃がより好ましい。フッ素化
の時間は、1〜5時間が好ましい。フッ素化温度が20
0℃未満では耐食性に優れた十分な厚みのフッ化不動態
膜は得られないことがある。また、450℃より高温で
フッ素化を行うと形成されたフッ化不動態膜に、たとえ
ばニッケルの場合フッ化ニッケルの結晶粒が生成し、不
動態膜に亀裂、剥離を生じることがある。ハステロイC
のフッ素化温度は150〜300℃が好ましく、150
〜250℃がより好ましい。300℃より高い温度でフ
ッ素化すると剥離を生じ耐食性に優れたフッ化不動態膜
は得られないことがある。
The fluorination temperature is preferably from 200 to 500 ° C, more preferably from 250 to 450 ° C, for nickel, monel, copper, copper alloy and chromium. The fluorination time is preferably 1 to 5 hours. Fluorination temperature is 20
If the temperature is lower than 0 ° C., a fluorinated passivation film having a sufficient thickness and excellent corrosion resistance may not be obtained. Further, when fluorination is performed at a temperature higher than 450 ° C., for example, in the case of nickel, nickel fluoride crystal grains are generated in the formed fluorinated passivation film, and the passivation film may be cracked or peeled off. Hastelloy C
The fluorination temperature is preferably from 150 to 300 ° C,
~ 250 ° C is more preferred. When fluorinated at a temperature higher than 300 ° C., peeling occurs and a fluorinated passivation film having excellent corrosion resistance may not be obtained.

【0020】ステンレスのフッ素化温度は100〜30
0℃が好ましく、150〜265℃がより好ましい。フ
ッ素化の時間は、1〜5時間である。フッ素化温度が2
65℃以下ではFeF2が生成し、265℃を超えると
FeF3が生成する。FeF3が多量に形成されると、F
eF2のかさ密度がFeF3に比べて1.16倍と大きい
ために形成された皮膜が体積膨張し、亀裂、剥離等が生
じることがある。また、100℃未満では十分な膜厚が
得られない。アルミニウム、アルミニウム合金のフッ素
化温度は200〜400℃が好ましく、250〜350
℃がより好ましい。400℃より高温でフッ素化すると
形成されたフッ化不動態膜にフッ化アルミニウムの結晶
粒界が生成し、亀裂、剥離を生じる。
The fluorination temperature of stainless steel is 100 to 30
0 ° C is preferable, and 150 to 265 ° C is more preferable. The fluorination time is 1 to 5 hours. Fluorination temperature is 2
If the temperature is lower than 65 ° C., FeF 2 is generated, and if the temperature exceeds 265 ° C., FeF 3 is generated. When a large amount of FeF 3 is formed, F
Since the bulk density of eF 2 is 1.16 times as large as that of FeF 3 , the formed film expands in volume, and cracks and peeling may occur. If the temperature is lower than 100 ° C., a sufficient film thickness cannot be obtained. The fluorination temperature of aluminum or aluminum alloy is preferably from 200 to 400 ° C, and from 250 to 350 ° C.
C is more preferred. When fluorinated at a temperature higher than 400 ° C., crystal grain boundaries of aluminum fluoride are generated in the formed fluorinated passivation film, and cracks and peeling occur.

【0021】フッ素化は常圧で行うのを基本とするが、
必要に応じて加圧下で行うことも出来、この際の圧力と
してはゲージ圧力で2気圧以下程度でよい。フッ素化の
雰囲気は、酸素の存在しない状態で行うのが好ましく、
従ってフッ素を単独で、あるいは適宜な不活性ガス、た
とえばN2,Ar,He等で希釈して使用することが好
ましい。
The fluorination is basically carried out at normal pressure,
If necessary, it can be carried out under pressure, and the pressure at this time may be about 2 atm or less in gauge pressure. The fluorination atmosphere is preferably performed in the absence of oxygen,
Therefore, it is preferable to use fluorine alone or diluted with an appropriate inert gas, for example, N 2 , Ar, He or the like.

【0022】上記、フッ素化温度でフッ素化したフッ素
化したままのニッケルの不動態膜をSurface Science In
struments' Products 社製SSX−100型のESCA
で解析するとNiとFの比がNiF2における化学量論
比の約1.1倍であった。即ち、ニッケルに対するフッ
素の量が約1.1倍過剰に存在していることになるが、
この過剰のフッ素はニッケルと結合せずにフリーな状態
で不動態膜中に存在している。この過剰量が耐食性を阻
害するために耐食材料にはなり得ない。
The passive film of as-fluorinated nickel fluorinated at the fluorination temperature is formed by Surface Science In
ESCA of SSX-100 manufactured by instruments' Products
As a result, the ratio of Ni to F was about 1.1 times the stoichiometric ratio of NiF 2 . That is, the amount of fluorine with respect to nickel is about 1.1 times in excess,
This excess fluorine is present in the passivation film in a free state without binding to nickel. Since this excess amount impairs corrosion resistance, it cannot be a corrosion-resistant material.

