JPH11159905A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH11159905A
JPH11159905A JP9339394A JP33939497A JPH11159905A JP H11159905 A JPH11159905 A JP H11159905A JP 9339394 A JP9339394 A JP 9339394A JP 33939497 A JP33939497 A JP 33939497A JP H11159905 A JPH11159905 A JP H11159905A
Authority
JP
Japan
Prior art keywords
refrigerant
liquid
pump
refrigerator
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9339394A
Other languages
Japanese (ja)
Inventor
Akio Mori
昭雄 盛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP9339394A priority Critical patent/JPH11159905A/en
Publication of JPH11159905A publication Critical patent/JPH11159905A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To further save energy by a method wherein supply and discharge of a refrigerant between an absorption refrigerator and a refrigerant coil are effected by a single pump. SOLUTION: A pump 30 with a suction port pointing to the refrigerator 1 side and a discharge port pointing to the refrigerant coil 8 side is located in a liquid line 11 to interconnect an absorption refrigerator 1 serving as an outdoor machine A and the refrigerant coil 8 serving as an indoor machine B. A switch circuit consisting of two bypass lines 34 and 35 and four solenoid valves 32, 33, 36, and 37 is disposed at the periphery of the pump 30. In a cooling cycle, the solenoid valves 32 and 33 are opened and the solenoid valves 36 and 37 are closed to feed refrigerant liquid from the refrigerator 1 to the refrigerant coil 8. In a heating cycle, the solenoid valves 32 and 33 are closed and the solenoid valves 36 and 37 are opened to feed the refrigerant liquid from the refrigerant coil 8 to the refrigerator 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、吸収式冷凍機と冷
媒コイルとを組合せた空調装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner in which an absorption refrigerator and a refrigerant coil are combined.

【0002】[0002]

【従来の技術】吸収式吸冷凍機は、図4に符号1にて示
すように、凝縮器2と、蒸発器3と、吸収器4と再生器
5とを備えており、これら各機器は冷媒が循環する一つ
の循環回路6に直列に組込まれている。吸収器4には冷
媒ガスを吸収する吸収溶液が収容されており、この吸収
溶液は蒸発器3で発生した低温冷媒ガスを吸収して再生
器5に移動し、そこで、ガスまたは油焚きの熱源7によ
り加熱されて高温の冷媒ガスを分離する。そして、この
再生器5で分離発生した高温の冷媒ガスは、凝縮器2へ
運ばれて液化し、冷媒液として蒸発器3へ送られる。な
お、再生器5で冷媒を分離した後の吸収溶液は図示を略
す戻り管を経て吸収器4へ戻される。
2. Description of the Related Art As shown by reference numeral 1 in FIG. 4, an absorption-type absorption chiller includes a condenser 2, an evaporator 3, an absorber 4 and a regenerator 5. The refrigerant is incorporated in one circulation circuit 6 in which the refrigerant circulates. The absorber 4 contains an absorbing solution for absorbing the refrigerant gas. The absorbing solution absorbs the low-temperature refrigerant gas generated in the evaporator 3 and moves to the regenerator 5, where the gas or oil-fired heat source 7 separates the high temperature refrigerant gas. The high-temperature refrigerant gas separated and generated in the regenerator 5 is conveyed to the condenser 2 to be liquefied and sent to the evaporator 3 as a refrigerant liquid. The absorbing solution after the refrigerant has been separated by the regenerator 5 is returned to the absorber 4 via a return pipe (not shown).

