JPH11160533A - Reflection polarizer, liquid crystal device and electronic equipment - Google Patents

Reflection polarizer, liquid crystal device and electronic equipment

Info

Publication number
JPH11160533A
JPH11160533A JP9323005A JP32300597A JPH11160533A JP H11160533 A JPH11160533 A JP H11160533A JP 9323005 A JP9323005 A JP 9323005A JP 32300597 A JP32300597 A JP 32300597A JP H11160533 A JPH11160533 A JP H11160533A
Authority
JP
Japan
Prior art keywords
liquid crystal
reflective polarizer
layer
refractive index
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9323005A
Other languages
Japanese (ja)
Other versions
JP3924874B2 (en
Inventor
Osamu Okumura
治 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP32300597A priority Critical patent/JP3924874B2/en
Publication of JPH11160533A publication Critical patent/JPH11160533A/en
Application granted granted Critical
Publication of JP3924874B2 publication Critical patent/JP3924874B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133536Reflective polarizers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133545Dielectric stack polarisers

Landscapes

  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the reflection polarizer of a low polarization degree to light made incident from an oblique direction by alternately laminating many first layers provided with refractive index anisotropy within a plane and second layers not provided with the refractive index anisotropy within the plane and making the first layers be optically biaxial. SOLUTION: For this reflection polarizer, the two kinds of high polymer layers 101 and 102 are alternately laminated. Relating to the two kinds of high polymers, one is selected from the materials of a large photoelastic modulus and the other one is selected from the materials of a small photoelastic modulus and the refractive indexes of the ordinary rays of both are almost equal. The first layer 101 is provided with the refractive index anisotropy within the plane and the second layer 102 is hardly provided with the refractive index anisotropy within the plane. Also, the first layer 101 is optically biaxial. Among the light made incident obliquely within a y-z plane, the refractive index to the light vibrated within the y-z plane is different between the first layer 101 and the second layer 102. That is, as an incident angle becomes large, the ratio of reflected light increases and the polarization degree is degraded.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は反射偏光子及び液晶
装置に関し、さらにこの液晶装置を搭載した電子機器に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reflective polarizer and a liquid crystal device, and more particularly, to an electronic apparatus equipped with the liquid crystal device.

【0002】[0002]

【従来の技術】PDA等の情報ツールや携帯電話、ウォ
ッチ等の携帯型電子機器用途には、消費電力が小さい反
射型液晶装置や半透過反射型液晶装置が適している。し
かしながら、従来の反射型液晶装置や半透過型液晶装置
には、表示が暗いという課題があった。
2. Description of the Related Art Reflective liquid crystal devices and transflective liquid crystal devices with low power consumption are suitable for use in information tools such as PDAs and portable electronic devices such as mobile phones and watches. However, conventional reflective liquid crystal devices and transflective liquid crystal devices have a problem that the display is dark.

【0003】このような課題を解決する一手段として、
複屈折性の誘電体多層膜を利用した反射偏光子を利用す
る方法が、特表平9−506985号公報や、国際公開
された国際出願(国際出願の番号:WO97/0178
8)、Conference Record ofthe 1997 International D
isplay Research Conference,M-98,1997等に開示されて
いる。
[0003] As one means for solving such a problem,
A method using a reflective polarizer using a birefringent dielectric multilayer film is disclosed in Japanese Patent Application Laid-Open No. 9-506985 or an internationally published international application (international application number: WO97 / 0178).
8), Conference Record of the 1997 International D
It is disclosed in isplay Research Conference, M-98, 1997 and the like.

【0004】この複屈折性の誘電体多層膜は、所定の直
線偏光成分を反射し、それ以外の偏光成分を透過する機
能を有する。このような反射偏光子を反射型液晶装置や
半透過反射型液晶装置に利用すると、従来から利用され
ている金属反射板と異なり所定の偏光成分の光を全反射
する上、吸収型の偏光板のように光を吸収しないため、
大変に明るい表示が得られるという特徴を有する。
The birefringent dielectric multilayer film has a function of reflecting a predetermined linearly polarized light component and transmitting other polarized light components. When such a reflective polarizer is used in a reflective liquid crystal device or a semi-transmissive reflective liquid crystal device, unlike a conventionally used metal reflector, it totally reflects light of a predetermined polarization component and also has an absorption polarizer. Because it does not absorb light like
It has the feature that a very bright display can be obtained.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、こうし
た従来の複屈折性の誘電体多層膜を利用した反射偏光子
を用いても、まだ反射型液晶装置は表示が暗いという課
題があった。また反射型液晶装置には視差によって二重
像が生じるという別の問題もあった。
However, even when such a conventional reflective polarizer using a birefringent dielectric multilayer film is used, the reflective liquid crystal device still has a problem that the display is dark. The reflective liquid crystal device has another problem that a double image is generated due to parallax.

【0006】そこで本発明は、斜め方向から入射した光
に対する偏光度が低い反射偏光子を提供することを目的
とする。また本発明は、明るく二重像が見えにくい反射
型あるいは半透過反射型の液晶装置を提供することを目
的とする。
Accordingly, an object of the present invention is to provide a reflective polarizer having a low degree of polarization for light incident obliquely. Another object of the present invention is to provide a reflective or transflective liquid crystal device which is bright and makes it difficult to see a double image.

【0007】[0007]

【課題を解決するための手段】請求項1記載の反射偏光
子は、面内に屈折率異方性を有する第一の層と面内に屈
折率異方性を有しない第二の層を交互に多数積層して構
成されることを特徴とする反射偏光子であって、前記第
一の層が光学的二軸性であることを特徴とする。ある媒
質が光学的二軸性であるとは、光軸が2本あることを意
味する。また光軸とは複屈折を示さない軸方向を指す。
第一の層の3つの主屈折率をnx、ny、nzとする
と、第一の層が光学的二軸性であるということは、nx
とnyとnzがいずれも異なる値をとることと等価であ
る。このように構成したため、請求項1記載の反射偏光
子は、斜め方向から入射した光に対する偏光度が低くな
る。
According to a first aspect of the present invention, there is provided a reflective polarizer comprising a first layer having in-plane refractive index anisotropy and a second layer having no in-plane refractive index anisotropy. A reflective polarizer comprising a plurality of layers alternately stacked, wherein the first layer is optically biaxial. That a medium is optically biaxial means that there are two optical axes. The optical axis indicates an axial direction that does not exhibit birefringence.
Assuming that the three main refractive indices of the first layer are nx, ny, and nz, the fact that the first layer is optically biaxial means that nx
, Ny and nz are equivalent to taking different values. With this configuration, the reflection polarizer according to claim 1 has a low degree of polarization with respect to light incident from an oblique direction.

【0008】請求項2記載の反射偏光子は、請求項1記
載の反射偏光子において、第一の層及び第二の層の3つ
の主屈折率nx、ny、nzの内、膜厚方向の屈折率n
zと面内で延伸方向に直角な方向の屈折率nyの比が、
前記両層で互いに異なることを特徴とする。面内の主屈
折率にはnxとnyが存在するが、この反射偏光子は延
伸により作成されるものであることから、主たる延伸方
向と平行な方向の屈折率をnx、直角な方向の屈折率を
nyと区別することにする。多くの物質は光学的に正で
あるからnx>nyであるが、ポリスチレンのように光
学的に負の物質ではnx<nyとなる。請求項2は第一
の層のnz/nyと第二の層のnz/nyが異なること
を指す。このように構成したため、請求項2記載の反射
偏光子は、斜め方向から入射した光に対する偏光度が低
くなり、特にy−z平面から入射する光の多くを反射す
るようになる。
According to a second aspect of the present invention, there is provided the reflective polarizer according to the first aspect, wherein the three main refractive indices nx, ny, and nz of the first layer and the second layer are in the thickness direction. Refractive index n
The ratio of z and the refractive index ny in the direction perpendicular to the stretching direction in the plane is:
The two layers are different from each other. Although nx and ny exist in the in-plane principal refractive index, since this reflective polarizer is produced by stretching, the refractive index in the direction parallel to the principal stretching direction is nx, and the refractive index in the direction perpendicular to We will distinguish the rate from ny. Many substances are optically positive and therefore nx> ny, but optically negative substances such as polystyrene have nx <ny. Claim 2 indicates that nz / ny of the first layer is different from nz / ny of the second layer. With such a configuration, the reflective polarizer according to the second aspect has a low degree of polarization with respect to light incident from an oblique direction, and particularly reflects much of the light incident from the yz plane.

