JPH11160553A - Hexagonal-core plastic optical multifiber - Google Patents

Hexagonal-core plastic optical multifiber

Info

Publication number
JPH11160553A
JPH11160553A JP9340852A JP34085297A JPH11160553A JP H11160553 A JPH11160553 A JP H11160553A JP 9340852 A JP9340852 A JP 9340852A JP 34085297 A JP34085297 A JP 34085297A JP H11160553 A JPH11160553 A JP H11160553A
Authority
JP
Japan
Prior art keywords
core
optical fiber
fiber
hexagonal
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9340852A
Other languages
Japanese (ja)
Inventor
Toshinori Sumi
敏則 隅
Masaji Okamoto
正司 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP9340852A priority Critical patent/JPH11160553A/en
Publication of JPH11160553A publication Critical patent/JPH11160553A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide the circular plastic optical multifiber with hexagonal multicore which has small bending loss and has the transmitting quantity of light equal to that of a plastic optical fiber with a single core. SOLUTION: The plastic optical mulifiber has >=18 light-transmissive core parts of 314 to 32000 μm<2> sectional area arranged in a circularly-sectioned sea part of 0.2 to 2 mm diameter and the core parts occupy the fiber section by >=80% in terms of area and do not come into contact with the fiber outer peripheral edge and the respective core parts are hexagonal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光電センサ、ライ
トガイド、画像伝送体、通信用等の分野に使用される六
角芯プラスチック製マルチ光ファイバに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hexagonal-core plastic multi-optical fiber used in fields such as a photoelectric sensor, a light guide, an image transmitter, and a communication.

【0002】[0002]

【従来の技術】従来、光電センサに用いられる多芯のプ
ラスチックマルチ光ファイバについては、特開平5−1
34120号公報によれば、芯の直径が30〜300μ
mの範囲が好ましいことが示され、特開平5−4018
0号公報においてもそれぞれ芯の直径は5〜50μmの
範囲が好ましいことが示され、更に特開平9−1543
2号公報においても芯の直径は50〜200μmの範囲
が好ましいことが示されている。
2. Description of the Related Art Conventionally, a multi-core plastic multi-optical fiber used for a photoelectric sensor is disclosed in
According to Japanese Patent No. 34120, the core has a diameter of 30 to 300 μm.
m is shown to be preferable.
No. 0 also discloses that the diameter of each core is preferably in the range of 5 to 50 μm.
No. 2 also discloses that the core preferably has a diameter of 50 to 200 μm.

【0003】しかしながら、これら多芯のプラスチック
マルチ光ファイバでは、曲げたときに曲げによるロス
は、単芯のプラスチック光ファイバに比べて小さいが、
個々の光伝送性芯部が直径で規定され、芯部を円形に保
って芯部の全体に占める面積率を80%以上にすること
ができず、光伝送性芯部の総面積を実質的には単芯の光
ファイバと同等にまで大きくすることができないという
問題があり、単芯のプラスチック光ファイバと同等の伝
送光量を得ることができなかった。
However, in these multi-core plastic optical fibers, the loss due to bending when bent is smaller than that of a single-core plastic optical fiber.
Each light transmitting core portion is defined by a diameter, and the core portion cannot be kept circular so that the area ratio of the entire core portion cannot be 80% or more, and the total area of the light transmitting core portion is substantially reduced. Has a problem that it cannot be increased to the same size as a single-core optical fiber, and it is not possible to obtain a transmission light amount equivalent to that of a single-core plastic optical fiber.

【0004】また特開平1−18108号公報には直径
が5〜200μmで断面が略六角形の島を有する光伝送
性を高めたプラスチックマルチ光ファイバが示されてい
るが、光ファイバ全体の断面形状が矩形であり、島部を
六角形状にしても光ファイバの断面形状が矩形の場合は
曲げ異方性が生じて、光電センサとして用いることは実
質的に不可能であった。
Japanese Patent Application Laid-Open No. 1-118108 discloses a plastic multi-optical fiber having a light transmission property having a diameter of 5 to 200 μm and an island having a substantially hexagonal cross section, and the cross section of the entire optical fiber is disclosed. If the optical fiber is rectangular in shape and the cross section of the optical fiber is rectangular even if the island portion is hexagonal, bending anisotropy occurs, and it is practically impossible to use it as a photoelectric sensor.

【0005】[0005]

【発明が解決しようとする課題】本発明者らは、プラス
チック製マルチ光ファイバにおいて、曲げによるロスが
小さく、かつ単芯のプラスチック光ファイバと同等の伝
送光量を得るために種々検討した結果、多芯のプラスチ
ックマルチ光ファイバにおける個々の芯部の断面形状を
六角形状にすることで、ファイバ断面積における光伝送
性芯部の総断面積を80%以上にすることが可能にな
り、受光面を単芯のファイバ並にできることを見出し、
本発明に至った。本発明の目的は、曲げによるロスが小
さく、かつ単芯のプラスチック光ファイバと同等の伝送
光量を得る芯が六角形の多芯の円形プラスチック製マル
チ光ファイバを提供することにある。
SUMMARY OF THE INVENTION The present inventors have conducted various studies to obtain a transmission light amount equivalent to that of a single-core plastic optical fiber with a small loss due to bending in a plastic multi-optical fiber. By making the cross-sectional shape of each core portion of the core plastic multi-optical fiber into a hexagonal shape, the total cross-sectional area of the light-transmitting core portion in the fiber cross-sectional area can be made 80% or more, and the light receiving surface can be reduced. Finding that it can be comparable to a single-core fiber,
The present invention has been reached. SUMMARY OF THE INVENTION An object of the present invention is to provide a hexagonal multi-core circular plastic multi-optical fiber having a small loss due to bending and having a transmission light amount equivalent to that of a single-core plastic optical fiber.

【0006】[0006]

【課題を解決するための手段】本発明は、直径0.2〜
2mmの実質的に円形断面のファイバの海部に断面積が
314〜32000μm2の光伝送性の芯部が18個以
上配置されたプラスチック製マルチ光ファイバであっ
て、ファイバ断面において芯部の総断面積が80%以上
占め、かつファイバ外周縁とは接していない各芯部が六
角形状をなすことを特徴とする六角芯プラスチック製マ
ルチ光ファイバ、にある。
According to the present invention, a diameter of 0.2 to 0.2 mm is provided.
A plastic multi-optical fiber in which 18 or more optically transmissive cores having a cross-sectional area of 314 to 32000 μm 2 are arranged in a sea portion of a fiber having a substantially circular cross section of 2 mm, and a total cross section of the core in the fiber cross section. A hexagonal-core plastic multi-optical fiber characterized in that each core portion occupying 80% or more and not in contact with the outer peripheral edge of the fiber has a hexagonal shape.

【0007】[0007]

【発明の実施の形態】本発明の光ファイバは、海部に多
数の芯部が存在する構造をなし、ファイバ全体の断面形
状が直径0.2〜2mmの実質的な円形をなしている。
海部に存在する芯部は、光伝送性を有するもので、断面
積314〜32000μm2の範囲から選ばれたほぼ一
定の断面積を有する芯部が海部に18個以上配置されて
いる。光ファイバの断面での直径が2mmを超えると、
剛性が増し、また従来の光ファイバの使用分野での互換
性が失われ、直径が0.2mm未満では、光伝送性能が
低下するだけでなく、必要な芯部の形成が困難となる。
BEST MODE FOR CARRYING OUT THE INVENTION The optical fiber of the present invention has a structure in which a number of cores are present in the sea area, and the cross-sectional shape of the entire fiber has a substantially circular shape having a diameter of 0.2 to 2 mm.
The core existing in the sea has optical transmission properties, and 18 or more cores having a substantially constant cross-sectional area selected from a range of 314 to 32000 μm 2 are arranged in the sea. When the diameter of the cross section of the optical fiber exceeds 2 mm,
The rigidity is increased, and the compatibility in the field of use of the conventional optical fiber is lost. When the diameter is less than 0.2 mm, not only the optical transmission performance is reduced, but also it becomes difficult to form a necessary core.

【0008】本発明の光ファイバにおいて、芯部及び海
部はそれぞれ異なる樹脂で形成されるが、芯部と海部の
境界部に他の樹脂層が形成されていてもよい。また、多
数の芯部が存在する海部の外周部に他の樹脂或いは海部
と同じ樹脂による保護層が設けられていてもよい。
In the optical fiber of the present invention, the core and the sea are formed of different resins, but another resin layer may be formed at the boundary between the core and the sea. Further, a protective layer made of another resin or the same resin as the sea portion may be provided on the outer peripheral portion of the sea portion where many core portions exist.

【0009】本発明の光ファイバにおいては、ファイバ
断面において芯部の総断面積が80%以上占め、かつフ
ァイバ外周縁とは接していない各芯部が六角形状をなし
ていることに特徴があり、従って芯部の配置は、外形が
円形に近くなるように俵積み状に最密充填することが芯
部の変形が起き難いことから好ましい。ここで外周縁と
接する芯部とは、図1及び図2のdで示すように、芯部
の一部とファイバ外周縁とが他の芯部を介さずに直接接
している芯部を指す。芯部が変形したものは、伝送され
る光が光伝送部内で反射される際にモード変化し、最終
的に伝搬されるモード数が少なくなるという問題を生じ
る。
The optical fiber according to the present invention is characterized in that the total cross-sectional area of the core in the fiber cross section occupies 80% or more, and each core not in contact with the outer peripheral edge of the fiber has a hexagonal shape. Therefore, it is preferable to arrange the core portion in a close-packed manner in a bale-stacked shape so that the outer shape becomes close to a circle because the core portion is unlikely to be deformed. Here, the core portion in contact with the outer peripheral edge refers to a core portion in which a part of the core portion and the outer peripheral edge of the fiber directly contact without interposing another core portion as shown in FIGS. 1 and 2d. . When the core is deformed, the mode changes when the transmitted light is reflected in the optical transmission unit, causing a problem that the number of modes finally propagated is reduced.

【0010】図1、図2に本発明の光ファイバの断面構
造の例をそれぞれ示す。図1及び図2中、aはファイバ
外周縁とは接していない芯部で、この芯部は1種類以上
の樹脂によって形成され、bは海部、dはファイバ外周
縁に接する芯部である。図2中、cは保護層であり、保
護層cに海部bと同じ樹脂を用いた場合には、図1にお
ける海部bと同様になる。
FIGS. 1 and 2 show examples of the cross-sectional structure of the optical fiber of the present invention. 1 and 2, a is a core portion not in contact with the outer peripheral edge of the fiber, this core portion is formed of one or more types of resin, b is a sea portion, and d is a core portion in contact with the outer peripheral edge of the fiber. In FIG. 2, c is a protective layer. When the same resin as the sea part b is used for the protective layer c, it becomes the same as the sea part b in FIG.

【0011】本発明の光ファイバにおいては、ファイバ
外周縁に接する芯部の形状は、四角形乃至五角形に近い
ものであるが、芯部のファイバ断面に占める総断面積を
80%以上とすることにより、光伝送に有効な六角形状
をなす芯部の存在比が高まり、光ファイバ全体としては
優れた光伝送性能を発揮する。
In the optical fiber according to the present invention, the shape of the core portion in contact with the outer peripheral edge of the fiber is close to a quadrangle to a pentagon, but the total cross-sectional area of the core in the fiber cross section is set to 80% or more. In addition, the ratio of the hexagonal core portion effective for optical transmission is increased, and the optical fiber as a whole exhibits excellent optical transmission performance.

【0012】ファイバ断面において芯部の総断面積の占
める割合は、好ましくは90%以上、より好ましくは9
5%以上98%以下である。ちなみに単芯の光ファイバ
における光伝送性芯部の面積はファイバ断面の約96%
程度である。
The percentage of the total cross-sectional area of the core in the fiber cross section is preferably 90% or more, and more preferably 9% or more.
5% or more and 98% or less. Incidentally, the area of the optical transmission core in a single-core optical fiber is about 96% of the fiber cross section.
It is about.

【0013】ファイバ外周縁とは接していない内側の芯
部の六角形の形状は、正六角形でもよいが、角部が滑ら
かな曲率を有する六角形状であることが好ましい。ま
た、各辺は直線でも曲率を有していても特に問題ではな
い。
The hexagonal shape of the inner core that is not in contact with the outer peripheral edge of the fiber may be a regular hexagon, but it is preferable that the corner has a hexagonal shape having a smooth curvature. It does not matter whether each side has a straight line or a curvature.

【0014】本発明の光ファイバは、ファイバ全体の断
面形状が円形であることにより、矩形等におけるような
曲げ異方性を生じないが、断面形状が円形に近い角部が
丸みを帯びた多角形であってもよく、断面形状が円形に
近い多角形であれば、曲げ異方性が小さく、小さな曲率
での曲げを必要としない分野での使用を可能とする。ま
た、本発明の光ファイバは、ファイバ断面において芯部
の総断面積を大きくすると、外周縁に位置する芯部が光
ファイバとしての取り扱い時にダメージを受ける恐れが
あり、その用途を想定して、ファイバ外周に保護層を設
けることが効果的である。
In the optical fiber of the present invention, since the cross-sectional shape of the whole fiber is circular, bending anisotropy such as a rectangular shape does not occur. A polygonal shape may be used, and if the cross-sectional shape is a polygonal shape close to a circle, the bending anisotropy is small and it can be used in a field that does not require bending at a small curvature. Further, the optical fiber of the present invention, if the total cross-sectional area of the core in the fiber cross section is increased, the core located at the outer peripheral edge may be damaged during handling as an optical fiber, assuming its use, It is effective to provide a protective layer around the fiber.

【0015】本発明の光ファイバは、その用途に特に限
定はなく、光電センサやライトガイド、画像伝送体等の
光ファイバを利用する全ての分野に用いることができ、
用途に応じて光ファイバ直径、芯部の直径と個数、芯
部、海部或いは保護層の構成素材が決定され、またケー
ブル等の使用形態により更に被覆層が適宜設けられる。
The use of the optical fiber of the present invention is not particularly limited, and it can be used in all fields using optical fibers, such as photoelectric sensors, light guides, and image transmission bodies.
The diameter of the optical fiber, the diameter and number of cores, the material of the core, the sea, or the protective layer are determined depending on the application, and a coating layer is further provided as appropriate according to the usage of the cable or the like.

【0016】本発明の光ファイバの製造に際しては、芯
部成分、海部成分を用意し、芯部の数に相当するノズル
孔を外形が略円形状になるように最密充填配列で配置し
た紡糸ノズルに芯部成分及び海部成分を供給して複数本
の芯−海構造を形成し、この芯−海構造の形成と同時に
或いはその後に複数本の芯−海構造体を一体化し、必要
に応じて保護層を被覆し、延伸することにより本発明の
光ファイバを製造することができる。複数本の芯−海構
造体の一体化時に口金を用いて互いの芯−海構造体を密
着させ隙間を埋めるようにして六角形状の芯部を形成さ
せる。この一体化時の口金には、形状が円筒状やロート
状のものが好ましく用いられる。また、芯−海構造体の
一体化時に芯部が六角形状になるが、紡糸ノズルとして
予めノズル孔が六角断面形状のものを用い、芯部の六角
形状の形成をより容易にすることもできる。
In producing the optical fiber of the present invention, a core component and a sea component are prepared, and a nozzle hole corresponding to the number of cores is arranged in a close-packed arrangement so that the outer shape becomes substantially circular. The core component and the sea component are supplied to the nozzle to form a plurality of core-sea structures, and the plurality of core-sea structures are integrated simultaneously with or after the formation of the core-sea structure, and if necessary, The optical fiber of the present invention can be manufactured by coating the protective layer with the protective layer and stretching. When a plurality of core-sea structures are integrated, the core-sea structures are brought into close contact with each other by using a base to form a hexagonal core portion so as to fill a gap. A cylindrical or funnel-shaped die is preferably used for the integration. In addition, when the core-sea structure is integrated, the core portion becomes hexagonal. However, it is possible to use a nozzle having a hexagonal cross-section in advance as a spinning nozzle, so that the hexagonal shape of the core portion can be more easily formed. .

【0017】延伸は、光ファイバ形成後、或いは保護層
被覆後に行うが、延伸倍率は1.2〜4倍の範囲で必要
な光学特性と機械的特性を満足するように決定する。光
ファイバの加熱・冷却を目的として、紡糸或いは延伸工
程において液体中を通すこともできる。
The stretching is performed after the formation of the optical fiber or after the coating of the protective layer. The stretching ratio is determined in the range of 1.2 to 4 times so as to satisfy the required optical and mechanical properties. For the purpose of heating and cooling the optical fiber, it can be passed through a liquid in the spinning or drawing step.

【0018】本発明の光ファイバが光電センサ、通信用
等のように光ファイバの外周に更に樹脂被覆を施したケ
ーブルの形態で用いる場合は、別工程或いは光ファイバ
の製造と同時に樹脂を被覆する。
When the optical fiber of the present invention is used in the form of a cable in which the outer periphery of the optical fiber is further coated with a resin, such as a photoelectric sensor or for communication, the resin is coated in a separate step or simultaneously with the production of the optical fiber. .

【0019】芯部成分としては、公知の光ファイバに使
用される各種の透明性の高い樹脂が用いられ、スチレン
系、ポリカーボネート系、メチルメタクリレート系等の
各種樹脂が挙げられる。特に好ましい樹脂としてはメチ
ルメタクリレート(MMA)単独重合体や、ベンジルメ
タクリレート(BzMA)を主成分とする共重合体が用
いられる。
As the core component, various highly transparent resins used in known optical fibers are used, and various resins such as styrene, polycarbonate, methyl methacrylate and the like can be mentioned. Particularly preferred resins include a methyl methacrylate (MMA) homopolymer and a copolymer containing benzyl methacrylate (BzMA) as a main component.

【0020】海部成分としては、芯部成分よりも屈折率
が低い樹脂が用いられ、メチルメタクリレート系樹脂、
メチルアクレリート系樹脂、フッ化ビニリデン系樹脂、
フッ化メタクリレート系樹脂、フッ化アクリレート系樹
脂、テフロン系樹脂等が挙げられ、例えば、2,2,2
−トリフルオロエチルメタクリレート単独重合体、フッ
化ビニリデン(2F)/テトラフルオロエチレン(4
F)共重合体、2,2,3,3,3−ペンタフルオロプ
ロピルメタクリレート(5FM)/1,1,2,2−テ
トラヒドロキシパーフルオロデシルメタクリレート(1
7FM)/MMA/メタクリル酸(MAA)共重合体、
5FM/17FM/MMA/MAA共重合体、MMA/
17FM共重合体、MMA/BzMA共重合体、MMA
重合体と2F/4F共重合体のブレンド物等が好ましく
用いられる。
As the sea component, a resin having a lower refractive index than the core component is used, and a methyl methacrylate resin,
Methyl acrylate resin, vinylidene fluoride resin,
Examples include fluorinated methacrylate-based resins, fluorinated acrylate-based resins, and Teflon-based resins.
Trifluoroethyl methacrylate homopolymer, vinylidene fluoride (2F) / tetrafluoroethylene (4
F) Copolymer, 2,2,3,3,3-pentafluoropropyl methacrylate (5FM) / 1,1,2,2-tetrahydroxyperfluorodecyl methacrylate (1
7FM) / MMA / methacrylic acid (MAA) copolymer,
5FM / 17FM / MMA / MAA copolymer, MMA /
17FM copolymer, MMA / BzMA copolymer, MMA
A blend of a polymer and a 2F / 4F copolymer is preferably used.

【0021】保護層に用いられる成分としては、前述の
芯部成分、海部成分と同様の樹脂が用いられる。また、
樹脂被覆材としては、各種の熱可塑性樹脂が使用でき
る。特に好ましい樹脂としては、ポリエチレン、水架橋
ポリエチレン、オレフィン系エラストマ、塩素化ポリエ
チレン、エチレン/酢酸ビニル共重合体、塩化ビニル重
合体とエチレン/酢酸ビニル共重合体のブレンド物、塩
化ビニル重合体等が挙げられる。また、樹脂被覆材とし
て、フェノール樹脂、ユリア樹脂、メラミン樹脂、不飽
和ポリエステル樹脂、ウレタン樹脂、エポキシ樹脂等の
熱硬化性樹脂、光重合開始剤を含むメチルメタクリレー
ト等の光硬化性樹脂、アクリル樹脂、トランスイソプレ
ン、ポリウレタン、ノルボネル、スチレン/ブタジエン
共重合体等のポリ形状記憶樹脂も用いられる。さらに金
属微粉や金属短繊維、金属長繊維を含んだこれら樹脂も
樹脂被覆材として用いられる。
As the components used for the protective layer, the same resins as the core component and the sea component described above are used. Also,
Various thermoplastic resins can be used as the resin coating material. Particularly preferred resins include polyethylene, water-crosslinked polyethylene, olefin-based elastomer, chlorinated polyethylene, ethylene / vinyl acetate copolymer, blends of vinyl chloride polymer and ethylene / vinyl acetate copolymer, vinyl chloride polymer, and the like. No. Further, as a resin coating material, a thermosetting resin such as a phenol resin, a urea resin, a melamine resin, an unsaturated polyester resin, a urethane resin, an epoxy resin, a photocurable resin such as methyl methacrylate containing a photopolymerization initiator, an acrylic resin Also, poly shape memory resins such as trans isoprene, polyurethane, norbonel, and styrene / butadiene copolymer are used. Further, these resins containing fine metal powder, short metal fibers and long metal fibers are also used as resin coating materials.

【0022】本発明の光ファイバの製造において、芯
部、海部或いは保護層に用いる各樹脂のメルトフローレ
ートは特に限定されず、紡糸可能な範囲内の樹脂であれ
ば用いることができる。
In the production of the optical fiber of the present invention, the melt flow rate of each resin used for the core portion, the sea portion or the protective layer is not particularly limited, and any resin can be used as long as it is in a range where spinning is possible.

【0023】[0023]

【実施例】以下、本発明を実施例により具体的に説明す
る。
The present invention will be described below in more detail with reference to examples.

【0024】(実施例1)芯部成分としてポリメチルメ
タクリレート、海部成分及び保護層成分としてフッ化ビ
ニリデン/テトラフルオロエチレン共重合体を用い、1
51個のノズル孔を外形が略円形状になるように最密充
填配列で配置した紡糸ノズルとロート状の口金を組み合
わせて紡糸を行い、2倍に延伸して、断面積が4941
μm2で形状が六角形の光伝送性芯部を151個有する
外径が1.0mmの円形断面のプラスチック製マルチ光
ファイバを得た。この光ファイバの断面積における芯部
の総断面積の割合は95%であった。但し、この光ファ
イバの外周縁に接する芯部の形状は四角形乃至五角形で
あり、光ファイバの外周縁とは接していない芯部の形状
は六角形であった。
Example 1 Polymethyl methacrylate was used as the core component, and vinylidene fluoride / tetrafluoroethylene copolymer was used as the sea component and the protective layer component.
Spinning is performed by combining a spinning nozzle in which 51 nozzle holes are arranged in a close-packed arrangement so that the outer shape is substantially circular, and a funnel-shaped die.
A plastic multi-optical fiber having a circular cross section and an outer diameter of 1.0 mm having 151 μm 2 and a hexagonal light transmitting core was obtained. The ratio of the total cross-sectional area of the core to the cross-sectional area of the optical fiber was 95%. However, the shape of the core portion in contact with the outer peripheral edge of this optical fiber was square or pentagonal, and the shape of the core portion not in contact with the outer peripheral edge of the optical fiber was hexagonal.

【0025】このプラスチック製マルチ光ファイバの外
周に塩化ビニル重合体とエチレン/酢酸ビニル共重合体
のブレンド物を被覆した外径2.2mmの光ファイバケ
ーブルと、外径1mmの単芯の光ファイバにポリエチレ
ンを被覆した外径2.2mmの光ファイバケーブル(三
菱レイヨン社製、SH−4001)を、各2mの長さに
切断し、一端から開口数NA0.1、波長650nmの
光を入射し、他端での出射光量を測定した結果、このプ
ラスチック製マルチ光ファイバの出射光量は、単芯の光
ファイバとほぼ同等の値が得られた。また、このプラス
チック製マルチ光ファイバは直径2mmの棒に1回巻き
付けた時の曲げ異方性がなく、光量は巻き付ける前の9
9%以上を保持していた。
An optical fiber cable having an outer diameter of 2.2 mm, in which a blend of a vinyl chloride polymer and an ethylene / vinyl acetate copolymer is coated on the outer periphery of the plastic multi-optical fiber, and a single-core optical fiber having an outer diameter of 1 mm An optical fiber cable (SH-4001 manufactured by Mitsubishi Rayon Co., Ltd.) having an outer diameter of 2.2 mm and coated with polyethylene is cut to a length of 2 m each, and light having a numerical aperture of NA 0.1 and a wavelength of 650 nm is incident from one end. As a result of measuring the amount of emitted light at the other end, the amount of emitted light of this plastic multi-optical fiber was almost equal to that of a single-core optical fiber. Also, this plastic multi-optical fiber has no bending anisotropy when wound once around a rod having a diameter of 2 mm, and the amount of light is 9 times before winding.
9% or more was retained.

【0026】(比較例1)芯部成分の樹脂及び海部成分
の樹脂は、実施例1と同じ樹脂を用い、151個のノズ
ル孔を外形が略円形状になる様に同心円状に配置した紡
糸ノズルで紡糸を行い、2倍に延伸して、光伝送性芯部
が全て円形の状態で、ファイバの断面積における芯部の
総面積を最大にした外径が1.0mmの円形断面のプラ
スチック製マルチ光ファイバを得たが、このファイバの
断面積における芯部の総断面積の割合は78%であっ
た。
(Comparative Example 1) The same resin as in Example 1 was used as the resin of the core component and the resin of the sea component, and spinning was performed in which 151 nozzle holes were concentrically arranged so that the outer shape was substantially circular. Spun with a nozzle, stretched by a factor of two, and with a light-transmitting core all in a circular state, a plastic with a circular cross-section with an outer diameter of 1.0 mm that maximizes the total area of the core in the cross-sectional area of the fiber A multi-optical fiber manufactured was obtained, and the ratio of the total cross-sectional area of the core to the cross-sectional area of the fiber was 78%.

【0027】このプラスチック製マルチ光ファイバと外
径1.0mmの単芯の光ファイバ(三菱レイヨン社製、
SK−40)を各2mの長さに切断し、一端から開口数
NA0.1、波長650nmの光を入射し、他端での出
射光量を測定した結果、このプラスチック製マルチ光フ
ァイバの出射光量は、単芯の光ファイバの83%の値だ
った。但し、比較例1で得られた光ファイバは直径2m
mの棒に1回巻き付けた時の曲げ異方性がなく、光量は
巻き付ける前の95%以上を保持していた。
This plastic multi-optical fiber and a single-core optical fiber having an outer diameter of 1.0 mm (manufactured by Mitsubishi Rayon Co., Ltd.)
SK-40) was cut to a length of 2 m, light having a numerical aperture of NA 0.1 and a wavelength of 650 nm was incident from one end, and the output light amount was measured at the other end. As a result, the output light amount of this plastic multi-optical fiber was measured. Was 83% of that of a single-core optical fiber. However, the optical fiber obtained in Comparative Example 1 had a diameter of 2 m.
There was no bending anisotropy when wound once on the rod of m, and the light amount maintained 95% or more before winding.

【0028】[0028]

【発明の効果】本発明の六角芯プラスチック製マルチ光
ファイバは、曲げたときのロスが小さく、単芯のプラス
チック光ファイバと同等の伝送光量が得られ、かつ曲げ
異方性のないものであり、光電センサ、ライトガイド、
画像伝送体、通信用等の分野に好適に用いられる。
The hexagonal-core plastic optical fiber of the present invention has a small loss when bent, a transmission light amount equivalent to that of a single-core plastic optical fiber, and has no bending anisotropy. , Photoelectric sensor, light guide,
It is suitably used in fields such as image transmission and communication.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の六角芯プラスチック製マルチ光ファイ
バの一例の拡大断面図である。
FIG. 1 is an enlarged sectional view of an example of a hexagonal-core plastic multi-optical fiber of the present invention.

【図2】本発明の六角芯プラスチック製マルチ光ファイ
バの他の例の拡大断面図である。
FIG. 2 is an enlarged sectional view of another example of the hexagonal-core plastic multi-optical fiber of the present invention.

【符号の説明】[Explanation of symbols]

a ファイバ外周縁とは接していない芯部 b 海部 c 保護層 d 外周縁に接する芯部 a core portion not in contact with the outer peripheral edge of fiber b sea portion c protective layer d core portion in contact with the outer peripheral edge

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 直径0.2〜2mmの実質的に円形断面
のファイバの海部に断面積が314〜32000μm2
の光伝送性の芯部が18個以上配置されたプラスチック
製マルチ光ファイバであって、ファイバ断面において芯
部の総断面積が80%以上占め、かつファイバ外周縁と
は接していない各芯部が六角形状をなすことを特徴とす
る六角芯プラスチック製マルチ光ファイバ。
1. A fiber having a substantially circular cross section having a diameter of 0.2 to 2 mm and a cross section of 314 to 32000 μm 2 at the sea portion.
A multi-optical fiber made of plastic having 18 or more optically transmitting cores, wherein the total cross-sectional area of the cores in the fiber cross-section occupies 80% or more and is not in contact with the outer periphery of the fiber. Is a hexagonal plastic multi-optical fiber characterized by having a hexagonal shape.
JP9340852A 1997-11-27 1997-11-27 Hexagonal-core plastic optical multifiber Pending JPH11160553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9340852A JPH11160553A (en) 1997-11-27 1997-11-27 Hexagonal-core plastic optical multifiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9340852A JPH11160553A (en) 1997-11-27 1997-11-27 Hexagonal-core plastic optical multifiber

Publications (1)

Publication Number Publication Date
JPH11160553A true JPH11160553A (en) 1999-06-18

Family

ID=18340910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9340852A Pending JPH11160553A (en) 1997-11-27 1997-11-27 Hexagonal-core plastic optical multifiber

Country Status (1)

Country Link
JP (1) JPH11160553A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040024348A (en) * 2002-09-14 2004-03-20 누비텍 주식회사 Plastic optical fiber with multi-layer structure of clad and one side layer of clad, POF with various shape and function, the equipment and method manufacturing the above POFs, applied products
JP2013231817A (en) * 2012-04-27 2013-11-14 Asahi Kasei E-Materials Corp Multicore optical fiber and manufacturing method of the same
WO2014163084A1 (en) 2013-04-02 2014-10-09 三菱レイヨン株式会社 Multi-core optical fiber and multi-core optical fiber cable
CN113831011A (en) * 2021-10-12 2021-12-24 桂林电子科技大学 Large-size multi-core optical fiber preform preparation method based on gapless splicing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040024348A (en) * 2002-09-14 2004-03-20 누비텍 주식회사 Plastic optical fiber with multi-layer structure of clad and one side layer of clad, POF with various shape and function, the equipment and method manufacturing the above POFs, applied products
JP2013231817A (en) * 2012-04-27 2013-11-14 Asahi Kasei E-Materials Corp Multicore optical fiber and manufacturing method of the same
WO2014163084A1 (en) 2013-04-02 2014-10-09 三菱レイヨン株式会社 Multi-core optical fiber and multi-core optical fiber cable
US9448358B2 (en) 2013-04-02 2016-09-20 Mitsubishi Rayon Co., Ltd. Multicore optical fiber and multicore optical fiber cable
CN113831011A (en) * 2021-10-12 2021-12-24 桂林电子科技大学 Large-size multi-core optical fiber preform preparation method based on gapless splicing

Similar Documents

Publication Publication Date Title
KR100248137B1 (en) Plastic fiber bundle for optical communication
AU2018208727B2 (en) Fiber optic ribbon
JP4102448B2 (en) Multicore plastic optical fiber for optical signal transmission
WO1994008261A1 (en) Hollow multicore optical fiber and manufacture thereof
JP5383984B2 (en) Plastic fiber optic plate
JPH09258028A (en) Side light leaking plastic optical fiber
JPH11160553A (en) Hexagonal-core plastic optical multifiber
JP4987666B2 (en) Fiber optic sensor
JP5106986B2 (en) Fiber optic sensor
JPH11167031A (en) Plastic multi optical fiber cable
JP3949748B2 (en) Manufacturing method of optical parts
JP3875354B2 (en) Multicore plastic optical fiber cable
JP4057691B2 (en) Mixed multi-core plastic optical fiber and optical communication method using the same
JPH05141923A (en) Photoelectric sensor fiber unit
JPH0933737A (en) Multiple plastic optical fiber and cable for optical communication
JPH1184147A (en) Optical fiber and illumination device
JP2000089043A (en) Multi core optical fiber
JPH09218327A (en) Plastic optical fiber cable
JP2002107587A (en) Plastic optical fiber cable and optical sensor having the same
JPH09311225A (en) Multiple optical fiber light guide
JP2003014986A (en) Method for connecting plastic optical fiber to light source
JPH0915432A (en) Plastic optical fiber for optical sensor
JP3961701B2 (en) Multicore plastic optical fiber for signal transmission
JPH11194220A (en) Plastic multi-optical fiber and cable
JPH03233409A (en) Plastic multifilament type optical fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070612