【0023】フッ素化処理後の熱処理は、ニッケル、ニ
ッケル合金、銅、銅合金、クロムに於いては300〜6
00℃、好ましくは400〜500℃である。ステンレ
スに於いては、200〜600℃が好ましく、300〜
500℃がより好ましい。アルミニウム、アルミニウム
合金に於いては200〜400℃が好ましく、250〜
400℃がより好ましい。N2,Ar,He等の不活性
ガス中で1〜5時間熱処理を行うことにより、堅牢かつ
緻密で金属との密着性が良好であり、耐食性も十分認め
られる略々化学量論比を満足するフッ化不動態膜を形成
する。
The heat treatment after the fluorination treatment is 300 to 6 for nickel, nickel alloy, copper, copper alloy and chromium.
00 ° C, preferably 400 to 500 ° C. In the case of stainless steel, 200 to 600 ° C. is preferable, and 300 to
500 ° C. is more preferred. In the case of aluminum and aluminum alloy, the temperature is preferably 200 to 400 ° C, and 250 to 400 ° C.
400 ° C. is more preferred. By performing heat treatment in an inert gas such as N 2 , Ar, or He for 1 to 5 hours, it satisfies a substantially stoichiometric ratio that is robust, dense, has good adhesion to metal, and has sufficient corrosion resistance. To form a fluorinated passivation film.

【0024】一方、静電粉体塗布に用いるフッ素樹脂と
してはFEP系(テトラフルオロエチレン-ヘキサフルオロ
プロピレン共重合体)フッ素樹脂やPFA系(テトラフル
オロエチレン-パーフルオロビニルエーテル共重合体)
フッ素樹脂等が用いられる。
On the other hand, as a fluororesin used for electrostatic powder coating, FEP (tetrafluoroethylene-hexafluoropropylene copolymer) fluororesin or PFA (tetrafluoroethylene-perfluorovinyl ether copolymer)
Fluororesin or the like is used.

【0025】本発明における表面処理膜は、まず金属材
料をフッ化不働態化処理する事によりフッ化不働態膜を
形成し、その後静電粉体塗装法によってフロロカーボン
膜を形成させ、さらにCF系ガスのプラズマ照射処理を施
すことによって形成することが好ましい。
In the surface treatment film of the present invention, first, a metal material is subjected to a fluoridation passivation treatment to form a fluoridation passivation film, and then a fluorocarbon film is formed by an electrostatic powder coating method. It is preferably formed by performing plasma irradiation treatment of gas.

【0026】静電粉体塗装とは、印加電圧を掛け帯電さ
せたフッ素樹脂粉体を基材へ吹き付けることによりフッ
化不動態膜表面にフッ素樹脂を付着させ、その後、不活
性ガス、例えばN2,Ar,He等中で380℃、20
分間熱処理を施すことによってフロロカーボン膜が形成
する。膜厚は静電量によって制御できる。
Electrostatic powder coating is a process in which a fluororesin powder charged by applying an applied voltage is sprayed onto a substrate to cause the fluororesin to adhere to the surface of the fluorinated passivation film. 2, Ar, 380 ° C. in He, etc., 20
A heat treatment is performed for a minute to form a fluorocarbon film. The film thickness can be controlled by the amount of static electricity.

【0027】従来、フッ素樹脂コートを行うときは基盤
表面をブラスト処理やプライマー処理を施さなければ樹
脂粉体の塗布が不可能であった。しかしフッ化不動態膜
が形成されている場合には、従来のようなブラスト処理
やプライマー処理のような表面処理を行わずに、フッ素
樹脂を密着性よく形成することが可能なことを本発明者
は見いだした。基盤表面にフッ化不働態膜が形成されて
いるとフッ化不動態膜の最表面はフッ素終端されてお
り、そのためにフッ素樹脂と密着性が高まり、フッ素樹
脂を密着性よく形成することが可能となったものと考え
られる。特にフッ化不動態が略化学量論比を満足するフ
ッ化不動態である場合ほど密着性は良好である。
Conventionally, when performing fluororesin coating, it was impossible to apply resin powder unless blasting or primer treatment was performed on the substrate surface. However, when a fluorinated passivation film is formed, it is possible to form a fluororesin with good adhesion without performing a conventional surface treatment such as a blast treatment or a primer treatment. Was found. When a fluorinated passivation film is formed on the substrate surface, the outermost surface of the fluorinated passivation film is terminated with fluorine, which increases the adhesion with the fluororesin and enables the fluororesin to be formed with good adhesion It is thought that it became. In particular, the adhesion is better when the fluorinated passivation is a fluorinated passivation that satisfies a substantially stoichiometric ratio.