【0009】請求項3記載の反射偏光子は、請求項1記
載の反射偏光子において、第一の層の3つの主屈折率n
x、ny、nzの内、膜厚方向の屈折率nzが面内で延
伸方向に直角な方向の屈折率nyよりも小さいことを特
徴とする。このように構成したため、請求項3記載の反
射偏光子は、斜め方向から入射した光に対する偏光度が
低くなり、特にx−z平面から入射する光の多くを透過
するようになる。
According to a third aspect of the present invention, there is provided the reflective polarizer of the first aspect, wherein the first layer has three main refractive indices n.
Among x, ny, and nz, the refractive index nz in the film thickness direction is smaller than the refractive index ny in the direction perpendicular to the stretching direction in the plane. With such a configuration, the reflective polarizer according to the third aspect has a low degree of polarization with respect to light incident from an oblique direction, and particularly transmits a large amount of light incident from the xz plane.

【0010】請求項4記載の液晶装置は、少なくとも、
所定の直線偏光成分を吸収し残りの偏光成分を透過する
偏光板と、透明電極を備えた一対の基板間に液晶組成物
を挟んで成る液晶セルと、面内に屈折率異方性を有する
第一の層と面内に屈折率異方性を有しない第二の層を交
互に多数積層して構成されることを特徴とする反射偏光
子と、光吸収板とを備え、これらを前記の順に配置した
ことを特徴とする液晶装置であって、前記反射偏光子の
反射軸を液晶セルの左右方向とほぼ平行に配置したこと
を特徴とする。液晶セルの左右方向とは、即ち水平方向
のことである。ほぼ平行であるとは、概ね左右方向±3
0度の範囲を指すが、より望ましくは±15度の範囲を
指す。この範囲を逸脱すると、斜め方向に光源があると
いった特殊な環境下でしか本発明の効果が得られない。
光吸収板は、反射型液晶装置では吸収度の高い板を、半
透過反射型液晶装置では吸収度の低い板を利用する。反
射偏光子は、特に請求項1から請求項3の構成を取らず
とも透過軸(反射軸と直交する軸方向)方向の偏光度が
悪い。このように構成したため、請求項4記載の液晶装
置は、明るく二重像の見えにくい反射型あるいは半透過
反射型の表示を提供することが出来る。
According to a fourth aspect of the present invention, there is provided a liquid crystal device comprising:
A polarizing plate that absorbs a predetermined linearly polarized light component and transmits the remaining polarized light component, a liquid crystal cell in which a liquid crystal composition is sandwiched between a pair of substrates provided with transparent electrodes, and has an in-plane refractive index anisotropy. A reflective polarizer, comprising a first layer and a second layer having no in-plane refractive index anisotropy alternately stacked, and a light absorbing plate, and these Wherein the reflection axis of the reflective polarizer is arranged substantially parallel to the left and right directions of the liquid crystal cell. The left-right direction of the liquid crystal cell is the horizontal direction. The term “substantially parallel” means that the horizontal direction is approximately ± 3
It refers to a range of 0 degrees, but more preferably refers to a range of ± 15 degrees. Outside of this range, the effects of the present invention can be obtained only in a special environment such as an oblique light source.
As the light absorbing plate, a plate having a high absorbance is used in a reflective liquid crystal device, and a plate having a low absorbance is used in a transflective liquid crystal device. The reflective polarizer has a poor degree of polarization in the direction of the transmission axis (axial direction orthogonal to the reflection axis) even if the constitutions of claims 1 to 3 are not taken. With such a configuration, the liquid crystal device according to claim 4 can provide a reflective or transflective display that is bright and hard to see a double image.

【0011】請求項5記載の液晶装置は、少なくとも、
所定の直線偏光成分を吸収し残りの偏光成分を透過する
偏光板と、透明電極を備えた一対の基板間に液晶組成物
を挟んで成る液晶セルと、請求項1または請求項2記載
の反射偏光子と、光吸収板とを備え、これらを前記の順
に配置したことを特徴とする液晶装置であって、前記反
射偏光子の反射軸が液晶セルの左右方向とほぼ平行であ
ることを特徴とする。ほぼ平行であるとは、概ね左右方
向±30度の範囲を指すが、より望ましくは±15度の
範囲を指す。この範囲を逸脱すると、斜め方向に光源が
あるといった特殊な環境下でしか本発明の効果が得られ
ない。このように請求項1または請求項2の反射偏光子
を請求項4の液晶装置と組み合わせることにより、請求
項5記載の液晶装置は、さらに明るく二重像の見えにく
い反射型あるいは半透過反射型の表示を提供することが
出来る。
A liquid crystal device according to a fifth aspect of the present invention comprises at least
3. A reflection plate according to claim 1, wherein a polarizing plate absorbs a predetermined linearly polarized light component and transmits the remaining polarized light component, a liquid crystal cell having a liquid crystal composition sandwiched between a pair of substrates having a transparent electrode, and the reflection according to claim 1 or 2. A liquid crystal device comprising a polarizer and a light absorbing plate, which are arranged in the order described above, wherein the reflection axis of the reflective polarizer is substantially parallel to the left and right directions of the liquid crystal cell. And The term “substantially parallel” generally indicates a range of ± 30 degrees in the left-right direction, and more preferably a range of ± 15 degrees. Outside of this range, the effects of the present invention can be obtained only in a special environment such as an oblique light source. In this way, by combining the reflective polarizer of claim 1 or claim 2 with the liquid crystal device of claim 4, the liquid crystal device of claim 5 is brighter and of a reflective type or semi-transmissive reflective type in which a double image is hardly seen. Can be provided.

【0012】請求項6記載の液晶装置は、請求項1また
は請求項3記載の反射偏光子を、透明電極を備えた一対
の基板間に液晶組成物を挟んで成る液晶セルの、観察者
側に配置したことを特徴とする液晶装置であって、前記
反射偏光子の反射軸が液晶セルの上下方向とほぼ平行で
あることを特徴とする。ほぼ平行であるとは、概ね左右
方向±30度の範囲を指すが、より望ましくは±15度
の範囲を指す。この範囲を逸脱すると、斜め方向に光源
があるといった特殊な環境下でしか本発明の効果が得ら
れない。このように構成することによって、上側に反射
偏光子を配置しても反射偏光子特有のぎらぎらとした光
沢が抑えられ、すっきりした表示が出来る。また12時
方向から入射する光が像を結ばず、そのまま表示に利用
できる。従って、明るく二重像の見えにくい反射型ある
いは半透過反射型の表示を提供することが出来る。なお
請求項6記載の液晶装置の下側偏光板を、請求項4や請
求項5で示したように反射偏光子で構成すると、さらに
明るい表示が可能になる。
According to a sixth aspect of the present invention, there is provided a liquid crystal device comprising the reflective polarizer according to the first or third aspect and a liquid crystal composition sandwiched between a pair of substrates having a transparent electrode. Wherein the reflection axis of the reflective polarizer is substantially parallel to the vertical direction of the liquid crystal cell. The term “substantially parallel” generally indicates a range of ± 30 degrees in the left-right direction, and more preferably a range of ± 15 degrees. Outside of this range, the effects of the present invention can be obtained only in a special environment such as an oblique light source. With this configuration, even when the reflective polarizer is disposed on the upper side, the glaring luster peculiar to the reflective polarizer is suppressed, and a clear display can be achieved. Light incident from the 12:00 direction does not form an image and can be used for display as it is. Therefore, it is possible to provide a reflective or transflective display that is bright and hard to see a double image. If the lower polarizing plate of the liquid crystal device according to the sixth aspect is constituted by a reflective polarizer as described in the fourth and fifth aspects, an even brighter display is possible.