【0003】上記した吸収式冷凍機1は、通常、屋外機
Aとして用いられており、その蒸発器3と再生器5の熱
源7とには、屋内機Bとして用いられる冷媒コイル8を
循環する冷媒を運ぶ配管9が取り回されている。なお、
配管9は、切替弁10a,10bにより冷房サイクルに
際しては蒸発器3側へ、暖房サイクルに際しては熱源7
側へそれぞれ切替えられるようになっている。ここで、
冷媒コイル8を循環する冷媒としては、従来一般には水
が用いられていたが、最近では、ガス、例えばフロンガ
スR−134a,R−22等が用いられるようになって
きている。これは、ガスを冷媒として用いる方が水を冷
媒として用いる場合に比べて熱交換効率が向上するの
で、小口径の配管の使用が可能になって装置の小型化、
省スペース化を達成できること、ポンプとして小型のも
のを採用できて省エネルギー化を達成できること、など
の理由による。
The above-mentioned absorption refrigerator 1 is usually used as an outdoor unit A, and a refrigerant coil 8 used as an indoor unit B is circulated between the evaporator 3 and the heat source 7 of the regenerator 5. A piping 9 for carrying the refrigerant is routed. In addition,
The piping 9 is directed to the evaporator 3 side during the cooling cycle by the switching valves 10a and 10b, and to the heat source 7 during the heating cycle.
Each can be switched to the side. here,
Conventionally, water has been generally used as the refrigerant circulating through the refrigerant coil 8, but recently, a gas, for example, Freon gas R-134a, R-22, or the like has been used. This is because heat exchange efficiency is improved when gas is used as a refrigerant as compared with the case where water is used as a refrigerant.
This is because space can be saved, and a small pump can be used to save energy.

【0004】ところで、上記ガスを冷媒として用いる場
合は、吸収式冷凍機1と冷媒コイル8との間で冷媒が液
状態またはガス状態で運ばれることになるが、冷媒液を
運ぶ管路と冷媒ガスを運ぶ管路とでは、当然のこととし
て口径を変える必要がある。このため、従来の空調装置
では、図5に示すように、吸収式冷凍機1と冷媒コイル
8との間に口径の異なる液管路11とガス管路12とを
配管し、各管路11,12に対して冷媒液と冷媒ガスと
を各独立に流すようにしていた。この場合、冷媒ガスは
そのガス圧によって自然にガス管路12を流れるので、
特別の圧送手段は必要としないが、冷媒液はポンプで圧
送しないと液管路11を流動しない。しかるに、この液
管路11内の液冷媒は、冷房サイクルでは黒塗り矢印で
示すように冷凍機1から冷媒コイル8へ、暖房サイクル
では白抜き矢印で示すように冷媒コイル8から冷凍機1
へそれぞれ向う流れとなるので、同じ液管路11を利用
しての冷媒液の給排は不可能になる。
When the above gas is used as a refrigerant, the refrigerant is transported between the absorption refrigerator 1 and the refrigerant coil 8 in a liquid state or a gas state. Naturally, it is necessary to change the diameter of the pipe that carries the gas. For this reason, in the conventional air conditioner, as shown in FIG. 5, a liquid pipe 11 and a gas pipe 12 having different diameters are piped between the absorption refrigerator 1 and the refrigerant coil 8, and each pipe 11 , And 12, the refrigerant liquid and the refrigerant gas flow independently of each other. In this case, since the refrigerant gas naturally flows through the gas pipe 12 due to the gas pressure,
Although no special pumping means is required, the refrigerant liquid does not flow through the liquid pipeline 11 unless pumped by a pump. However, in the cooling cycle, the liquid refrigerant in the liquid pipeline 11 is transferred from the refrigerator 1 to the refrigerant coil 8 as indicated by the black arrow, and from the refrigerant coil 8 to the refrigerator 1 as indicated by the white arrow in the heating cycle.
Therefore, it becomes impossible to supply and discharge the refrigerant liquid using the same liquid conduit 11.

【0005】そこで、従来は、同じく図5に示すよう
に、液管路11に第1のポンプ13を介装すると共に、
液管路11に前記第1のポンプ13をバイパスさせて設
けたバイパス管路14に第2のポンプ15を介装し、冷
房サイクルでは第1のポンプ13の運転により冷房機1
から冷媒コイル8へ冷媒液を圧送し(黒塗り矢印)、暖
房サイクルでは第2のポンプ15の運転により冷媒コイ
ル8から冷凍機1へ冷媒液を圧送する(白抜き矢印)よ
うにしていた。
Therefore, conventionally, as shown in FIG. 5, a first pump 13 is interposed in the liquid line 11,
A second pump 15 is interposed in a bypass line 14 provided in the liquid line 11 so as to bypass the first pump 13, and the cooling machine 1 is operated by the operation of the first pump 13 in a cooling cycle.
From the refrigerant coil 8 to the refrigerant coil 8 (black arrow), and in the heating cycle, the second pump 15 operates to pump the refrigerant liquid from the refrigerant coil 8 to the refrigerator 1 (open arrow).