【0028】さらに、フッ素樹脂コートしたものに60eV
のCF系ガスを用いたプラズマを30分間照射する事によ
ってフッ素樹脂と金属基盤に形成されたフッ化不働態膜
との密着性はより一層向上する。しかし、ここでCF系
ガスとしては、CF4、C48などのガスが好適であ
る。
Further, a fluororesin-coated one is 60 eV
By irradiating the plasma using the CF-based gas for 30 minutes, the adhesion between the fluororesin and the fluorinated passivation film formed on the metal substrate is further improved. However, as the CF-based gas, a gas such as CF 4 or C 4 F 8 is preferable.

【0029】また、照射エネルギーについてはエネルギ
ーが大き過ぎるとフロロカーボン膜表面が破壊されるた
め、望ましくは40〜80eV、さらに望ましくは50
〜70eVである。
As for the irradiation energy, if the energy is too large, the surface of the fluorocarbon film is destroyed.
7070 eV.

【0030】次いで本発明の装置について説明する。Next, the device of the present invention will be described.

【0031】本発明の装置は基本的には薬液および腐食
性ガスに接触する部分に、上記のフロロカーボン膜が形
成された金属材料であり、さらに接触しない部分も上記
フロロカーボン膜が形成された材料を使用しても良い。
The apparatus of the present invention is basically made of a metal material having the above-mentioned fluorocarbon film formed on a portion which comes into contact with a chemical solution and a corrosive gas, and a material on which the above-mentioned fluorocarbon film is formed also on a portion which does not make contact. May be used.

【0032】薬液装置としては薬液を取り扱う装置すべ
てを包含する広い概念として使用されており、例えば薬
液貯蔵用、または薬液搬送用装置をはじめ、薬液を使用
するあるいは薬液を混合する反応装置等が例示できる。
さらに詳しくはタンク、配管、バルブ、ポンプ、容器、
洗浄装置である。
The chemical solution device is used as a broad concept including all devices for handling a chemical solution, and examples thereof include a device for storing or transporting a chemical solution, and a reaction device that uses a chemical solution or mixes a chemical solution. it can.
More specifically, tanks, piping, valves, pumps, vessels,
It is a cleaning device.

【0033】ガス装置としては、ガスを取り扱う装置す
べてを包含する広い概念として使用されており、例え
ば、ガス貯蔵用、またはガス配送用装置をはじめ、ガス
を使用するあるいはガスが発生する反応装置が例示でき
る。更に詳しくはボンベ、ガスホルダー、配管、バル
ブ、真空ポンプ、RIE反応装置、CVD反応装置であ
る。
The gas device is used as a broad concept including all devices that handle gas. For example, a gas storage or gas distribution device, or a reaction device that uses gas or generates gas, is used. Can be illustrated. More specifically, a cylinder, a gas holder, a pipe, a valve, a vacuum pump, an RIE reactor, and a CVD reactor.

【0034】図1に薬液装置の例として洗浄装置の模式
図を示した。装置は洗浄容器103、薬液供給配管10
1、超純水配管102、薬液循環ポンプ105、薬液循
環配管106、および超音波装置107から構成させて
いる。洗浄容器103の内壁にはフロロカーボン膜10
4が形成されている。洗浄容器103内壁のフロロカー
ボン膜の形成は、アルミ合金製の洗浄容器内壁にまずニ
ッケル-リンを10μm無電解めっきを施し、フッ化不
働態化処理を行ってNiF2膜を2000Å形成させ
た。次いでフッ素樹脂を静電粉体塗布により付着させ、
窒素雰囲気中380℃で20分間熱処理を行うことによ
りフロロカーボン膜を形成させている。
FIG. 1 is a schematic view of a cleaning device as an example of a chemical solution device. The apparatus includes a cleaning container 103 and a chemical supply pipe 10.
1. Ultrapure water pipe 102, chemical liquid circulation pump 105, chemical liquid circulation pipe 106, and ultrasonic device 107. A fluorocarbon film 10 is provided on the inner wall of the cleaning vessel 103.
4 are formed. The fluorocarbon film on the inner wall of the cleaning vessel 103 was formed by first electrolessly plating nickel-phosphorus on the inner wall of an aluminum alloy cleaning vessel by 10 μm and subjecting it to fluoridation passivation to form a 2000 μm NiF 2 film. Next, a fluororesin is applied by electrostatic powder application,
The fluorocarbon film is formed by performing a heat treatment at 380 ° C. for 20 minutes in a nitrogen atmosphere.