【0013】請求項7記載の電子機器は、請求項4乃至
請求項6記載の液晶装置を、表示部として備えたことを
特徴とする。このように構成したため、請求項7記載の
電子機器は、消費電力が少なく、高品質な表示を得るこ
とが出来る。
According to a seventh aspect of the invention, an electronic apparatus includes the liquid crystal device according to the fourth to sixth aspects as a display unit. With this configuration, the electronic device according to the seventh aspect consumes less power and can provide high-quality display.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0015】(実施例1)図1は、本発明の請求項1乃
至請求項3記載の発明に係る反射偏光子の構造の要部を
示す図である。反射偏光子は、基本的に複屈折性の誘電
体多層膜であって、二種類の高分子層101と102を
交互に積層して成る。二種類の高分子は、一つは光弾性
率が大きい材料から、もう一つは光弾性率が小さい材料
から選ばれるが、その際に両者の常光線の屈折率が概ね
等しくなるよう留意する。例えば、光弾性率の大きい材
料としてPEN(2,6−ポリエチレン・ナフタレー
ト)を、小さい材料としてcoPEN(70−ナフタレ
ート/30−テレフタレート・コポリエステル)を選
ぶ。両フィルムを交互に積層し、図1の直交座標系10
3のx軸方向に約5倍延伸したところ、x軸方向の屈折
率がPEN層において約1.88、coPEN層におい
て約1.64となった。またy軸方向の屈折率はPEN
層でもcoPEN層でも約1.64であった。この積層
フィルムに法線方向から光が入射すると、y軸方向に振
動する光の成分はそのままフィルムを透過する。これが
透過軸である。一方x軸方向に振動する光の成分は、P
EN層とcoPEN層が、ある一定の条件を満たす場合
に限って、反射される。これが反射軸である。その条件
とは、PEN層の光路長(屈折率と膜厚の積)と、co
PEN層の光路長(屈折率と膜厚の積)の和が光の波長
の2分の1に等しいことである。このようなPEN層と
coPEN層を各々数十層以上、出来れば百層以上、厚
みにして30μmほど積層させると、x軸方向に振動す
る光の成分のほぼ全てを反射させることが出来る。
(Embodiment 1) FIG. 1 is a view showing a main part of the structure of a reflective polarizer according to the first to third aspects of the present invention. The reflective polarizer is basically a birefringent dielectric multilayer film, and is formed by alternately stacking two types of polymer layers 101 and 102. The two types of polymers are selected from a material with a high photoelastic modulus and a material with a low photoelastic modulus, while taking care that the refractive indices of the ordinary rays of both are approximately equal. . For example, PEN (2,6-polyethylene naphthalate) is selected as a material having a large photoelastic modulus, and coPEN (70-naphthalate / 30-terephthalate copolyester) is selected as a material having a small photoelastic modulus. Both films are alternately laminated, and the rectangular coordinate system 10 of FIG.
When the film was stretched about 5 times in the x-axis direction of No. 3, the refractive index in the x-axis direction was about 1.88 in the PEN layer and about 1.64 in the coPEN layer. The refractive index in the y-axis direction is PEN
Both the layer and the coPEN layer were about 1.64. When light is incident on the laminated film from the normal direction, the light component vibrating in the y-axis direction passes through the film as it is. This is the transmission axis. On the other hand, the light component oscillating in the x-axis direction is P
Reflection occurs only when the EN layer and the coPEN layer satisfy certain conditions. This is the reflection axis. The conditions are the optical path length (product of refractive index and film thickness) of the PEN layer, and co
The sum of the optical path length (the product of the refractive index and the film thickness) of the PEN layer is equal to half the wavelength of light. If such PEN layers and coPEN layers are laminated in several tens or more layers, preferably in more than one hundred layers, and in a thickness of about 30 μm, almost all of the components of light vibrating in the x-axis direction can be reflected.

【0016】このようにして作成された理想的な反射偏
光子は、設計された単一の波長の光でしか偏光能を生じ
ない。もちろん実際には、PEN層とcoPEN層の厚
みにばらつきが生じるため、ある程度の波長幅で偏光能
が生じるが、それでも数十nmの幅である。そこで、可
視光の広い波長領域にわたって偏光能を持たせるために
は、偏光反射波長範囲が異なる複数の反射偏光子を、軸
を揃えて積層する。このように構成した反射偏光子は、
可視光のほぼ全域にわたって90%以上の高い偏光度を
示した。
An ideal reflective polarizer produced in this way produces a polarization capability only with a single designed wavelength of light. Of course, in practice, the thicknesses of the PEN layer and the coPEN layer vary, so that the polarization ability is generated with a certain wavelength width, but the width is still several tens of nm. Therefore, in order to provide a polarizing capability over a wide wavelength range of visible light, a plurality of reflective polarizers having different polarization reflection wavelength ranges are stacked with their axes aligned. The reflective polarizer thus configured is
It exhibited a high degree of polarization of 90% or more over almost the entire visible light range.

【0017】以上は法線方向から反射偏光子に入射する
光の挙動に対する説明である。本発明の主眼は斜め方向
から入射する光の挙動にある。図2は、本発明の反射偏
光子を構成する2種類の層101と102の屈折率特性
を示す図である。201は光弾性率が大きい材料を延伸
した第一の層101の屈折率楕円体を、202は光弾性
率が小さい材料を延伸した第二の層102の屈折率楕円
体を示す。各々の楕円体の3つの主屈折率をnx、n
y、nzとする。但し、層の面(x−y平面231)内
で主たる延伸方向と平行な方向の屈折率211と221
をnx、層の面内で主たる延伸方向と直角な方向の屈折
率212と222をny、膜厚方向の屈折率213と2
23をnzとする。但し主たる延伸方向とは、先ほどの
説明では図1のx軸方向に相当し、二軸延伸した場合に
はより延伸率の大きい方向を指す。
The above is a description of the behavior of light incident on the reflective polarizer from the normal direction. The main feature of the present invention lies in the behavior of light entering obliquely. FIG. 2 is a diagram showing the refractive index characteristics of two types of layers 101 and 102 constituting the reflective polarizer of the present invention. Reference numeral 201 denotes a refractive index ellipsoid of the first layer 101 formed by stretching a material having a large photoelastic coefficient, and reference numeral 202 denotes a refractive index ellipsoid of the second layer 102 formed by stretching a material having a small photoelastic coefficient. Let the three principal indices of each ellipsoid be nx, n
y and nz. However, the refractive indices 211 and 221 in a direction parallel to the main stretching direction in the plane of the layer (xy plane 231).
Is nx, the refractive indices 212 and 222 in the direction perpendicular to the main stretching direction in the plane of the layer are ny, and the refractive indices 213 and 2 in the film thickness direction are
23 is nz. However, the main stretching direction corresponds to the x-axis direction in FIG. 1 in the above description, and indicates a direction in which the stretching ratio is larger when biaxial stretching is performed.

【0018】さて、実施例1の反射偏光子A、Bと比較
のための反射偏光子Cの各層の屈折率を精密に測定した
結果を表1に示す。但しこの測定は、第一の層と第二の
層を別々に作成して同様に延伸したフィルムを用いて行
った。
The results of precisely measuring the refractive index of each layer of the reflective polarizers A and B of Example 1 and the reflective polarizer C for comparison are shown in Table 1. However, this measurement was performed using a film which was prepared separately from the first layer and the second layer and stretched in the same manner.