【0006】より詳しくは、冷房サイクルでは、前記第
1のポンプ13により液管路11を通じて冷凍機1から
冷媒コイル8へ圧送された冷媒液が、膨張弁16で減圧
されながら冷媒コイル8へ流入し、そこでファン17の
運転によりハウジング18内に吸引された空気と熱交換
されてガス化し、冷媒ガスが、ガス管路12を通じて冷
凍機1へ還流し、一方、暖房サイクルに際しては、ガス
管路12を通じて冷媒コイル8へ送られた冷媒ガスが、
そこで、空気と熱交換されて液化し、冷媒液が第2のポ
ンプ15により液管路11からバイパス管路14を経て
冷凍機1へと還流するようになっている。なお、冷媒コ
イル8で生じた冷媒液には、冷媒ガスが多少含まれてい
るので、バイパス管路14の、第2のポンプ15の直前
には、冷媒液を一旦貯えるタンク19が設けられてい
る。また、屋内機Bのハウジング18内で熱交換されて
冷気または暖気となった空気は、ダクト20を通じて噴
射ノズル21へ送られ、室内へと噴射される。また、室
外機Aには、吸収式冷凍機1の凝縮器2用の冷水を貯え
る冷却塔22が併設されている。
More specifically, in the cooling cycle, the refrigerant liquid pumped from the refrigerator 1 to the refrigerant coil 8 through the liquid line 11 by the first pump 13 flows into the refrigerant coil 8 while being depressurized by the expansion valve 16. Then, by the operation of the fan 17, heat is exchanged with the air sucked into the housing 18 and gasified, and the refrigerant gas is returned to the refrigerator 1 through the gas line 12. On the other hand, in the heating cycle, the gas line The refrigerant gas sent to the refrigerant coil 8 through 12
Therefore, the refrigerant is liquefied by heat exchange with air, and the refrigerant liquid is returned to the refrigerator 1 from the liquid line 11 via the bypass line 14 by the second pump 15. Since the refrigerant liquid generated in the refrigerant coil 8 contains a small amount of refrigerant gas, a tank 19 for temporarily storing the refrigerant liquid is provided in the bypass pipe 14 immediately before the second pump 15. I have. In addition, the air that has undergone heat exchange in the housing 18 of the indoor unit B and has become cool air or warm air is sent to the injection nozzle 21 through the duct 20 and is injected indoors. In addition, the outdoor unit A is provided with a cooling tower 22 for storing cold water for the condenser 2 of the absorption refrigerator 1.

【0007】[0007]

【発明が解決しようとする課題】すなわち、上記した従
来の空調装置によれば、吸収式冷凍機1と冷媒コイル8
との間で冷媒液を給排するには、2台のポンプ13,1
5が必要不可欠となっており、2台のポンプを運転する
分、消費エネルギーは増大し、水を冷媒として用いたも
のに対し、期待するほどの省エネルギー化を達成できな
い、という問題があった。
That is, according to the above-described conventional air conditioner, the absorption type refrigerator 1 and the refrigerant coil 8 are provided.
To supply and discharge the refrigerant liquid between the two pumps 13, 1
5 is indispensable, and the operation of the two pumps increases the energy consumption, and there is a problem that energy saving as expected cannot be achieved with respect to the case where water is used as the refrigerant.