【0035】図2にガス装置の例を模式図で示した。装
置はガス貯蔵用ボンベ201、及びバルブ、マスフロー
コントローラー等を内蔵したガス供給システム202、
およびRIE装置やCVD装置等からなる反応装置20
3、及び真空排気装置205から構成されている。反応
装置の内壁にはフロロカーボン膜204が形成されてい
る。反応装置203内壁のフロロカーボン膜の形成は、
アルミ合金製の洗浄容器内壁にまずニッケル-リンを1
0μm無電解めっきを施し、フッ化不働態化処理を行っ
てNiF2膜を2000Å形成させた。次いでフッ素樹
脂を静電粉体塗布により付着させ、窒素雰囲気中380
℃で20分間熱処理を行うことによりフロロカーボン膜
を形成させている。
FIG. 2 is a schematic view showing an example of the gas apparatus. The apparatus includes a gas storage cylinder 201, and a gas supply system 202 incorporating a valve, a mass flow controller, and the like.
And a reaction device 20 such as an RIE device or a CVD device
3 and a vacuum exhaust device 205. A fluorocarbon film 204 is formed on the inner wall of the reactor. The formation of the fluorocarbon film on the inner wall of the reactor 203
First, put nickel-phosphorus on the inner wall of the aluminum alloy washing container.
Electroless plating of 0 μm was performed, and fluoridation passivation treatment was performed to form a NiF 2 film at 2000 °. Next, a fluororesin is applied by electrostatic powder coating,
The fluorocarbon film is formed by performing a heat treatment at 20 ° C. for 20 minutes.

【0036】[0036]

【実施例】本発明の技術的内容をより明確にするため、
代表的な例を挙げ以下に実施例として例示する。
EXAMPLES In order to clarify the technical contents of the present invention,
A representative example will be described below as an example.

【0037】(実施例1)アルミ基盤上にまずニッケル
-リンめっきを10μm施し、フッ化不働態化処理を行
ってNiF2膜を2000Å形成させた。次いでPFA
樹脂を静電粉体塗布により付着させ、窒素雰囲気中38
0℃で20分間熱処理を行うことにより厚さ30μmの
フロロカーボン膜を形成させた。断面図を図3に示す。
(Example 1) First, nickel was placed on an aluminum base.
-Phosphor plating was applied to a thickness of 10 μm, and fluoridation passivation treatment was performed to form a NiF 2 film at 2000 °. Then PFA
Resin is applied by electrostatic powder coating, and then
By performing a heat treatment at 0 ° C. for 20 minutes, a fluorocarbon film having a thickness of 30 μm was formed. A cross-sectional view is shown in FIG.

【0038】(実施例2)参考例1の後、さらに、30
分間60eVのCF4プラズマ照射による表面処理を行
った。
(Example 2) After Reference Example 1, 30
Surface treatment was performed by irradiating 60 eV of CF 4 plasma for one minute.

【0039】実施例1により作製したサンプル(サンプ
ル1)及び実施例2で作製したサンプル(サンプル2)
につき次の調査を行った。
The sample manufactured in Example 1 (Sample 1) and the sample manufactured in Example 2 (Sample 2)
The following survey was conducted.

【0040】(従来例1) 耐薬品性:HF サンプル1につき、腐食性、浸透性の強いノニオン系界
面活性剤を添加した0.5%HF用液中に室温で20時
間浸漬させ、耐腐食性を調査した。図4に電子顕微鏡
(以後、SEMと表記する)による表面観察を示す。浸
漬前後で変化が見られないことが確認できた。
(Conventional Example 1) Chemical resistance: HF sample 1 was immersed in a 0.5% HF solution containing a highly corrosive and permeable nonionic surfactant at room temperature for 20 hours, and then subjected to corrosion resistance. Sex was investigated. FIG. 4 shows surface observation using an electron microscope (hereinafter, referred to as SEM). It was confirmed that no change was observed before and after the immersion.

【0041】耐オゾン水性 サンプル1につき、最も酸化力の強いオゾンに対する耐
性を調査するために、オゾン濃度5ppmのオゾン水に
12時間浸漬した。図5に光学顕微鏡による表面観察を
示す。この結果から浸漬前後で変化していないことが確
認できた。
Ozone-Resistant Water Resistance Sample 1 was immersed in ozone water having an ozone concentration of 5 ppm for 12 hours in order to investigate the resistance to the most oxidizing ozone. FIG. 5 shows a surface observation using an optical microscope. From this result, it was confirmed that there was no change before and after immersion.

