JPH1116454A - Manufacture of contact material for vacuum valve - Google Patents

Manufacture of contact material for vacuum valve

Info

Publication number
JPH1116454A
JPH1116454A JP16903797A JP16903797A JPH1116454A JP H1116454 A JPH1116454 A JP H1116454A JP 16903797 A JP16903797 A JP 16903797A JP 16903797 A JP16903797 A JP 16903797A JP H1116454 A JPH1116454 A JP H1116454A
Authority
JP
Japan
Prior art keywords
contact
contact material
vacuum valve
arc
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16903797A
Other languages
Japanese (ja)
Inventor
Isao Okutomi
功 奥富
Keisei Seki
経世 関
Atsushi Yamamoto
敦史 山本
Takashi Kusano
貴史 草野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIBAFU ENG KK
Toshiba Corp
Original Assignee
SHIBAFU ENG KK
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIBAFU ENG KK, Toshiba Corp filed Critical SHIBAFU ENG KK
Priority to JP16903797A priority Critical patent/JPH1116454A/en
Publication of JPH1116454A publication Critical patent/JPH1116454A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Switches (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress generation of especially restrike of an arc in voltage resistant characteristics and to reduce the dispersion of a contact material by melting a conducting component containing Cu and an arc resistant component containing at least one of Cr, V, W, Mo, Ta, Nb, and Fe within the range of the melting point of both components, then casting. SOLUTION: A conducting component of a main contact material for constituting one or both contacts fixed to a moving electrode and a fixed electrode is preferably limited to 40-90 vol.%. Since the bonding strength between the conducting component and an arc resistant component is strong, irregularity formed by minor welding on the surface of the contact and release of fine particles caused by the local coming off of the arc resistant component are reduced, and restrike is suppressed. By the melting and casting both components, micro contact structure is formed and the dispersion of restrike generation is suppressed. Preferably, by using the arc resistant material having a mean particle size of 1-10 μm, uniform melting and distribution into the conducting component are obtained. Adding of a low melting point element such as Bi, In, and Sn, and a light element such as B, C to the components is preferable.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐電圧特性を改良
した真空バルブ用接点材料の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a contact material for a vacuum valve having improved withstand voltage characteristics.

【0002】[0002]

【従来の技術】真空バルブ用接点材料に要求される特性
としては、耐溶着特性・耐電圧・遮断に対して示される
基本三用件と、この他に温度上昇や接触抵抗が低く安定
していることが重要な用件となっている。
2. Description of the Related Art The characteristics required for a contact material for a vacuum valve include three basic requirements for welding resistance, withstand voltage, and breaking, and in addition to the above, the temperature rise and contact resistance are low and stable. Is an important requirement.

【0003】しかしながら、これらの用件のなかには、
相反するものがある関係上、単一の金属種によって全て
の要件を満足させることは不可能てある。このため、実
用化されている多くの接点材料においては、不足する性
能を相互に補えるような2種類以上の元素を組み合わ
せ、かつ、大電流用または高電圧用などのように特定の
用途に合った接点材料の開発が行なわれ、それなりに優
れた特性を有するものが開発されているが、更に強まる
高電圧化・大電流遮断化の要求を充分満足する真空バル
ブ用接点材料は未だ得られていないのが実情である。
[0003] However, among these requirements,
Due to conflicts, it is not possible to satisfy all requirements with a single metal species. For this reason, in many contact materials that have been put into practical use, two or more types of elements that can mutually compensate for the insufficient performance are combined and suitable for a specific application such as for large current or high voltage. Contact materials for vacuum valves have been developed, and materials with excellent properties have been developed.However, contact materials for vacuum valves that sufficiently satisfy the demands for higher voltage and larger current interruption have not yet been obtained. There is no fact.

【0004】例えば、大電流化と耐溶着性を改良した接
点材料として、CuBi接点材料(特公昭41−121
31号)、CuTe接点(特公昭44−23751号)
が知られている。また、大電流化と高耐圧化を指向した
接点としてCuCr接点が知られている(特公昭45−
35101)。またCuCr接点の耐溶着性を改良した
接点としてCuCrBi接点が知られている(特公昭6
1−41091号)。しかしながらそれなりに優れた特
性を有する接点材料が開発されてはいるが、更に強まる
高耐圧化、特に再点弧発生頻度の抑制や大電流遮断化の
要求を充分満足する接点材料は未だ得られていないのが
実状である。
For example, a CuBi contact material (Japanese Patent Publication No. 41-121) is used as a contact material having improved current resistance and improved welding resistance.
No. 31), CuTe contact (JP-B No. 44-233751)
It has been known. Also, a CuCr contact is known as a contact aimed at increasing the current and increasing the breakdown voltage (Japanese Patent Publication No. 45-45).
35101). Also, a CuCrBi contact is known as a contact having improved resistance to welding of a CuCr contact (Japanese Patent Publication No. Sho 6 (1988)).
1-41091). However, although a contact material having excellent characteristics has been developed, a contact material that sufficiently satisfies the demands for higher withstand voltage, especially suppression of the frequency of restriking and interruption of large current, has been obtained. There is no actual situation.