【0008】本発明は、上記した問題点に鑑みてなされ
たもので、その課題とするところは、吸収式冷凍機と冷
媒コイルとの間での冷媒液の給排を一台のポンプで行う
ことができるようにし、もって、省エネルギー化に大き
く寄与する空調装置を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and an object thereof is to supply and discharge refrigerant liquid between an absorption refrigerator and a refrigerant coil with a single pump. It is therefore an object of the present invention to provide an air conditioner which can greatly contribute to energy saving.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するた
め、本発明は、吸収式冷凍機を屋外機として、前記冷凍
機内の冷媒と熱交換された冷媒の循環する冷媒コイルを
屋内機としてそれぞれ用いる空調装置において、前記冷
凍機と前記冷媒コイルとの間で冷媒液を運ぶ液管路に一
台のポンプを介装すると共に、前記液管路に、冷房サイ
クルおよび暖房サイクルに応じて冷媒液の供給元を前記
ポンプの吸込口に導通させ、かつ冷媒液の給送先を前記
ポンプの吐出口に導通させる切替回路を付設する構成と
したことを特徴とする。
In order to solve the above problems, the present invention relates to an absorption type refrigerator as an outdoor unit and a refrigerant coil for circulating a refrigerant heat-exchanged with the refrigerant in the refrigerator as an indoor unit. In the air conditioner used, a single pump is interposed in a liquid line that carries a refrigerant liquid between the refrigerator and the refrigerant coil, and a refrigerant liquid is provided in the liquid line according to a cooling cycle and a heating cycle. And a switching circuit that connects the supply source of the refrigerant to the suction port of the pump and the supply destination of the refrigerant liquid to the discharge port of the pump.

【0010】このように構成した空調装置においては、
冷房サイクルに際しては冷凍機が冷媒液の供給元に、冷
媒コイルが冷媒液の供給先にそれぞれなり、一方、暖房
サイクルに際しては冷媒コイルが冷媒液の供給元に、冷
凍機が冷媒液の供給先にそれぞれなるが、切替回路が、
冷媒液の供給元をポンプの吸込口に常に導通させ、かつ
冷媒液の給送先をポンプの吐出口に常に導通させるの
で、一台のポンプを冷房サイクルと暖房サイクルとに共
用することができる。
[0010] In the air conditioner configured as described above,
In the cooling cycle, the refrigerator is the supply source of the refrigerant liquid, and the refrigerant coil is the supply destination of the refrigerant liquid. On the other hand, in the heating cycle, the refrigerant coil is the supply source of the refrigerant liquid, and the refrigerator is the supply destination of the refrigerant liquid. Respectively, but the switching circuit is
Since the supply source of the refrigerant liquid is always conducted to the suction port of the pump, and the supply destination of the refrigerant liquid is always conducted to the discharge port of the pump, one pump can be shared for the cooling cycle and the heating cycle. .

【0011】本発明において、上記冷媒としては、常温
で蒸発する特性を有するもの、例えばフロンガスR−1
34a,R−22等を用いるのが望ましい。これらフロ
ンガスは、規制対象外であり、しかも、常温で蒸発する
ので、空調用の冷媒として好適となる。
In the present invention, the refrigerant has a characteristic of evaporating at room temperature, such as Freon gas R-1.
34a, R-22 and the like are desirably used. Since these fluorocarbon gases are not subject to regulation and evaporate at room temperature, they are suitable as refrigerants for air conditioning.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態を添付
図面に基いて説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0013】図1は、本発明の実施の形態としての空調
装置を示したものである。なお、こゝで用いる吸収式冷
凍機1は、前出図4に示したものと同じであり、また、
装置全体の構造は前出図5に示したものと同じであるの
で、こゝでは、図4および5に示した部分と同一部分に
は同一符号を付し、重複する説明は省略することとす
る。本空調装置は、空調機1と冷媒コイル8との間で冷
媒(例えば、フロンガスR−134a,R−22等)の
液を運ぶ液管路11に一台のポンプ30を介装している
だけであり、従来、冷媒コイル8から空調機1へ冷媒液
を還流させるために必要としていた第2のポンプ19
(図5)は、本空調装置から廃されている。本実施の形
態において、ポンプ30は冷凍機1側に吸込口を、冷媒
コイル8側に吐出口をそれぞれ向けて配置され、一方、
このポンプ30の周りには、後述の切替回路31が配設
されている。
FIG. 1 shows an air conditioner according to an embodiment of the present invention. The absorption refrigerator 1 used here is the same as that shown in FIG.
Since the structure of the entire device is the same as that shown in FIG. 5 above, the same portions as those shown in FIGS. 4 and 5 are denoted by the same reference numerals, and overlapping description will be omitted. I do. In this air conditioner, one pump 30 is interposed in a liquid pipeline 11 that carries a liquid of a refrigerant (for example, Freon gas R-134a, R-22, or the like) between the air conditioner 1 and the refrigerant coil 8. And the second pump 19, which was conventionally required to recirculate the refrigerant liquid from the refrigerant coil 8 to the air conditioner 1.
(FIG. 5) has been abolished from the present air conditioner. In the present embodiment, the pump 30 is arranged with the suction port facing the refrigerator 1 and the discharge port facing the refrigerant coil 8, respectively.
Around the pump 30, a switching circuit 31 to be described later is provided.

【0014】切替回路31は、上記液管路11の、ポン
プ30に対して冷凍機1側(前側)および冷媒コイル8
側(後側)となる部位に介装された第1、第2の電磁弁
(開閉弁)32、33と、この液管路11に前記ポンプ
30をバイパスさせて設けた2つのバイパス管路34、
35と、各バイパス管路34、35に介装された第3、
第4の電磁弁(開閉弁)36、37とからなっている。
しかして、前記2つのバイパス管路のうち、一方の管路
34は、第1の電磁弁32とポンプ30との間から分岐
して第2の電磁弁33の後側に接続するように、他方の
管路35は、第1の電磁弁32の前側から分岐してポン
プ30と第2の電磁弁33との間に接続するようにそれ
ぞれ配設されている。なお、これら電磁弁の作動は、図
示を略す制御装置からの指令で制御されるようになって
いる。
The switching circuit 31 is connected to the refrigerator line 1 (front side) of the liquid line 11 with respect to the pump 30 and the refrigerant coil 8.
First and second solenoid valves (opening / closing valves) 32 and 33 interposed at the parts on the side (rear side), and two bypass lines provided in the liquid line 11 so as to bypass the pump 30 34,
35, and a third, interposed in each bypass line 34, 35,
Fourth solenoid valves (open / close valves) 36 and 37 are provided.
Thus, one of the two bypass pipes 34 is branched from between the first solenoid valve 32 and the pump 30 and connected to the rear side of the second solenoid valve 33. The other conduits 35 are provided so as to branch off from the front side of the first solenoid valve 32 and to be connected between the pump 30 and the second solenoid valve 33. The operation of these solenoid valves is controlled by a command from a control device (not shown).

【0015】本実施の形態においては、液管路11の屋
内機B側に、前記タンク15を備えたバイパス管路38
を設けている。このバイパス管路38は、従来のバイパ
ス管路14(図5)と異なり、上記したポンプ30をバ
イパスすることなく液管路11の途中に限定的に設けら
れている。しかして、液管路11の、前記バイパス管路
38の分岐点の間には、開閉弁(電磁開閉弁)39が介
装されており、この開閉弁39を閉じた場合には、バイ
パス管路38を迂回して冷媒液が流動するようになる。
In the present embodiment, a bypass pipe 38 provided with the tank 15 is provided on the indoor unit B side of the liquid pipe 11.
Is provided. Unlike the conventional bypass pipe 14 (FIG. 5), the bypass pipe 38 is provided only in the middle of the liquid pipe 11 without bypassing the pump 30 described above. An on-off valve (electromagnetic on-off valve) 39 is interposed between the liquid line 11 and the branch point of the bypass line 38. When the on-off valve 39 is closed, the bypass line is closed. The refrigerant liquid flows around the path 38.

【0016】以下、上記のように構成した空調装置の作
用を、図2および3も参照して説明する。冷房サイクル
においては、図2に示すように、第3および第4の電磁
弁36、37が閉じられると共に、第1および第2の電
磁弁32、33と屋内機B側の開閉弁39とが開かれ
る。なお、説明を解り易くするため、図面上、閉じられ
た弁は黒塗りで表している。前記各弁の開閉状態のも
と、吸収式冷凍機1を運転させると共に、ポンプ30を
運転させると、液管路11を通じて冷凍機1から冷媒コ
イル8へ冷媒液が圧送され、この冷媒液は、膨張弁16
で減圧されながら冷媒コイル8内へ流入し、ファン17
の運転によりハウジング18内に吸引された空気と熱交
換されてガス化する。そして、冷媒コイル8内で発生し
た冷媒ガスは、ガス管路12を通じて冷凍機1へ還流
し、一方、ハウジング18内に吸引された空気は、冷媒
コイル8を通過する間に冷媒の気化熱によって熱を奪わ
れ、冷気となって噴射ノズル21から室内へと噴射され
る。
The operation of the air conditioner constructed as described above will be described below with reference to FIGS. In the cooling cycle, as shown in FIG. 2, the third and fourth solenoid valves 36 and 37 are closed, and the first and second solenoid valves 32 and 33 and the on-off valve 39 on the indoor unit B side are connected. be opened. In addition, in order to make the description easy to understand, in the drawings, the closed valve is shown in black. When the absorption chiller 1 is operated and the pump 30 is operated under the open / closed state of each valve, the refrigerant liquid is pressure-fed from the refrigerator 1 to the refrigerant coil 8 through the liquid line 11, and this refrigerant liquid is , Expansion valve 16
Flows into the refrigerant coil 8 while being decompressed by the fan 17.
By the operation, heat is exchanged with the air sucked into the housing 18 and gasified. The refrigerant gas generated in the refrigerant coil 8 is returned to the refrigerator 1 through the gas pipe 12, while the air sucked into the housing 18 is generated by the heat of vaporization of the refrigerant while passing through the refrigerant coil 8. The heat is deprived, the air becomes cold, and is injected from the injection nozzle 21 into the room.

【0017】暖房サイクルにおいては、図3に示すよう
に、第1および第2の電磁弁32、33と屋内機B側の
開閉弁39とが閉じられると共に、第3および第4の電
磁弁36、37が開かれる。これと同時に、吸収式冷凍
機1側は、その切替弁10a,10bが液管路11およ
びガス管路12を熱源7側へ切替えるように操作され
る。この状態のもと、ポンプ30を運転させると、ガス
管路12を通じて冷凍機1から冷媒コイル8へ冷媒ガス
が送られ、この冷媒ガスは、冷媒コイル8内でハウジン
グ18内に導入される空気と熱交換されて液化する。そ
して、冷媒コイル8内で生じた冷媒液は、液管路11内
に流入するが、その途中の開閉弁39が閉じられている
ことから、バイパス管路38側へ流動し、その中のタン
ク15に一旦貯えられる。一方、ポンプ30の吸込口
は、第2の電磁弁33閉じられかつ第3の電磁弁34が
開かれているため、前記タンク15に導通させられてお
り、これにより、タンク15内の冷媒液は液管路11に
戻された後、バイパス管路34を経由してポンプ30に
吸込まれ、さらに、その吐出口から吐出されてバイパス
管路35を経て冷凍機1へ戻される。こゝで、ハウジン
グ18内に吸引された空気は、冷媒コイル8を通過する
間に冷媒が放出する潜熱によって暖められ、暖気となっ
て噴射ノズル21から室内へ噴射される。
In the heating cycle, as shown in FIG. 3, the first and second solenoid valves 32 and 33 and the open / close valve 39 on the indoor unit B side are closed, and the third and fourth solenoid valves 36 and 36 are closed. , 37 are opened. At the same time, the absorption refrigerator 1 is operated such that the switching valves 10a and 10b switch the liquid pipeline 11 and the gas pipeline 12 to the heat source 7 side. When the pump 30 is operated in this state, the refrigerant gas is sent from the refrigerator 1 to the refrigerant coil 8 through the gas line 12, and the refrigerant gas is introduced into the housing 18 in the refrigerant coil 8. It exchanges heat with liquefaction. Then, the refrigerant liquid generated in the refrigerant coil 8 flows into the liquid conduit 11, but flows to the bypass conduit 38 side because the on-off valve 39 in the middle thereof is closed, and the tank in the refrigerant conduit 11 flows therethrough. 15 once. On the other hand, the suction port of the pump 30 is electrically connected to the tank 15 because the second solenoid valve 33 is closed and the third solenoid valve 34 is open. Is returned to the liquid line 11 and then sucked into the pump 30 via the bypass line 34, further discharged from its discharge port and returned to the refrigerator 1 via the bypass line 35. Here, the air sucked into the housing 18 is heated by the latent heat released by the refrigerant while passing through the refrigerant coil 8, becomes warm air, and is injected from the injection nozzle 21 into the room.

【0018】なお、本発明は、上記ポンプ30の配置を
逆向きに、すなわち、その吸込口を冷媒コイル8側に、
その吐出口を冷凍機1側に向けてもよいものである。た
だし、この場合は、各電磁弁32、33、36、37の
開閉を上記実施の形態とは逆にする必要があり、冷房サ
イクルに際しては第1および第2の電磁弁32、33を
閉じると共に、第3および第4の電磁弁36、37を開
き、暖房サイクルに際しては第1および第2の電磁弁3
2、33を開くと共に、第3および第4の電磁弁36、
37を閉じるようにする。本発明はまた、上記タンク1
5を備えたバイパス管路38を省略することもでき、こ
の場合は、開閉弁39も不要となる。
In the present invention, the arrangement of the pump 30 is reversed, that is, its suction port is located on the refrigerant coil 8 side.
The discharge port may be directed to the refrigerator 1 side. However, in this case, the opening and closing of each of the solenoid valves 32, 33, 36, and 37 need to be reversed from that in the above-described embodiment. During the cooling cycle, the first and second solenoid valves 32 and 33 are closed and , The third and fourth solenoid valves 36 and 37 are opened, and during the heating cycle, the first and second solenoid valves 3 and 3 are opened.
2, 33 are opened, and the third and fourth solenoid valves 36,
Close 37. The present invention also relates to the above tank 1
5 can be omitted, and in this case, the on-off valve 39 is not required.

【0019】[0019]

【発明の効果】以上、説明したように、本発明にかゝる
空調装置によれば、吸収式冷凍機と冷媒コイルとの間で
の冷媒液の給排を一台のポンプで行うことができるの
で、二台のポンプを必要とした従来の空調装置に比べ
て、消費エネルギーの低減並びにコスト低減を達成でき
る。
As described above, according to the air conditioner according to the present invention, the supply and discharge of the refrigerant liquid between the absorption refrigerator and the refrigerant coil can be performed by one pump. As a result, energy consumption and cost can be reduced as compared with a conventional air conditioner that requires two pumps.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかゝる空調装置の構造を模式的に示す
系統図である。
FIG. 1 is a system diagram schematically showing the structure of an air conditioner according to the present invention.

【図2】本空調装置の冷房サイクルにおけるの運転状態
を示す系統図である。
FIG. 2 is a system diagram showing an operation state of the air conditioner in a cooling cycle.

【図3】本空調装置の暖房サイクルにおけるの運転状態
を示す系統図である。
FIG. 3 is a system diagram showing an operation state of the air conditioner in a heating cycle.

【図4】本発明で用いる吸収式冷凍機の構造を示す回路
図である。
FIG. 4 is a circuit diagram showing a structure of an absorption refrigerator used in the present invention.

【図5】従来の空調装置の構造を模式的に示す系統図で
ある。
FIG. 5 is a system diagram schematically showing the structure of a conventional air conditioner.

【符号の説明】[Explanation of symbols]

1 空調機、 8 冷媒コイル 11 液管路 12 ガス管路 30 ポンプ 31 切替回路 A 室外機、 B 室内機 DESCRIPTION OF SYMBOLS 1 Air conditioner, 8 Refrigerant coil 11 Liquid line 12 Gas line 30 Pump 31 Switching circuit A outdoor unit, B indoor unit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 吸収式冷凍機を屋外機として、前記冷凍
機内の冷媒と熱交換された冷媒の循環する冷媒コイルを
屋内機としてそれぞれ用いる空調装置において、前記冷
凍機と前記冷媒コイルとの間で冷媒液を運ぶ液管路に一
台のポンプを介装すると共に、前記液管路に、冷房サイ
クルおよび暖房サイクルによらず冷媒液の供給元を前記
ポンプの吸込口に導通させ、かつ冷媒液の供給先を前記
ポンプの吐出口に導通させる切替回路を付設したことを
特徴とする空調装置。
1. An air conditioner using an absorption refrigerator as an outdoor unit and a refrigerant coil circulating a refrigerant heat-exchanged with a refrigerant in the refrigerator as an indoor unit, wherein an air conditioner is provided between the refrigerator and the refrigerant coil. A single pump is interposed in the liquid conduit that carries the refrigerant liquid at the same time, and a supply source of the refrigerant liquid is conducted to the suction port of the pump regardless of a cooling cycle and a heating cycle, and the refrigerant is connected to the liquid conduit. An air conditioner further comprising a switching circuit for connecting a liquid supply destination to a discharge port of the pump.
【請求項2】 冷媒が、常温で蒸発する特性を有してい
ることを特徴とする請求項1に記載の空調装置。
2. The air conditioner according to claim 1, wherein the refrigerant has a characteristic of evaporating at room temperature.
JP9339394A 1997-11-25 1997-11-25 Air conditioner Pending JPH11159905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9339394A JPH11159905A (en) 1997-11-25 1997-11-25 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9339394A JPH11159905A (en) 1997-11-25 1997-11-25 Air conditioner

Publications (1)

Publication Number Publication Date
JPH11159905A true JPH11159905A (en) 1999-06-15

Family

ID=18327067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9339394A Pending JPH11159905A (en) 1997-11-25 1997-11-25 Air conditioner

Country Status (1)

Country Link
JP (1) JPH11159905A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3792088A1 (en) 2019-09-16 2021-03-17 Evonik Operations GmbH Vehicle system and process for efficient use of waste heat from the power unit
EP3792089A1 (en) 2019-09-16 2021-03-17 Evonik Operations GmbH Vehicle system and process for efficient use of waste heat from the power unit
EP3792329A1 (en) 2019-09-16 2021-03-17 Evonik Operations GmbH Vehicle system and process for efficient use of waste heat from the power unit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3792088A1 (en) 2019-09-16 2021-03-17 Evonik Operations GmbH Vehicle system and process for efficient use of waste heat from the power unit
EP3792089A1 (en) 2019-09-16 2021-03-17 Evonik Operations GmbH Vehicle system and process for efficient use of waste heat from the power unit
EP3792329A1 (en) 2019-09-16 2021-03-17 Evonik Operations GmbH Vehicle system and process for efficient use of waste heat from the power unit

Similar Documents

Publication Publication Date Title
CN211739588U (en) Air conditioner capable of improving heat exchange performance
JP5030344B2 (en) Gas heat pump type air conditioner, engine cooling water heating device, and operation method of gas heat pump type air conditioner
KR100921211B1 (en) Compressor with vapor injection system
JPS6155018B2 (en)
CN111442558B (en) Temperature and humidity separately-controlled air conditioning system based on different evaporation temperatures of single machine and control method
JP2007248022A (en) Air conditioning system
JP2007255862A (en) Air conditioning system
JPH11159905A (en) Air conditioner
CN213873196U (en) Water heater
CN115235139A (en) Three-pipe multi-split air conditioning system, control method and storage medium
CN212362483U (en) Air conditioning unit capable of effectively improving energy utilization rate
JP2010127587A (en) Refrigerating cycle device
JP2981559B2 (en) Air conditioner
JP2981561B2 (en) Air conditioner
JPH10205932A (en) Air conditioner
CN217957614U (en) Compressor and fluorine pump system based on liquid cooling rack
JPH1194395A (en) Multi-room air conditioner
JPH11108492A (en) Air conditioner
JPH02178575A (en) Heat pump for cooling or heating and supplying hot water system
CN214370578U (en) Multi-split air conditioner
EP4365516A1 (en) Refrigerating system for refrigerating and freezing device and refrigerating and freezing device
JPH0275842A (en) Heat storage type heat pump device
JP2003028525A (en) Multiroom type air conditioner
JPH0835732A (en) Heat storage type air conditioner and controlling method therefor
JPH0620053Y2 (en) Heat pump air conditioner