【0042】脱水分特性 樹脂は一般に脱水分特性が悪い。ガス装置や真空装置に
使用する為には、配管内壁並びにチャンバー内壁表面の
脱水分特性が最も重要である。ステンレス配管に、サン
プル1を挿入し、250℃に昇温した時の脱水分測定を
大気圧型質量分析装置(API−MS)により行った。
Dewatering Properties Resins generally have poor dewatering properties. For use in a gas device or a vacuum device, the dehydration characteristics of the inner wall of the pipe and the inner wall of the chamber are most important. The sample 1 was inserted into a stainless steel pipe, and the dehydration content when the temperature was raised to 250 ° C. was measured by an atmospheric pressure type mass spectrometer (API-MS).

【0043】その時のキャリアーガスとしてArガスを
用い、流量1.2L/mで行った。なお、比較材料として
アルミ基盤上にニッケル-リンめっきを施し、さらにこ
の表面をフッ化不働態処理したNiF2膜を有するサン
プル(サンプル3)を用いて同じ試験を行った。
At that time, Ar gas was used as a carrier gas, and the flow rate was 1.2 L / m. The same test was performed using a sample (sample 3) having a NiF 2 film on which an aluminum substrate was plated with nickel-phosphorus and whose surface was subjected to fluoridation passivation as a comparative material.

【0044】図6に脱水分測定の結果を示す。フロロカ
ーボン膜を有するサンプル1の初期水分量は、フロロカ
ーボンを有しないサンプルしていないものと比べて多い
が、水枯れ時間は同じ結果であった。フロロカーボン膜
は真空装置として使用可能である事が確認できた。
FIG. 6 shows the results of the dehydration measurement. Although the initial moisture content of Sample 1 having the fluorocarbon film was larger than that of the sample not having the fluorocarbon, the water withering time was the same. It was confirmed that the fluorocarbon film could be used as a vacuum device.

【0045】耐腐食性ガス:Cl2、CO、HF ステンレス配管に、サンプル1〜3を挿入し、Cl2
スを充填してから室温で100時間密閉した。
Corrosion resistant gas: Cl 2 , CO, HF Samples 1 to 3 were inserted into stainless steel pipes, filled with Cl 2 gas, and sealed at room temperature for 100 hours.

【0046】その後のサンプル1の表面をSEMによっ
て評価した。同様な方法で各種ガス、CO、HFを用い
てSEMにより評価を行った。
The surface of the subsequent sample 1 was evaluated by SEM. Evaluation was performed by SEM using various gases, CO, and HF in the same manner.

【0047】その結果を表1に示す。どのガスにおいて
も耐食性に優れていることが確認できた。
Table 1 shows the results. It was confirmed that all gases had excellent corrosion resistance.

【0048】[0048]

【表1】 ◎:腐食なし 耐プラズマ特性1:CF4、C48、NF3 [Table 1] ◎: No corrosion Plasma resistant property 1: CF 4 , C 4 F 8 , NF 3

【0049】サンプル1,2,3に60eVの各種CF
4プラズマ、C48プラズマ、NF3プラズマを30分照
射し、それぞれのプラズマ耐性を調査した。
Various CFs of 60 eV were applied to Samples 1, 2 and 3.
4 plasma, C 4 F 8 plasma, and NF 3 plasma were irradiated for 30 minutes, and the plasma resistance of each was investigated.

【0050】SEMによる表面観察の結果、照射前後で
表面の変化が見られないことが確認できた。その結果を
表2に示す。
As a result of surface observation by SEM, it was confirmed that there was no change in the surface before and after irradiation. Table 2 shows the results.

【0051】耐プラズマ特性2:H2 NiF2膜はH2に対して触媒性を有している為、NiF
2膜が減少していく問題があった。そこでフロロカーボ
ン膜を付けることでHラジカルに対する耐性を調査し
た。
Plasma resistant property 2: Since the H 2 NiF 2 film has catalytic properties for H 2 ,
There was a problem that the two films decreased. Then, the resistance to H radical was investigated by attaching a fluorocarbon film.

【0052】上記サンプル1,2,3に40eVの次の
ガス種のプラズマを30分照射した。SEMによる表面
観察の結果は、照射前後で表面の変化が見られないこと
が確認できた。その結果を表2に示す。
The samples 1, 2 and 3 were irradiated with plasma of the next gas species of 40 eV for 30 minutes. The result of surface observation by SEM confirmed that no change in the surface was observed before and after irradiation. Table 2 shows the results.

【0053】[0053]

【表2】 ◎:照射前後で変化なし ○:照射前後で少し変化[Table 2] ◎: No change before and after irradiation ○: Slight change before and after irradiation

【0054】密着性試験 サンプル1を超純水中で出力950kHz、600Wの
メガソニックを8時間照射し、基盤とフロロカーボン膜
との密着性を調査した結果、光学顕微鏡で表面を観察す
ると膜の剥がれや気泡は生じていなかった。
Adhesion test The sample 1 was irradiated with megasonic at 950 kHz and 600 W for 8 hours in ultrapure water for 8 hours, and the adhesion between the substrate and the fluorocarbon film was examined. No bubbles or bubbles were generated.