【0005】[0005]

【発明が解決しようとする課題】上述したように、耐電
圧特性特に再点弧発生の抑制とそのバラツキの低減した
接点材料を提供しなければならないという問題を有して
いる。
As described above, there is a problem that it is necessary to provide a contact material in which withstand voltage characteristics, in particular, occurrence of restriking is suppressed and the variation thereof is reduced.

【0006】本発明は、真空バルブ用接点材料に係わ
り、特に、耐電圧特性を低下させることなく、更に耐電
圧特性のばらつきが小さい真空バルブ用接点材料の製造
方法を供給することを目的としている。
[0006] The present invention relates to a contact material for a vacuum valve, and in particular, to provide a method for producing a contact material for a vacuum valve with less variation in withstand voltage characteristics without lowering the withstand voltage characteristics. .

【0007】[0007]

【課題を解決するための手段】本発明の真空バルブ用接
点材料の製造方法は、上述問題を解決するために以下の
手段を用いる、即ち、 (1)Cuを含有する導電成分と、Cr(クロム),V
(バナジュウム),W(タングステン),Mo(モリブ
デン),Ta(タンタル),Nb(ニオブ),Fe
(鉄)の内、少なくとも1種類以上を含有する耐弧成分
を含有した接点材料素材を、導電成分融点から耐弧成分
融点の範囲内で溶解した後、鋳造して得られることを特
徴とする真空バルブ用接点材料の製造方法。
The method for producing a contact material for a vacuum valve of the present invention uses the following means to solve the above-mentioned problems: (1) a conductive component containing Cu and Cr ( Chrome), V
(Vanadium), W (tungsten), Mo (molybdenum), Ta (tantalum), Nb (niobium), Fe
It is obtained by melting a contact material containing at least one or more arc-resistant components of (iron) within a range from the melting point of the conductive component to the melting point of the arc-resistant component, and then casting. Manufacturing method of contact material for vacuum valve.

【0008】(2)導電成分が40〜90体積%である
ことを特徴とする請求項1記載の真空バルブ用接点材料
の製造方法。
(2) The method according to claim 1, wherein the conductive component is 40 to 90% by volume.

【0009】(3)耐弧成分原料は、平均粒径が1μm
−10mmの粉体・粒体を含むことを特徴とする真空バ
ルブ用接点材料の製造方法。
(3) The arc resistant component raw material has an average particle size of 1 μm.
A method for producing a contact material for a vacuum valve, comprising a powder or granules of -10 mm.

【0010】(4)Bi(ビスマス),In(インジュ
ウム),Sn(錫),Te(テルル),Pb(鉛)の内
少なくともI種類以上を0.05体積%乃至3体積%以
下添加して溶解することを特徴とする真空バルブ用接点
材料の製造方法。
(4) At least I type of Bi (bismuth), In (indium), Sn (tin), Te (tellurium) and Pb (lead) is added in an amount of 0.05 to 3% by volume. A method for producing a contact material for a vacuum valve, characterized by melting.

【0011】(5)B(ホウ素),C(炭素),Ti
(チタン),Zr(ジルコニュウム),Y(イットニュ
ウム),Al(アルミニュウム)のうち、少なくとも1
種類以上を0.01体積%乃至5体積%添加して溶解す
ることを特徴とする請求項1乃至請求項4記載の真空バ
ルブ用接点材料の製造方法。
(5) B (boron), C (carbon), Ti
(Titanium), Zr (zirconium), Y (yttrium), Al (aluminum)
5. The method for producing a contact material for a vacuum valve according to claim 1, wherein 0.01% to 5% by volume of at least one kind is added and dissolved.

【0012】(6)鋳型は、Cu、Cu合金、Fe、F
e合金の内少なくとも1つであることを特徴とする真空
バルブ用接点材科の製造方法。
(6) The mold is made of Cu, Cu alloy, Fe, F
A method for manufacturing a contact material family for a vacuum valve, comprising at least one of e-alloys.

【0013】(7)鋳型深さLは、鋳型直径Dの1.5
倍以上であることを特徴とする真空バルブ用接点材料の
製造方法。
(7) The mold depth L is 1.5 times the mold diameter D.
A method for producing a contact material for a vacuum valve, wherein the method is at least twice as large.

【0014】(8)鋳型は、側面に複数個の貫通穴を有
することを特徴とする真空バルブ用接点材料の製造方
法。
(8) A method of manufacturing a contact material for a vacuum valve, wherein the mold has a plurality of through holes on a side surface.

【0015】(9)溶解法は、真空溶解法または連続鋳
造法であることを特徴とする真空バルブ用接点材料の製
造方法。
(9) A method for manufacturing a contact material for a vacuum valve, wherein the melting method is a vacuum melting method or a continuous casting method.

【0016】を解決の手段としている。Is a means for solving the problem.

【0017】真空バルブに於ける再点弧発生は、以前か
ら問題視されており、その発生原因は解明されてはいな
いが、その主たる要因としては、接点表面からの微粒子
の放出や突発的なガス放出が考えられている。後者に関
しては、接点中のガス含有量を低減する方向で試作評価
が進められている。
The occurrence of restriking in a vacuum valve has been regarded as a problem for a long time, and its cause has not been elucidated. However, the main factors are emission of fine particles from the contact surface and sudden occurrence. Outgassing is considered. Regarding the latter, trial manufacture evaluation is being conducted in the direction of reducing the gas content in the contact.

【0018】一方、接点表面からの微粒子の放出は、微
溶着等によって生じる接表面に形成される凹凸や、局所
的な耐弧成分の脱落によるものと推定されている。これ
を改善する方法として、例えば、導電成分と耐弧成分間
の密着強度を強固にするなどの手法が考案されている。
On the other hand, it is presumed that the release of the fine particles from the contact surface is due to irregularities formed on the contact surface caused by fine welding or the like and local dropout of the arc resistant component. As a method for improving this, for example, a method of strengthening the adhesion strength between the conductive component and the arc-resistant component has been devised.

【0019】もうーつの問題として再点弧発生のバラツ
キがある。この原因としては、接点ミクロ組織の不均一
化が問題であり、その為に例えば数ミクロンオーダーの
微細な耐弧成分原料を使用して粉末冶金法にて接点を製
造することが試みられている。
Another problem is the variation in the occurrence of restriking. As a cause of this, there is a problem of non-uniformity of the contact microstructure. For this reason, for example, it has been attempted to manufacture contacts by powder metallurgy using fine arc-resistant component raw materials on the order of several microns. .

【0020】しかし、この手法を用いると、今度はガス
含有量が多くなり、耐電圧特牲を低下させるという問題
が残存する。そこで、耐弧成分と導電成分を溶解・造塊
し、よりミクロな接点組織を得ることによってこの問題
を解決した。
However, when this method is used, the problem that the gas content is increased and the withstand voltage characteristic is reduced remains. Therefore, this problem was solved by melting and agglomerating the arc-resistant component and the conductive component to obtain a more microscopic contact structure.

【0021】さらに、このような組成系に於いて、悪化
が著しい歩留まり改善を達成するために、耐弧成分原料
や第三元素の添加や鋳型材質形状に創意工夫を凝らし本
発明を達成した。
Further, in such a composition system, in order to achieve a remarkable improvement in the yield which is significantly deteriorated, the present invention was achieved by adding an arc-resistant component raw material and a third element, and devising the shape of the mold material.

【0022】まず、耐弧成分原料を1μmから10mm
とすることによって、導電成分中への均一な溶解と分布
を可能とした。また、Bi,In,Sn等の低融点元素
を添加することによって、固体状態での加熱中に耐弧成
分同士が密着することを防止した。また、B,C等の軽
元素を添加することによって、一層の信頼性を向上させ
た。更に、鋳型冷却を円滑に行うと共に、残存ガス排除
のために、特殊な鋳型形状とした。
First, the material of the arc resistant component is set to 1 μm to 10 mm.
By doing so, uniform dissolution and distribution in the conductive component were made possible. Further, by adding a low-melting element such as Bi, In, or Sn, the arc-resistant components are prevented from adhering to each other during heating in a solid state. Further, by adding light elements such as B and C, the reliability was further improved. In addition, the mold was cooled smoothly and a special mold shape was used to eliminate residual gas.

【0023】[0023]

【発明の実施の形態】次に本発明の真空バルブ用接点材
料の製造方法電子機器収納装置の実施の形態を説明す
る。はじめに、本発明の接点材料が適用される真空バル
ブの構成を図1及び図2を参照して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an embodiment of a method for producing a contact material for a vacuum valve according to the present invention will be described. First, the configuration of a vacuum valve to which the contact material of the present invention is applied will be described with reference to FIGS.

【0024】図1は本発明の接点材料を適用する真空バ
ルブの構成例を示すもので、同図に於て1は遮断室を示
し、この遮断室1は絶縁材料によりほぼ円筒状に形成さ
れた絶縁容器2と、この両端に封止金具3a,3bを介
して設けた金属性の蓋体4a,4bとで真空気密に構成
されている。
FIG. 1 shows an example of the construction of a vacuum valve to which the contact material of the present invention is applied. In FIG. 1, reference numeral 1 denotes a shut-off chamber, and this shut-off chamber 1 is formed of an insulating material in a substantially cylindrical shape. The insulating container 2 and the metallic lids 4a and 4b provided at both ends thereof with sealing metal fittings 3a and 3b are formed in a vacuum-tight manner.

【0025】しかして、遮断室1内には導電棒5、6の
対向する端部に取り付けられた一対の電極7、8が配設
され、上部の電極7を固定電極、下部の電極8を可動電
極としている。また、この可動の電極8の導電棒6には
ベローズ9が取り付けられ、遮断室1の中を真空気密に
保持しながら電極8の軸方向の移動を可能にし、このべ
ローズ9の上部には金属性のアークシールド10が設け
られ、べローズ9がアーク蒸気で覆われることを防止し
ている。
Thus, a pair of electrodes 7 and 8 attached to the opposite ends of the conductive rods 5 and 6 are provided in the cut-off chamber 1, and the upper electrode 7 is fixed and the lower electrode 8 is It is a movable electrode. A bellows 9 is attached to the conductive rod 6 of the movable electrode 8 to enable the electrode 8 to move in the axial direction while maintaining the inside of the shut-off chamber 1 in a vacuum-tight manner. A metallic arc shield 10 is provided to prevent the bellows 9 from being covered with arc vapor.

【0026】11は電極7,8を覆うようにして遮断室
1に設けられた金属性のアークシールドで、絶縁容器2
がアーク蒸気で覆われることを防止している。さらに、
電極8は図2に拡大して示すように、導電棒6にロウ付
け部12によって固定されるか、また、かしめによって
圧着接続されている。接点13aは電極8にロウ付け1
4で固着されている。なお、図1における13bは固定
側の接点てある。
Reference numeral 11 denotes a metallic arc shield provided in the cut-off chamber 1 so as to cover the electrodes 7 and 8;
Is prevented from being covered with arc vapor. further,
2, the electrode 8 is fixed to the conductive rod 6 by a brazing portion 12, or is crimp-connected by caulking. The contact 13a is soldered 1 to the electrode 8.
4 is fixed. Note that 13b in FIG. 1 is a fixed-side contact.

【0027】本発明に係わる接点材料は、上記したよう
な接点13a,13bの双方または何れか−方を構成す
るのに適したものてある。次に、各接点の評価方法を述
べる。
The contact material according to the present invention is suitable for forming both or any one of the above-mentioned contacts 13a and 13b. Next, a method for evaluating each contact will be described.

【0028】耐弧特性は直径45mmの接点を所定の形
状に加工した後、所定の真空バルブに組み込み、進み小
電流試験にて再点弧発生率を評価した。電流は500A
であり、回復電圧は12.5kVである。試験回数は2
000回である。後述比較例1に示す溶浸法によって製
造したCuCr接点の平均値を1.0とし、5本のバル
ブのバラツキをも併せて相対値で記載する。
The arc resistance characteristics were obtained by processing a contact having a diameter of 45 mm into a predetermined shape, assembling the same into a predetermined vacuum valve, and evaluating a re-ignition occurrence rate by an advanced small current test. Current is 500A
And the recovery voltage is 12.5 kV. Number of tests is 2
000 times. The average value of the CuCr contacts manufactured by the infiltration method shown in Comparative Example 1 described below is set to 1.0, and the relative values are described together with the dispersion of the five valves.

【0029】(比較例1)平均粒径100μmのCr粉
末をカーボン坩堝に充填後、10-2Pa(パスカル)の
真空雰囲気にて1150度C×1時間の焼結条件にて仮
焼結しCrスケルトンを得た。その後、無酸素銅をCr
スケルトン上に配置し、同様の真空雰囲気にて、113
0度C×0.5時間の溶浸条件にて溶浸し、50体積%
CrCu接点を得た。所定の形状に加工した後、前記耐
電圧試験を実施した静耐圧特性と遮断性能の試験を実施
し、この特牲値を今後試作評価した接点の基準値とす
る。
(Comparative Example 1) A Cr powder having an average particle diameter of 100 µm was filled in a carbon crucible, and then temporarily sintered in a vacuum atmosphere of 10 -2 Pa (Pascal) under the sintering conditions of 1150 ° C for 1 hour. A Cr skeleton was obtained. After that, oxygen-free copper was replaced with Cr.
Placed on the skeleton and in a similar vacuum atmosphere, 113
Infiltrate under 0 ° C x 0.5 hour infiltration condition, 50% by volume
A CrCu contact was obtained. After processing into a predetermined shape, a test of the static withstand voltage characteristic and the breaking performance of the withstand voltage test are performed, and this characteristic value is used as a reference value of a contact which is to be prototyped and evaluated in the future.

【0030】(比較例2,実施例1〜4、比較例3)2
0mm程度に粉砕したCrブリケットと無酸素銅を原料
とし、真空雰囲気にて溶解した。Cuの融点以上に加熱
し、Crの少なくとも一部分を溶解した後、高純度Ar
(アルゴン)を150Torr点度封入し、鋳鉄の鋳型
に鋳込んだ。この方法でCr添加量を変えたCuCrイ
ンゴットを製作し、それぞれ、Cu量が20,40,5
0,70,90,98体積%の試料を抽出した(各々比
較例2,実施例1,2,3,4,比較例3)。所定の方
法で再点弧発生頻度を測定した。
(Comparative Example 2, Examples 1-4, Comparative Example 3) 2
Cr briquettes and oxygen-free copper pulverized to about 0 mm were used as raw materials and melted in a vacuum atmosphere. After heating to at least the melting point of Cu to dissolve at least a portion of Cr, high purity Ar
(Argon) was sealed at a point of 150 Torr and cast into a cast iron mold. CuCr ingots with different amounts of Cr added were manufactured by this method, and the Cu amounts were 20, 40, and 5, respectively.
Samples of 0, 70, 90, and 98% by volume were extracted (Comparative Example 2, Examples 1, 2, 3, 4, and Comparative Example 3, respectively). The re-ignition frequency was measured by a predetermined method.

【0031】表1に示すように、溶解法にて製造した接
点は、溶浸法で製作した接点よりもバラツキが小さいこ
とが判った。しかし、CuCr系接点材料の場合には、
Cr含有量が少なすぎたり、多すぎたりした場合、平均
の再点弧発生率が高くなっていく傾向にあった。前者で
は、接点自休の耐電圧特性が低下し、後者は、Crの凝
集が進みすぎたためと思われる。
As shown in Table 1, it was found that the contact manufactured by the melting method had smaller variation than the contact manufactured by the infiltration method. However, in the case of CuCr-based contact materials,
If the Cr content is too small or too large, the average re-ignition incidence tends to increase. In the former, it is considered that the withstand voltage characteristics of the contact self-sustaining are reduced, and in the latter, the aggregation of Cr is excessively advanced.

【0032】[0032]

【表1】 (実施例5,6,7,8,比較例4)真空中で溶融した
Cu液相中に、平均粒径がそれぞれ1μm,100μ
m,1mmのMo粉末,10mm,50mmに粉砕した
Mo塊を投入し、暫く溶解させた後、Arを150to
rr封入し、鋳鉄製鋳型に鋳込んだ(各々実施例5,
6,7,8,比較例4)。
[Table 1] (Examples 5, 6, 7, 8 and Comparative Example 4) In a Cu liquid phase melted in a vacuum, average particle diameters were 1 μm and 100 μm, respectively.
m, 1 mm of Mo powder, and a lump of Mo lump crushed to 10 mm and 50 mm were added and dissolved for a while.
rr was sealed and cast into a cast iron mold (Examples 5 and 5 respectively).
6, 7, 8, Comparative Example 4).

【0033】インゴットを長手方向に切断し、断面マク
ロ組織を観察したところ、Moの平均粒径が1μm,1
00μm,1mmの試料は全体的に均一な組成を有して
いたが、50mmのMoを添加した比較例4では、Mo
が溶けきれない状態で、偏析が著しかった。平均粒径が
10mmのMoを添加した実施例8も偏析が認められた
が、インゴットの中央部分は、使用可能な状態であっ
た。これらのインゴットから任意の部分から接点を製作
し、再点弧発生率を調査した。インゴットのマクロ組織
と同様に、偏析の少ない物はバラツキも小さかったが、
偏析の大きな接点ではバラツキの大きかった。
When the ingot was cut in the longitudinal direction and the cross-sectional macrostructure was observed, the average grain size of Mo was 1 μm, 1
The sample of 00 μm and 1 mm had an overall uniform composition, but in Comparative Example 4 to which 50 mm of Mo was added,
However, segregation was remarkable in a state where it could not be melted. In Example 8 in which Mo having an average particle size of 10 mm was added, segregation was also observed, but the central portion of the ingot was usable. From these ingots, contacts were made from any part and the incidence of restriking was investigated. Similar to the macrostructure of the ingot, those with less segregation had less variation,
The contact with large segregation had large variations.

【0034】[0034]

【表2】 (比較例5,実施例9,10,11,比較例6)平均粒
径が5μmのW粉末と無酸素銅を溶解し、実施例1と同
一条件で溶解・鋳造した(比較例5)。
[Table 2] (Comparative Example 5, Examples 9, 10, 11, and Comparative Example 6) W powder having an average particle size of 5 μm and oxygen-free copper were dissolved and cast and melted under the same conditions as in Example 1 (Comparative Example 5).

【0035】また、Biを0.05%,Inを0.5
%,Snを1%とTeを2%,Pbを10%予め添加し
たのち溶解した(各々実施例9、10、11、比較例
6)。
Further, Bi is 0.05% and In is 0.5%.
%, 1% of Sn, 2% of Te, and 10% of Pb, and then dissolved (Examples 9, 10, 11, and Comparative Example 6).

【0036】長手方向に切断し、マクロ組織を観察した
ところ、第三元素無添加の比較例5はWの凝集が著しい
のに対して、Bi,Teなどを添加した実施例9、1
0、11と比較例6は偏析が少なかった。溶融温度まで
のうちにWの焼結が進み、Cu液相中で分散できなかっ
たためと思われる。これに対しBi等を添加した材料は
Wの分散がうまく進行したものと思われる。しかし、P
bを10%添加した物は、材料の脆化がかなり進行して
いた。
When cut along the longitudinal direction and the macrostructure was observed, Comparative Example 5 without the addition of the third element showed remarkable agglomeration of W, whereas Examples 9 and 1 with the addition of Bi, Te, etc.
0, 11 and Comparative Example 6 had little segregation. This is probably because the sintering of W progressed before the melting temperature, and the W could not be dispersed in the Cu liquid phase. On the other hand, it is considered that the dispersion of W in the material to which Bi or the like is added has progressed well. But P
In the case of adding 10% of b, the embrittlement of the material was considerably advanced.

【0037】これらのインゴットから任意の部分から接
点を製作し、再点弧発生率を調査した。インゴットのマ
クロ組織と同様に、偏析の少ない物はバラツキも小さか
ったが、偏析の人きな接点ではバラツキの大きかった。
また、Pbを多量に添加した物も良好な電気特性を得ら
れなかった。
From these ingots, contact points were formed from arbitrary portions, and the incidence of restriking was investigated. Similar to the macrostructure of the ingot, those with less segregation had smaller variations, but those with less segregated contacts had larger variations.
In addition, a material to which Pb was added in a large amount could not obtain good electric characteristics.

【0038】[0038]

【表3】 (比較例7,実施例12,13,14,比較例8)平均
粒径が5μmのMo粉末と無酸累銅を溶解し、実施例1
と同一条件で溶解・鋳造した(比較例7)。
[Table 3] (Comparative Example 7, Examples 12, 13, 14, and Comparative Example 8) Mo powder having an average particle diameter of 5 μm and acid-free copper were dissolved, and
Melting and casting were performed under the same conditions as in Comparative Example 7 (Comparative Example 7).

【0039】また、Ar封入後Bを0.01%,Alを
0.5%,Tiを2%とYを3%,Zrを15%添加し
た、暫く溶解した後に鋳造した(各々実施例12,1
3,14,比較例8)。
Further, after enclosing Ar, 0.01% of B, 0.5% of Al, 2% of Ti, 3% of Y, and 15% of Zr were added. , 1
3, 14, Comparative Example 8).

【0040】これらのインゴットから任意の部分から接
点を製作し、再点弧発生率を調査した。B,Ti等を微
量添加した材料の再点弧発生率は低下する傾向にあった
が、多量に入れすぎると導電率が大幅に低下した。
From these ingots, a contact was made from an arbitrary part and the incidence of restriking was investigated. The re-ignition occurrence rate of a material to which a small amount of B, Ti, or the like was added tended to decrease. However, when the amount was too large, the electric conductivity significantly decreased.

【0041】[0041]

【表4】 (比較例9,実施例15,16,17,18)平均粒径
20mmに粉砕したCrと無酸素銅を実施例1と同様に
溶解し、Ar封入した後、鋳鉄に製鋳型に鋳込んだ(比
較例9)。
[Table 4] (Comparative Example 9, Examples 15, 16, 17, and 18) Cr and oxygen-free copper pulverized to an average particle diameter of 20 mm were melted in the same manner as in Example 1, filled with Ar, and then cast into a cast iron mold. (Comparative Example 9).

【0042】同様にCu製鋳型及び1%Cr−Cu製鋳
型に鋳込んだ(各々、実施例15、16)。
Similarly, casting was carried out in a mold made of Cu and a mold made of 1% Cr-Cu (Examples 15 and 16 respectively).

【0043】また、容積に対して、内法面積が広くなる
ように、縦長の鋳型に鋳込んだ(実施例17)。
Further, casting was carried out in a vertically long mold so that the inner area became wider with respect to the volume (Example 17).

【0044】更に実施例17の鋳型の側面に複数個の貫
通穴を施した鋳型に鋳込んだ(実施例18)。
Further, the mold of Example 17 was cast into a mold having a plurality of through holes in the side surface (Example 18).

【0045】このようにして製作したインゴット長手方
向の断面マクロ組織を観察した。鋳鉄に鋳込んた比較例
9では、重量偏析か顕著にみとめられたが、Cu及びC
uCr合金に鋳込んだインゴットでは、鋳鉄よりも冷却
速度が速いためか、より均質なマクロ組織を得られた。
A cross-sectional macrostructure in the longitudinal direction of the ingot manufactured as described above was observed. In Comparative Example 9 cast into cast iron, weight segregation was remarkably observed, but Cu and C
In the ingot cast into the uCr alloy, a more uniform macrostructure was obtained, probably because the cooling rate was higher than that of cast iron.

【0046】更に表面積を広くした縦長のCu鋳型に鋳
込んだものは、より均質なマクロ組織を得られたが、細
長いためガス抜きがうまく行かなかったせいか、内部に
多くの空孔が認められた。これに対し、縦長のCu鋳型
の側面に、多くの貫通穴をあけたインゴットでは前述の
空孔が少なかった。
A more uniform macrostructure was obtained in the case of casting into a vertically elongated Cu mold having a larger surface area. Was done. On the other hand, in the ingot in which many through holes were formed on the side surface of the vertically long Cu mold, the number of the aforementioned holes was small.

【0047】これらの材料の任意の部分から加工し、同
様に再点弧評価を実施した。再点弧発生頻度に大差は認
められないが、急冷する分バラツキは減少する方向にあ
り、良好な傾向を示すことが判る。
Processing was performed from any part of these materials, and the re-ignition evaluation was similarly performed. Although there is no significant difference in the frequency of restriking, it can be seen that the variation tends to decrease due to rapid cooling, indicating a favorable tendency.

【0048】[0048]

【表5】 以上述べた実施例のみに限らず本実施例以外でも、溶解
法,耐弧成分材料の形態,第3元素添加量,鋳型の材質
形状を組み合わせることによって、再点弧発生頻度を抑
制できること、及び均質なインゴットの製造による材料
歩留まりを向上できることは明白である。また、本発明
が連続鋳造など他の溶解法にも適用できることは勿論で
ある。
[Table 5] Not only in the above-described embodiment but also in other embodiments, the re-ignition frequency can be suppressed by combining the melting method, the form of the arc-resistant component material, the amount of the third element added, and the material shape of the mold. Obviously, the production of a homogeneous ingot can improve the material yield. In addition, it goes without saying that the present invention can be applied to other melting methods such as continuous casting.

【0049】さらに、本発明で得られたインゴットに任
意の塑性加工・熱処理等を加味して所定の接点に加工で
きることも明白である。
Further, it is apparent that the ingot obtained by the present invention can be worked into a predetermined contact by taking into account any plastic working and heat treatment.

【0050】以上述べた本発明によれば、再点弧発生を
抑制できる耐電圧特性に優れた接点材料を歩留まり良く
提供することができる。
According to the present invention described above, it is possible to provide a contact material having excellent withstand voltage characteristics capable of suppressing occurrence of restriking with a high yield.

【0051】[0051]

【発明の効果】本発明により、真空バルブ用接点材料の
製造方法の性能を向上させることができる。
According to the present invention, the performance of the method for producing a contact material for a vacuum valve can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明が適用される真空バルブの断面図であ
る。
FIG. 1 is a sectional view of a vacuum valve to which the present invention is applied.

【図2】図1の接点部の拡大断面図である。FIG. 2 is an enlarged sectional view of a contact portion of FIG.

【符号の説明】[Explanation of symbols]

1 遮断室 2 絶縁容器 3a,3b 封止金具 4a,4b 蓋体 5、6 導電棒 7、8 電極 9 ベローズ 10、11 アークシールド 13a,13b 接点 DESCRIPTION OF SYMBOLS 1 Shutoff room 2 Insulating container 3a, 3b Sealing fitting 4a, 4b Lid 5, 6 Conductive rod 7, 8 Electrode 9 Bellows 10, 11 Arc shield 13a, 13b Contact

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 敦史 東京都府中市東芝町1番地 株式会社東芝 府中工場内 (72)発明者 草野 貴史 東京都府中市東芝町1番地 株式会社東芝 府中工場内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Atsushi Yamamoto 1 Toshiba-cho, Fuchu-shi, Tokyo Inside the Toshiba Fuchu Plant Co., Ltd.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 Cuを含有する導電成分と、Cr,V,
W,Mo,Ta,Nb,Feのうち少なくとも1種類以
上を含有する耐弧成分を含有した接点材料素材を、導電
成分融点から耐弧成分融点の範囲内で溶解したのち鋳造
して得られることを特徴とする真空バルブ用接点材料の
製造方法。
A conductive component containing Cu, Cr, V,
A material obtained by melting a contact material containing an arc-resistant component containing at least one of W, Mo, Ta, Nb, and Fe within a range from the melting point of the conductive component to the melting point of the arc-resistant component, and then casting. A method for producing a contact material for a vacuum valve, comprising:
【請求項2】 導電成分が40乃至90体積%であるこ
とを特徴とする請求項1に記載した真空バルブ用接点材
料の製造方法。
2. The method according to claim 1, wherein the conductive component is 40 to 90% by volume.
【請求項3】 耐弧成分原料が平均粒径1μm−10m
mの粉体または粒体を含むことを特徴とする請求項1ま
たは請求項2記載の真空バルブ用接点材料の製造方法。
3. The arc-resistant component raw material has an average particle size of 1 μm to 10 m.
The method for producing a contact material for a vacuum valve according to claim 1, wherein the method comprises a powder or a granular material of m.
【請求項4】 Bi,In,Sn,Te,Pbのうち少
なくとも1種類以上を0.05体積%乃至3体積%以下
添加して溶解することを特徴とする請求項1乃至請求項
3記載の真空バルブ用接点材料の製造方法。
4. The method according to claim 1, wherein at least one of Bi, In, Sn, Te, and Pb is dissolved by adding 0.05 to 3% by volume. Manufacturing method of contact material for vacuum valve.
【請求項5】 B,C,Ti,Zr,Y,Alのうち少
なくとも1種類以上を0.01体積%乃至5体積%以下
添加して溶解することを特徴とする請求項1乃至請求項
4記載の真空バルブ用接点材料の製造方法。
5. The method according to claim 1, wherein at least one of B, C, Ti, Zr, Y, and Al is added and dissolved in an amount of 0.01% by volume to 5% by volume. A method for producing the contact material for a vacuum valve as described above.
【請求項6】 鋳型がCu,Cu合金,Fe,Fe合金
のうち少なくとも1つをもって製造されることを特徴と
する請求項1乃至請求項5記載の真空バルブ用接点材料
の製造方法。
6. The method for manufacturing a contact material for a vacuum valve according to claim 1, wherein the mold is manufactured using at least one of Cu, Cu alloy, Fe, and Fe alloy.
【請求項7】 鋳型深さLが鋳型直径Dの1.5倍以上
の長さであることを特徴とする請求項1乃至請求項6記
載の貞空バルブ用接点材料の製造方法。
7. The method according to claim 1, wherein the mold depth L is at least 1.5 times the mold diameter D.
【請求項8】 鋳型の側面に複数個の貫通穴を開けたこ
とを特徴とする請求項1乃至請求項7記載の真空バルブ
用接点材料の製造方法。
8. The method for manufacturing a contact material for a vacuum valve according to claim 1, wherein a plurality of through holes are formed in a side surface of the mold.
【請求項9】 溶解法が真空溶解法または連続鋳造法で
あることを特徴とする請求項1乃至請求項8記載の真空
バルブ用接点材料の製造方法。
9. The method for producing a contact material for a vacuum valve according to claim 1, wherein the melting method is a vacuum melting method or a continuous casting method.
JP16903797A 1997-06-25 1997-06-25 Manufacture of contact material for vacuum valve Pending JPH1116454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16903797A JPH1116454A (en) 1997-06-25 1997-06-25 Manufacture of contact material for vacuum valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16903797A JPH1116454A (en) 1997-06-25 1997-06-25 Manufacture of contact material for vacuum valve

Publications (1)

Publication Number Publication Date
JPH1116454A true JPH1116454A (en) 1999-01-22

Family

ID=15879153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16903797A Pending JPH1116454A (en) 1997-06-25 1997-06-25 Manufacture of contact material for vacuum valve

Country Status (1)

Country Link
JP (1) JPH1116454A (en)

Similar Documents

Publication Publication Date Title
JPH01111832A (en) Electrode material for vacuum switch
JP2908073B2 (en) Manufacturing method of contact alloy for vacuum valve
JP3428416B2 (en) Vacuum circuit breaker, vacuum valve and electric contact used therefor, and manufacturing method
JPS6359217B2 (en)
JPH10255603A (en) Contact material for vacuum valve
JP2006228684A (en) Contact point material for vacuum valve, the vacuum valve, and manufacturing method thereof
JPH1116454A (en) Manufacture of contact material for vacuum valve
JP2653461B2 (en) Manufacturing method of contact material for vacuum valve
JP5002398B2 (en) Contact materials for vacuum circuit breakers
JP2006032036A (en) Contact material for vacuum valve
JP2937620B2 (en) Manufacturing method of contact alloy for vacuum valve
JPH0682532B2 (en) Method for manufacturing contact alloy for vacuum valve
JP4515695B2 (en) Contact materials for vacuum circuit breakers
JP3833519B2 (en) Vacuum circuit breaker
JP4156867B2 (en) Contact and vacuum circuit breaker equipped with the same
JP4476542B2 (en) Vacuum circuit breaker
JP2000188045A (en) Vacuum breaker, vacuum bulb used therefor and its electrode
JPH0443521A (en) Contact or vacuum valve
GB2105910A (en) A contact member for vacuum isolating switches
JPH0347931A (en) Contact material for vacuum valve
JP2003183749A (en) Vacuum circuit-breaker and contact material for this
JP2001319550A (en) Contact material for vacuum valve, method of producing contact material for vacuum valve, and vacuum valve
JPH04129119A (en) Manufacture of electrode material
JP2653467B2 (en) Manufacturing method of contact alloy for vacuum valve
JPH08291350A (en) Contact material for vacuum valve