【0019】[0019]

【表1】 [Table 1]

【0020】いずれの反射偏光子においても、第一の層
は面内に屈折率異方性(nx−ny)を有し、第二の層
は面内に屈折率異方性をほとんど有しない。また反射偏
光子AとBの第一の層はnx、ny、nzが全て大きく
異なる値をとり、特に反射偏光子Aではnz<nyであ
るが、反射偏光子Cの第一の層はnyとnzの値がほぼ
等しい。即ち、反射偏光子AとBの第一の層は光学的二
軸性であるが、反射偏光子Cの第一の層は光学的一軸性
である。また第一の層におけるnzとnyの比nz/n
yと、第二の層におけるnzとnyの比nz/nyは、
反射偏光子AとBでは大きく異なるが、反射偏光子Cで
はほぼ等しい。以上を総合すると、反射偏光子Aは本発
明の請求項1乃至請求項3記載の発明に係る反射偏光子
であり、反射偏光子Bは本発明の請求項1または請求項
2記載の発明に係る反射偏光子である。
In any of the reflective polarizers, the first layer has in-plane refractive index anisotropy (nx-ny), and the second layer has almost no in-plane refractive index anisotropy. . Further, the first layers of the reflective polarizers A and B all have greatly different values of nx, ny, and nz. In particular, the reflective polarizer A has nz <ny, but the first layer of the reflective polarizer C has ny. And nz are almost equal. That is, the first layers of the reflective polarizers A and B are optically biaxial, while the first layer of the reflective polarizer C is optically uniaxial. Further, the ratio nz / n of nz and ny in the first layer
y and the ratio nz / ny of nz and ny in the second layer are:
Although the reflection polarizers A and B are significantly different, the reflection polarizer C is almost equal. Summarizing the above, the reflective polarizer A is the reflective polarizer according to the first to third aspects of the present invention, and the reflective polarizer B is the one according to the first or second aspect of the present invention. It is such a reflective polarizer.

【0021】反射偏光子AやBのように、第一の層にお
けるnz/nyと、第二の層におけるnz/nyが大き
く異なるように構成することによって、y−z平面内で
斜めから入射した光242の内、y−z平面内で振動す
る光に対する屈折率は、第一の層と第二の層とで食い違
ってくる。即ち入射角度が大きくなるほど反射される光
の割合が増加し、偏光度が劣化する。
When the nz / ny in the first layer and the nz / ny in the second layer are greatly different from each other as in the case of the reflective polarizers A and B, the light is incident obliquely in the yz plane. Of the light 242, the refractive index for light vibrating in the yz plane is different between the first layer and the second layer. That is, as the incident angle increases, the proportion of reflected light increases, and the degree of polarization deteriorates.

【0022】また反射偏光子Aのように、第一の層のn
zがnyよりも小さくなるように構成することによっ
て、x−z平面内で斜めから入射した光241の内、x
−z平面内で振動する光に対する屈折率が小さくなり、
光軸と一致する方向では複屈折が消失する。即ち入射角
度が大きくなるほど、透過する光の割合が増加し、偏光
度が劣化する。
Also, as in the reflective polarizer A, n of the first layer
By configuring so that z is smaller than ny, of the light 241 obliquely incident on the xz plane, x
The refractive index for light oscillating in the −z plane decreases,
Birefringence disappears in the direction coinciding with the optical axis. That is, as the incident angle increases, the ratio of transmitted light increases, and the degree of polarization deteriorates.

【0023】図3は、偏光度の入射光角度依存性を示す
図である。(a)がx−z平面内における入射光角度依
存性、(b)がy−z平面内における入射光角度依存性
である。302と312が反射偏光子Aの特性、303
と313が反射偏光子Bの特性、301と311が反射
偏光子Cの特性である。
FIG. 3 is a diagram showing the dependence of the degree of polarization on the angle of incident light. (A) is the incident light angle dependence in the xz plane, and (b) is the incident light angle dependence in the yz plane. 302 and 312 are characteristics of the reflective polarizer A, 303
And 313 are the characteristics of the reflective polarizer B, and 301 and 311 are the characteristics of the reflective polarizer C.

【0024】反射偏光子AもBも、y−z平面内で斜め
から入射した光に対する偏光度が悪い。これは本来透過
されるべき偏光が反射されるからである。また反射偏光
子Aは、x−z平面内で斜めから入射した光に対する偏
光度も悪い。これは本来反射されるべき偏光が透過する
からである。
Both the reflective polarizers A and B have poor degrees of polarization with respect to light obliquely incident in the yz plane. This is because the polarized light that should be transmitted is reflected. Further, the reflection polarizer A also has a poor degree of polarization with respect to light obliquely incident on the xz plane. This is because polarized light that should be reflected is transmitted.

【0025】(実施例2)図4は本発明の請求項4また
は請求項5記載の発明に係る液晶装置の構造の要部を示
す図である。まず構成を説明する。図4において、40
1は偏光板、402は位相差フィルム、403は上側ガ
ラス基板、404は液晶層、405は下側ガラス基板、
406は光散乱体、407は反射偏光子、408は光吸
収体、409はITOからなる走査電極、410はIT
Oからなる信号電極である。401と402、402と
403、405と406、406と407、407と4
08は、それぞれ互いに糊で接着している。また上下の
基板間は広く離して描いてあるが、これは図を明解にす
るためであって、実際には数μmから十数μmの狭いギ
ャップを保って対向している。なお図示した構成要素以
外にも、液晶配向膜や絶縁膜、スペーサー・ボール、ド
ライバーIC、駆動回路等の要素も不可欠であるが、こ
れらは本発明を説明する上で特に必要が無く、却って図
を複雑にし理解し難くする恐れがあるため、省略した。
(Embodiment 2) FIG. 4 is a view showing a main part of the structure of a liquid crystal device according to the fourth or fifth aspect of the present invention. First, the configuration will be described. In FIG.
1 is a polarizing plate, 402 is a retardation film, 403 is an upper glass substrate, 404 is a liquid crystal layer, 405 is a lower glass substrate,
406 is a light scatterer, 407 is a reflective polarizer, 408 is a light absorber, 409 is a scanning electrode made of ITO, and 410 is an IT
O is a signal electrode. 401 and 402, 402 and 403, 405 and 406, 406 and 407, 407 and 4
08 are adhered to each other with glue. Although the upper and lower substrates are drawn widely apart, this is for the sake of clarity of the drawing, and they are actually opposed to each other with a narrow gap of several μm to tens of μm. In addition to the components shown in the figure, elements such as a liquid crystal alignment film, an insulating film, a spacer ball, a driver IC, and a drive circuit are also indispensable. Is omitted because it may be complicated and difficult to understand.

【0026】次に各構成要素について順に説明する。偏
光板401は所定の直線偏光成分を吸収し、それ以外の
偏光成分を透過する機能を有している。これは現在最も
一般に利用されているタイプの偏光板であって、ヨウ素
等のハロゲン物質や二色性染料をポリ・ビニル・プチラ
ール等の高分子フィルムに吸着させて作製する。
Next, each component will be described in order. The polarizing plate 401 has a function of absorbing a predetermined linearly polarized light component and transmitting other polarized light components. This is the most commonly used type of polarizing plate at present, and is produced by adsorbing a halogen substance such as iodine or a dichroic dye onto a polymer film such as polyvinyl butyral.

【0027】位相差フィルム402は、例えばポリ・カ
ーボネート樹脂の一軸延伸フィルムであって、STN型
液晶装置の表示の着色を補償するために利用される。T
N型液晶装置の場合には省略されることが多い。
The retardation film 402 is, for example, a uniaxially stretched film of a polycarbonate resin, and is used for compensating the coloring of the display of the STN type liquid crystal device. T
In the case of an N-type liquid crystal device, it is often omitted.

【0028】液晶層404は180度から270度ねじ
れたSTNネマチック液晶組成物から成る。表示容量が
小さい場合には90°ねじれたTN液晶組成物を用いて
も良い。ねじれ角は上下ガラス基板表面における配向処
理の方向と、液晶に添加するカイラル剤の分量で決定す
る。
The liquid crystal layer 404 is composed of a STN nematic liquid crystal composition twisted from 180 degrees to 270 degrees. When the display capacity is small, a TN liquid crystal composition twisted by 90 ° may be used. The twist angle is determined by the direction of the alignment treatment on the upper and lower glass substrates and the amount of the chiral agent added to the liquid crystal.