【0055】また、JISの密着性試験にしたがって、
表面にカッターで碁盤状に傷を入れ、ガムテープによっ
て剥がす方法で密着性を調査した。その結果、膜剥がれ
は確認できなかった。
According to the adhesion test of JIS,
The surface was scratched in a checkerboard shape with a cutter, and the adhesion was examined by a method of peeling off the surface with a gum tape. As a result, film peeling was not confirmed.

【0056】同時にサンプル2についても同様な試験を
行った結果、膜剥がれは確認できなかった。
At the same time, the same test was conducted on Sample 2, and no film peeling was confirmed.

【0057】[0057]

【表3】 [Table 3]

【0058】超音波透過性 20cm×15cm角、厚さ3mmのアルミ平板をサン
プル1と同様な方法で処理したものに950kHzの振
動子を密着させ共振周波数を測定した。
Ultrasonic Transmittance A 950 kHz vibrator was adhered to a 20 cm × 15 cm square, 3 mm thick aluminum plate treated in the same manner as in Sample 1, and the resonance frequency was measured.

【0059】比較材料としてフッ素樹脂コートを施して
いないもの(サンプル4)で同様に実験を行った。
The same experiment was conducted using a material not coated with a fluororesin (sample 4) as a comparative material.

【0060】その結果を表3に示す。フッ素樹脂コート
しているものとそうでないもの共に振動子との共振周波
数のずれが許容範囲であるため超音波洗浄のベッセルと
して使用可能であることが確認できた。
Table 3 shows the results. It was confirmed that both the fluororesin-coated and non-fluororesin-coated ones can be used as a vessel for ultrasonic cleaning because the deviation of the resonance frequency from the vibrator is within an allowable range.

【0061】[0061]

【表4】 但し、許容範囲950kHz±65Hz、アルミ板厚さ
3±0.1mm
[Table 4] However, tolerance range 950kHz ± 65Hz, aluminum plate thickness 3 ± 0.1mm

【0062】[0062]

【発明の効果】本発明は、基板上をフッ化不働態膜にす
ることによって容易にフッ素樹脂を塗布する事が可能と
なった(静電粉体塗装)。また、将来装置の大型化並び
に形状の複雑化によらず均一にフッ素コーティングが可
能である。形成されたフロロカーボン膜は半導体ウェッ
トプロセスにおいて強力な溶解性を示すフッ酸水溶液な
どの薬液に対して耐性を有することが確認できた。
According to the present invention, it is possible to easily apply a fluororesin by forming a fluoride passivation film on the substrate (electrostatic powder coating). Further, in the future, it is possible to perform uniform fluorine coating irrespective of an increase in the size and complexity of the device. It was confirmed that the formed fluorocarbon film had resistance to a chemical solution such as a hydrofluoric acid aqueous solution showing strong solubility in a semiconductor wet process.

【0063】また、従来の半導体ウェット洗浄では樹脂
材料が用いられ、金属に比べ柔らかく、破損しやすいと
いう問題があったが、金属基盤上にフロロカーボン膜を
形成することで機械的強度が増し、また超音波を用いた
ウェット洗浄が可能となった。一方、半導体ドライプロ
セスにおいて特殊ガスなどの腐食性ガスを用いる配管や
プロセスチャンバー内表面、ターボ分子ポンプ等の真空
ポンプ材にフロロカーボン処理することによって耐食性
を有することが確認できた。本発明は半導体分野である
ウェットプロセスやドライプロセスにおいて大きな効果
が期待できる。
In the conventional wet cleaning of a semiconductor, a resin material is used, and there is a problem that the resin is softer and more easily damaged than a metal. However, forming a fluorocarbon film on a metal substrate increases mechanical strength. Wet cleaning using ultrasonic waves has become possible. On the other hand, in the semiconductor dry process, it was confirmed that the carbon nanotube had corrosion resistance by performing fluorocarbon treatment on a pipe using a corrosive gas such as a special gas, a process chamber inner surface, or a vacuum pump material such as a turbo molecular pump. The present invention can be expected to have a great effect in wet processes and dry processes in the semiconductor field.

【図面の簡単な説明】[Brief description of the drawings]

【図1】薬液装置の一例の模式図である。FIG. 1 is a schematic view of an example of a chemical solution device.

【図2】ガス装置の一例の模式図である。FIG. 2 is a schematic diagram of an example of a gas device.

【図3】サンプル1の断面図である。FIG. 3 is a cross-sectional view of Sample 1.

【図4】サンプル1のSEM写真である。FIG. 4 is an SEM photograph of Sample 1.

【図5】サンプル22の材料の光学顕微鏡写真である。FIG. 5 is an optical micrograph of the material of Sample 22.

【図6】各サンプルの脱水分特性を示すグラフである。FIG. 6 is a graph showing the dehydration characteristics of each sample.

【符号の説明】[Explanation of symbols]

101…薬液供給配管 102…超純水供給配管 103…洗浄容器 104…フロロカーボン膜 105…ポンプ 106…薬液循環配管 107…超音波装置 201…ボンベ 202…ガス供給配管 203…反応装置 204…フロロカーボン膜 205…真空排気装置 101 ... Chemical liquid supply pipe 102 ... Ultra pure water supply pipe 103 ... Cleaning container 104 ... Fluorocarbon membrane 105 ... Pump 106 ... Chemical liquid circulation pipe 107 ... Ultrasonic apparatus 201 ... Bomb 202 ... Gas supply pipe 203 ... Reactor 204 ... Fluorocarbon membrane 205 ... Vacuum pump

フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 21/3065 H01L 21/302 B (72)発明者 新田 雄久 東京都文京区本郷4丁目1番4号株式会社 ウルトラクリーンテクノロジー開発研究所 内 (72)発明者 矢崎 洋史 宮城県仙台市青葉区荒巻字青葉(無番地) 東北大学内Continuation of the front page (51) Int.Cl. 6 Identification code FI H01L 21/3065 H01L 21/302 B (72) Inventor Yuhisa Nitta 4-1-1 Hongo, Bungo-ku, Tokyo Ultra Clean Technology Development Research Co., Ltd. In-house (72) Inventor Hiroshi Yazaki Aoba-ku, Aoba-ku, Aoba-ku, Sendai-shi, Miyagi (No address) Inside Tohoku University

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 基盤金属材料の表面にフッ素化したフッ
化不動態膜を有し、該フッ化不動態膜の表面に静電粉体
塗装により形成したフッ素樹脂が形成されていることを
特徴とするフッ素樹脂を形成した材料。
1. A fluorinated fluorinated passivation film is provided on a surface of a base metal material, and a fluorinated resin formed by electrostatic powder coating is formed on the surface of the fluorinated passivation film. A material formed of a fluororesin.
【請求項2】 基盤金属材料の表面にフッ素化したフッ
化不動態膜を有し、該フッ化不動態膜の表面に静電粉体
塗装により形成後プラズマ照射が行われたフッ素樹脂が
形成されていることを特徴とするフッ素樹脂を形成した
材料。
2. A fluorinated fluorinated passivation film is formed on the surface of a base metal material, and a fluororesin is formed on the surface of the fluorinated passivation film by plasma irradiation after being formed by electrostatic powder coating. A material formed with a fluororesin, which is characterized in that:
【請求項3】 薬液貯蔵用、薬液配送用、または薬液反
応用、洗浄用装置である薬液装置の接液部に、請求項1
または2記載のフッ素樹脂を形成した材料を用いたこと
を特徴とする薬液装置。
3. The liquid contacting part of a chemical solution device which is a device for storing a chemical solution, distributing a chemical solution, or reacting and cleaning a chemical solution.
Or a liquid chemical device using the material formed with the fluororesin according to 2 above.
【請求項4】 ガス貯蔵用、ガス配送用、真空ポンプ
用、またはガス反応用装置であるガス装置の接ガス部に
請求項1または2記載のフッ素樹脂を塗布した材料を用
いたことを特徴とするガス装置。
4. A material in which the fluororesin according to claim 1 or 2 is applied to a gas contact portion of a gas device which is a gas storage, gas delivery, vacuum pump, or gas reaction device. And gas equipment.
【請求項5】 少なくとも接流体部が請求項1または2
記載のフッ素樹脂を形成した材料から形成されているこ
とを特徴とするタンク、配管、バルブ、ポンプ、容器、
ボンベ、ガスホルダーなどの接流体部品。
5. The method according to claim 1, wherein at least the fluid contact portion is provided.
Tanks, piping, valves, pumps, containers, characterized by being formed from the material formed fluororesin described
Wetted parts such as cylinders and gas holders.
JP34866197A 1997-12-02 1997-12-02 A material in which a fluororesin is formed on the surface of a fluorinated passive film and various devices and parts using the material Expired - Fee Related JP4168209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34866197A JP4168209B2 (en) 1997-12-02 1997-12-02 A material in which a fluororesin is formed on the surface of a fluorinated passive film and various devices and parts using the material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34866197A JP4168209B2 (en) 1997-12-02 1997-12-02 A material in which a fluororesin is formed on the surface of a fluorinated passive film and various devices and parts using the material

Publications (2)

Publication Number Publication Date
JPH11165375A true JPH11165375A (en) 1999-06-22
JP4168209B2 JP4168209B2 (en) 2008-10-22

Family

ID=18398514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34866197A Expired - Fee Related JP4168209B2 (en) 1997-12-02 1997-12-02 A material in which a fluororesin is formed on the surface of a fluorinated passive film and various devices and parts using the material

Country Status (1)

Country Link
JP (1) JP4168209B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100916952B1 (en) * 2000-12-29 2009-09-14 램 리써치 코포레이션 Fullerene coated component of semiconductor processing equipment
WO2013008369A1 (en) * 2011-07-11 2013-01-17 国立大学法人東北大学 Treatment tank for production process and method for producing same
JP2013167897A (en) * 2004-06-08 2013-08-29 Hrl Lab Llc Cryptographic architecture with instruction masking and other techniques for thwarting differential power analysis
CN103688058A (en) * 2011-07-21 2014-03-26 国立大学法人东北大学 Stator for gas-evacuation pump, manufacturing method therefor, pump provided with said stator, and manufacturing method and assembly method therefor
EP3441499A4 (en) * 2016-04-05 2020-01-01 Kanto Denka Kogyo Co., Ltd. Material, storage container using said material, valve installed on said storage container as well as cif storage method and cif storage container use method
WO2021070561A1 (en) * 2019-10-10 2021-04-15 昭和電工株式会社 Multilayer body and method for producing same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100916952B1 (en) * 2000-12-29 2009-09-14 램 리써치 코포레이션 Fullerene coated component of semiconductor processing equipment
JP2013167897A (en) * 2004-06-08 2013-08-29 Hrl Lab Llc Cryptographic architecture with instruction masking and other techniques for thwarting differential power analysis
WO2013008369A1 (en) * 2011-07-11 2013-01-17 国立大学法人東北大学 Treatment tank for production process and method for producing same
CN103688058A (en) * 2011-07-21 2014-03-26 国立大学法人东北大学 Stator for gas-evacuation pump, manufacturing method therefor, pump provided with said stator, and manufacturing method and assembly method therefor
EP3441499A4 (en) * 2016-04-05 2020-01-01 Kanto Denka Kogyo Co., Ltd. Material, storage container using said material, valve installed on said storage container as well as cif storage method and cif storage container use method
US10982811B2 (en) 2016-04-05 2021-04-20 Kanto Denka Kogyo, Co., Ltd. Material, storage container using the material, valve attached to the storage container, method of storing ClF and method of using ClF storage container
WO2021070561A1 (en) * 2019-10-10 2021-04-15 昭和電工株式会社 Multilayer body and method for producing same

Also Published As

Publication number Publication date
JP4168209B2 (en) 2008-10-22

Similar Documents

Publication Publication Date Title
JP4603542B2 (en) Ultrasonic assisted etching using corrosive liquid
JP4986845B2 (en) Vacuum deposition system
JPWO2005088185A1 (en) Gas manufacturing equipment, gas supply container, and gas for manufacturing electronic devices
CZ20001530A3 (en) Method for corrosion-resistant coating of metal substrates by means of plasma polymerization
JP6936274B2 (en) Molded product and its manufacturing method
JP4168209B2 (en) A material in which a fluororesin is formed on the surface of a fluorinated passive film and various devices and parts using the material
WO2020004083A1 (en) Molded article and production method therefor
JPH108216A (en) Formation of oxide passivating film, and contact fluid parts and fluid supply/exhaust system
JP2976301B2 (en) Stainless steel, its manufacturing method and pressure reducing device
JPH0466657A (en) Corrosion-resistant aluminum alloy material and its manufacture
CN110352267A (en) Protective oxide coatings with reduced metal concentration
JP2976333B2 (en) Stainless steel, its manufacturing method and pressure reducing device
JPH05125518A (en) Formation of passivated film
US5605742A (en) Metal material formed with fluorocarbon film, process for preparing the material and apparatus made with use of the material
KR100600549B1 (en) Fluid containment vessels with chemically resistant coatings
TW404853B (en) Wet processing methods for the manufacture of electronic components using ozonated process fluids
TWI820376B (en) Metal body having magnesium fluoride region formed therefrom and method of forming the same
JP4366169B2 (en) Aluminum surface treatment method
JP2004149927A (en) Metallic material with fluorocarbon film formed thereon, and device using the metallic material
JPH02127442A (en) Surface treatment of molded article of fluorinated olefin polymer
JPH08243490A (en) Method for making surface of metal water-repellent
JP3063315B2 (en) Metal material excellent in chemical resistance and chemical processing apparatus or component for chemical processing apparatus using the same
JPH08188658A (en) Process for treating surface of substrate
JPH08188663A (en) Process for treating surface of substrate
CN110217785B (en) Transfer operation method of CVD-grown graphene

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080716

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080722

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees