JPH11165061A - Material transfer device and material transfer method - Google Patents
Material transfer device and material transfer methodInfo
- Publication number
- JPH11165061A JPH11165061A JP9352193A JP35219397A JPH11165061A JP H11165061 A JPH11165061 A JP H11165061A JP 9352193 A JP9352193 A JP 9352193A JP 35219397 A JP35219397 A JP 35219397A JP H11165061 A JPH11165061 A JP H11165061A
- Authority
- JP
- Japan
- Prior art keywords
- substance
- protruding
- transfer
- holding
- opposing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、加熱溶融した物質
を加熱溶融箇所から転移させる装置と方法、及び当該装
置または方法を用いて作成される構造体の製造方法及び
構造体に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and a method for transferring a heat-melted substance from a heat-melted portion, and a method and a structure for manufacturing a structure produced by using the apparatus or the method.
【0002】[0002]
【従来の技術】液状物質を転移する方法としては、イン
クを圧力印加手段を用いて飛翔するいわゆるインクジェ
ットヘッド、または磁性インクを磁界を用いて供給しス
タイラスから電気的力を用いて飛翔するヘッドがあり、
印写記録分野で幅広く適用されている。また、溶融後気
化または昇華した状態で空間を飛翔させ転移するいわゆ
る気相堆積法としては、例えば抵抗加熱または電子ビー
ム加熱を用い物質を溶融させる真空蒸着法の他、スパッ
タ法、CVD法等があり、薄膜形成分野で広く用いられ
ている。さらに、近年設計図またはコンピューター情報
に基づいて各種三次元構造体形状を作り出すプロトタイ
ピングが各種試みられ、光感光性樹脂を感光させ積層す
る方法、薄板をレーザで切断し重ね合わせる方法、また
は粉末にレーザを照射し当該粉末を固める手法等が提案
されている。2. Description of the Related Art As a method of transferring a liquid substance, a so-called ink jet head which flies ink using a pressure applying means or a head which supplies magnetic ink using a magnetic field and flies from a stylus using an electric force is used. Yes,
Widely applied in the printing and recording field. In addition, as a so-called vapor phase deposition method in which a space flies in a vaporized or sublimated state after melting and undergoes a transition, for example, in addition to a vacuum deposition method in which a substance is melted using resistance heating or electron beam heating, a sputtering method, a CVD method, or the like is used. And is widely used in the field of thin film formation. Furthermore, in recent years, various types of prototyping to create various three-dimensional structure shapes based on design drawings or computer information have been tried, and a method of exposing and laminating a photosensitive resin, a method of cutting and superimposing thin plates with a laser, or a method of forming a powder. A method of irradiating a laser to harden the powder has been proposed.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、上記従
来の印写記録分野で適用されているヘッドでは、溶媒ま
たは分散媒の何れかに溶解または分散したインクを用
い、飛翔転移させた後当該溶媒または分散媒を蒸発乾燥
または浸透させ、記録を完了する。従って、記録後には
溶質または分散質が記録された部分に残存し、三次元的
に厚みを有する像は形成し難く、重ね打ち等の手法では
積層する下地が溶媒あるいは分散媒により溶解または分
散し、三次元的な厚みを有する像は形成できなく、従っ
て三次元的に厚みを有する造形物は形成できないという
課題があった。また、気相堆積法では薄膜形成には有利
ではあるが、雰囲気を真空にすることが必須であるため
装置が大型化すると共に、例えば通常の者が三次元的な
厚みを感じる程度までに堆積することは事実上不可能で
あるという課題があった。さらに、三次元構造体形状を
作り出す方法では、当該三次元構造体の製造方法に適用
できる材料は一部の樹脂に限定され、例えば金属粉を結
合材で固める場合でも充分な強度は得難い等の課題があ
る。However, in the head applied in the above-mentioned conventional printing and recording field, an ink dissolved or dispersed in either a solvent or a dispersion medium is used, and after performing a flying transfer, the solvent or the solvent is used. The recording is completed by evaporating or drying the dispersion medium. Therefore, after recording, the solute or dispersoid remains in the recorded portion, and it is difficult to form an image having a three-dimensional thickness. In a method such as overstrike, the base to be laminated is dissolved or dispersed by a solvent or a dispersion medium. However, there is a problem that an image having a three-dimensional thickness cannot be formed, and thus a three-dimensionally thick modeled object cannot be formed. Although the vapor phase deposition method is advantageous for forming a thin film, it is necessary to evacuate the atmosphere to increase the size of the apparatus. There was a problem that it was virtually impossible to do so. Furthermore, in the method of creating a three-dimensional structure shape, the material applicable to the method for manufacturing the three-dimensional structure is limited to a part of the resin. For example, it is difficult to obtain sufficient strength even when solidifying metal powder with a binder. There are issues.
【0004】本発明は、係る従来の課題に鑑み、例えば
三次元的な厚みを有する像あるいは構造体を作成できる
物質転移装置、物質転移方法、並びに構造体の製造方法
及び構造体を提供することを目的とする。The present invention has been made in view of the above-mentioned conventional problems, and provides a material transfer apparatus, a material transfer method, a method of manufacturing a structure, and a structure capable of forming an image or a structure having, for example, a three-dimensional thickness. With the goal.
【0005】[0005]
【課題を解決するための手段】請求項1に記載の本発明
の物質転移装置は、保持手段、前記保持手段の一端面と
所定の間隙部を介して対向する基準面を備えた対向手
段、前記保持手段に保持され前記保持手段の前記一端面
から突出した突出物質と前記対向手段の前記基準面の対
向物質とを当接する当接手段、前記突出物質と前記対向
物質との少なくとも当接部で、前記突出物質または前記
対向物質の少なくとも何れか一方を加熱溶融する加熱手
段、前記加熱手段で加熱溶融した溶融物を少なくとも前
記当接部から転移する転移手段を備えたことを特徴とす
る。請求項2に記載の本発明の物質転移装置は、前記転
移手段により転移した前記溶融物の量だけ前記突出物質
または前記対向物質の少なくとも何れか一方を補給する
補給手段を備えたことを特徴とする。請求項3に記載の
本発明の物質転移装置は、前記補給手段に同期して前記
保持手段の前記突出物質に対する保持力を開放する開放
手段を備えることを特徴とする。請求項4に記載の本発
明の物質転移装置は、少なくとも前記物質が当接する前
記基準面の部分を、所定時間で移動する移動手段を付加
することを特徴とする。請求項5に記載の本発明の物質
転移装置は、前記突出物質と前記対向物質とを同一材料
にすることを特徴とする。請求項6に記載の本発明の物
質転移装置は、前記保持手段の前記一端面、前記突出物
または前記対向物質の前記当接部の基準面の少なくとも
何れか1つに耐熱層を備えることを特徴とする。請求項
7に記載の本発明の物質転移装置は、前記耐熱層が、熱
伝導性材料で構成されていることを特徴とする。請求項
8に記載の本発明の物質転移装置は、前記加熱手段が、
エネルギー線照射または電流の少なくとも何れか一方で
あることを特徴とする請求項1記載の物質転移装置。請
求項9に記載の本発明の物質転移装置は、前記突出物質
・前記保持手段・前記対向物質、または前記突出物質・
前記保持手段・前記当接部の前記耐熱層の何れかの組み
合わせの材質全てが、導電性材料であることを特徴とす
る。請求項10に記載の本発明の物質転移装置は、前記
転移手段の転移力が、流力または振動力の少なくとも何
れか一方を用いることを特徴とする。請求項11に記載
の本発明の物質転移方法は、保持部材に保持され前記保
持部材の一端面から突出した突出物質と、前記一端面と
所定の間隙部を介して対向する対向部材の対向物質とを
基準面で当接部材で当接し、前記突出物質と前記対向物
質との少なくとも当接部で、前記突出物質または前記対
向物質の少なくとも何れか一方を加熱溶融し、溶融物を
少なくとも前記当接部から転移することを特徴とする。
請求項12に記載の本発明の物質転移方法は、前記溶融
物を転移した後、前記溶融物の量だけ前記突出物質また
は前記対向物質の少なくとも何れか一方を補給部材で補
給することを特徴とする。請求項13に記載の本発明の
物質転移方法は、前記補給部材の前記突出物質の補給に
同期して前記保持部材の前記突出物質に対する保持力を
開放することを特徴とする。請求項14に記載の本発明
の物質転移方法は、少なくとも前記当接部の前記対向物
質を、所定時間で移動することを特徴とする。請求項1
5に記載の本発明の物質転移方法は、前記突出物質と前
記対向物質とを同一材料にすることを特徴とする。請求
項16に記載の本発明の物質転移方法は、前記保持部材
の前記一端面、前記突出物質または前記対向物質の前記
当接部の少なくとも何れか1つに耐熱層を備えることを
特徴とする。請求項17に記載の本発明の物質転移方法
は、前記耐熱層が熱伝導性材料で構成されていることを
特徴とする。請求項18に記載の本発明の物質転移方法
は、前記溶融物質をエネルギー線照射または電流の何れ
か一方で加熱溶融することを特徴とする。請求項19に
記載の本発明の物質転移方法は、前記突出物質・前記保
持部材・前記対向物質、または前記突出物質・前記保持
部材・少なくとも前記基準面に設けた前記耐熱層の何れ
かの組み合わせの全てが導電性材料であることを特徴と
する。請求項20に記載の本発明の物質転移方法は、前
記溶融物を転移する転移力が、流力または振動力の少な
くとも何れか一方を用いることを特徴とする。請求項2
1または22に記載の本発明の構造体の製造方法は、上
記何れかの物質転移装置または物質転移方法を用いて被
転移物に転移する工程を含み、前記構造体の少なくとも
一構成要素の物質を前記被転移物上に形成することを特
徴とする。請求項23または24に記載の本発明の構造
体は、請求項21または請求項22何れかに記載の製造
方法によって製造したことを特徴とする。According to a first aspect of the present invention, there is provided a material transfer apparatus, comprising: holding means; facing means having a reference surface facing one end face of the holding means via a predetermined gap; An abutting means for abutting a protruding material held by the holding means and protruding from the one end surface of the holding means and an opposing material on the reference surface of the opposing means, at least an abutting portion between the protruding material and the opposing substance A heating means for heating and melting at least one of the protruding substance and the counter material, and a transfer means for transferring the melt heated and melted by the heating means from at least the contact portion. The mass transfer apparatus according to the present invention according to claim 2, further comprising a replenishing unit that replenishes at least one of the protruding material and the counter material by an amount of the melt transferred by the transferring unit. I do. According to a third aspect of the present invention, there is provided the substance transfer device according to the third aspect, further comprising an opening unit that releases a holding force of the holding unit with respect to the protruding material in synchronization with the replenishing unit. A material transfer apparatus according to a fourth aspect of the present invention is characterized in that a moving means for moving at least a predetermined portion of the reference surface with which the substance comes into contact is added. According to a fifth aspect of the present invention, there is provided the material transfer device, wherein the protruding material and the opposite material are made of the same material. The material transfer device of the present invention according to claim 6, wherein a heat-resistant layer is provided on at least one of the one end surface of the holding means, the reference surface of the protrusion, or the contact portion of the counter material. Features. According to a seventh aspect of the present invention, in the substance transfer device, the heat-resistant layer is made of a heat conductive material. In the mass transfer device of the present invention according to claim 8, the heating means comprises:
2. The mass transfer apparatus according to claim 1, wherein the apparatus is at least one of energy beam irradiation and current. The material transfer device of the present invention according to claim 9, wherein the protruding material, the holding means, the counter material, or the protruding material.
The material of any combination of the holding means and the heat-resistant layer of the contact portion is a conductive material. According to a tenth aspect of the present invention, there is provided the substance transfer device, wherein the transfer force of the transfer means uses at least one of a flow force and an oscillating force. 12. The material transfer method according to claim 11, wherein the protruding material held by the holding member and protruding from one end surface of the holding member, and the opposing material of the opposing member facing the one end surface via a predetermined gap. At a contact portion between the protruding substance and the opposing substance, and heat-melting at least one of the protruding substance and the opposing substance at least at the abutting portion between the protruding substance and the opposing substance. It is characterized by a transition from a contact portion.
The material transfer method of the present invention according to claim 12, wherein after transferring the melt, at least one of the protruding material or the counter material is supplied by a supply member by an amount of the melt. I do. A material transfer method according to a thirteenth aspect of the present invention is characterized in that the holding force of the holding member with respect to the projecting substance is released in synchronization with the supply of the projecting substance by the supply member. A material transfer method according to a fourteenth aspect of the present invention is characterized in that at least the opposed material of the contact portion is moved for a predetermined time. Claim 1
The material transfer method of the present invention described in 5 is characterized in that the protruding substance and the counter substance are made of the same material. The material transfer method of the present invention according to claim 16, wherein a heat-resistant layer is provided on at least one of the one end surface of the holding member, the contact portion of the protruding material or the facing material. . The material transfer method of the present invention described in claim 17 is characterized in that the heat-resistant layer is made of a heat conductive material. According to a eighteenth aspect of the present invention, there is provided the material transfer method, wherein the molten material is heated and melted by either energy beam irradiation or electric current. 20. The material transfer method according to claim 19, wherein any one of the protruding material, the holding member, and the facing material, or any combination of the protruding material, the holding member, and the heat-resistant layer provided on at least the reference surface is provided. Are all conductive materials. A material transfer method according to a twentieth aspect of the present invention is characterized in that the transfer force for transferring the melt uses at least one of a flow force and an oscillating force. Claim 2
23. The method for producing a structure according to the present invention according to 1 or 22, comprising a step of transferring to a substance to be transferred by using any of the above substance transfer devices or methods, wherein the substance is at least one component of the structure. Is formed on the transferred object. According to a twenty-third aspect of the present invention, a structure according to the present invention is manufactured by the manufacturing method according to the twenty-first or twenty-second aspect.
【0006】[0006]
【発明の実施の形態】本発明は、固体状態の物質を選択
的に加熱溶融し、溶融した物質をジェットまたは粘糸状
に当該溶融箇所から転移させ、転移先で上記物質を形成
する転移装置及び転移方法である。固体状態の物質を保
持する保持手段または保持部材の一端面は、対向手段ま
たは対向部材の基準面と間隙部を介しており、当該一端
面から突出した固体状態の突出物質と、固体状態の対向
手段の対向材料または対向部材の対向部材材料とを当該
基準面で当接させ、この少なくとも当接部において選択
的に加熱溶融する。従って、間隙部及び当接部は加熱溶
融する箇所であると共に、溶融物を転移する転移力が作
用する箇所でもあり、加熱に供するエネルギー及び/ま
たは転移力が一定であれば、当該溶融物の溶融量が決定
し、同じ量だけ転移することができる。保持手段または
保持部材は、間隙部に突出する突出物質・加熱手段また
は加熱部材・転移手段または転移部材の3者の位置決め
を正確に行うもので、突出物質が所定の保持力で保持手
段に保持されている必要性はない。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention is directed to a transfer apparatus for selectively heating and melting a solid substance, transferring the molten substance in a jet or viscous form from the melting point, and forming the substance at a transfer destination. It is a transfer method. One end face of the holding means or the holding member for holding the solid state substance is interposed with the reference surface of the opposing means or the opposing member via a gap, and the solid state protruding substance protruding from the one end face is opposed to the solid state. The opposing material of the means or the opposing member material of the opposing member is brought into contact with the reference surface, and selectively heat-melted at least at the contact portion. Therefore, the gap portion and the contact portion are not only a portion where the heat is melted, but also a portion where the transfer force for transferring the melt acts. If the energy and / or the transfer force for heating is constant, the gap and the contact portion are not melted. The amount of melting is determined and can be transferred by the same amount. The holding means or the holding member accurately positions the protruding substance projecting into the gap, the heating means or the heating member, the transfer means or the transfer member, and the protruding substance is held by the holding means with a predetermined holding force. There is no need to be.
【0007】また、保持手段または保持部材の一端面か
ら突出した突出物質は、基準面で対向物質または対向物
質に当接させることが必要であり、突出物質と基準面と
に所定の圧力を印加する当接手段または当接部材を備え
ることにより達成できる。なお、溶融物を転移させた
後、当該溶融物の量だけ突出物質及び/または対向物質
を補給する補給手段(補給部材)または移動手段(移動
部材)を備えることで、溶融物質の転移が連続的に行え
ると共に、間隙部と当接部の状態が常に一定に保持で
き、溶融量がより正確に制御できる。但し、保持手段ま
たは保持部材が保持力により突出物質を保持し、当該保
持力により保持手段の内部を介して突出物質を補給でき
ない場合には、補給手段または補給部材による突出物質
の補給動作を行う際に、当該補給動作に同期して、突出
物質を保持する保持力を開放する開放手段または開放部
材をさらに備えることが好ましい。なお、開放手段また
は開放部材は、当接手段または当接部材で兼ねることが
できる。また、場合によっては補給手段が当接手段を兼
ねることもできる。Further, the projecting material projecting from one end face of the holding means or the holding member needs to be brought into contact with the facing material or the facing material on the reference surface, and a predetermined pressure is applied to the projecting material and the reference surface. This can be achieved by providing a contacting means or a contacting member. After the melt is transferred, the supply of the protruding material and / or the counter material by the amount of the melt is provided with a replenishing means (supplying member) or a moving means (moving member), whereby the molten material is continuously transferred. In addition, the state of the gap portion and the contact portion can always be kept constant, and the amount of melting can be more accurately controlled. However, when the holding means or the holding member holds the projecting substance by the holding force and the projecting substance cannot be supplied through the inside of the holding means by the holding force, the replenishing operation of the projecting substance by the replenishing means or the replenishing member is performed. At this time, it is preferable to further include an opening means or an opening member for releasing a holding force for holding the protruding substance in synchronization with the replenishing operation. Note that the opening means or the opening member can also serve as the contacting means or the contacting member. In some cases, the replenishing means can also serve as the contacting means.
【0008】本発明の物質転移装置もしくは物質転移方
法では、転移する溶融物は上述のように補給できるが、
溶融は突出物質と対向物質との当接部で発生する場合が
ある。その時、対向物質と突出物質とが同時に溶融し転
移対象となるため、少なくとも突出物質が当接する当接
部における対向物質は、所定時間毎に移動させることが
必要である。なお、このように突出物質と対向物質とが
同時に転移対象となりうる場合には、突出物質と対向物
質とを積極的に異ならせ複合物質として転移することも
可能であり、また突出物質と対向物質とを同一材料とす
ることで、物質の同一材料成分のみを転移することも可
能であり、必要に応じて適宜選択できる。In the mass transfer apparatus or mass transfer method of the present invention, the molten material to be transferred can be supplied as described above.
Melting may occur at the abutment between the protruding material and the opposing material. At this time, since the opposing substance and the protruding substance are simultaneously melted and become transition targets, it is necessary to move the opposing substance at least in the contact portion where the protruding substance comes into contact at every predetermined time. In this case, when the protruding substance and the opposing substance can be simultaneously transferred, the protruding substance and the opposing substance can be positively changed to be transferred as a composite substance. By using the same material as the above, only the same material component of the substance can be transferred, and can be appropriately selected as needed.
【0009】本発明による物質転移では、保持手段また
は保持部材の一端面から当接部の間が選択的に加熱され
るため、突出物質が突出する保持手段もしくは保持部材
の一端面または基準面の当接部の少なくとも何れか一方
に、耐熱層を設ける構成が好ましく、加熱時剛性を有す
る熱機械特性に優れる材料が望ましい。この耐熱層を基
準面に備えると、突出物質のみを溶融・転移させること
が可能である。また、この耐熱層に熱的に良伝導性の材
料を適用すると、転移後の突出物質の溶融点まで加熱さ
れた耐熱層の熱の冷却速度が促進できるため好ましい。
また、熱伝導性の耐熱層を突出物質が突出する保持手段
または保持部材の一端面に備えると、溶融転移後に間隙
部に残存する突出物質を直接冷却する作用を発揮するた
め、転移後の当該突出物質の冷却をより確実にできると
共に、例えば転移した溶融物の量だけの突出物質を補給
する際の補給が速やかに行える効果を奏する。In the substance transfer according to the present invention, since a portion between the one end face of the holding means or the holding member and the contact portion is selectively heated, one end face of the holding means or the holding member from which the protruding material projects or the reference surface. Preferably, a heat-resistant layer is provided on at least one of the contact portions, and a material having rigidity at the time of heating and excellent in thermo-mechanical properties is desirable. When this heat-resistant layer is provided on the reference surface, only the protruding substance can be melted and transferred. Further, it is preferable to use a material having good thermal conductivity for the heat-resistant layer because the rate of cooling the heat of the heat-resistant layer heated to the melting point of the protruding substance after the transition can be accelerated.
Also, if a heat-conductive heat-resistant layer is provided on one end surface of the holding means or the holding member from which the protruding substance protrudes, it exerts an effect of directly cooling the protruding substance remaining in the gap after the melt transition, so that The cooling of the protruding material can be ensured, and the replenishment can be quickly performed when replenishing the protruding material by the amount of the transferred melt, for example.
【0010】本発明の加熱手法には、例えば電子ビーム
またはレーザビーム等のエネルギー線照射または電流を
流すことにより発生するジュール熱が適用でき、必要に
応じて単独または適宜複合して用いることができる。な
お、上記加熱手法に電流を用いる場合には、少なくとも
突出物質が導電性材料であることが要請され、その場合
には、突出物質は勿論のこと保持手段もしくは保持部材
及び少なくとも基準面の全てが導電性であると、電流経
路が間隙部に存在する突出物質に集中、特に当接部にお
ける突出物質と対向物質に集中し、ジュール熱の発生効
率が高まるため好ましい。この際、突出物質の電位と少
なくとも基準面の電位とを異ならせることにより、直流
電圧または交流電圧の何れのでも印加可能となるばかり
でなく、例えばパルス電圧を印加する等の構成により瞬
時に間隙部の突出物質を溶融することができ、溶融物質
の転移時間の短縮化ができる。For the heating method of the present invention, for example, Joule heat generated by irradiating an energy beam such as an electron beam or a laser beam or flowing an electric current can be applied. If necessary, it can be used alone or in combination as appropriate. . In the case where an electric current is used for the heating method, at least the protruding substance is required to be a conductive material. In this case, not only the protruding substance but also the holding means or the holding member and at least all of the reference surface are used. The conductive property is preferable because the current path concentrates on the protruding substance existing in the gap, particularly on the protruding substance and the opposing substance in the contact part, and increases the efficiency of generating Joule heat. At this time, by making the potential of the protruding substance and at least the potential of the reference surface different, not only can it be possible to apply either a DC voltage or an AC voltage, but also the gap can be instantaneously formed by, for example, applying a pulse voltage. The protruding material at the portion can be melted, and the transition time of the molten material can be shortened.
【0011】また、本発明の物質転移の転移力として
は、気体の流力または圧電素子や超音波等の振動力が適
宜単独あるいは複合して適用できる。但し、気体の流力
を転移力に適用する場合に、溶融した物質が例えば酸素
ガスに接触し酸化を受け、融点または電気抵抗等の物質
の特性変化を抑制する必要がある場合には、適用する気
体には例えば酸化性気体等の反応性成分を除くこと当然
である。さらに、本発明の構造体の製造方法は、上記物
質転移を用いて構造体を構成する少なくとも一つの物質
の構成単位を形成するため、例えば融点の高い金属を含
む構造体を製造する場合等に好ましい。Further, as the transfer force of the material transfer of the present invention, a gas flow force or a vibration force of a piezoelectric element or an ultrasonic wave can be applied alone or in combination as appropriate. However, when applying the gas flow force to the transfer force, if the molten material is oxidized by contacting with, for example, oxygen gas, and it is necessary to suppress a change in the characteristics of the material such as melting point or electric resistance, the application is performed. It is natural that the reactive gas excludes reactive components such as oxidizing gas. Further, the method for manufacturing a structure of the present invention is to form a structural unit of at least one substance constituting the structure using the above-described material transfer, for example, when manufacturing a structure containing a metal having a high melting point, and the like. preferable.
【0012】[0012]
【実施例】本発明の物質転移の原理について、本発明の
物質転移装置の一実施態様を参照しながら説明する。図
1は、本発明の物質転移装置の一例の要部を示す断面斜
視図である。固体状態の物質1001は、保持手段10
02により保持されると共に、保持手段1002の端面
1003から所定量突出する(突出した物質1001を
突出物質1004と称する)。端面1003は、所定の
間隙部1005を介して対向手段1006の基準面10
07に対向すると共に、突出物質1004の端部は当接
手段1008の圧力印加で基準面1007に当接する。
このように突出物質1004を基準面1007に当接し
た状態で、加熱手段1009で選択的に加熱溶融し、溶
融物を転移手段1010で転移する。加熱手段1009
としては、例えばエネルギー線であるレーザビームを加
熱手段1009に備えた窓部1011から照射すること
で、突出物質1004を選択的に加熱溶融する。転移手
段1010としては、例えば流力である圧縮ガス101
2の圧力により溶融物を転移させる。DESCRIPTION OF THE PREFERRED EMBODIMENTS The principle of the material transfer of the present invention will be described with reference to one embodiment of the material transfer device of the present invention. FIG. 1 is a sectional perspective view showing a main part of an example of the material transfer device of the present invention. The solid state substance 1001 is
02 and protrudes from the end face 1003 of the holding means 1002 by a predetermined amount (the protruding substance 1001 is referred to as a protruding substance 1004). The end face 1003 is provided on the reference face 10 of the facing means 1006 via a predetermined gap 1005.
07, and the end of the protruding substance 1004 comes into contact with the reference surface 1007 by applying pressure from the contact means 1008.
While the protruding material 1004 is in contact with the reference surface 1007 in this manner, it is selectively heated and melted by the heating means 1009, and the melt is transferred by the transfer means 1010. Heating means 1009
For example, the projecting material 1004 is selectively heated and melted by irradiating a laser beam, which is an energy ray, from a window 1011 provided in the heating unit 1009. The transfer means 1010 includes, for example, a compressed gas 101 which is a fluid force.
The melt is transferred by the pressure of 2.
【0013】本発明に適用できる物質1001として
は、常態で固体であり加熱により溶融する材料であれば
有機材料及び無機材料を問わず何れでも適用できるが、
高融点に対応できる物質転移であるという構成上の特
長、固相から液相への潜熱及び溶融粘度等の物性面、及
び用途分野から特に金属材料が好ましく、また気相を介
しての転移ではなく溶融状態での転移であり、転移対象
の物質の組成変動を発生することなく転移できるため、
混合物、合金または化合物等の複数の成分を有する物質
の構成成分を変化することなく転移できる。なお、物質
1001の形状、特に突出物質1004の形状は、熱伝
導効果を考慮するとワイヤや糸等のいわゆる柱形状また
は板状が好ましい。また、本発明の物質転移量は、突出
物質1004の径または断面積、間隙部1005の長
さ、加熱手段1009で加熱溶融する範囲及び転移手段
1010の転移力と転移力を与える範囲等により任意に
設定できる。As the substance 1001 applicable to the present invention, any material can be used regardless of an organic material or an inorganic material as long as it is a solid in a normal state and can be melted by heating.
In particular, metallic materials are preferred in terms of structural features such as material transition corresponding to a high melting point, physical properties such as latent heat from a solid phase to a liquid phase and melt viscosity, and application fields. It is a transition in the molten state without being, and it can be transferred without causing the composition fluctuation of the substance to be transferred,
The transition of the constituents of a substance having a plurality of components, such as a mixture, an alloy or a compound, can be performed without change. Note that the shape of the substance 1001, particularly the shape of the protruding substance 1004, is preferably a so-called column shape or plate shape such as a wire or a thread in consideration of a heat conduction effect. The substance transfer amount of the present invention is arbitrary depending on the diameter or cross-sectional area of the protruding substance 1004, the length of the gap 1005, the range of heating and melting by the heating means 1009, the transfer force of the transfer means 1010, and the range of providing the transfer force. Can be set to
【0014】次に、図1に示した装置の物質転移動作を
図2〜図5を用いて詳述する。図2は、保持手段100
2により保持した突出物質1004を当接手段1008
により基準面1007の当接部に当接した後、加熱手段
1009の窓部1011からレーザビーム2001を突
出物質1004に選択的に照射し、突出物質1004の
一部に加熱部2002を形成する工程を示す。レーザビ
ーム2001の加熱部2002に対する照射時間を長く
すると、図3に示すように加熱部2002は溶融物30
01に相転移する。突出物質1004及び/または加熱
部2002の温度は、例えば赤外線検出、熱電対等によ
り検出できる。なお、図1〜図3に記載の構成では、当
接手段1008の圧力により、加熱部2002及び/ま
たは溶融物3001が変形することが想定されるが、例
えばストッパ手段(図示は省略)を当接手段1008に
備え、当該ストッパ手段により間隙部1005を規定す
ることで当該変形は回避できる。また、保持手段100
2に対する物質1001の相対位置を一定に保つことが
要請される場合には、保持手段1002の側面から物質
1001方向(図1〜3では紙面の左右方向)に向けて
圧力を印加する保持力が必要となるが、当該保持力の発
生手段としては、例えば当接手段1008を流用するこ
とも可能である。また、保持手段1002に保持力を供
さない場合には、例えば後述する補給手段で代用するこ
とも可能である。Next, the material transfer operation of the apparatus shown in FIG. 1 will be described in detail with reference to FIGS. FIG. 2 shows the holding means 100.
2. The protruding substance 1004 held by the
And then selectively irradiating the protruding material 1004 with the laser beam 2001 from the window 1011 of the heating means 1009 to form the heating portion 2002 on a part of the protruding material 1004. Is shown. When the irradiation time of the laser beam 2001 with respect to the heating unit 2002 is increased, as shown in FIG.
Phase transition to 01. The temperature of the protruding material 1004 and / or the temperature of the heating unit 2002 can be detected by, for example, infrared detection, a thermocouple, or the like. In the configuration shown in FIGS. 1 to 3, it is assumed that the heating unit 2002 and / or the melt 3001 are deformed by the pressure of the abutting means 1008, but for example, a stopper means (not shown) is applied. The deformation can be avoided by providing the contact means 1008 and defining the gap 1005 by the stopper means. Also, the holding means 100
In the case where it is required to keep the relative position of the substance 1001 with respect to the substance 2, the holding force for applying pressure from the side of the holding means 1002 toward the substance 1001 (in FIGS. Although it is necessary, as the means for generating the holding force, for example, the contact means 1008 can be used. When the holding force is not provided to the holding means 1002, for example, a replenishing means described later can be used instead.
【0015】次に、図4に示したように、圧縮ガス10
12(例えば圧縮空気)を転移手段1010に導入し、
その流力で溶融物3001をジェット4001として転
移する。ジェット4001が転移した後の突出物質10
04の空隙は、図5に示したように、補給手段5001
で物質1001を補給することで、再び突出物質100
4が復元され繰り返し物質の転移が行える。但し、保持
手段1002が物質1001を所定の保持力で保持し、
補給手段5001の補給動作に支障がある場合には、補
給動作時に当該保持力を解放手段(図示は省略)によっ
て解放すること勿論である。この解放手段としては、例
えば保持力発生手段が適用できる。なお、転移手段10
10に圧縮ガス1012を適用する場合に、当該圧縮ガ
ス1012を常に突出物質1004に流すと、加熱手段
1009の加熱効率が低下するため、例えばシャッター
等の封止手段を備えることができる。また、加熱手段1
009による加熱も常に突出物質1004に作用する
と、突出物質1004の加熱手段1009が作用する部
分が常に加熱状態または溶融状態となるため、加熱手段
1009にエネルギー線照射を用いる場合にも、例えば
窓部1011にシャッターを備えることが好ましい。こ
れら2種類のシャッターは、それぞれの開閉を制御する
制御手段により、動作がより有効になると共に、転移効
率も向上できる。Next, as shown in FIG.
12 (eg compressed air) into the transfer means 1010,
The melt 3001 is transferred as a jet 4001 by the flow force. Protruding material 10 after jet 4001 transfer
04, as shown in FIG.
By replenishing the substance 1001 with
4 is restored and the substance can be transferred repeatedly. However, the holding means 1002 holds the substance 1001 with a predetermined holding force,
If the replenishing operation of the replenishing unit 5001 is hindered, the holding force is released by the releasing unit (not shown) during the replenishing operation. As the releasing means, for example, a holding force generating means can be applied. The transfer means 10
When the compressed gas 1012 is applied to 10 and the compressed gas 1012 always flows through the protruding substance 1004, the heating efficiency of the heating means 1009 is reduced. For example, a sealing means such as a shutter can be provided. Also, heating means 1
If the heating by the heat means 009 also always acts on the protruding substance 1004, the portion of the protruding substance 1004 on which the heating means 1009 acts is always in a heated state or a molten state. Preferably, 1011 is provided with a shutter. The operation of these two types of shutters becomes more effective and the transfer efficiency can be improved by control means for controlling the opening and closing of the two types of shutters.
【0016】次に、本発明の物質転移装置の他の実施形
態の概念構成を、図6を用いて説明する。但し、図6は
図1〜図5の圧縮ガスの流力を用いた転移手段1010
に代えて、いわゆるインクジェットで専ら用いられる圧
電素子6001を適用した例である。また、図6の圧電
素子6001の代わりに超音波発生手段を適用する構成
も可能である。このように圧電素子または超音波発生手
段等のいわゆる振動力を転移手段の転移力に適用する
と、転移力が直接集中的に溶融物3001に作用するた
め、転移効率が向上する。また、この構成であれば加熱
手段を真空にする必要がある電子ビームも適用できる。
なお、図6の振動力と図1〜図5に適用した圧縮ガスの
流力とを併用させる構成も適用できること勿論である。Next, a conceptual configuration of another embodiment of the mass transfer apparatus of the present invention will be described with reference to FIG. However, FIG. 6 shows the transfer means 1010 using the fluid force of the compressed gas shown in FIGS.
This is an example in which a piezoelectric element 6001 used exclusively in a so-called ink jet is applied instead of the above. Further, a configuration in which an ultrasonic wave generating means is applied instead of the piezoelectric element 6001 in FIG. 6 is also possible. When a so-called vibration force such as a piezoelectric element or an ultrasonic wave generating means is applied to the transfer force of the transfer means in this way, the transfer force acts directly and intensively on the melt 3001, thereby improving transfer efficiency. In addition, with this configuration, an electron beam that requires a heating unit to be evacuated can be applied.
Of course, a configuration in which the vibration force of FIG. 6 and the flow force of the compressed gas applied to FIGS.
【0017】図7は、本発明の物質転移装置の別の実施
態様の概念構成を示すもので、上述した図1〜6との相
違点は、保持部材1002の端面1003に耐熱層70
01を設けた点である。耐熱層7001は、突出物質1
004の融点以上まで加熱することに伴う保持手段10
02の端面1003の熱変形等が抑制できる。また、耐
熱層7001に適用できる材料としては、例えばAl2
O3、SiO2、MgO、TiO、MnO等の酸化物、W
C系、Cr3C2系、TiC系、ZrC系、HfC系、V
C系、TaC系、NbC系等の超硬合金等の炭化物、S
i3N4、BN、TiN、ZrN、HfN、VN、Nb
N、TaN等の窒化物、ZnS等の硫化物、その他例え
ばW等の耐熱性金属、グラファイト等のカーボン等が単
独または適宜複合して用いられるが、良熱伝導性材料で
構成すると放熱作用が助長されるため好ましい。FIG. 7 shows a conceptual configuration of another embodiment of the mass transfer apparatus of the present invention. The difference from FIGS. 1 to 6 is that the heat-resistant layer 70 is provided on the end face 1003 of the holding member 1002.
01 is provided. The heat-resistant layer 7001 is made of the protruding substance 1
Holding means 10 associated with heating to above the melting point of 004
02 can be prevented from being thermally deformed. As a material applicable to the heat-resistant layer 7001, for example, Al 2
Oxides such as O 3 , SiO 2 , MgO, TiO, MnO, W
C system, Cr 3 C 2 system, TiC system, ZrC system, HfC system, V
Carbides such as cemented carbides such as C-based, TaC-based and NbC-based, S
i 3 N 4 , BN, TiN, ZrN, HfN, VN, Nb
Nitrides such as N and TaN, sulfides such as ZnS, and other heat-resistant metals such as W, carbon such as graphite, and the like are used singly or in an appropriate combination. It is preferable because it is promoted.
【0018】図8は、本発明の物質転移装置の他の実施
態様の概念構成を示すもので、上述した図1〜6との相
違点は、対向手段1006の表面に対向材料層8001
を備えた点(従って、この構成の場合には対向材料層8
001の表面が基準面1007となる)である。対向材
料層8001に適用する材料としては、図7で用いた耐
熱層7001と同種の材料、あるいは他の材料も適用で
きる。対向材料層8001に耐熱性材料を適用する場合
には、耐熱層7001と同様に、突出物質1004の融
点以上まで加熱することに伴う対向手段1006の少な
くとも表面の熱変形等が抑制できる。なお、対向材料層
8001に耐熱性材料を適用する場合には、熱膨張係数
が小さい材料が突出物質1004の溶融物3001の離
型性に優れ、また熱伝導率が高い材料であると放熱作用
が高いため好ましい。さらに、例えば後述する加熱手段
1009にジュール熱を適用する場合等には、対向材料
層8001が通電することが必要である。また、対向材
料層8001に上記耐熱性材料よりは融点が低い材料を
適用する場合には、突出物質1004の溶融物3001
の転移と同時に当該対向材料層8001も転移する場合
がある。この際に、物質1001と同一材料を対向材料
層8001に適用すると、同一材料が転移するため好ま
しく、あるいは逆に物質1001と対向材料層8001
とを積極的に異なる材料を適用すると、溶融物3001
で例えば混合物または合金等が形成でき、混合物または
合金の状態で転移することもできる。また、少なくとも
溶融物3001と対向材料層8001とが共に転移する
場合には、対向材料層8001が所定量8003だけ転
移した後、対向材料層8001を移動させ、新たな対向
材料層8001を突出物質1004に当接させる移動手
段8002を備える必要がある。FIG. 8 shows a conceptual configuration of another embodiment of the material transfer apparatus of the present invention. The difference from the above-described FIGS. 1 to 6 is that a facing material layer 8001 is provided on the surface of the facing means 1006.
(Therefore, in this configuration, the facing material layer 8
001 is the reference plane 1007). As a material applied to the facing material layer 8001, the same kind of material as the heat-resistant layer 7001 used in FIG. 7 or another material can be used. In the case where a heat-resistant material is applied to the facing material layer 8001, similarly to the heat-resistant layer 7001, thermal deformation or the like of at least the surface of the facing means 1006 due to heating to the melting point of the protruding substance 1004 or higher can be suppressed. Note that when a heat-resistant material is used for the facing material layer 8001, a material having a small coefficient of thermal expansion is excellent in the releasability of the melt 3001 of the protruding substance 1004, and a material having a high thermal conductivity has a heat radiation effect. Is high, which is preferable. Further, for example, when Joule heat is applied to a heating unit 1009 to be described later, it is necessary to energize the facing material layer 8001. In the case where a material having a lower melting point than the above heat-resistant material is used for the facing material layer 8001, a melt 3001 of the protruding substance 1004 is used.
In some cases, the facing material layer 8001 may also be transferred at the same time as the transfer. At this time, it is preferable that the same material as the substance 1001 be applied to the facing material layer 8001 because the same material is transferred, or conversely, the substance 1001 and the facing material layer 8001 are transferred.
When a different material is positively applied, the melt 3001
For example, a mixture or an alloy can be formed, and the mixture can be transformed in a state of the mixture or the alloy. When at least the melt 3001 and the opposing material layer 8001 are both transferred, after the opposing material layer 8001 is transferred by a predetermined amount 8003, the opposing material layer 8001 is moved, and a new opposing material layer 8001 is transferred to the protruding material. It is necessary to provide a moving means 8002 that makes contact with 1004.
【0019】なお、図8では、対向材料層8001を対
向手段1006に別の層として設け、対向材料層800
1のみを移動手段8002で移動させる構成を示した
が、対向材料層8001が対向手段1006の表層部、
換言すると対向材料層8001が対向物質と一体となっ
ていてもよく、この場合には対向手段1006の対向物
質を移動手段8002で移動する。なお、上述した実施
例では突出物質1004の溶融物3001は粒状で転移
する場合を示したが、物質1001が展性を有する場合
には条件によっては粘糸状(あるいは糸引き状)で転移
することも可能であり、また物質1001として金属ま
たは合金を適用した例を説明したが、物質として例えば
ポリエステル、ポリ塩化ビニル、ポリエチレン等のいわ
ゆる熱可塑性樹脂を適用すると、物質の転移は粒状また
は粘糸状(あるいは糸引き状)の何れかで行うこともで
きる。In FIG. 8, the facing material layer 8001 is provided in the facing means 1006 as another layer, and the facing material layer 8001 is provided.
Although only the first material 1 is moved by the moving means 8002, the facing material layer 8001 has a surface layer portion of the facing means 1006,
In other words, the facing material layer 8001 may be integrated with the facing material. In this case, the facing material of the facing means 1006 is moved by the moving means 8002. In the above-described embodiment, the case where the molten material 3001 of the protruding substance 1004 transitions in a granular state is shown. However, when the substance 1001 has malleability, it may transition in a viscous state (or a stringing state) depending on conditions. Although an example in which a metal or an alloy is applied as the substance 1001 has been described, when a so-called thermoplastic resin such as polyester, polyvinyl chloride, or polyethylene is applied as the substance, the transition of the substance becomes granular or viscous ( Alternatively, it can be performed in any of the following types.
【0020】図9は、本発明の物質転移装置の他の実施
態様の概念構成を示すもので、上述した図1〜図8と異
なる点は加熱手段として通電によるジュール熱を適用し
た点である。ジュール熱を適用するためには、少なくと
も物質1001と対向手段1006の基準面1007と
が共に通電作用を有することが要請される。ジュール熱
発生手法としては、物質1001の一方に備えた電極A
9001と、基準面1007に備えた電極B9002と
に電圧印加手段9003を備えるだけでよく、構成が極
めて簡単であり、例えば電圧印加手段9003にスイッ
チやパルス等の制御を行うことにより電流のオン・オフ
の切り替えが可能である。本発明の好ましい実施態様と
しては、物質1001、保持手段1002、基準面10
07及び対向手段1006が導電体であり、この構成で
は保持手段1002及び物質1001の電位を同一に
し、基準面1007及び対向手段1006の電位を同一
にすると、保持手段1002並びに物質1001の電流
経路は、基準面1007並びに対向手段1006の電流
経路に比べ、突出物質1004、特に突出物質1004
の当接部での電流経路が狭い構成となるため、ジュール
熱は当該突出物質1004に集中し、あたかも電気ヒュ
ーズの如き作用で選択的に突出物質1004を加熱溶融
できる。また、この構成では投入する電力も少なく済
み、低消費電力化も達成できる。但し、物質1001、
保持手段1002、基準面1007及び対向手段100
6の電気抵抗値の大小関係は特に限定されるものではな
いが、物質1001と保持手段1002とに同一材料を
適用すると、物質1001と保持手段1002との界面
での例えば接触抵抗が軽減でき、突出物質1004での
ジュール熱が集中し発熱効率が向上するため好ましい。
また、物質1001と保持手段1002とはそれぞれの
界面での接触抵抗値を軽減する要請がある構成では、他
の構成に比べると物質1001に対し保持手段1002
の保持力を大きくすることが必要である。この際に、前
述した補給手段5001で物質1001を補給するとき
に、保持力を解放手段により解放することで補給動作が
確実に達成できる。FIG. 9 shows a conceptual configuration of another embodiment of the mass transfer apparatus of the present invention. The difference from FIG. 1 to FIG. 8 described above is that Joule heat by energization is applied as a heating means. . In order to apply Joule heat, it is required that at least both the substance 1001 and the reference surface 1007 of the facing unit 1006 have an energizing action. As a Joule heat generation method, an electrode A provided on one side of the substance 1001 is used.
It is only necessary to provide the voltage application means 9003 to the electrode 9001 and the electrode B9002 provided on the reference surface 1007, and the configuration is extremely simple. Switching off is possible. In a preferred embodiment of the present invention, the material 1001, the holding means 1002, the reference surface 10
07 and the opposing means 1006 are conductors. In this configuration, when the potential of the holding means 1002 and the potential of the substance 1001 are the same, and when the potentials of the reference surface 1007 and the opposing means 1006 are the same, the current path of the holding means 1002 and the substance 1001 becomes , The projecting material 1004, especially the projecting material 1004,
Since the current path at the contact portion is narrow, Joule heat is concentrated on the protruding material 1004, and the protruding material 1004 can be selectively heated and melted as if by an electric fuse. Also, with this configuration, less power is required to be supplied, and lower power consumption can be achieved. However, substance 1001,
Holding means 1002, reference plane 1007 and facing means 100
6 is not particularly limited, but when the same material is applied to the substance 1001 and the holding means 1002, for example, the contact resistance at the interface between the substance 1001 and the holding means 1002 can be reduced. This is preferable because Joule heat in the protruding material 1004 is concentrated and the heat generation efficiency is improved.
Further, in a configuration in which there is a need to reduce the contact resistance value at the interface between the substance 1001 and the holding means 1002, the holding means 1002
It is necessary to increase the holding force of the wire. In this case, when the substance 1001 is replenished by the replenishing means 5001, the replenishing operation can be reliably achieved by releasing the holding force by the releasing means.
【0021】なお、図9に示した加熱手段に、例えば図
7の耐熱層7001を端面1003に設けてもよく、あ
るいは図8の対向材料層8001を対向手段1006の
表層に設けてもよい。但し、対向材料層8001に適用
する材料は導電性物質を用いること勿論である。特に、
保持手段1002に物質1001と同種の材料を適用
し、基準面1007に例えばWC−Co系超硬合金等の
耐熱・低熱膨張係数・導電性を兼ね備えた材料を適用す
ると、突出物質1004が当接する箇所が削り取られる
ことが無く、連続的に物質転移動作が行えるため好まし
い。また、通電によるジュール熱で加熱溶融する場合に
は、突出物質1004の突出端と基準面1007との当
接部界面の接触抵抗が、他の接触抵抗に比べ最大となる
ため、ジュール熱は当該界面に集中し、溶融も界面から
開始する。このため、均一な量の溶融物3001が、極
めて短時間に同一箇所から得られると共に、転移手段1
010が作動する箇所も同一箇所に集中できる。従っ
て、例えば印加電圧パルス幅またはパルス高の少なくと
も何れか一方の制御、いわゆるパルスのデューティーの
制御のみで、突出物質1004の突出端から突出物質1
004全体にまで溶融物3001の量を高精度に自在に
選択できる。なお、印加電圧のオン・オフ、転移手段1
010の転移力の発生、補給手段5001及び解放手段
の動作、当接手段1008の当接圧力印加等の各種作動
タイミングは、それぞれ所定の制御信号に基づき順次制
御して開始・終了する。また、図9では転移手段につい
ては図示していないが、圧縮ガスによる流力を適用する
ものの他、振動力も適用でき、流力と振動力との併用で
あってもよいこと勿論である。なお、ジュール熱を加熱
手段に適用する場合の突出物質1004としては、例え
ば熱可塑性樹脂の回りを金属あるいは合金でコートした
材料、または逆に金属あるいは合金の回りを熱可塑性樹
脂でコートした材料も適用できる。In the heating means shown in FIG. 9, for example, the heat-resistant layer 7001 shown in FIG. 7 may be provided on the end face 1003, or the facing material layer 8001 shown in FIG. Note that a conductive substance is used as a material applied to the facing material layer 8001 as a matter of course. Especially,
When a material of the same kind as the substance 1001 is applied to the holding means 1002 and a material having both heat resistance, low thermal expansion coefficient, and conductivity, such as a WC-Co cemented carbide, is applied to the reference surface 1007, the protruding substance 1004 abuts. This is preferable because a material transfer operation can be continuously performed without removing a portion. Further, in the case of melting by heating with Joule heat due to energization, the contact resistance at the interface between the protruding end of the protruding material 1004 and the reference surface 1007 is the largest as compared with other contact resistances. It concentrates at the interface, and melting also starts at the interface. Therefore, a uniform amount of the melt 3001 can be obtained from the same location in a very short time, and the transfer means 1
The location where 010 operates can also be concentrated on the same location. Therefore, for example, only the control of at least one of the applied voltage pulse width and the pulse height, that is, the control of the pulse duty, causes the protruding substance 1
The amount of the melt 3001 can be freely selected with high precision up to the entire area 004. In addition, on / off of applied voltage, transition means 1
Various operation timings such as generation of the transfer force 010, operation of the replenishing means 5001 and the releasing means, and application of the contact pressure of the contact means 1008 are sequentially controlled and started / terminated based on predetermined control signals. Further, although the transfer means is not shown in FIG. 9, it is needless to say that, besides applying the fluid force by the compressed gas, a vibration force can also be applied, and the fluid force and the vibration force may be used in combination. In addition, as the protruding substance 1004 when Joule heat is applied to the heating means, for example, a material coated around a thermoplastic resin with a metal or an alloy, or a material coated around a metal or an alloy with a thermoplastic resin may be used. Applicable.
【0022】次に、具体的実施例を挙げて本発明をより
詳細に説明する。図10に示すように、セラミック製の
保持手段10001に備えた一対の溝部10002に、
Pb・Sn系易融合金の物質10003を補給手段10
004によって補給し、保持手段10001の端面から
間隙部に突出物質10005を形成すると同時に、突出
物質10005の端部をCuの対向物質10006の基
準面10007に当接した。なお、補給手段10004
の動作は、物質10003と対向物質10006との間
に低電圧を印加し、微弱電流の有無で検知した。次に、
加熱手段10008に外部から加熱制御信号発生部10
009から加熱制御信号を与え、当該加熱制御信号に基
づきレーザビーム10010を突出物質10005に照
射し溶融する。加熱制御信号から所定時間遅れて転移制
御信号発生部10011から転移制御信号を転移手段1
0012のシャッタ10013に与え、窒素の圧縮ガス
10014を突出物質10005の溶融部に流力を付与
し、当該溶融部を間隙部から転移する。突出物質100
05から転移した溶融部の量だけ突出物質10005の
体積が消費すると上記微弱電流が遮断され、当該遮断を
検知し、物質10003が対向物質10006の基準面
10007に当接し微弱電流が検知されるまで、補給手
段10004の補給動作を行う。このようにして、Pb
・Sn系易融合金の粒状物が容易に得られ、当該粒状物
は例えばICと配線基板との接続、配線基板中に設けた
孔に注入し当該配線基板の表裏に設けた電極同志の導
通、または三次元造形物等に適用できる。また、図10
では補給手段10004が当接手段を兼ねる構成を示し
たが、補給手段10004の動作開始及び終了とに突出
物質10005に流れる電流で検知する本実施例の構成
では、溶融または転移動作と同時に補給動作が開始し、
溶融物質に対し充分な転移力を付与でき難い場合があ
る。そのような場合には、保持手段10001に物質1
0003を保持する所定の保持力を付与し、基準面10
007に突出物質10005を当接する当接手段をさら
に設けることで解消でき、補給手段10004が動作す
る間は当該保持力を開放する開放手段を備える構成が好
ましい。Next, the present invention will be described in more detail with reference to specific examples. As shown in FIG. 10, a pair of grooves 10002 provided in a ceramic holding unit 10001 is
Replenishing means 10 with Pb / Sn-based easy-fusion gold material 10003
004, the protruding material 10005 was formed in the gap from the end face of the holding means 10001, and at the same time, the end of the protruding material 10005 was in contact with the reference surface 10007 of the counter material 10006 of Cu. Note that the replenishing means 10004
In this operation, a low voltage was applied between the substance 10003 and the opposite substance 10006, and the presence or absence of a weak current was detected. next,
Heating control signal generator 10 from outside to heating means 10008
From 009, a heating control signal is given, and the projecting material 10005 is irradiated with a laser beam 10010 and melted based on the heating control signal. The transfer control signal is transferred from the transfer control signal generator 10011 with a predetermined time delay from the heating control signal.
[0012] The shutter 10013 of FIG. 2 applies a compressed gas 10014 of nitrogen to the molten portion of the protruding material 10005 to give a fluid force to transfer the molten portion from the gap. Projecting substance 100
When the volume of the protruding substance 10005 is consumed by the amount of the melted portion transferred from the area 05, the weak current is interrupted, the interruption is detected, and the substance 10003 abuts on the reference surface 10007 of the opposite substance 10006, and the weak current is detected. The supply operation of the supply means 10004 is performed. Thus, Pb
-Sn-based easily fused gold particles can be easily obtained, and the particles can be connected, for example, to an IC and a wiring board, and can be injected into holes provided in the wiring board and conducted between electrodes provided on the front and back of the wiring board. Or three-dimensional objects. FIG.
Although the replenishing means 10004 has shown the structure also serving as the abutting means, the replenishing operation is performed simultaneously with the melting or transfer operation in the configuration of the present embodiment in which the current flowing through the protruding material 10005 is detected at the start and end of the operation of the replenishing means 10004. Starts,
In some cases, it is difficult to impart a sufficient transfer force to the molten material. In such a case, substance 1 is added to holding means 10001.
0003 to the reference surface 10.
007 can be solved by further providing an abutting means for abutting the protruding substance 10005, and it is preferable to provide an opening means for releasing the holding force while the replenishing means 10004 operates.
【0023】なお、物質10003と基準面10007
との当接検知は微弱電流に限定されるものではなく、例
えば位置検出手法等も適用できる。さらに、図10では
微弱電流を物質10003と基準面10007との当接
検知のみに適用したが、突出物質10005の溶融に伴
う抵抗値変化を利用し、突出物質10005の溶融検知
にも適用できる。図10の加熱制御信号発生部1000
9に、例えば三次元構造体の構造データに基づいたデー
タを物質転移装置11001に入力すると、図11のよ
うに三次元構造体の構成要素11002を形成できる。
なお、図11では一つの物質転移装置11001を適用
した場合を示したが、複数の材料で構造体が構成される
場合には、必要に応じて本発明の物質転移装置を各材料
毎に備えればよい。The substance 10003 and the reference plane 10007
Is not limited to the weak current, and for example, a position detection method or the like can be applied. Further, in FIG. 10, the weak current is applied only to the detection of the contact between the substance 10003 and the reference surface 10007. However, the weak current can be applied to the detection of the melting of the protruding substance 10005 by utilizing the change in the resistance value accompanying the melting of the protruding substance 10005. Heating control signal generator 1000 in FIG.
In FIG. 9, for example, when data based on the structure data of the three-dimensional structure is input to the material transfer device 11001, a component 11002 of the three-dimensional structure can be formed as shown in FIG.
Note that FIG. 11 shows a case in which one material transfer device 11001 is applied. However, when a structure is formed of a plurality of materials, the material transfer device of the present invention is provided for each material as necessary. Just do it.
【0024】図12は、本発明の物質転移装置の他の実
施例を示した要部断面斜視図で、セラミック製の保持手
段12001に備えた一対の溝部12002に、Pb・
Sn系易融合金の物質12003を補給手段12004
によって補給し、保持手段12001の端面から間隙部
に突出物質12005を形成すると同時に、突出物質1
2005の端部を物質12003と同一材料のPb・S
n系合金の対向材料層12006を有するセラミック製
の対向物質12007に当接し、物質12003を保持
する保持力を保持力発生手段12008から保持手段1
2001に付与した。なお、補給手段12004及び保
持力発生手段12008の動作は、物質12003と対
向材料層12006との間に低電圧を印加し、微弱電流
の有無で検知した。次に、加熱手段12009に外部か
ら加熱制御信号発生部12010から加熱制御信号を与
え、当該加熱制御信号に基づきレーザビームを突出物質
12005に照射し溶融する。加熱制御信号から所定時
間遅れて転移制御信号発生部12011から転移制御信
号を転移手段の圧電素子12012に与え、振動力を突
出物質12005の溶融部に付与し、当該溶融部を間隙
部から転移する。この時、対向材料層12006も一部
溶融し転移する。突出物質12005から転移した溶融
部の量及び対向材料層12006の転移した溶融部の量
だけ体積が消費すると上記微弱電流が遮断され、当該遮
断を検知し対向材料層12006を移動手段12013
による移動、及び保持力発生手段12008の保持力が
開放され、保持力開放から所定時間遅れて物質1200
3が対向材料層12006に当接し微弱電流が検知され
るまで、補給手段12004の補給動作を行う。補給動
作が完了すると、保持手段12001の保持力が物質1
2003に加わる。FIG. 12 is a cross-sectional perspective view showing a main part of another embodiment of the mass transfer apparatus of the present invention, in which a pair of grooves 12002 provided in a holding means 12001 made of ceramic has Pb.
Replenishing means 12004 with Sn-based easy-fusion gold substance 12003
To form a protruding substance 12005 in the gap from the end face of the holding means 12001 and at the same time
Pb · S of the same material as substance 12003 at the end of 2005
The holding force for holding the substance 12003 is brought into contact with the holding means 12008 from the holding force generation means 12008 by contacting with the ceramic opposite substance 12007 having the n-type alloy opposite material layer 12006.
2001. Note that the operation of the replenishing unit 12004 and the holding force generating unit 12008 was performed by applying a low voltage between the substance 12003 and the opposing material layer 12006 and detecting the presence or absence of a weak current. Next, a heating control signal is externally provided to the heating means 12009 from the heating control signal generation unit 12010, and the projecting material 12005 is irradiated with a laser beam and melted based on the heating control signal. A transfer control signal is provided from the transfer control signal generation unit 12011 to the piezoelectric element 12012 of the transfer unit with a predetermined time delay from the heating control signal, and an oscillating force is applied to the melted portion of the protruding material 12005 to transfer the melted portion from the gap. . At this time, the opposing material layer 12006 also partially melts and transfers. When the volume is consumed by the amount of the melted portion transferred from the protruding substance 12005 and the amount of the transferred melted portion of the facing material layer 12006, the weak current is interrupted, and the interruption is detected and the facing material layer 12006 is moved by the moving means 12013.
And the holding force of the holding force generating means 12008 is released, and the substance 1200 is delayed for a predetermined time from the release of the holding force.
The replenishing operation of the replenishing means 12004 is performed until 3 contacts the opposed material layer 12006 and a weak current is detected. When the replenishing operation is completed, the holding force of the holding means 12001 is changed to the substance 1
Joins 2003.
【0025】なお、図12では対向材料層12006に
物質12003と同一物質を用いた構成であるため、物
質12003と転移物との材料は同一であるが、対向材
料層12006に物質12003と異なる材料、例えば
物質12003にPbを適用し、Pbと合金を形成する
例えばSnを対向材料層12006に用いると、転移物
質が合金を形成し、被転移物上に当該合金の構造物等を
形成できる。また、本発明では上述したように溶融した
材料をそのまま転移するため、例えば蒸着等のように気
相を経る物質転移ではないため、合金の組成変化が回避
できる。さらに、例えばセラミック、W、WC−Co等
の物質12003の融点よりも高い融点の材料を対向物
質層12006に適用すると、溶融転移に伴う対向材料
層12006の表面の損傷を抑制できる。また、対向物
質12007に対向する保持手段12001の端面に耐
熱層を設けると、レーザ照射加熱による保持手段120
01の端面の損傷も防ぐことができる。なお、本実施例
での微弱電流は、補給動作検出手段に適用したが、突出
物質12005の溶融に伴う抵抗値変化を利用し、突出
物質12005の溶融検知にも適用できる。また、本実
施例では補給動作検出手段として微弱電流を適用した
が、突出物質12005と対向材料層12006との間
の距離を検出する位置検出手段等でも適応できること勿
論である。In FIG. 12, since the same material as the substance 12003 is used for the opposite material layer 12006, the material of the substance 12003 and the transition substance is the same, but the material of the opposite material layer 12006 is different from that of the substance 12003. For example, when Pb is applied to the substance 12003 and an alloy that forms an alloy with Pb, such as Sn, is used for the counter material layer 12006, the transition material forms an alloy, and a structure or the like of the alloy can be formed over the transferred object. Further, in the present invention, since the molten material is transferred as it is as described above, it is not a substance transfer through a gas phase such as vapor deposition, so that a change in the composition of the alloy can be avoided. Further, when a material having a melting point higher than the melting point of the substance 12003 such as ceramic, W, or WC-Co is applied to the counter material layer 12006, damage to the surface of the counter material layer 12006 due to melting transition can be suppressed. In addition, when a heat-resistant layer is provided on an end surface of the holding unit 12001 facing the opposing substance 12007, the holding unit 1201 by laser irradiation heating is provided.
01 can also be prevented from being damaged. Although the weak current in this embodiment is applied to the replenishment operation detecting means, the weak current can be applied to the detection of the melting of the protruding material 12005 by utilizing the change in the resistance value accompanying the melting of the protruding material 12005. In the present embodiment, a weak current is applied as the replenishing operation detecting means. However, it is needless to say that a position detecting means for detecting the distance between the protruding substance 12005 and the facing material layer 12006 can be applied.
【0026】図13は、加熱手段としてジュール熱を適
用した物質転移装置の一実施例を説明する部分断面図で
ある。保持手段13001の溝部にワイヤー状の物質1
3002を貫通し、Cuの対向物質13003の基準面
13004との間に間隙部を介して当接し、物質130
02は保持手段13001に保持されると共に当接手段
13005で所定の微弱圧力を印加されている。保持手
段13001に設けた電極A13006と対向物質13
003に設けた電極B13007とに、電圧印加手段1
3008からパルス電圧が印加されるように構成されて
いる。物質13002が基準面13004に当接した状
態で、電極A13006と電極B13007との間に所
定のパルス電圧を印加することにより、保持手段130
01の電位と基準面13004の電位との差で間隙部の
突出物質13009に電流が集中しジュール熱を発生
し、当該ジュール熱により突出物質13009が溶融す
る。溶融した突出物質13009は転移手段13010
の圧電素子による振動力を受け、溶融状態のまま被転移
物に転移する。溶融物が転移した後の空隙部は、供給手
段13011により物質13002が基準面13004
に達するまで供給する。FIG. 13 is a partial cross-sectional view for explaining one embodiment of a mass transfer apparatus to which Joule heat is applied as a heating means. Wire-like substance 1 in the groove of holding means 13001
3002, and comes into contact with a reference surface 13004 of a counter material 13003 of Cu via a gap, and
02 is held by the holding means 13001 and a predetermined weak pressure is applied by the contact means 13005. Electrode A13006 provided on holding means 13001 and counter material 13
To the electrode B13007 provided at 003
A pulse voltage is applied from 3008. By applying a predetermined pulse voltage between the electrode A13006 and the electrode B13007 while the substance 13002 is in contact with the reference surface 13004, the holding means 130
Due to the difference between the electric potential of 01 and the electric potential of the reference plane 13004, current concentrates on the protruding substance 13009 in the gap to generate Joule heat, which melts the protruding substance 13009. The molten protruding material 13009 is transferred to the transfer means 13010
, And is transferred to the transferred object in a molten state. After the transfer of the melt, the gap between the substance 13002 and the reference plane 13004 is supplied by the supply means 13011.
Supply until reaching.
【0027】この一連の動作を詳細に説明する。物質1
3002の端面と基準面13004とが当接した状態
で、転移データに基づく制御信号13012が電圧印加
手段13008とパルス発生手段13013とに入力
し、電極A13006と電極B13007とにパルス電
圧を印加し、保持手段13001と基準面13004と
の間に物質13002及び突出物質13009を介して
電流が流れる。保持手段13001に保持された物質1
3002や基準面13004よりも突出物質13009
の方が電流経路が狭いため、突出物質13009が選択
的にジュール熱により加熱され溶解する。電圧印加手段
13008に入力した制御信号13012から突出物質
13009が溶融するに要する時間をディレイ1301
4で遅らせて、転移動作制御信号が転移手段13010
の圧電素子に入力し、当該圧電素子による振動力が溶融
物質に作用し、溶融物が被転移物に転移する。転移動作
制御信号からさらに転移動作に要する時間をディレイ1
3015で遅らせて、保持手段13001の保持力を開
放し、保持力の開放と同期して補給手段13011が物
質13002を補給すると共に、スイッチ13016に
低電圧13017側を選択させ、物質13002の端面
が基準面13004に到達すると低電圧13017によ
る微弱電流が電流計13018で検出され、物質130
09が転移による消失した量だけ物質13002を補給
し、補給動作終了後スイッチ13016を高電圧側に選
択させると共に、保持手段13001に保持力を印加
し、次の転移データに基づく制御信号13012の発生
まで待機する。This series of operations will be described in detail. Substance 1
In a state where the end face of 3002 and the reference plane 13004 are in contact with each other, a control signal 13012 based on the transition data is input to the voltage applying means 13008 and the pulse generating means 13013, and a pulse voltage is applied to the electrodes A13006 and B13007. Electric current flows between the holding means 13001 and the reference surface 13004 via the substance 13002 and the protruding substance 13009. Substance 1 held in holding means 13001
30009 or a substance 13009 protruding from the reference plane 13004
Since the current path is narrower, the protruding substance 13009 is selectively heated and melted by Joule heat. From the control signal 13012 input to the voltage applying means 13008, the time required for the protruding substance 13009 to melt is delayed 1301.
4, the transfer operation control signal is transferred by the transfer means 13010.
Of the piezoelectric element, the vibration force of the piezoelectric element acts on the molten substance, and the molten substance is transferred to the transferred object. Delay time from transition control signal to transition time is 1
By delaying at 3015, the holding force of the holding means 13001 is released, and in synchronization with the release of the holding force, the replenishing means 13011 replenishes the substance 13002, and the switch 13016 selects the low voltage 13017 side. When the reference surface 13004 is reached, a weak current due to the low voltage 13017 is detected by the ammeter 13018, and the substance 130
09 supplies the substance 13002 by the amount lost by the transfer, and after the replenishment operation is completed, the switch 13016 is selected to the high voltage side, and a holding force is applied to the holding means 13001 to generate the control signal 13012 based on the next transfer data. Wait until.
【0028】図14は、加熱手段にジュール熱を適用し
た物質転移装置の他の実施例を示し、保持手段、物質、
対向手段及び転移手段のみ示した要部断面図である。す
なわち、Cuの保持手段14001にFeの物質140
02を貫通保持させ、Cuの対向物質14003の表面
にFeの対向材料層14004を設け、図13と同様の
手法により間隙部の突出物質14005をジュール熱で
加熱溶融した。この際、突出物質14005の溶融物が
転移手段14007の圧縮アルゴンガスの流力1400
8による転移動作に伴い、対向材料層14004の表層
部も若干転移するが、対向材料層14004の表面状態
に応じて移動手段14006により対向材料層1400
4を移動することにより、同一条件での転移動作が確保
できる。FIG. 14 shows another embodiment of the substance transfer apparatus in which Joule heat is applied to the heating means.
It is principal part sectional drawing which showed only the opposing means and the transfer means. That is, the material 140 of Fe is added to the holding means 14001 of Cu.
02 was penetrated and held, an opposing material layer 14004 of Fe was provided on the surface of the opposing material 14003 of Cu, and the protruding material 14005 in the gap was heated and melted by Joule heat in the same manner as in FIG. At this time, the molten material of the protruding material 14005 is transferred to the transfer means 14007 by the flow force 1400 of the compressed argon gas.
8, the surface layer portion of the opposing material layer 14004 also slightly transits, but the moving means 14006 moves the opposing material layer 1400 in accordance with the surface state of the opposing material layer 14004.
By moving 4, the transfer operation under the same conditions can be ensured.
【0029】なお、図14では対向物質14003の材
料と対向材料層14004の材料とが異なる場合である
が、対向物質14003にFeを適用すると対向材料層
14004を設ける必要性はなく、この場合には対向物
質14003の表面(すなわち基準面)の状態に応じて
移動手段により対向物質14003自体を移動させれば
よい。また、図14では対向材料層14004の材料と
物質14002(突出物質14005)の材料を同一と
したため、転移した材料は物質14002と同一材料で
あるが、対向材料層14004に例えばZnを適用する
と、転移した材料はFeとZnとの混合物または合金と
なり、物質14002と転移した材料とを異ならせるこ
ともできる。FIG. 14 shows the case where the material of the opposite material 14003 and the material of the opposite material layer 14004 are different. However, if Fe is applied to the opposite material 14003, there is no need to provide the opposite material layer 14004. In this case, In this case, the opposing substance 14003 itself may be moved by the moving means in accordance with the state of the surface (that is, the reference plane) of the opposing substance 14003. Further, in FIG. 14, since the material of the opposing material layer 14004 and the material of the substance 14002 (protruding substance 14005) are the same, the transferred material is the same as the substance 14002. However, when Zn is applied to the opposing material layer 14004, for example, The transformed material becomes a mixture or alloy of Fe and Zn, and the substance 14002 and the transformed material can be different from each other.
【0030】なお、図14ではジュール熱による加熱手
段を用いているため、図8または図12に示した構成に
比べ、高融点の材料を適用できる利点がある。さらに、
図14ではFe及び/またはZnという卑金属材料を用
い、転移力として圧縮アルゴンガスを適用した形態であ
るため、溶融転移物の特性も転移前後で何等変化がな
い。このような要請がある場合に流力として適用できる
ガス成分としては、アルゴンガスに限定されるものでは
なく、例えばヘリウム、ネオン、クリプトン、窒素、水
素等の非酸化性ガスを適用することができる。また、転
移後の物質の例えば電気抵抗または融点等の物性を積極
的に変化させる要請がある場合では、流力を付与するガ
ス成分として例えば酸素、オゾン、ハロゲン等の反応性
ガスを適宜必要量加えることで達成できる。In FIG. 14, since a heating means using Joule heat is used, there is an advantage that a material having a high melting point can be used as compared with the structure shown in FIG. 8 or FIG. further,
In FIG. 14, since the base metal material of Fe and / or Zn is used and the compressed argon gas is applied as the transfer force, the characteristics of the molten transfer material do not change before and after the transfer. When there is such a request, the gas component that can be applied as a fluid force is not limited to argon gas, and for example, a non-oxidizing gas such as helium, neon, krypton, nitrogen, and hydrogen can be used. . In addition, when there is a request to positively change the physical properties of the substance after the transition, such as electrical resistance or melting point, a reactive gas such as oxygen, ozone, or halogen is appropriately added as a gas component for imparting fluidity. It can be achieved by adding.
【0031】なお、図14では突出物質14005と対
向材料層14004(または対向物質14003)とが
共に溶融転移する実施態様について説明したが、突出物
質14005または対向材料層14004(または対向
物質14003)の何れかに例えば導電性の超硬合金を
適用すると、一方の物質のみ溶融転移することができ
る。例えば、突出物質14005にCoを11%含むW
C超硬合金を用い、対向物質14003にCuを用い、
突出物質14005と対向物質14003との当接部に
転移手段14007の圧縮アルゴンガスの流力1400
8を、対向物質14003の一方の端面から対向物質1
4003の面と平行に付与する構成を採用すると、突出
物質14005と対向物質14003との間に電圧を印
加することで発生するジュール熱により対向物質140
03が溶融し、当該溶融物を流力14008で転移する
ことができる。転移に伴い減少した対向物質14003
は、移動手段14006で移動し元の状態に復帰させ、
連続的に物質を転移することができる。なお、上記構成
の場合には、例えば図14の突出物質14005の幅
(紙面の横方向)は対向物質14003の幅と同じ構成
にする必要があり、突出物質14005の形状は薄板状
が好ましい。Although the embodiment in which the protruding substance 14005 and the opposing material layer 14004 (or the opposing substance 14003) are both melt-transferred has been described with reference to FIG. 14, the protruding substance 14005 or the opposing material layer 14004 (or the opposing substance 14003) When, for example, a conductive cemented carbide is applied to any of them, only one of the substances can undergo a melting transition. For example, W containing 11% of Co in the protruding material 14005
Using C cemented carbide, using Cu for the opposing substance 14003,
At the contact portion between the protruding material 14005 and the opposing material 14003, the flow force 1400 of the compressed argon gas
8 from one end face of the opposing substance 14003
When a configuration in which the material is applied in parallel to the plane of 4003 is employed, Joule heat generated by applying a voltage between the protruding material 14005 and the
03 melts, and the melt can be transferred with a flow force of 14008. Opposite substance 14003 decreased with metastasis
Is moved by the moving means 14006 to return to the original state,
It can transfer substances continuously. Note that in the case of the above configuration, for example, the width (horizontal direction of the paper surface) of the protruding substance 14005 in FIG. 14 needs to be the same as the width of the opposing substance 14003, and the shape of the protruding substance 14005 is preferably a thin plate.
【0032】図15は、加熱手段にジュール熱を適用
し、転移手段に流力と振動力とを適用した物質転移装置
の別の実施例を示し、保持手段、物質、対向手段及び転
移手段のみを示した要部断面図である。すなわち、Cu
の保持手段15001にAuの物質15002を貫通
し、Coを11%含むWC超硬合金の対向物質1500
3の基準面に当接すると共に、保持手段15001に保
持力を付与し物質15002を保持した。図13と同様
に間隙部の突出物質15005をジュール熱で選択的に
加熱溶融する。突出物質15005が溶融した後、圧電
素子15006と流体ノズル15007とからなる転移
手段に、図13と同様のタイミングで転移動作制御信号
を次の手順で入力し、突出物質15005の溶融物に転
移力を付与する。先ず、転移動作制御信号が圧電素子1
5006に入力し突出物質15005の溶融物に振動力
を付与すると同時に、圧電素子15006の動作により
流体ノズル15007が開き空気を圧縮した圧縮ガス1
5008も突出物質15005の溶融物に流力を付与
し、振動力と流力とを併用した転移力が突出物質150
05の溶融物に付与される。FIG. 15 shows another embodiment of the substance transfer apparatus in which Joule heat is applied to the heating means and flow force and vibration force are applied to the transfer means. Only the holding means, the substance, the facing means and the transfer means are shown. It is principal part sectional drawing which showed. That is, Cu
WC cemented carbide counter material 1500 penetrating Au material 15002 into holding means 15001 and containing 11% Co
In addition to contacting the reference surface of No. 3, the holding means 15001 was given a holding force to hold the substance 15002. As in FIG. 13, the protruding substance 15005 in the gap is selectively heated and melted by Joule heat. After the protruding material 15005 is melted, a transfer operation control signal is input to the transfer means including the piezoelectric element 15006 and the fluid nozzle 15007 at the same timing as in FIG. Is given. First, the transfer operation control signal is transmitted to the piezoelectric element 1.
At the same time as applying a vibration force to the melt of the protruding substance 15005 by inputting the compressed gas 15006, the fluid nozzle 15007 is opened by the operation of the piezoelectric element 15006, and the compressed gas 1 compressed the air.
5008 also imparts a fluid force to the melt of the protruding material 15005, and the transition force using both the vibration force and the fluid force produces the protruding material 15005.
05 to the melt.
【0033】本実施例では対向物質15003に超硬合
金を適用したため、突出物質15005の加熱・溶融・
転移を繰り返しても基準面15004の損傷がないた
め、転移動作の連続性が向上する。なお、図15では超
硬合金を対向物質15003に適用した場合を説明した
が、対向物質15003に他の材料を用い、超硬合金を
対向材料層とする構成であっても同様の効果が得られ、
また超硬合金を保持手段15001に適用してもよいこ
と勿論である。また、本実施例では転移手段に圧電素子
15006と圧縮ガス15008とを併用したため転移
力が増大すると共に、圧電素子15006が流体ノズル
15007の弁の役割を備えた構成であるため、圧縮ガ
ス15008の流力発生を制御する工夫を備えずとも増
大した転移力が得られる。但し、図15に示した転移手
段は一例であり、圧電素子15006と圧縮ガス150
08とを併用する構成の場合でも、例えば流体ノズル1
5007にシャッタ等の選択的に流力を発生させる手段
を適用してもよく、また超音波と流力とを併用してもよ
く、突出物質15005の溶融物の量等に応じて適宜選
択して構成できる。In this embodiment, since a hard metal is used as the facing material 15003, the heating, melting,
Since the reference plane 15004 is not damaged even if the transfer is repeated, the continuity of the transfer operation is improved. Although FIG. 15 illustrates the case where the cemented carbide is applied to the facing material 15003, the same effect can be obtained by using another material as the facing material 15003 and using the cemented carbide as the facing material layer. And
It is needless to say that a hard metal may be applied to the holding means 15001. Further, in the present embodiment, since the piezoelectric element 15006 and the compressed gas 15008 are used in combination as the transfer means, the transfer force increases, and the piezoelectric element 15006 has a function of a valve of the fluid nozzle 15007. An increased transfer force can be obtained without any device for controlling the generation of fluid force. However, the transfer means shown in FIG. 15 is an example, and the piezoelectric element 15006 and the compressed gas 150
08 in combination with the fluid nozzle 1
A means for selectively generating a fluid force such as a shutter may be applied to the 5007, or an ultrasonic wave and a fluid force may be used in combination. Can be configured.
【0034】図16に加熱手段としてジュール熱、転移
手段として振動力を適用した物質転移装置の別の実施例
を示し、保持手段、突出物質、対向物質」及び転移手段
のみを示した要部断面図である。超音波振動手段160
01がCoを11%含むWC超硬合金の保持手段160
02と係合し、保持手段16002に所定の圧力で保持
されたAuの突出物質16003が常に振動し、Coを
11%含むWC超硬合金の対向物質16004の一端は
圧電手段16005と係合し、超音波振動手段1600
1と圧電手段16005とに同時に所定の信号が入力さ
れた時に、突出物質16003の一端面と対向物質16
004とが当接部16006で当接する。保持手段16
002と対向物質16004との間に、突出物質160
03をジュール熱で溶融させる電流を流す電源1600
7が電極A16008及びB16009を介して接続さ
れている。FIG. 16 shows another embodiment of a substance transfer apparatus in which Joule heat is applied as a heating means and an oscillating force is applied as a transfer means. FIG. Ultrasonic vibration means 160
01 is a holding means 160 for a WC cemented carbide containing 11% Co
The Au protruding material 16003 held by the holding means 16002 at a predetermined pressure constantly vibrates, and one end of the WC cemented carbide counter material 16004 containing 11% Co is engaged with the piezoelectric means 16005. , Ultrasonic vibration means 1600
1 and the piezoelectric means 16005 simultaneously receive a predetermined signal, the one end face of the protruding substance 16003
004 abuts on the abutting portion 16006. Holding means 16
002 and the opposing substance 16004, the protruding substance 160
Power supply 1600 for applying current to melt 03 by Joule heat
7 is connected via electrodes A16008 and B16009.
【0035】次に、図16の物質転移装置の動作を説明
する。超音波振動手段16001により保持手段160
02に保持された突出物質16003の端面は、当接部
16006と当該当接部16006よりも保持手段16
002よりの所定箇所との間で、外部からの物質転移信
号が圧電手段16005に印加されない限り振動を繰り
返す。物質転移信号が外部から入力されると、圧電手段
16005に電圧が印加され、対向物質16004の端
部が当接部16006に達し、超音波振動手段1600
1による振動で突出物質16003が当接部16006
に達したときに電源16007からの電流が電極A16
008及び電極B16009を介して突出物質1600
3に流れ、当接部16006から離隔した際には電流が
遮断される。突出物質16003の融点に達するまでこ
の電流のオン・オフを繰り返し、その期間対向物質16
004の端部が当接部16006に位置するように圧電
手段16005に与える信号は保持される。突出物質1
6003が溶融すると、圧電手段16005の差動信号
が切断され、対向物質16004は元の位置に戻ると共
に、突出物質16003の溶融物は超音波振動手段16
001の振動力により滴状に転移する。Next, the operation of the mass transfer apparatus shown in FIG. 16 will be described. Holding means 160 by ultrasonic vibration means 16001
02, the end face of the protruding substance 16003 is held by the contact portion 16006 and the holding means 16
The vibration is repeated between a predetermined position from 002 and a material transfer signal from the outside unless applied to the piezoelectric means 16005. When a material transfer signal is input from the outside, a voltage is applied to the piezoelectric means 16005, and the end of the opposite material 16004 reaches the contact portion 16006, and the ultrasonic vibration means 1600
The protruding substance 16003 is brought into contact with the contact portion 16006
When the current reaches the electrode A16
008 and the protruding material 1600 via the electrode B16009
3 and the current is interrupted when separated from the contact portion 16006. This current is repeatedly turned on and off until the melting point of the protruding substance 16003 is reached.
The signal given to the piezoelectric means 16005 so that the end of 004 is located at the contact portion 16006 is held. Projecting substance 1
When 6003 melts, the differential signal of the piezoelectric means 16005 is cut off, the opposing substance 16004 returns to its original position, and the molten material of the projecting substance 16003
Due to the vibration force of 001, the droplets are transferred.
【0036】なお、本実施例では、溶融物の物質転移力
として保持手段16002に係合した超音波振動手段1
6001を流用した例を示したが、物質転移力として圧
電手段または流力でも適用でき、また超音波振動手段・
圧電手段・流力を適宜組み合わせてもよいこと勿論であ
る。また、物質転移力の要素に振動力を適用する場合に
は、例えば所定位置で振動を急激に停止するストッパ手
段を付加することにより、転移する溶融物に慣性力が作
用するため、転移力が増大するため好ましい。また、本
実施例では、保持手段16002に超音波振動手段16
001、対向物質16004に圧電手段16005によ
りそれぞれ振動を付与する構成を示したが、振動を印加
する手段として別個の振動力を適用する必要性はなく、
同一の手段でも適用可能であり、一方のみに振動を付与
する構成であっても良い。なお、図12〜図16で説明
した物質移動装置による転移物質は、例えば各種素子の
構成要素、マイクロマシン等の微細な部品、配線基板の
電極、基板上に形成した電極と素子との電気的接続等の
構造体の製造に適用できること勿論である。In this embodiment, the ultrasonic vibration means 1 engaged with the holding means 16002 as the material transfer force of the melt is used.
Although an example in which the 6001 is used is shown, piezoelectric means or fluid force can be applied as the material transfer force.
Of course, the piezoelectric means and the fluid force may be appropriately combined. In addition, when an oscillating force is applied to the element of the mass transfer force, for example, by adding a stopper means for suddenly stopping the vibration at a predetermined position, an inertial force acts on the molten material to be transferred. It is preferable because it increases. Further, in the present embodiment, the ultrasonic vibration means 16
001, a configuration in which vibration is applied to the opposite substance 16004 by the piezoelectric means 16005 is shown, but there is no need to apply a separate vibration force as a means for applying vibration.
The same means can be applied, and a configuration in which vibration is applied to only one of them may be used. The transfer material by the mass transfer device described with reference to FIGS. 12 to 16 is, for example, a component of various elements, a fine part such as a micromachine, an electrode of a wiring board, and an electrical connection between an electrode formed on the substrate and the element. It is needless to say that the present invention can be applied to the production of such a structure.
【0037】[0037]
【発明の効果】以上のように、本発明の物質転移装置及
び方法は、固体状態の物質の一部を選択的に加熱溶融
し、溶融状態で転移するため、被転移物に転移した大き
さ、形状、物性、組成等の状態を自由に制御できると共
に、特に高融点の物質の溶融転写に適するため、金属材
料の微細加工に優れた効果を発揮する。As described above, the material transfer device and method of the present invention selectively heat and melt a part of a solid-state material and transfer it in a molten state. In addition to being able to freely control the state of shape, physical properties, composition, etc., it is particularly suitable for melt transfer of a substance having a high melting point, thus exhibiting an excellent effect in fine processing of a metal material.
【図1】本発明の物質移動装置の一概念構成を説明する
部分断面斜視図FIG. 1 is a partial cross-sectional perspective view illustrating a conceptual configuration of a mass transfer device of the present invention.
【図2】本発明の物質移動装置の加熱動作を説明する部
分断面斜視図FIG. 2 is a partial sectional perspective view illustrating a heating operation of the mass transfer apparatus of the present invention.
【図3】本発明の物質移動装置の溶融動作を説明する部
分断面斜視図FIG. 3 is a partial cross-sectional perspective view illustrating a melting operation of the mass transfer device of the present invention.
【図4】本発明の物質移動装置の転移動作を説明する部
分断面斜視図FIG. 4 is a partial cross-sectional perspective view illustrating a transfer operation of the mass transfer device of the present invention.
【図5】本発明の物質移動装置の補給動作を説明する部
分断面斜視図FIG. 5 is a partial cross-sectional perspective view illustrating a replenishing operation of the mass transfer device of the present invention.
【図6】本発明の物質転移装置の他の概念構成を説明す
る部分断面斜視図FIG. 6 is a partial cross-sectional perspective view illustrating another conceptual configuration of the mass transfer device of the present invention.
【図7】本発明の物質転移装置の別の概念構成を説明す
る部分断面斜視図FIG. 7 is a partial cross-sectional perspective view illustrating another conceptual configuration of the material transfer device of the present invention.
【図8】本発明の物質転移装置の他の概念構成を説明す
る部分断面斜視図FIG. 8 is a partial cross-sectional perspective view illustrating another conceptual configuration of the material transfer device of the present invention.
【図9】本発明の物質転移装置の他の概念構成を説明す
る部分断面斜視図FIG. 9 is a partial cross-sectional perspective view illustrating another conceptual configuration of the material transfer device of the present invention.
【図10】本発明の物質転移装置の別の概念構成を説明
する部分断面図FIG. 10 is a partial cross-sectional view illustrating another conceptual configuration of the material transfer device of the present invention.
【図11】本発明の物質転移装置を用いた構造体の製造
装置の一例を説明する断面図FIG. 11 is a cross-sectional view illustrating an example of an apparatus for manufacturing a structure using the material transfer device of the present invention.
【図12】本発明の物質転移装置の他の概念構成を説明
する部分断面斜視図FIG. 12 is a partial cross-sectional perspective view illustrating another conceptual configuration of the material transfer device of the present invention.
【図13】本発明の物質転移装置の別の概念構成を説明
する部分断面図FIG. 13 is a partial cross-sectional view illustrating another conceptual configuration of the material transfer device of the present invention.
【図14】本発明の物質移動装置の他の概念構成を説明
する要部断面図FIG. 14 is a cross-sectional view of a principal part explaining another conceptual configuration of the mass transfer apparatus of the present invention.
【図15】本発明の物質転移装置の別の概念構成を説明
する要部断面図FIG. 15 is a cross-sectional view of a main part illustrating another conceptual configuration of the mass transfer apparatus of the present invention.
【図16】本発明の物質転移装置の他の概念構成を説明
する要部断面図FIG. 16 is a cross-sectional view of a principal part explaining another conceptual configuration of the material transfer device of the present invention.
1001 物質 1002 保持手段 1004 突出物質 1005 間隙部 1006 対向手段 1007 基準面 1008 当接手段 1009 加熱手段 1010 転移手段 5001 補給手段 7001 耐熱層 8001 対向材料層 REFERENCE SIGNS LIST 1001 substance 1002 holding means 1004 projecting substance 1005 gap 1006 facing means 1007 reference plane 1008 contact means 1009 heating means 1010 transfer means 5001 replenishing means 7001 heat resistant layer 8001 facing material layer
Claims (24)
の間隙部を介して対向する基準面を備えた対向手段、前
記保持手段に保持され前記保持手段の前記一端面から突
出した突出物質と前記対向手段の前記基準面の対向物質
とを当接する当接手段、前記突出物質と前記対向物質と
の少なくとも当接部で、前記突出物質または前記対向物
質の少なくとも何れか一方を加熱溶融する加熱手段、前
記加熱手段で加熱溶融した溶融物を少なくとも前記当接
部から転移する転移手段を備えたことを特徴とする物質
転移装置。1. A holding means, an opposing means having a reference surface opposed to one end face of the holding means via a predetermined gap, and a protruding substance held by the holding means and protruding from the one end face of the holding means. A contacting means for contacting the opposing substance on the reference surface of the opposing means, and at least one of the protruding substance and the opposing substance is heated and melted at least at an abutting portion between the protruding substance and the opposing substance. A substance transfer device, comprising: a heating unit; and a transfer unit that transfers a melt heated and melted by the heating unit from at least the contact portion.
の量だけ前記突出物質または前記対向物質の少なくとも
何れか一方を補給する補給手段を備えたことを特徴とす
る請求項1記載の物質転移装置。2. The substance transfer apparatus according to claim 1, further comprising a replenishing means for replenishing at least one of the protruding substance and the counter substance by an amount of the melt transferred by the transfer means. .
前記突出物質に対する保持力を開放する開放手段を備え
ることを特徴とする請求項1または2何れかに記載の物
質転移装置。3. The substance transfer device according to claim 1, further comprising an opening unit that releases a holding force of the holding unit with respect to the protruding substance in synchronization with the replenishing unit.
当接部の前記対向物質を、所定時間で移動する移動手段
を付加することを特徴とする請求項1または2何れかに
記載の物質転移装置。4. The substance transfer device according to claim 1, further comprising a moving means for moving at least a predetermined time of the opposing substance of the contact portion with which the protruding substance contacts. .
料にすることを特徴とする請求項1または4何れかに記
載の物質転移装置。5. The mass transfer device according to claim 1, wherein the protruding material and the counter material are made of the same material.
または前記対向物質の前記当接部の基準面の少なくとも
何れか1つに耐熱層を備えることを特徴とする請求項1
記載の物質転移装置。6. A heat-resistant layer is provided on at least one of the one end face of the holding means, the reference surface of the projecting object, or the contact portion of the facing substance.
The mass transfer device according to the above.
ていることを特徴とする請求項6記載の物質転移装置。7. The substance transfer device according to claim 6, wherein the heat-resistant layer is made of a heat conductive material.
は電流の少なくとも何れか一方であることを特徴とする
請求項1記載の物質転移装置。8. The mass transfer apparatus according to claim 1, wherein said heating means is at least one of energy beam irradiation and electric current.
物質、または前記突出物質・前記保持手段・前記当接部
の前記耐熱層の何れかの組み合わせの材質全てが、導電
性材料であることを特徴とする請求項1〜8何れかに記
載の物質転移装置。9. The material of any combination of the protruding substance, the holding means, and the opposing substance, or any combination of the protruding substance, the holding means, and the heat-resistant layer of the contact portion is a conductive material. The material transfer device according to any one of claims 1 to 8, wherein:
振動力の少なくとも何れか一方を用いることを特徴とす
る請求項1記載の物質転移装置。10. The substance transfer apparatus according to claim 1, wherein the transfer means uses at least one of a flow force and an oscillating force.
端面から突出した突出物質と、前記一端面と所定の間隙
部を介して対向する対向部材の対向物質とを基準面で当
接部材で当接し、前記突出物質と前記対向物質との少な
くとも当接部で、前記突出物質または前記対向物質の少
なくとも何れか一方を加熱溶融し、溶融物を少なくとも
前記当接部から転移することを特徴とする物質転移方
法。11. A projecting material held by a holding member and protruding from one end surface of the holding member, and an opposing material of an opposing member facing the one end surface via a predetermined gap by a contact member on a reference surface. Abutting, at least at the abutting portion between the protruding material and the facing material, heating and melting at least one of the protruding material and the facing material, and transferring the molten material from at least the abutting portion. Mass transfer method.
の量だけ前記突出物質または前記対向物質の少なくとも
何れか一方を補給部材で補給することを特徴とする請求
項11記載の物質転移方法。12. The material transfer method according to claim 11, wherein after transferring the melt, at least one of the protruding material and the counter material is replenished by a replenishing member in an amount of the melt. .
同期して前記保持部材の前記突出物質に対する保持力を
開放することを特徴とする請求項11または12何れか
に記載の物質転移方法。13. The material transfer method according to claim 11, wherein the holding force of the holding member with respect to the protruding substance is released in synchronization with the supply of the protruding substance by the replenishing member.
を、所定時間で移動することを特徴とする請求項11ま
たは12何れかに記載の物質転移方法。14. The material transfer method according to claim 11, wherein at least the opposed material at the contact portion is moved for a predetermined time.
材料にすることを特徴とする請求項11または14何れ
かに記載の物質転移方法。15. The material transfer method according to claim 11, wherein the protruding material and the counter material are made of the same material.
物質または前記対向物質の前記当接部の少なくとも何れ
か1つに耐熱層を備えることを特徴とする請求項11記
載の物質転移方法。16. The material transfer method according to claim 11, wherein a heat-resistant layer is provided on at least one of the one end face of the holding member, the abutting portion of the protruding material or the facing material.
れていることを特徴とする請求項16記載の物質転移方
法。17. The material transfer method according to claim 16, wherein the heat-resistant layer is made of a heat conductive material.
は電流の何れか一方で加熱溶融することを特徴とする請
求項11記載の物質転移方法。18. The material transfer method according to claim 11, wherein the molten material is heated and melted by either energy beam irradiation or electric current.
向物質、または前記突出物質・前記保持部材・少なくと
も前記基準面に設けた前記耐熱層の何れかの組み合わせ
の全てが導電性材料であることを特徴とする請求項11
〜18何れかに記載の物質転移方法。19. All of the combination of the protruding substance / the holding member / the opposing substance or the protruding substance / the holding member / at least the heat-resistant layer provided on the reference surface is a conductive material. The method according to claim 11, wherein
19. The material transfer method according to any one of claims 18 to 18.
または振動力の少なくとも何れか一方を用いることを特
徴とする請求項11記載の物質転移方法。20. The material transfer method according to claim 11, wherein the transfer force for transferring the melt uses at least one of a flow force and an oscillating force.
移装置を用いて物質を被転移物に転移する工程を含み、
前記構造体の少なくとも一構成要素の物質を前記被転移
物上に形成することを特徴とする構造体の製造方法。21. The method according to claim 1, further comprising the step of transferring a substance to a substance to be transferred using the substance transfer apparatus according to claim 1.
A method of manufacturing a structure, comprising forming a substance of at least one component of the structure on the transferred object.
転移方法を用いて物質を被転移物に転移する工程を含
み、前記構造体の少なくとも一構成要素の物質を前記被
転移物上に形成することを特徴とする構造体の製造方
法。22. The method according to claim 11, further comprising the step of transferring a substance to a substance to be transferred, wherein the substance of at least one component of the structure is placed on the substance to be transferred. A method of manufacturing a structure, characterized by forming the structure.
製造したことを特徴とする構造体。23. A structure manufactured by the manufacturing method according to claim 21.
製造したことを特徴とする構造体。24. A structure manufactured by the manufacturing method according to claim 22.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9352193A JPH11165061A (en) | 1997-12-05 | 1997-12-05 | Material transfer device and material transfer method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9352193A JPH11165061A (en) | 1997-12-05 | 1997-12-05 | Material transfer device and material transfer method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11165061A true JPH11165061A (en) | 1999-06-22 |
Family
ID=18422423
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9352193A Withdrawn JPH11165061A (en) | 1997-12-05 | 1997-12-05 | Material transfer device and material transfer method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11165061A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006057284A1 (en) * | 2004-11-24 | 2006-06-01 | Kabushiki Kaisha Kobe Seiko Sho | Thermal spray nozzle device and thermal spray device using the same |
-
1997
- 1997-12-05 JP JP9352193A patent/JPH11165061A/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006057284A1 (en) * | 2004-11-24 | 2006-06-01 | Kabushiki Kaisha Kobe Seiko Sho | Thermal spray nozzle device and thermal spray device using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6813224B2 (en) | Modeling material discharge head | |
Willis et al. | Microdroplet deposition by laser-induced forward transfer | |
Yamaguchi et al. | Generation of three-dimensional micro structure using metal jet | |
Chung et al. | Damage-free low temperature pulsed laser printing of gold nanoinks on polymers | |
US20200238372A1 (en) | Droplet generating method for metal three-dimensional printing | |
Theodorakos et al. | Laser‐Induced Forward Transfer of High Viscous, Non‐Newtonian Silver Nanoparticle Inks: Jet Dynamics and Temporal Evolution of the Printed Droplet Study | |
Sukhotskiy et al. | Magnetohydrodynamic drop-on-demand liquid metal additive manufacturing: System overview and modelling | |
Volpp | Behavior of powder particles on melt pool surfaces | |
Merrow et al. | Digital metal printing by electrohydrodynamic ejection and in-flight melting of microparticles | |
JPH11165061A (en) | Material transfer device and material transfer method | |
CN107971492B (en) | Fused raw material generation method for three-dimensional printing | |
Sugioka et al. | Launching phenomenon of a centimeter-scale solid object using explosive boiling due to electrical discharge in water | |
Mehdizadeh et al. | Effect of substrate temperature on splashing of molten tin droplets | |
BR112014018777B1 (en) | METHOD AND DISPOSITION FOR TRANSFERRING ELECTRICALLY CONDUCTIVE MATERIAL IN FLUID FORM ON A SUBSTRATE TO BE PRINTED | |
US9922870B2 (en) | Method for applying an image of an electrically conductive material onto a recording medium and device for ejecting droplets of an electrically conductive fluid | |
Shan et al. | Laser direct printing of solder paste | |
US20220410268A1 (en) | Metal printing and additive manufacturing apparatus | |
Vader et al. | Advances in magnetohydrodynamic liquid metal jet printing | |
JP2005206871A (en) | Multilayer hyperfine magnetic particle, and method and device for forming magnetic continuum using the multilayer hyperfine magnetic particle | |
US9593403B2 (en) | Method for ejecting molten metals | |
Tiwari et al. | Investigations of some aspects of the spray process in a single wire arc plasma spray system using high speed camera | |
Suslov et al. | Formation of monodisperse refractory metal particles by impulse discharge | |
Geng et al. | Main cause of groove formation on rails might be local electro-explosion phenomenon | |
JPS6244458A (en) | Recording apparatus | |
JP2822573B2 (en) | Image forming apparatus using powder ink |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20050301 |