【0029】光散乱体406には、透明ビーズを分散し
たプラスチックフィルムが利用できる。接着剤中にビー
ズを混入して、直接液晶装置等に接着しても良い。また
特定の角度から入射した光のみを散乱する光制御板を利
用してもよい。このような光制御板は住友化学工業株式
会社からルミスティ(商品名)として発売されている。
なおここで言う光散乱とは、偏光を乱さない程度の弱い
散乱を指す。光散乱板は、鏡面に近い反射偏光子の反射
光を適度に拡散させる目的で配置する。
As the light scatterer 406, a plastic film in which transparent beads are dispersed can be used. Beads may be mixed in the adhesive and directly adhered to a liquid crystal device or the like. Alternatively, a light control plate that scatters only light incident from a specific angle may be used. Such a light control plate is sold by Sumitomo Chemical Co., Ltd. as Lumisty (trade name).
Note that the light scattering here refers to weak scattering that does not disturb the polarization. The light scattering plate is arranged for appropriately diffusing the reflected light of the reflective polarizer close to the mirror surface.

【0030】反射偏光子407には、実施例1で説明し
た反射偏光子を利用した。
As the reflective polarizer 407, the reflective polarizer described in the first embodiment was used.

【0031】光吸収板408には、黒色ビニールシート
や黒紙を接着するか、黒色塗料を直接塗布して利用す
る。なお、黒色以外にも比較的暗い色ならば、青色や茶
色、灰色など好みによって利用できる。この光吸収板は
不要な偏光を吸収する目的で配置するが、半透過反射型
液晶装置等で、この偏光を利用しようとする場合には、
半透明な光吸収板を利用すれば良い。
The light absorbing plate 408 is used by adhering a black vinyl sheet or black paper or by directly applying a black paint. In addition, if it is a relatively dark color other than black, it can be used depending on preference, such as blue, brown, and gray. This light absorbing plate is arranged for the purpose of absorbing unnecessary polarized light, but when this polarized light is used in a transflective liquid crystal device or the like,
What is necessary is just to use a translucent light absorption plate.

【0032】次に具体的な液晶セルの条件を紹介する。
まず図4における液晶層404のリターデーション(複
屈折率と層厚の積)を1.00μm、位相差フィルム4
02のリターデーションを0.65μmに設定した。図
5は各軸の関係を示す図であり、501は偏光板101
の偏光軸(透過軸)、502は位相差フィルムの遅相軸
(延伸軸)、503は上側ガラス基板のラビング軸、5
04は下側ガラス基板のラビング軸、505は反射偏光
子の反射軸である。また510は液晶セルの左右方向
(水平方向)を示す。ここで、501が502と成す角
度511を左58度に、502が503と成す角度51
2を左77度に、504が503となす角度、即ち液晶
のねじれ角513を左240度に、505が504とな
す角度514を右44度に設定した。2本のラビング軸
503と504は対称であるから、反射偏光子の偏光軸
505が、液晶セルの左右方向510となす角度515
は右14度になり、ほぼ左右方向に平行であると言って
良い。
Next, specific conditions of the liquid crystal cell will be introduced.
First, the retardation (the product of the birefringence and the layer thickness) of the liquid crystal layer 404 in FIG.
02 was set to 0.65 μm. FIG. 5 is a diagram showing the relationship between the respective axes.
, 502 is the slow axis (stretching axis) of the retardation film, 503 is the rubbing axis of the upper glass substrate, 5
04 is the rubbing axis of the lower glass substrate, and 505 is the reflection axis of the reflective polarizer. Reference numeral 510 indicates the left-right direction (horizontal direction) of the liquid crystal cell. Here, the angle 511 between 501 and 502 is set to 58 degrees to the left, and the angle 51 between 502 and 503 is set to 51 degrees.
2 was set to 77 degrees to the left and 504 to 503, ie, the twist angle 513 of the liquid crystal was set to 240 degrees to the left, and the angle 514 to 505 was set to 504 was set to 44 degrees to the right. Since the two rubbing axes 503 and 504 are symmetric, the angle 515 between the polarization axis 505 of the reflective polarizer and the left-right direction 510 of the liquid crystal cell is formed.
Is 14 degrees to the right and can be said to be substantially parallel to the left and right directions.

【0033】このようにして作製した液晶装置は、通常
の偏光板を利用した液晶装置と比較して、30%以上明
るいという特徴を有している。その理由は二つある。一
つは金属アルミニウムの反射率が90%弱しかないのに
対し、本発明の反射偏光子は反射軸に平行な光のほぼ1
00%を反射するからである。もう一つの理由は、通常
の吸収型偏光板がヨウ素等のハロゲン物質や染料等の二
色性物質を利用しており、その二色比が必ずしも高くな
いために、およそ20%の光を無駄にしていることであ
る。
The liquid crystal device thus manufactured has a feature that it is 30% or more brighter than a liquid crystal device using a normal polarizing plate. There are two reasons. One is that the reflectance of metallic aluminum is only slightly less than 90%, whereas the reflective polarizer of the present invention has almost one of the light parallel to the reflection axis.
This is because 00% is reflected. Another reason is that ordinary absorption-type polarizers use dichroic substances such as halogen substances such as iodine and dyes, and the dichroic ratio is not necessarily high, so that about 20% of light is wasted. That is what we do.

【0034】またこの液晶装置は、特に上方向(12時
方向)から光が入射した際に、二重像を生じにくく、明
るいという特徴がある。これは、上方向から光が入射し
たときに、反射偏光子407の偏光度が低く、反射率が
高いためである。この効果は、実施例1の反射偏光子C
を利用したときよりも、反射偏光子AあるいはBを利用
したときの方が高かった。
Further, this liquid crystal device is characterized in that a double image is unlikely to be generated and the brightness is high, especially when light is incident from above (12 o'clock direction). This is because when light is incident from above, the degree of polarization of the reflective polarizer 407 is low and the reflectance is high. This effect is due to the reflection polarizer C of the first embodiment.
Was higher when using the reflective polarizer A or B than when using.

【0035】また反射偏光子の反射軸方向が液晶セルの
左右方向にほぼ平行であることは、構造が複雑で高価な
反射偏光子が原反から効率よく取れることを意味し、コ
スト的にも有利である。
The fact that the direction of the reflection axis of the reflective polarizer is substantially parallel to the left-right direction of the liquid crystal cell means that an expensive reflective polarizer having a complicated structure can be efficiently obtained from the raw material. It is advantageous.

【0036】(実施例3)図6は本発明の請求項6記載
の発明に係る液晶装置の構造の要部を示す図である。ま
ず構成を説明する。図6において、601は反射偏光
子、602は対向基板、603は液晶組成物、604は
素子基板、605は光散乱板、606は反射偏光子、6
07は光吸収板、608はバックライトの導光板、60
9は光反射板、610はバックライトの光源であり、対
向基板602上にはカラーフィルタ611と、対向電極
(走査線)612を設け、素子基板604上には信号線
613、画素電極614、MIM素子615を設けた。
ここで601と602、604と605、605と60
6、606と607は、互いに離して描いてあるが、こ
れは図を明解にするためであって、実際には糊で接着し
ている。また対向基板602と素子基板604の間も広
く離して描いてあるが、これも同様の理由からであって
実際には数μmから十数μm程度のギャップしかない。
また、図6は液晶装置の一部を示しているため、3本の
走査線612と3本の信号線616が交差して出来る3
×3のマトリクス、即ち9ドット分しか図示していない
が、実際にはさらに多くのドットを有する。
(Embodiment 3) FIG. 6 is a view showing a main part of the structure of a liquid crystal device according to a sixth aspect of the present invention. First, the configuration will be described. 6, 601 is a reflective polarizer, 602 is a counter substrate, 603 is a liquid crystal composition, 604 is an element substrate, 605 is a light scattering plate, 606 is a reflective polarizer, and 6
07 is a light absorbing plate, 608 is a light guide plate of a backlight,
Reference numeral 9 denotes a light reflecting plate, 610 denotes a light source of a backlight, and a color filter 611 and a counter electrode (scanning line) 612 are provided on the counter substrate 602, and a signal line 613, a pixel electrode 614, and the like are provided on the element substrate 604. An MIM element 615 was provided.
Here, 601 and 602, 604 and 605, 605 and 60
6, 606 and 607 are drawn apart from each other for the sake of clarity of the figure, and are actually glued together. Further, the space between the opposing substrate 602 and the element substrate 604 is drawn widely apart, but for the same reason, there is actually only a gap of about several μm to about several tens μm.
FIG. 6 shows a part of the liquid crystal device. Therefore, three scanning lines 612 and three signal lines 616 cross each other.
Although only a × 3 matrix, that is, 9 dots, is shown, it actually has more dots.

【0037】対向電極612と画素電極614は透明な
ITOで形成した。信号線613は金属Taで形成し
た。MIM素子は絶縁膜Ta2O5を金属Taと金属C
rで挟んだ構造である。液晶組成物603は90度ねじ
れたネマチック液晶である。611は加法混色の三原色
である赤色(図中「R」で示した)と緑色(図中「G」
で示した)と青色(図中「B」で示した)の3色から成
り、モザイク状に配列した。
The counter electrode 612 and the pixel electrode 614 were formed of transparent ITO. The signal line 613 was formed of metal Ta. In the MIM element, the insulating film Ta2O5 is made of metal Ta and metal C.
r. The liquid crystal composition 603 is a nematic liquid crystal twisted by 90 degrees. Reference numeral 611 denotes red (indicated by "R" in the figure) and green ("G" in the figure) which are three primary colors of additive color mixture.
) And blue (indicated by “B” in the figure) and arranged in a mosaic pattern.

【0038】なお、ここではMIMアクティブマトリク
ス方式の液晶装置を例として挙げたが、単純マトリクス
方式の液晶装置を採用しても、本発明の効果に変わりは
ない。その場合は、信号線を対向電極同様の短冊状IT
Oで形成して、MIM素子と画素電極を設けない。また
TNモードの代わりに、実施例2と同様なSTNモード
を採用する。
Although the MIM active matrix type liquid crystal device has been described as an example here, the effect of the present invention is not changed even if a simple matrix type liquid crystal device is adopted. In such a case, connect the signal line to a rectangular IT
O is formed, and the MIM element and the pixel electrode are not provided. Also, instead of the TN mode, an STN mode similar to that of the second embodiment is employed.

【0039】上側の反射偏光子601には、実施例1の
反射偏光子Aを利用した。下側の反射偏光子606は、
実施例1の反射偏光子A、B、Cを利用しても良いし、
通常の偏光板付き半透過反射板を利用しても良い。後者
の場合には605と607が不要である。
The reflective polarizer A of Example 1 was used as the upper reflective polarizer 601. The lower reflective polarizer 606 is
The reflective polarizers A, B, and C of the first embodiment may be used,
An ordinary transflector with a polarizing plate may be used. In the latter case, 605 and 607 are unnecessary.

【0040】半光吸収板607としては、灰色の半透明
フィルムが利用できる。灰色の半透明フィルムとして
は、可視光の全波長範囲の光に対して10%以上80%
以下、より好ましくは50%以上70%以下の透過率を
有する散乱性のフィルムが適している。このようなフィ
ルムは、例えば(株)辻本電機製作所から光拡散フィル
ムD202(商品名)という名称で発売されている。ま
た部分的に透明な光吸収フィルム、つまり肉眼では観察
できない直径数μmの微細な穴を多数設けた黒色フィル
ム等も利用できる。また吸収型偏光板を反射偏光子60
6と軸をずらして配置しても良い。
As the semi-light absorbing plate 607, a gray translucent film can be used. As a gray translucent film, 10% or more and 80% with respect to light in the entire wavelength range of visible light
A scattering film having a transmittance of 50% or more and 70% or less is suitable. Such a film is marketed, for example, by Tsujimoto Electric Manufacturing Co., Ltd. under the name of light diffusion film D202 (trade name). Further, a partially transparent light absorbing film, that is, a black film having a large number of fine holes having a diameter of several μm, which cannot be observed with the naked eye, can also be used. Further, the absorption type polarizing plate is changed to a reflection polarizer 60.
6 may be arranged off-axis.

【0041】バックライトの導光体608には透明性の
良いアクリル樹脂の平板を用い、その表面に白色塗料を
印刷した。導光体の背面には白色の光反射板609を配
置して後方に漏れる光を前方に戻す。
As the light guide 608 of the backlight, a flat plate of acrylic resin having good transparency was used, and a white paint was printed on the surface thereof. A white light reflecting plate 609 is disposed on the back of the light guide to return light leaking backward to the front.

【0042】次に具体的な液晶セルの条件を紹介する。
まず図6における液晶層603のリターデーション(複
屈折率と層厚の積)を0.42μmに設定した。図7は
各軸の関係を示す図であり、701は反射偏光子601
の反射軸、702は上側ガラス基板のラビング軸、70
3は下側ガラス基板のラビング軸、704は反射偏光子
606の反射軸である。また710は液晶セルの左右方
向(水平方向)を示す。ここで、701、702、70
4は平行であって、これらが703と成す角度711を
90度に設定した。このとき、上側の反射偏光子601
の偏光軸701が、液晶セルの左右方向710となす角
度は、0度になる。
Next, specific conditions of the liquid crystal cell will be introduced.
First, the retardation (the product of the birefringence and the layer thickness) of the liquid crystal layer 603 in FIG. 6 was set to 0.42 μm. FIG. 7 is a diagram showing the relationship between each axis, and 701 is a reflective polarizer 601.
702, the rubbing axis of the upper glass substrate,
Reference numeral 3 denotes a rubbing axis of the lower glass substrate, and reference numeral 704 denotes a reflection axis of the reflective polarizer 606. Reference numeral 710 denotes the left-right direction (horizontal direction) of the liquid crystal cell. Here, 701, 702, 70
4 are parallel, and the angle 711 formed between them and 703 is set to 90 degrees. At this time, the upper reflective polarizer 601
The angle formed by the polarization axis 701 with the left-right direction 710 of the liquid crystal cell is 0 degree.

【0043】このようにして作製した液晶装置は、特に
上方向(12時方向)から光が入射した際に、二重像を
生じにくく、明るいという特徴がある。これは、上方向
から光が入射したときに、反射偏光子601の偏光度が
低く、透過率が高くなっているためである。また通常の
反射偏光子を液晶セルの観察者側に配置すると、反射偏
光子の鏡面的な反射が表示を損なうが、本発明の反射偏
光子を利用するとそのような反射も抑制できる。
The liquid crystal device manufactured in this way is characterized in that a double image is hardly generated when the light is incident from the upper direction (12 o'clock direction), and the device is bright. This is because when light is incident from above, the degree of polarization of the reflective polarizer 601 is low and the transmittance is high. When a normal reflective polarizer is arranged on the viewer side of the liquid crystal cell, the specular reflection of the reflective polarizer impairs the display. However, the use of the reflective polarizer of the present invention can suppress such reflection.

【0044】また反射偏光子の反射軸方向が液晶セルの
上下方向にほぼ平行であることは、構造が複雑で高価な
反射偏光子が原反から効率よく取れることを意味し、コ
スト的にも有利である。
The fact that the direction of the reflective axis of the reflective polarizer is substantially parallel to the vertical direction of the liquid crystal cell means that an expensive reflective polarizer having a complicated structure can be efficiently obtained from the raw material, and the cost is also low. It is advantageous.

【0045】(実施例4)本発明の請求項7記載の電子
機器の例を3つ示す。
(Embodiment 4) Three examples of the electronic device according to the seventh aspect of the present invention will be described.

【0046】本発明の液晶装置は、様々な環境で用いら
れ、しかも低消費電力が必要とされる携帯機器に適して
いる。
The liquid crystal device of the present invention is suitable for portable equipment used in various environments and requiring low power consumption.

【0047】図8(a)は携帯電話であり、本体801
の前面上方部に表示部802が設けられる。携帯電話
は、屋内屋外を問わずあらゆる環境で利用される。特に
自動車内で利用されることが多いが、夜間の車内は大変
暗い。従って携帯電話に利用される表示装置は、消費電
力が低い反射型表示をメインに、必要に応じて補助光を
利用した透過型表示ができる半透過反射型液晶装置が望
ましい。本発明の液晶装置は、反射型表示でも透過型表
示でも従来の液晶装置より明るく、また反射型表示特有
の二重像が見えにくい。
FIG. 8A shows a mobile phone, and a main body 801.
The display unit 802 is provided in an upper part of the front surface of the. Mobile phones are used in all environments, both indoors and outdoors. Especially, it is often used in cars, but the inside of cars at night is very dark. Therefore, it is desirable that the display device used in the mobile phone is a transflective liquid crystal device capable of performing transmissive display using auxiliary light as needed, mainly reflective display with low power consumption. The liquid crystal device of the present invention is brighter than the conventional liquid crystal device in both the reflective display and the transmissive display, and it is difficult to see a double image peculiar to the reflective display.

【0048】図8(b)はウォッチであり、本体803
の中央に表示部804が設けられる。ウォッチ用途にお
ける重要な観点は、高級感である。本発明の液晶装置
は、明るいことはもちろん、光の波長による特性変化が
少ないために色づきも小さい。また二重像も見えにく
い。従って、従来の液晶装置と比較して、大変に高級感
ある表示が得られる。
FIG. 8B shows a watch, which is a main body 803.
The display unit 804 is provided at the center of the display. An important aspect in watch applications is luxury. The liquid crystal device of the present invention is not only bright, but also has little coloring due to a small characteristic change due to the wavelength of light. Also, double images are difficult to see. Therefore, a very high-quality display can be obtained as compared with the conventional liquid crystal device.

【0049】図8(c)は携帯情報機器であり、本体8
05の上側に表示部806、下側に入力部807が設け
られる。また表示部の前面にはタッチ・キーを設けるこ
とが多い。通常のタッチ・キーは表面反射が多いため、
表示が見づらい。従って、従来は携帯型と言えども透過
型液晶装置を利用することが多かった。ところが透過型
液晶装置は、常時光源を利用する消費電力が大きく、電
池寿命が短かかった。このような場合にも本発明の液晶
装置は、反射型、半透過反射型でも表示が明るく鮮やか
であるため、携帯情報機器に利用することが出来る。
FIG. 8C shows a portable information device.
A display unit 806 is provided on the upper side of the display unit 05, and an input unit 807 is provided on the lower side. In addition, touch keys are often provided on the front of the display unit. Normal touch keys have many surface reflections,
The display is hard to see. Therefore, conventionally, a transmissive liquid crystal device has often been used even though it is portable. However, the transmissive liquid crystal device has a large power consumption that always uses a light source, and has a short battery life. Even in such a case, the liquid crystal device of the present invention can be used for a portable information device because the display is bright and vivid even in a reflective type or a transflective type.

【0050】[0050]

【発明の効果】以上述べたように、本発明によれば、斜
め方向から入射した光に対する偏光度が低い反射偏光子
を提供することが出来る。また本発明は、明るく二重像
が見えにくい反射型あるいは半透過反射型の液晶装置、
消費電力の小さい電子機器を提供することが出来る。
As described above, according to the present invention, it is possible to provide a reflective polarizer having a low degree of polarization with respect to light incident obliquely. Further, the present invention is a reflective or transflective liquid crystal device that is bright and hard to see a double image,
An electronic device with low power consumption can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1における反射偏光子の、構造
の要部を示す図である。
FIG. 1 is a diagram illustrating a main part of a structure of a reflective polarizer according to a first embodiment of the present invention.

【図2】本発明の実施例1における反射偏光子を構成す
る2種類の層の屈折率特性を示す図である。
FIG. 2 is a diagram showing refractive index characteristics of two types of layers constituting a reflective polarizer in Example 1 of the present invention.

【図3】本発明の実施例1における反射偏光子の、偏光
度の入射角依存性を示す図である。
FIG. 3 is a diagram showing the incident angle dependence of the degree of polarization of the reflective polarizer in Example 1 of the present invention.

【図4】本発明の実施例2における液晶装置の、構造の
要部を示す図である。
FIG. 4 is a diagram illustrating a main part of a structure of a liquid crystal device according to a second embodiment of the present invention.

【図5】本発明の実施例2における液晶装置の、各軸の
関係を示す図である。
FIG. 5 is a diagram illustrating a relationship between axes of a liquid crystal device according to a second embodiment of the present invention.

【図6】本発明の実施例3における液晶装置の、構造の
要部を示す図である。
FIG. 6 is a diagram illustrating a main part of a structure of a liquid crystal device according to a third embodiment of the present invention.

【図7】本発明の実施例3における液晶装置の、各軸の
関係を示す図である。
FIG. 7 is a diagram illustrating a relationship between axes of a liquid crystal device according to a third embodiment of the present invention.

【図8】本発明の実施例4における電子機器の、外観を
示す図である。(a)携帯電話、(b)ウォッチ、
(c)携帯情報機器。
FIG. 8 is a diagram illustrating an appearance of an electronic device according to a fourth embodiment of the present invention. (A) mobile phone, (b) watch,
(C) portable information devices.

【符号の説明】[Explanation of symbols]

101 光弾性率が大きい材料を延伸した層 102 光弾性率が小さい材料を延伸した層 103 直交座標系、x軸方向が延伸方向であり反射軸 201 層101の屈折率楕円体 202 層102の屈折率楕円体 211 層101の面内で主たる延伸方向と平行な方向
の屈折率nx 212 層101の面内で主たる延伸方向と直角な方向
の屈折率ny 213 層101の膜厚方向の屈折率nz 221 層102の面内で主たる延伸方向と平行な方向
の屈折率nx 222 層102の面内で主たる延伸方向と直角な方向
の屈折率ny 223 層102の膜厚方向の屈折率nz 231 x−y平面(反射偏光子表面と平行な面) 232 x−z平面(反射偏光子の延伸方向と膜厚方向
を両方含む面) 233 y−z平面(反射偏光子の延伸方向と直角な方
向と膜厚方向を両方含む面) 241 x−z平面内で斜めから入射した光 242 y−z平面内で斜めから入射した光
Reference Signs List 101 Layer stretched with material having high photoelastic modulus 102 Layer stretched with material having low photoelasticity 103 Orthogonal coordinate system, x-axis direction is stretch direction, reflection axis 201 Index ellipsoid of layer 101 202 Refraction of layer 102 Index ellipsoid 211 Refractive index nx in a direction parallel to the main stretching direction in the plane of layer 101 nx 212 Refractive index ny 213 in a direction perpendicular to the main stretching direction in the plane of layer 101 Refractive index nz in the thickness direction of layer 101 221 Refractive index nx in the direction parallel to the main stretching direction in the plane of the layer 102 222 Refractive index ny 223 in the direction perpendicular to the main stretching direction in the plane of the layer 102 Refractive index nz 231 x− in the film thickness direction of the layer 102 y plane (plane parallel to the reflective polarizer surface) 232 xz plane (plane including both the extending direction and the thickness direction of the reflective polarizer) 233 yz plane (direction perpendicular to the extending direction of the reflective polarizer) Light incident from obliquely in the optical 242 y-z plane obliquely incident film thickness direction in both comprise plane) in 241 x-z plane

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】面内に屈折率異方性を有する第一の層と面
内に屈折率異方性を有しない第二の層を交互に多数積層
して構成されることを特徴とする反射偏光子であって、
前記第一の層が光学的二軸性であることを特徴とする反
射偏光子。
The present invention is characterized in that a plurality of first layers having in-plane refractive index anisotropy and a plurality of second layers having no in-plane refractive index anisotropy are alternately laminated. A reflective polarizer,
A reflective polarizer, wherein the first layer is optically biaxial.
【請求項2】請求項1記載の反射偏光子において、第一
の層及び第二の層の3つの主屈折率nx、ny、nzの
内、膜厚方向の屈折率nzと面内で延伸方向に直角な方
向の屈折率nyの比が、前記両層で互いに異なることを
特徴とする反射偏光子。
2. The reflective polarizer according to claim 1, wherein the film extends in the plane with the refractive index nz in the film thickness direction among the three main refractive indices nx, ny and nz of the first layer and the second layer. A reflective polarizer, wherein the ratio of the refractive index ny in a direction perpendicular to the direction is different between the two layers.
【請求項3】請求項1記載の反射偏光子において、第一
の層の3つの主屈折率nx、ny、nzの内、膜厚方向
の屈折率nzが面内で延伸方向に直角な方向の屈折率n
yよりも小さいことを特徴とする反射偏光子。
3. The reflective polarizer according to claim 1, wherein, among the three main refractive indices nx, ny, and nz of the first layer, the refractive index nz in the film thickness direction is a direction perpendicular to the stretching direction in the plane. Refractive index n
A reflective polarizer characterized by being smaller than y.
【請求項4】少なくとも、所定の直線偏光成分を吸収し
残りの偏光成分を透過する偏光板と、透明電極を備えた
一対の基板間に液晶組成物を挟んで成る液晶セルと、面
内に屈折率異方性を有する第一の層と面内に屈折率異方
性を有しない第二の層を交互に多数積層して構成される
ことを特徴とする反射偏光子と、光吸収板とを備え、こ
れらを前記の順に配置したことを特徴とする液晶装置で
あって、前記反射偏光子の反射軸を液晶セルの左右方向
とほぼ平行に配置したことを特徴とする液晶装置。
4. A polarizing plate that absorbs at least a predetermined linearly polarized light component and transmits the remaining polarized light component, a liquid crystal cell having a liquid crystal composition sandwiched between a pair of substrates provided with transparent electrodes, A reflective polarizer comprising a first layer having refractive index anisotropy and a second layer having no in-plane refractive index anisotropy alternately stacked, and a light absorbing plate; And a liquid crystal device in which these are arranged in the above order, wherein the reflection axis of the reflective polarizer is arranged substantially parallel to the left and right direction of the liquid crystal cell.
【請求項5】少なくとも、所定の直線偏光成分を吸収し
残りの偏光成分を透過する偏光板と、透明電極を備えた
一対の基板間に液晶組成物を挟んで成る液晶セルと、請
求項1または請求項2記載の反射偏光子と、光吸収板と
を備え、これらを前記の順に配置したことを特徴とする
液晶装置であって、前記反射偏光子の反射軸が液晶セル
の左右方向とほぼ平行であることを特徴とする液晶装
置。
5. A liquid crystal cell comprising a polarizing plate that absorbs at least a predetermined linearly polarized light component and transmits the remaining polarized light component, and a liquid crystal composition sandwiched between a pair of substrates provided with a transparent electrode. Or a liquid crystal device comprising the reflective polarizer according to claim 2 and a light absorbing plate, and these are arranged in the above order, wherein the reflection axis of the reflective polarizer is in the left-right direction of the liquid crystal cell. A liquid crystal device characterized by being substantially parallel.
【請求項6】請求項1または請求項3記載の反射偏光子
を、透明電極を備えた一対の基板間に液晶組成物を挟ん
で成る液晶セルの、観察者側に配置したことを特徴とす
る液晶装置であって、前記反射偏光子の反射軸が液晶セ
ルの上下方向とほぼ平行であることを特徴とする液晶装
置。
6. A reflective polarizer according to claim 1 or 3, wherein the reflective polarizer is disposed on a viewer side of a liquid crystal cell having a liquid crystal composition sandwiched between a pair of substrates provided with a transparent electrode. A reflective axis of the reflective polarizer is substantially parallel to a vertical direction of a liquid crystal cell.
【請求項7】請求項4乃至請求項6記載の液晶装置を、
表示部として備えたことを特徴とする電子機器。
7. The liquid crystal device according to claim 4, wherein
An electronic device provided as a display unit.
JP32300597A 1997-11-25 1997-11-25 Liquid crystal device and electronic device Expired - Fee Related JP3924874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32300597A JP3924874B2 (en) 1997-11-25 1997-11-25 Liquid crystal device and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32300597A JP3924874B2 (en) 1997-11-25 1997-11-25 Liquid crystal device and electronic device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005187744A Division JP2005321830A (en) 2005-06-28 2005-06-28 Liquid crystal apparatus and electronic apparatus

Publications (2)

Publication Number Publication Date
JPH11160533A true JPH11160533A (en) 1999-06-18
JP3924874B2 JP3924874B2 (en) 2007-06-06

Family

ID=18150082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32300597A Expired - Fee Related JP3924874B2 (en) 1997-11-25 1997-11-25 Liquid crystal device and electronic device

Country Status (1)

Country Link
JP (1) JP3924874B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003511729A (en) * 1999-10-12 2003-03-25 スリーエム イノベイティブ プロパティズ カンパニー Optical body manufactured using birefringent polymer
JP2010128378A (en) * 2008-11-28 2010-06-10 Teijin Ltd Retardation film, laminated polarizing film, and liquid crystal display
US7791687B2 (en) 2006-12-21 2010-09-07 3M Innovative Properties Company Display including reflective polarizer
US7826009B2 (en) 2006-12-21 2010-11-02 3M Innovative Properties Company Hybrid polarizer
KR20150014603A (en) * 2013-07-30 2015-02-09 삼성디스플레이 주식회사 Liquid crystal display panel and liquid crystal display apparatus having the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003511729A (en) * 1999-10-12 2003-03-25 スリーエム イノベイティブ プロパティズ カンパニー Optical body manufactured using birefringent polymer
US7791687B2 (en) 2006-12-21 2010-09-07 3M Innovative Properties Company Display including reflective polarizer
US7826009B2 (en) 2006-12-21 2010-11-02 3M Innovative Properties Company Hybrid polarizer
US8120730B2 (en) 2006-12-21 2012-02-21 3M Innovative Properties Company Hybrid polarizer
US9891362B2 (en) 2006-12-21 2018-02-13 3M Innovative Properties Company Hybrid polarizer
US11237312B2 (en) 2006-12-21 2022-02-01 3M Innovative Properties Company Hybrid polarizer
JP2010128378A (en) * 2008-11-28 2010-06-10 Teijin Ltd Retardation film, laminated polarizing film, and liquid crystal display
KR20150014603A (en) * 2013-07-30 2015-02-09 삼성디스플레이 주식회사 Liquid crystal display panel and liquid crystal display apparatus having the same

Also Published As

Publication number Publication date
JP3924874B2 (en) 2007-06-06

Similar Documents

Publication Publication Date Title
US6744480B2 (en) Liquid crystal display device
KR100433607B1 (en) Display device, electronic device and light giude
JP3337028B2 (en) Liquid crystal devices and electronic equipment
KR20030050303A (en) Transflective type liquid crystal display device
JP3480260B2 (en) Liquid crystal devices and electronic equipment
JP3345772B2 (en) Liquid crystal devices and electronic equipment
JP2006501516A (en) Liquid crystal display
WO1999006878A1 (en) Liquid crystal display
JP4546730B2 (en) Transflective liquid crystal display device
JP2007298960A (en) Liquid crystal display device and polarizing plate set for use in the same
JPH10260402A (en) Translucent reflection type liquid-crystal device and electronic equipment
JP3924874B2 (en) Liquid crystal device and electronic device
JPH1164631A (en) Polarizing means, liquid crystal device and electronic equipment
JP3999867B2 (en) Liquid crystal display
US6542208B1 (en) Liquid crystal display device
JPH11142646A (en) Reflecting polarizer, liquid crystal device, and electronic equipment
JP3843580B2 (en) Liquid crystal device and electronic device
JP4032478B2 (en) Liquid crystal device and electronic device
JP2005321830A (en) Liquid crystal apparatus and electronic apparatus
JP3337029B2 (en) Liquid crystal devices and electronic equipment
JP3389924B2 (en) Liquid crystal devices and electronic equipment
JP2004219553A (en) Liquid crystal display device and electronic appliance
JP3603897B2 (en) Transflective liquid crystal device and electronic equipment
JP4082426B2 (en) Liquid crystal device and electronic device
JP3804252B2 (en) Liquid crystal device and electronic device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070219

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140309

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees