JPH11154765A - Semiconductor substrate and luminous element made of gallium nitride-based compound semiconductor, and manufacture thereof - Google Patents

Semiconductor substrate and luminous element made of gallium nitride-based compound semiconductor, and manufacture thereof

Info

Publication number
JPH11154765A
JPH11154765A JP32082997A JP32082997A JPH11154765A JP H11154765 A JPH11154765 A JP H11154765A JP 32082997 A JP32082997 A JP 32082997A JP 32082997 A JP32082997 A JP 32082997A JP H11154765 A JPH11154765 A JP H11154765A
Authority
JP
Japan
Prior art keywords
layer
type
based compound
selective growth
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32082997A
Other languages
Japanese (ja)
Inventor
Toshio Hata
俊雄 幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP32082997A priority Critical patent/JPH11154765A/en
Publication of JPH11154765A publication Critical patent/JPH11154765A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize good reliability along with a small driving voltage, by forming a luminous element using a semiconductor with high crystallinity, and reducing contact resistance of an electrode. SOLUTION: A semiconductor luminous element made of gallium nitride-based compound semiconductor has an n-type GaN layer 3 on a substrate 1. A selective growth region 15 and a non-selective growth region are formed on the n-type GaN layer 3. In the selective growth region 15, a laminated structure body 51 is formed on the n-type GaN layer 3. The laminated structural body 51 includes a pair of clad layers 6 and 8 made of gallium nitride-based compound semiconductor layer and an active layer 7. In the non-selective growth region, an n-type Inx Ga1-x N layer 4, where 0<x<=1, and an n-type electrode are formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、窒化ガリウム系化
合物半導体基板及びその基板を利用した青色領域から紫
外光領域で発光可能な窒化ガリウム系化合物半導体発光
素子とその製造方法に関し、特に、ドライエッチング法
を必要としない簡便な方法により作製可能な窒化ガリウ
ム系化合物半導体発光素子とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gallium nitride compound semiconductor substrate, a gallium nitride compound semiconductor light emitting device capable of emitting light in a blue region to an ultraviolet region using the substrate, and a method of manufacturing the same. The present invention relates to a gallium nitride-based compound semiconductor light emitting device that can be manufactured by a simple method that does not require a method, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】選択成長法を用いて作製された従来の窒
化ガリウム系化合物半導体発光素子の模式断面図を図1
1に示す。この発光素子を作製する場合の従来技術は、
1回目の成長工程として、サファイア基板100上にn
型GaN低温バッファ層110を0.01〜0.2μm
形成する。このサファイヤ基板100を成長装置より取
り出し、このn型GaN低温バッファ層110上に選択
成長用酸化膜210を形成する。選択成長用酸化膜21
0をエッチングして選択成長領域200を形成する。以
上までの工程で作製された窒化ガリウム系化合物半導体
発光素子を図11(a)に示す。
2. Description of the Related Art FIG. 1 is a schematic cross-sectional view of a conventional gallium nitride-based compound semiconductor light emitting device manufactured by using a selective growth method.
It is shown in FIG. The conventional technology for producing this light emitting element is as follows.
As a first growth step, n is placed on the sapphire substrate 100.
Type GaN low-temperature buffer layer 110 of 0.01 to 0.2 μm
Form. The sapphire substrate 100 is taken out from the growth apparatus, and an oxide film 210 for selective growth is formed on the n-type GaN low-temperature buffer layer 110. Oxide film 21 for selective growth
0 is etched to form the selective growth region 200. FIG. 11A shows the gallium nitride-based compound semiconductor light emitting device manufactured through the above steps.

【0003】次に、サファイア基板100を成長装置に
導入し、基板温度900〜1200℃にてn型GaN低
温バッファ層110を単結晶化させ、n型GaN層12
0、n型AlGaNクラッド層130、ノンドープまた
はp型もしくはn型のInGaN活性層140、p型A
lGaNクラッド層150、p型GaNキャップ層16
0を順次結晶成長する。その後、選択成長用酸化膜21
0を除去し、n型GaN低温バッファ層110上にn型
電極170を形成し、さらに、p型GaNキャップ層1
60上にp型電極180を形成する。以上までの工程で
作製された窒化物系化合物半導体発光素子を図11
(b)に示す。以上のような構造の窒化物系化合物半導
体発光素子が特開平8−255929号公報に開示され
ている。
Next, the sapphire substrate 100 is introduced into a growth apparatus, and the n-type GaN low-temperature buffer layer 110 is monocrystallized at a substrate temperature of 900 to 1200 ° C.
0, n-type AlGaN cladding layer 130, non-doped or p-type or n-type InGaN active layer 140, p-type A
lGaN cladding layer 150, p-type GaN cap layer 16
0 is sequentially crystal-grown. Thereafter, the oxide film 21 for selective growth is formed.
0 is removed, an n-type electrode 170 is formed on the n-type GaN low-temperature buffer layer 110, and the p-type GaN cap layer 1
A p-type electrode 180 is formed on 60. The nitride-based compound semiconductor light-emitting device manufactured by the steps described above is shown in FIG.
(B). A nitride-based compound semiconductor light-emitting device having the above structure is disclosed in Japanese Patent Application Laid-Open No. 8-255929.

【0004】[0004]

【発明が解決しようとする課題】しかし、従来の半導体
発光素子では、n型GaN低温バッファ層110上に高
温にてn型GaN層120など選択成長領域200に積
層する半導体層を再度成長させたところ、結晶欠陥の多
い半導体層しか得られなかった。その原因としては、選
択成長のためのSiO2等の選択成長用酸化膜210の
形成や選択成長領域200のSiO2等の選択成長用酸
化膜210のエッチングを行うことにより、再成長表面
のエッチピットの発生や表面荒れ、大気中の残留不純物
の付着等によるためである。従来技術にてSiO2等の
選択成長用酸化膜210を除去した表面上に、良好な結
晶性を持つ積層構造体を積層することは困難であり、従
来技術にて作製した発光素子の駆動電圧が大きくなると
いう問題点があった。
However, in the conventional semiconductor light emitting device, a semiconductor layer such as the n-type GaN layer 120, which is to be laminated on the selective growth region 200, is grown again on the n-type GaN low-temperature buffer layer 110 at a high temperature. However, only a semiconductor layer having many crystal defects was obtained. This is because the formation of the oxide film 210 for selective growth such as SiO 2 for selective growth and the etching of the oxide film 210 for selective growth such as SiO 2 in the selective growth region 200 are performed to etch the regrown surface. This is because pits are generated, the surface is roughened, and residual impurities in the air are attached. It is difficult to stack a laminated structure having good crystallinity on the surface from which the selective growth oxide film 210 such as SiO 2 has been removed by the conventional technique, and the driving voltage of the light emitting device manufactured by the conventional technique is difficult. However, there is a problem that the size becomes larger.

【0005】また、従来の選択成長の方法を用いた窒化
ガリウム系半導体発光素子のn型電極170は、n型G
aN層120上に形成されたSiO2等の選択成長用酸
化膜210をエッチングした表面に形成するため、n型
電極170とn型GaN層120との接触抵抗が大き
く、そのため窒化ガリウム系半導体発光素子の駆動電圧
が4〜5Vで高い値しか得られないという問題点もあっ
た。
Further, the n-type electrode 170 of the gallium nitride based semiconductor light emitting device using the conventional selective growth method is an n-type G
Since the oxide film 210 for selective growth such as SiO 2 formed on the aN layer 120 is formed on the etched surface, the contact resistance between the n-type electrode 170 and the n-type GaN layer 120 is large. There is also a problem that only a high value can be obtained when the driving voltage of the element is 4 to 5 V.

【0006】従って、本発明の目的は、良好な結晶性の
半導体からなり、且つ、電極の接触抵抗を低減すること
で駆動電圧が低く、信頼性の高い窒化ガリウム系化合物
半導体発光素子及びその製造方法を提供することであ
る。
Accordingly, an object of the present invention is to provide a highly reliable gallium nitride-based compound semiconductor light emitting device which is made of a good crystalline semiconductor, has a low driving voltage by reducing the contact resistance of the electrode, and has high reliability. Is to provide a way.

【0007】[0007]

【課題を解決するための手段】本発明の窒化ガリウム系
化合物半導体基板は、基板上にn型GaN層、n型In
xGa1-xN(0<x≦1)層を有し、前記n型Inx
1-xN(0<x≦1)層は表面保護層であることを特
徴とする。本発明では、n型InGaN層を表面保護層
とすることで、n型GaN層に対する保護膜として機能
する効果がある。
The gallium nitride-based compound semiconductor substrate of the present invention comprises an n-type GaN layer, an n-type In
x Ga 1-x N (0 <x ≦ 1) layer, and the n-type In x G
The a 1-x N (0 <x ≦ 1) layer is a surface protective layer. In the present invention, using the n-type InGaN layer as the surface protective layer has an effect of functioning as a protective film for the n-type GaN layer.

【0008】また、基板上にn型GaN層を有し、前記
n型GaN層上は選択成長領域と非選択成長領域に分け
られ、選択成長領域では前記n型GaN層上に、窒化ガ
リウム系化合物半導体層からなる一対のクラッド層及び
活性層を有する層を含む積層構造体を有し、非選択成長
領域では、n型InxGa1-xN(0<x≦1)層とn型
電極を有することを特徴とする。選択成長領域に露出し
たn型InGaN表面保護層を再蒸発工程を用いること
で、清浄な再成長界面を露出できる効果があり、直接再
成長を行わず、前記積層構造体を積層できるため再成長
界面での直列抵抗の増加はなく、さらに、結晶性の良好
な積層構造体が作製できる。
In addition, an n-type GaN layer is provided on the substrate, and the n-type GaN layer is divided into a selective growth region and a non-selective growth region. It has a laminated structure including a pair of cladding layers composed of a compound semiconductor layer and a layer having an active layer. In a non-selective growth region, an n-type In x Ga 1 -xN (0 <x ≦ 1) layer and an n-type It is characterized by having an electrode. By using the re-evaporation step of the n-type InGaN surface protective layer exposed in the selective growth region, there is an effect that a clean regrowth interface can be exposed. There is no increase in series resistance at the interface, and a laminated structure with good crystallinity can be manufactured.

【0009】ここで、前記n型InGaN表面保護層の
厚さは、50nm以上100nmが好ましい。その理由
は、酸素等の混入深さが約20nmであるため、50n
mは必要であり、再蒸発の容易性を考えると100nm
以下が好ましい。
Here, the thickness of the n-type InGaN surface protective layer is preferably 50 nm or more and 100 nm. The reason is that the mixing depth of oxygen and the like is about 20 nm,
m is necessary, and considering the ease of re-evaporation, 100 nm
The following is preferred.

【0010】n型InGaN表面保護層のIn組成比は
0以上1以下、再蒸発が容易であるためには、0.5以
上1以下が好ましく、再蒸発温度の範囲は600℃から
1050℃、再蒸発速度及びn型GaN下地層に悪影響
を及ぼさないため、600℃以上850℃以下が好まし
い。n型InGaN表面保護層の再蒸発量は、表面に混
入した残留不純物を除去するために、全てを再蒸発させ
るのが好ましいが、少なくとも20nm以上は再蒸発さ
せる必要がある。
[0010] The In composition ratio of the n-type InGaN surface protective layer is preferably 0 or more and 1 or less, and 0.5 or more and 1 or less for easy re-evaporation. The temperature is preferably from 600 ° C. to 850 ° C. so as not to adversely affect the re-evaporation rate and the n-type GaN underlayer. As for the re-evaporation amount of the n-type InGaN surface protective layer, it is preferable that all of the re-evaporation is performed in order to remove residual impurities mixed into the surface, but it is necessary to re-evaporate at least 20 nm or more.

【0011】また、本発明は、前記基板上のn型GaN
層のn型不純物濃度が2×1018cm-3から1×1019
cm-3の範囲であり、前記n型GaN層に接した前記積
層構造体の半導体層のn型不純物濃度が8×1017cm
-3から2×1018cm-3の範囲であることを特徴とす
る。また、本発光素子によれば、基板として構成された
n型GaN層のn型不純物濃度を高くし、且つ、再成長
積層構造体のn型GaN層の最適なn型不純物濃度を選
択することにより、発光素子の光出力の増加と直列抵抗
が低減できる。従って、本発明の発光素子は、光出力の
増加と駆動電圧の低い値が得られた。
Further, the present invention provides an n-type GaN on the substrate.
The layer has an n-type impurity concentration of 2 × 10 18 cm −3 to 1 × 10 19
cm −3 , and the n-type impurity concentration of the semiconductor layer of the multilayer structure in contact with the n-type GaN layer is 8 × 10 17 cm.
-3 to 2 × 10 18 cm -3 . Further, according to the present light emitting device, it is possible to increase the n-type impurity concentration of the n-type GaN layer configured as the substrate and to select the optimum n-type impurity concentration of the n-type GaN layer of the regrown multilayer structure. Thereby, the light output of the light emitting element can be increased and the series resistance can be reduced. Therefore, in the light emitting device of the present invention, an increase in the light output and a low value of the driving voltage were obtained.

【0012】また、本発明に係る製造方法は、基板上に
n型GaN層を形成し、前記n型GaN層上にn型In
xGa1-xN(0<x≦1)層を形成する工程と、前記n
型InxGa1-xN(0<x≦1)層上に酸化膜を形成す
る工程と、前記酸化膜の一部を除去し、選択成長領域の
n型InxGa1-xN(0<x≦1)層を再蒸発させる工
程と、前記選択成長領域に積層構造体を積層する工程
と、を包含することを特徴とする。
Further, according to the manufacturing method of the present invention, an n-type GaN layer is formed on a substrate, and an n-type GaN layer is formed on the n-type GaN layer.
forming a x Ga 1-x N (0 <x ≦ 1) layer, the n
Forming an oxide film on the type In x Ga 1-x N (0 <x ≦ 1) layer, removing a part of the oxide film, and forming n-type In x Ga 1-x N ( 0 <x ≦ 1) a step of re-evaporating the layer and a step of laminating a laminated structure in the selective growth region.

【0013】さらに、非選択成長領域の残存させた前記
n型InxGa1-xN(0<x≦1)層上の酸化膜を除去
する工程と、前記n型InxGa1-xN(0<x≦1)層
にn型電極を形成することを特徴とする。
Further, a step of removing an oxide film on the n-type In x Ga 1 -xN (0 <x ≦ 1) layer remaining in the non-selective growth region; and a step of removing the n-type In x Ga 1 -x An n-type electrode is formed on an N (0 <x ≦ 1) layer.

【0014】また、前記選択成長領域に対する前記非選
択成長領域の割合が0.1〜0.5であることを特徴と
する。選択成長領域と非選択成長領域の割合を上記のよ
うにすることによって、選択成長領域上に積層する再成
長積層構造体の結晶性が向上する。
Further, the ratio of the non-selective growth region to the selective growth region is 0.1 to 0.5. By setting the ratio of the selective growth region to the non-selective growth region as described above, the crystallinity of the regrown laminated structure stacked on the selective growth region is improved.

【0015】[0015]

【発明の実施の形態】(実施の形態1)図1に本発明に
係る窒化ガリウム系化合物半導体発光素子の模式断面図
を示す。図1において、符号1はサファイア基板、2は
AlNバッファ層、3はn型GaN層、4はn型In
0.5Ga0.5N表面保護層、5はn型GaN層、6はn型
Al0.1Ga0.9N層、7はアンドープIn0.3Ga0.7
量子井戸活性層、8はp型Al0.1Ga0.9Nクラッド
層、9はp型GaNコンタクト層、10はp型電極、1
1はn型電極、15は選択成長領域、50は窒化物系化
合物基板、51は積層構造体である。
(Embodiment 1) FIG. 1 is a schematic sectional view of a gallium nitride based compound semiconductor light emitting device according to the present invention. In FIG. 1, reference numeral 1 denotes a sapphire substrate, 2 denotes an AlN buffer layer, 3 denotes an n-type GaN layer, and 4 denotes an n-type In.
0.5 Ga 0.5 N surface protective layer, 5 is an n-type GaN layer, 6 is an n-type Al 0.1 Ga 0.9 N layer, 7 is undoped In 0.3 Ga 0.7 N
A quantum well active layer, 8 is a p-type Al 0.1 Ga 0.9 N cladding layer, 9 is a p-type GaN contact layer, 10 is a p-type electrode, 1
1 is an n-type electrode, 15 is a selective growth region, 50 is a nitride-based compound substrate, and 51 is a laminated structure.

【0016】以下に、図5、図6を用いて本発明の窒化
ガリウム系化合物半導体発光素子の製造方法を詳細に説
明する。例えば、有機金属気相成長法を用いて製造する
場合には、V族原料としてアンモニアNH3、III族
原料としてトリメチルガリウム、トリメチルアルミニウ
ム、トリメチルインジウム、p型不純物としてビスシク
ロペンタデイエニルマグネシウム(Cp2Mg)、n型
不純物としてモノシランを用い、キャリヤガスとして水
素及び窒素を用いる。
The method of manufacturing the gallium nitride based compound semiconductor light emitting device of the present invention will be described below in detail with reference to FIGS. For example, in the case of manufacturing using metal organic chemical vapor deposition, ammonia NH 3 is used as a group V material, trimethylgallium, trimethylaluminum, trimethylindium as a group III material, and biscyclopentadienyl magnesium (Cp) as a p-type impurity. 2 Mg), monosilane is used as the n-type impurity, and hydrogen and nitrogen are used as the carrier gas.

【0017】まず、窒化物系化合物基板50を作製す
る。ここでは、有機金属気相成長法(以下、MOCVD
法)を用いる。サファイヤ基板1上にAlNバッファ層
2を成長温度550℃で50nm、成長温度1050℃
でn型不純物濃度2×1018cm-3としたn型GaN層
3を10μm成長し、成長温度850℃でn型In0.5
Ga0.5N表面保護層4を50nm形成することにより
窒化物系化合物基板50が得られる。以上の工程まで作
製した発光素子の断面図を図5(a)に示す。このよう
な窒化物系化合物基板は、表面がn型In0.5Ga0.5
表面保護層4で保護されているので、成長させたn型G
aN層3に酸素など不純物が吸着することのない基板と
することができる。従って、取り扱いが容易であり、保
存しても特性を劣化させることのない基板とすることが
できる。
First, a nitride compound substrate 50 is manufactured. Here, metal organic chemical vapor deposition (hereinafter referred to as MOCVD)
Method). An AlN buffer layer 2 is grown on a sapphire substrate 1 at a growth temperature of 550.degree.
Then, an n-type GaN layer 3 having an n-type impurity concentration of 2 × 10 18 cm −3 is grown to a thickness of 10 μm, and n-type In 0.5 is grown at a growth temperature of 850 ° C.
By forming the Ga 0.5 N surface protective layer 4 to a thickness of 50 nm, a nitride-based compound substrate 50 can be obtained. FIG. 5A is a cross-sectional view of the light-emitting element manufactured up to the above steps. Such a nitride-based compound substrate has an n-type In 0.5 Ga 0.5 N surface.
Since the n-type G is protected by the surface protection layer 4,
A substrate in which impurities such as oxygen do not adsorb to the aN layer 3 can be obtained. Therefore, a substrate that is easy to handle and does not deteriorate in characteristics even when stored can be obtained.

【0018】次に、窒化物系化合物基板50を成長炉よ
り取り出し、P−CVD法でSiO2膜14を形成し、
このSiO2膜14にホトリソグラフィ及びエッチング
により選択成長領域15を形成する。以上の工程まで作
製した発光素子の断面図を図5(b)に示す。ここで、
選択成長領域15の形成された窒化物系化合物基板50
の上面模式図を図5(c)に示す。選択成長領域15の
形状は正方形350μm×350μmの一隅を切り欠い
た形状であるが、別の形状でも構わないことはいうまで
もない。
Next, the nitride-based compound substrate 50 is taken out of the growth furnace, and an SiO 2 film 14 is formed by a P-CVD method.
A selective growth region 15 is formed on the SiO 2 film 14 by photolithography and etching. FIG. 5B is a cross-sectional view of the light-emitting element manufactured up to the above steps. here,
Nitride compound substrate 50 on which selective growth region 15 is formed
FIG. 5 (c) shows a schematic top view of FIG. The shape of the selective growth region 15 is a shape in which one corner of a square 350 μm × 350 μm is cut out, but it goes without saying that another shape may be used.

【0019】また、窒化物系化合物基板50の製造に
は、成長速度に優れるハイドライド気相成長法(以下、
HVPE法)を用いてもよい。以下、HVPE法を用い
て作製した窒化物系化合物基板50の場合、V族原料と
してアンモニアNH3、III族原料として金属ガリウ
ム、金属インジウム、n型不純物として例えばH2S、
2Seを用い、HCl及びH2の混合ガスと反応させ
る。基板上に、基板温度1000℃にてn型不純物濃度
2×1018cm-3のn型GaN層3を積層し、次に、基
板温度800℃にてn型In0.5Ga0.5N表面保護層4
を積層することにより、窒化物系化合物基板50が得ら
れる。
In addition, for the manufacture of the nitride-based compound substrate 50, a hydride vapor phase epitaxy method (hereinafter, referred to as a high growth rate) having an excellent growth rate is used.
HVPE method). Hereinafter, in the case of the nitride-based compound substrate 50 manufactured using the HVPE method, ammonia NH 3 is used as a group V material, metal gallium and metal indium as a group III material, and H 2 S is used as an n-type impurity.
Using H 2 Se, it is reacted with a mixed gas of HCl and H 2 . An n-type GaN layer 3 having an n-type impurity concentration of 2 × 10 18 cm −3 is laminated on the substrate at a substrate temperature of 1000 ° C., and then an n-type In 0.5 Ga 0.5 N surface protection layer is formed at a substrate temperature of 800 ° C. 4
Are stacked, a nitride-based compound substrate 50 is obtained.

【0020】次に、窒化物系化合物基板50上に積層構
造体51を再成長させて形成するため、再びMOCVD
装置内に窒化物系化合物基板50を導入する。まず、基
板温度800℃程度、10分間にて窒素雰囲気中でn型
In0.5Ga0.5N表面保護層4の一部(選択成長領域1
5)をn型GaN層3の表面が露出するまで除去する。
以上の工程まで作製した発光素子の断面図を図6(d)
に示す。ここで、n型In0.5Ga0.5N表面保護層4
は、発光素子を構成する場合において再蒸発させる層
(以下、再蒸発層と記す)として機能する。
Next, in order to form the laminated structure 51 on the nitride-based compound substrate 50 by regrowth, the MOCVD is performed again.
A nitride-based compound substrate 50 is introduced into the apparatus. First, a part of the n-type In 0.5 Ga 0.5 N surface protection layer 4 (selective growth region 1) is set in a nitrogen atmosphere at a substrate temperature of about 800 ° C. for 10 minutes.
5) is removed until the surface of the n-type GaN layer 3 is exposed.
FIG. 6D is a cross-sectional view of the light-emitting element manufactured up to the above steps.
Shown in Here, the n-type In 0.5 Ga 0.5 N surface protective layer 4
Functions as a layer to be re-evaporated (hereinafter, referred to as a re-evaporation layer) when forming a light emitting element.

【0021】次に、成長温度1050℃でn型不純物濃
度2×1018cm-3のn型GaN層5を4μm成長し、
n型Al0.1Ga0.9N層6を0.3μm、成長温度を8
00℃に降温しアンドープIn0.3Ga0.7N量子井戸活
性層7を3nm成長する。次に、成長温度を1050℃
に昇温しp型Al0.1Ga0.9Nクラッド層8を0.3μ
mおよびp型GaNコンタクト層9を0.5μm、順次
結晶成長する。次に、外部から電流を注入するために、
p型電極10をp型GaNコンタクト層9上に形成し、
n型電極11を形成するためにSiO2膜14をフッ酸
系エッチング液にて除去し、n型In0.5Ga0.5N表面
保護層4の表面を露出させ、この表面上にn型電極11
を形成する。以上の工程まで作製した発光素子の断面図
を図6(e)に示す。このとき、SiO2膜14上は非
選択成長領域となっていて積層構造51は成長されな
い。最後に、素子分割を行い、チップ化した。
Next, an n-type GaN layer 5 having an n-type impurity concentration of 2 × 10 18 cm -3 is grown to 4 μm at a growth temperature of 1050 ° C.
The n-type Al 0.1 Ga 0.9 N layer 6 is 0.3 μm and the growth temperature is 8
The temperature is lowered to 00 ° C., and an undoped In 0.3 Ga 0.7 N quantum well active layer 7 is grown to 3 nm. Next, the growth temperature is set to 1050 ° C.
And the p-type Al 0.1 Ga 0.9 N cladding layer 8 is 0.3 μm thick.
The m and p-type GaN contact layers 9 are sequentially crystal-grown by 0.5 μm. Next, to inject current from outside,
forming a p-type electrode 10 on the p-type GaN contact layer 9;
In order to form the n-type electrode 11, the SiO 2 film 14 is removed with a hydrofluoric acid-based etchant to expose the surface of the n-type In 0.5 Ga 0.5 N surface protection layer 4.
To form FIG. 6E is a cross-sectional view of the light-emitting element manufactured up to the above steps. At this time, the non-selective growth region is formed on the SiO 2 film 14, and the stacked structure 51 is not grown. Finally, the device was divided into chips.

【0022】本実施の形態において、n型In0.5Ga
0.5N表面保護層4は再蒸発層と機能する発光素子の構
成とすることで、再成長層の工程において直ちに再成長
を行わず、再蒸発工程を用いるため再成長界面での結晶
欠陥を低減することにより電気的な直列抵抗が低減でき
た。
In this embodiment, the n-type In 0.5 Ga
The 0.5 N surface protective layer 4 is configured as a light emitting element that functions as a re-evaporation layer, so that re-growth is not performed immediately in the process of the re-growth layer, and crystal defects at the re-growth interface are reduced because the re-evaporation step is used. By doing so, the electrical series resistance could be reduced.

【0023】さらに、n型In0.5Ga0.5N表面保護層
4は軟らかい結晶であるため結晶欠陥が少ないため、n
型電極形成のためにn型In0.5Ga0.5N表面保護層4
上のSiO2膜14をエッチングする際、n型GaN層
3よりもエッチピット、表面荒れが少ない、また、表面
近傍のn型不純物濃度の欠乏が少ないため、n型電極1
1の接触抵抗の低減及び再現性に優れた電極形成ができ
る。
Furthermore, since the n-type In 0.5 Ga 0.5 N surface protective layer 4 is a soft crystal and has few crystal defects,
N 0.5 In 0.5 Ga 0.5 N surface protection layer 4
When the upper SiO 2 film 14 is etched, the n-type electrode 1 has a smaller number of etch pits and surface roughness than the n-type GaN layer 3 and has less n-type impurity concentration near the surface.
(1) It is possible to form an electrode having a reduced contact resistance and excellent reproducibility.

【0024】このため、駆動電圧が約3.3Vと低く、
さらに再現性に優れ、信頼性が向上した窒化ガリウム系
化合物半導体発光素子が作製できるため、作製の大幅な
簡略化及びチップの価格も大幅に安くできた。
For this reason, the driving voltage is as low as about 3.3 V,
Further, since a gallium nitride-based compound semiconductor light emitting device with excellent reproducibility and improved reliability can be manufactured, the manufacturing has been greatly simplified and the price of the chip has been significantly reduced.

【0025】(実施の形態2)図2に、本発明の窒化ガ
リウム系化合物半導体レーザの模式断面図を示す。実施
例1と同一部材には同一符号を付す。本実施の形態にお
いて、MOCVD法及びHVPE法で用いた材料及びガ
スは実施例1と同一のものを用いた。
(Embodiment 2) FIG. 2 is a schematic sectional view of a gallium nitride based compound semiconductor laser of the present invention. The same members as those in the first embodiment are denoted by the same reference numerals. In this embodiment, the same materials and gases as those used in Example 1 were used in the MOCVD method and the HVPE method.

【0026】本実施の形態では窒化物系化合物基板50
のn型GaN層3では、作製する際のSiH4流量を1
8sccm、抵抗率0.0072Ω・cm、n型不純物
濃度では約4×1018cm-3とした。それ以外は実施の
形態1の窒化物系化合物基板50と同様である。図9
に、n型GaN層に添加するSiH4流量と抵抗率との
関係を示す。SiH4流量を増加するごとに抵抗率は減
少することが示されている。本実施例では、n型GaN
層3のn型不純物濃度を4×1018cm-3としたが、好
ましいn型不純物濃度の範囲は2×1018cm-3から1
×1019cm-3である。n型不純物濃度が2×1018
-3以下の時は、抵抗率が大きいために半導体レーザの
直列抵抗が増大し、1×1019cm-3以上の時はn型G
aN層3表面に凹凸が生じ結晶性が悪化するので、n型
不純物濃度は2×1018cm-3から1×1019cm-3
好ましい。
In the present embodiment, the nitride-based compound substrate 50
In the n-type GaN layer 3, an SiH 4 flow rate in making 1
The resistivity was 8 sccm, the resistivity was 0.0072 Ω · cm, and the n-type impurity concentration was about 4 × 10 18 cm −3 . Other than that, it is the same as the nitride-based compound substrate 50 of the first embodiment. FIG.
FIG. 3 shows the relationship between the flow rate of SiH 4 added to the n-type GaN layer and the resistivity. It is shown that the resistivity decreases with increasing SiH 4 flow rate. In this embodiment, n-type GaN
Although the n-type impurity concentration of the layer 3 is set to 4 × 10 18 cm −3 , a preferable range of the n-type impurity concentration is 2 × 10 18 cm −3 to 1
× 10 19 cm -3 . n-type impurity concentration is 2 × 10 18 c
When the resistivity is less than m -3, the series resistance of the semiconductor laser increases because of the large resistivity. When the resistivity is more than 1 × 10 19 cm -3 , the n-type G
Since irregularities occur on the surface of the aN layer 3 and crystallinity deteriorates, the n-type impurity concentration is preferably 2 × 10 18 cm −3 to 1 × 10 19 cm −3 .

【0027】次に、積層構造体51を形成するため、M
OCVD装置内に窒化物系化合物基板50を導入する。
実施の形態1と同様に、n型GaN層5、n型Al0.1
Ga0.9N層6、アンドープIn0.3Ga0.7N量子井戸
活性層7を形成する。ここでn型GaN層5のSiH4
流量を6sccm、n型不純物濃度では約1×1018
-3として作製した。図10にn型GaN層5を形成す
る際のSiH4流量に対する光出力との関係を示す。図
10に示すようにSiH4濃度を最適化することによっ
て、光出力を最大にすることができる。n型GaN層3
のn型不純物濃度の範囲に対して、n型GaN層5のn
型不純物濃度を8×1017cm-3から2×1018cm-3
の範囲とすることによって、光出力をほぼ最大とするこ
とができる。
Next, in order to form the laminated structure 51, M
The nitride compound substrate 50 is introduced into the OCVD apparatus.
As in the first embodiment, the n-type GaN layer 5 and the n-type Al 0.1
A Ga 0.9 N layer 6 and an undoped In 0.3 Ga 0.7 N quantum well active layer 7 are formed. Here, the SiH 4 of the n-type GaN layer 5
Flow rate is 6 sccm, and n-type impurity concentration is about 1 × 10 18 c
m- 3 . FIG. 10 shows the relationship between the SiH 4 flow rate and the light output when forming the n-type GaN layer 5. By optimizing the SiH 4 concentration as shown in FIG. 10, the light output can be maximized. n-type GaN layer 3
Of the n-type GaN layer 5 for the range of n-type impurity concentration of
Mold impurity concentration of 8 × 10 17 cm −3 to 2 × 10 18 cm −3
, The optical output can be almost maximized.

【0028】さらに、n型Al0.1Ga0.9N電流阻止層
80を積層し、p型再成長Al0.1Ga0.9Nクラッド層
81、p型再成長GaNコンタクト層82を順次積層す
る。次に、外部から電流を注入するために、p型電極1
0、n型電極11を形成する。最後に、素子分割を行
い、チップ化した。
Further, an n-type Al 0.1 Ga 0.9 N current blocking layer 80 is stacked, and a p-type regrown Al 0.1 Ga 0.9 N cladding layer 81 and a p-type regrown GaN contact layer 82 are sequentially stacked. Next, in order to inject a current from the outside, the p-type electrode 1
0, an n-type electrode 11 is formed. Finally, the device was divided into chips.

【0029】従来の選択成長方法では、本実施の形態の
ように高不純物濃度のn型GaN層5の上にn型半導体
層を積層する場合には、n型不純物濃度の多いn型Ga
N層の表面に凹凸が発生するという問題が生じていた。
In the conventional selective growth method, when an n-type semiconductor layer is stacked on the n-type GaN layer 5 having a high impurity concentration as in this embodiment, n-type Ga having a high n-type impurity concentration is used.
There has been a problem that irregularities occur on the surface of the N layer.

【0030】しかしながら、本発光素子構造によれば、
基板として構成されたn型GaN層のn型不純物濃度を
高くし、再成長積層構造体のn型GaN層のn型不純物
濃度を最適化することにより、発光素子の光出力の増加
と直列抵抗が低減できる。従って、本発明の発光素子
は、光出力の増加と駆動電圧の低い値が得られた。
However, according to the present light emitting device structure,
By increasing the n-type impurity concentration of the n-type GaN layer configured as a substrate and optimizing the n-type impurity concentration of the n-type GaN layer of the regrown multilayer structure, the light output of the light-emitting element is increased and the series resistance is increased. Can be reduced. Therefore, in the light emitting device of the present invention, an increase in the light output and a low value of the driving voltage were obtained.

【0031】(実施の形態3)図3に、本発明の窒化ガ
リウム系化合物半導体発光素子の模式断面図を示す。
尚、実施の形態1と同一部材には同一符号を付す。以下
に図7、図8を用いて本発明の窒化ガリウム系化合物半
導体発光素子の製造方法を詳細に説明する。
(Embodiment 3) FIG. 3 is a schematic sectional view of a gallium nitride based compound semiconductor light emitting device of the present invention.
The same members as those in the first embodiment are denoted by the same reference numerals. Hereinafter, a method for manufacturing the gallium nitride-based compound semiconductor light emitting device of the present invention will be described in detail with reference to FIGS.

【0032】ここで用いた窒化物系化合物基板50は実
施の形態1と同様な構成の基板を用いた。以上の工程ま
で作製した発光素子の断面図を図7(a)に示す。
As the nitride-based compound substrate 50 used here, a substrate having the same configuration as in the first embodiment was used. FIG. 7A is a cross-sectional view of a light-emitting element manufactured up to the above steps.

【0033】次に、窒化物系化合物基板50を成長炉よ
り取り出し、n型In0.5Ga0.5N表面保護層4上にP
−CVD法で電極となる領域として200μm角形状の
SiO2膜14を形成する。以上の工程まで作製した発
光素子の上面模式図を図7(b)に示す。ここで、Si
2膜14の形状は、200μm角形状であるが、別の
形状でもよいことはいうまでもない。
Next, the nitride-based compound substrate 50 is taken out of the growth furnace, and a P-type layer is formed on the n-type In 0.5 Ga 0.5 N surface protective layer 4.
Forming a 200 μm square SiO 2 film 14 as a region to be an electrode by the CVD method; FIG. 7B is a schematic top view of the light-emitting element manufactured up to the above steps. Where Si
Although the shape of the O 2 film 14 is a 200 μm square shape, it goes without saying that another shape may be used.

【0034】次に、窒化物系化合物基板50上に積層構
造体を再成長させて形成するため、MOCVD装置内に
窒化物系化合物基板50を導入する。まず、基板温度8
00℃程度、10分間にて窒素を照射しながらn型In
0.5Ga0.5N表面保護層4をn型GaN層3の表面が露
出するまで除去する。SiO2膜14を残存させること
で、非選択成長領域ではn型In0.5Ga0.5N表面保護
層4は除去されない。以上の工程まで作製した発光素子
の断面図を図7(c)に示す。ここで、n型In0.5
0.5N表面保護層4は、再蒸発層として機能してい
る。
Next, the nitride compound substrate 50 is introduced into the MOCVD apparatus in order to form a laminated structure on the nitride compound substrate 50 by regrowth. First, the substrate temperature 8
N-type In while irradiating with nitrogen at about 00 ° C. for 10 minutes
The 0.5 Ga 0.5 N surface protective layer 4 is removed until the surface of the n-type GaN layer 3 is exposed. By leaving the SiO 2 film 14, the n-type In 0.5 Ga 0.5 N surface protective layer 4 is not removed in the non-selective growth region. FIG. 7C is a cross-sectional view of the light-emitting element manufactured up to the above steps. Here, n-type In 0.5 G
The a 0.5 N surface protective layer 4 functions as a reevaporation layer.

【0035】次に、窒化物系化合物基板50上に積層構
造体51として、n型GaN層5、n型Al0.1Ga0.9
N層6、アンドープIn0.3Ga0.7N量子井戸活性層
7、p型Al0.1Ga0.9Nクラッド層8、p型GaNコ
ンタクト層9を実施の形態1と同様に順次形成する。
尚、SiO2膜14上には、非選択成長領域となってい
て積層構造体51は形成されない。以上の工程まで作製
した発光素子の断面図を図8(d)に示す。
Next, the n-type GaN layer 5 and the n-type Al 0.1 Ga 0.9
An N layer 6, an undoped In 0.3 Ga 0.7 N quantum well active layer 7, a p-type Al 0.1 Ga 0.9 N clad layer 8, and a p-type GaN contact layer 9 are sequentially formed as in the first embodiment.
Note that the stacked structure 51 is not formed on the SiO 2 film 14 because it is a non-selective growth region. FIG. 8D is a cross-sectional view of the light-emitting element manufactured up to the above steps.

【0036】次に、外部から電流を注入するために、p
型電極10をp型GaNコンタクト層9上に形成し、n
型電極11を形成するためにSiO2膜14をフッ酸系
エッチング液にて除去し、n型In0.5Ga0.5N表面保
護層4の表面を露出させ、この表面上にn型電極11を
形成する。以上の工程まで作製した発光素子の上面模式
図を図8(e)に示す。
Next, in order to inject a current from the outside, p
Electrode 10 is formed on the p-type GaN contact layer 9 and n
In order to form the type electrode 11, the SiO 2 film 14 is removed with a hydrofluoric acid-based etchant to expose the surface of the n-type In 0.5 Ga 0.5 N surface protection layer 4, and the n-type electrode 11 is formed on this surface. I do. FIG. 8E is a schematic top view of the light-emitting element manufactured up to the above steps.

【0037】最後に、ウエハー上のスクライブライン2
0に沿ってスクライブ又はダイシングすることにより、
発光素子分割を行い、チップ化した。
Finally, the scribe line 2 on the wafer
By scribing or dicing along 0,
The light emitting element was divided into chips.

【0038】本実施の形態においては、非成長領域面積
が小さいため、SiO2膜14が再成長に与える影響は
少なく、良好な積層構造体51が形成できる。非選択成
長領域と選択成長領域の面積比率を0.1以上0.5以
下にすることが好ましい。非選択成長領域と選択成長領
域の面積比率が0.1以下であれば、電極の形成が困難
となり、0.5以上であれば、選択成長領域の半導体層
の結晶性が悪化する。
In this embodiment, since the area of the non-growth region is small, the influence of the SiO 2 film 14 on the regrowth is small, and a good laminated structure 51 can be formed. It is preferable that the area ratio between the non-selective growth region and the selective growth region is 0.1 or more and 0.5 or less. If the area ratio between the non-selective growth region and the selective growth region is 0.1 or less, it becomes difficult to form an electrode. If the area ratio is 0.5 or more, the crystallinity of the semiconductor layer in the selective growth region deteriorates.

【0039】さらに、ドライエッチングを用いることな
くn型電極形成領域を露出できるため、結晶面にダメー
ジを与えることなく電極形成ができるため、n型電極の
接触抵抗の低減及び再現性に優れた電極形成ができる。
このため、駆動電圧が約3.3Vと低く、さらに再現性
に優れ、信頼性が向上した窒化ガリウム系化合物半導体
発光素子が作製でき、ドライエッチングを用いることな
く窒化ガリウム系化合物半導体発光素子が容易に作製で
きるため、作製の大幅な簡略化及びチップの価格も大幅
に安くできた。また、実施の形態1と同様にn型電極1
1の接触抵抗も低減することができた。
Further, since the n-type electrode formation region can be exposed without using dry etching, the electrode can be formed without damaging the crystal plane, so that the contact resistance of the n-type electrode is reduced and the electrode is excellent in reproducibility. Can be formed.
Therefore, a gallium nitride-based compound semiconductor light-emitting device having a low driving voltage of about 3.3 V, excellent reproducibility, and improved reliability can be manufactured, and a gallium nitride-based compound semiconductor light-emitting device can be easily manufactured without using dry etching. Therefore, the fabrication was greatly simplified and the price of the chip was significantly reduced. Also, as in the first embodiment, the n-type electrode 1
The contact resistance of No. 1 was also reduced.

【0040】(実施の形態4)図4に、本発明の窒化ガ
リウム系化合物半導体レーザの模式断面図を示す。本実
施の形態において、窒化物系化合物基板50のサファイ
ヤ基板1が導電性基板41を用い、バッファ層2を形成
せず、またn型InN表面保護層44にて窒化物系化合
物基板50を構成した。ここで導電性基板41として
は、例えばn型SiC基板、n型GaN基板でも構わな
い。
(Embodiment 4) FIG. 4 is a schematic sectional view of a gallium nitride-based compound semiconductor laser according to the present invention. In the present embodiment, the sapphire substrate 1 of the nitride-based compound substrate 50 uses the conductive substrate 41, does not form the buffer layer 2, and forms the nitride-based compound substrate 50 with the n-type InN surface protection layer 44. did. Here, the conductive substrate 41 may be, for example, an n-type SiC substrate or an n-type GaN substrate.

【0041】次に、積層構造体51を形成するため、M
OCVD装置内に窒化物系化合物基板50を導入し、処
理温度600℃でn型InN表面保護層44を再蒸発
し、実施の形態1で示した積層構造体51を順次積層す
る。次に、外部から電流を注入するために、p型電極1
0、n型電極11を窒化物系化合物基板50の裏面側に
形成する。最後に、素子分割を行い、チップ化した。図
4に示す符号44の点線は再蒸発によって減少した膜を
表す。
Next, in order to form the laminated structure 51, M
The nitride-based compound substrate 50 is introduced into the OCVD apparatus, the n-type InN surface protective layer 44 is re-evaporated at a processing temperature of 600 ° C., and the laminated structure 51 described in the first embodiment is sequentially laminated. Next, in order to inject a current from the outside, the p-type electrode 1
The 0, n-type electrode 11 is formed on the back side of the nitride-based compound substrate 50. Finally, the device was divided into chips. The dotted line 44 shown in FIG. 4 represents the film reduced by the re-evaporation.

【0042】本実施の形態においては、発光素子を形成
する窒化物系化合物基板50を少なくとも導電性基板と
n型InN表面保護層44から構成する。このため、導
電性基板41を用いているため電極形成が容易である。
また、表面保護層がInNから構成されているため、再
蒸発温度を低くでき、再蒸発が容易である。再成長層の
工程において、n型InN表面保護層44が再蒸発層と
して機能するため再成長界面での直列抵抗が低減でき
た。このため、駆動電圧が約3.5Vと低く、さらに再
現性に優れ、チップの値段が安く、信頼性が向上した窒
化ガリウム系化合物半導体レーザが作製できた。
In this embodiment, the nitride-based compound substrate 50 for forming the light emitting element is composed of at least a conductive substrate and an n-type InN surface protection layer 44. Therefore, since the conductive substrate 41 is used, electrode formation is easy.
Further, since the surface protective layer is made of InN, the re-evaporation temperature can be lowered, and the re-evaporation is easy. In the process of the regrowth layer, the series resistance at the regrowth interface could be reduced because the n-type InN surface protection layer 44 functions as a reevaporation layer. As a result, a gallium nitride-based compound semiconductor laser having a low driving voltage of about 3.5 V, excellent reproducibility, low cost of chips, and improved reliability was produced.

【0043】[0043]

【本発明の効果】本発明は、基板の最表面にInGaN
からなる表面保護層を形成した層構造を基板とすること
によって、取り扱いが容易で保存しても特性の劣化しな
い基板を提供できる。また、このような基板を発光素子
として用いる場合に、表面保護層を再蒸発層と機能する
ので、表面が清浄なn型GaN層を露出させることがで
き、再成長の界面がエッチピットの発生や表面の荒れ、
大気雰囲気中の不純物の付着を低減することができるた
め、再成長界面での直列抵抗が低減できる。
According to the present invention, InGaN is applied to the outermost surface of the substrate.
By using a layer structure in which a surface protective layer made of is formed as a substrate, it is possible to provide a substrate which is easy to handle and whose characteristics are not deteriorated even when stored. Further, when such a substrate is used as a light emitting element, the surface protective layer functions as a reevaporation layer, so that the n-type GaN layer having a clean surface can be exposed, and the interface of regrowth may cause generation of etch pits. And rough surfaces,
Since the adhesion of impurities in the air atmosphere can be reduced, the series resistance at the regrowth interface can be reduced.

【0044】また、n型電極とp型電極を同じ面に有す
る発光素子の場合において、電極をInGaN層上に設
けることによって、n型電極の接触抵抗の低減及び再現
性に優れた電極形成することができる。
Further, in the case of a light emitting device having an n-type electrode and a p-type electrode on the same surface, by providing the electrode on the InGaN layer, an electrode with reduced contact resistance of the n-type electrode and excellent reproducibility can be formed. be able to.

【0045】このため、駆動電圧が低く、さらに再現性
に優れ、チップの値段が安く、信頼性が向上した窒化ガ
リウム系化合物半導体発光素子を提供できる。
Therefore, it is possible to provide a gallium nitride-based compound semiconductor light emitting device having a low driving voltage, excellent reproducibility, low cost of chips, and improved reliability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の窒化ガリム系化合物半導体発光素子の
断面図である。
FIG. 1 is a cross-sectional view of a gallium nitride-based compound semiconductor light emitting device of the present invention.

【図2】本発明の窒化ガリウム系化合物半導体レーザの
断面図である。
FIG. 2 is a sectional view of a gallium nitride-based compound semiconductor laser according to the present invention.

【図3】本発明の窒化ガリム系化合物半導体発光素子の
断面図である。
FIG. 3 is a cross-sectional view of a gallium nitride-based compound semiconductor light emitting device of the present invention.

【図4】本発明の窒化ガリウム系化合物半導体レーザの
断面図である。
FIG. 4 is a sectional view of a gallium nitride based compound semiconductor laser of the present invention.

【図5】実施形態1の窒化ガリウム系化合物半導体発光
素子の製造工程の模式図である。
FIG. 5 is a schematic diagram of a manufacturing process of the gallium nitride-based compound semiconductor light emitting device of the first embodiment.

【図6】実施形態1の窒化ガリウム系化合物半導体発光
素子の製造工程の模式図である。
FIG. 6 is a schematic view of a manufacturing process of the gallium nitride-based compound semiconductor light emitting device of the first embodiment.

【図7】実施形態3の窒化ガリウム系化合物半導体発光
素子の製造工程の模式図である。
FIG. 7 is a schematic diagram of a manufacturing process of the gallium nitride-based compound semiconductor light emitting device of Embodiment 3.

【図8】実施形態3の窒化ガリウム系化合物半導体発光
素子の製造工程の模式図である。
FIG. 8 is a schematic diagram of a manufacturing process of the gallium nitride-based compound semiconductor light emitting device of Embodiment 3.

【図9】n型GaN層のSiH4流量と抵抗率の関係を
示す図である。
FIG. 9 is a diagram showing the relationship between the flow rate of SiH 4 in the n-type GaN layer and the resistivity.

【図10】n型GaN層のSiH4流量と光出力の関係
を示す図である。
FIG. 10 is a diagram showing a relationship between a SiH 4 flow rate of an n-type GaN layer and a light output.

【図11】従来の窒化ガリウム系化合物半導体発光素子
の断面図である。
FIG. 11 is a cross-sectional view of a conventional gallium nitride-based compound semiconductor light emitting device.

【符号の説明】[Explanation of symbols]

1 サファイア基板 2 AlNバッファ層 3 n型GaN層 4 n型In0.5Ga0.5N表面保護層 5 n型GaN層 6 n型Al0.1Ga0.9Nクラッド層 7 アンドープIn0.3Ga0.7N量子井戸活性層 8 p型Al0.1Ga0.9Nクラッド層 9 p型GaNコンタクト層 10 p型電極 11 n型電極 14 SiO2膜 15 選択成長領域 41 導電性基板 50 窒化物系化合物基板 51 積層構造体 80 n型Al0.1Ga0.9N電流阻止層 81 p型再成長Al0.1Ga0.9Nクラッド層 82 p型再成長GaNコンタクト層 100 サファイア基板 110 n型低温GaNバッファ層 120 n型GaN層 130 n型AlGaNクラッド層 140 InGaN活性層 150 p型AlGaNクラッド層 160 p型GaNキャップ層 170 n型電極 180 p型電極 200 選択成長領域 210 選択成長用酸化膜1 sapphire substrate 2 AlN buffer layer 3 n-type GaN layer 4 n-type In 0.5 Ga 0.5 N the surface protective layer 5 n-type GaN layer 6 n-type Al 0.1 Ga 0.9 N cladding layer 7 undoped In 0.3 Ga 0.7 N quantum well active layer 8 p-type Al 0.1 Ga 0.9 N cladding layer 9 p-type GaN contact layer 10 p-type electrode 11 n-type electrode 14 SiO 2 film 15 selective growth region 41 conductive substrate 50 nitride-based compound substrate 51 laminated structure 80 n-type Al 0.1 Ga 0.9 N current blocking layer 81 p-type regrown Al 0.1 Ga 0.9 N cladding layer 82 p-type regrown GaN contact layer 100 sapphire substrate 110 n-type low-temperature GaN buffer layer 120 n-type GaN layer 130 n-type AlGaN cladding layer 140 InGaN activity Layer 150 p-type AlGaN cladding layer 160 p-type GaN cap layer 170 n-type electrode 1 0 p-type electrode 200 for oxide film growth region 210 selective growth

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 基板上にn型GaN層、n型InxGa
1-xN(0<x≦1)層を有し、前記n型InxGa1-x
N(0<x≦1)層は表面保護層であることを特徴とす
る窒化ガリウム系化合物半導体基板。
1. An n-type GaN layer and an n-type In x Ga on a substrate
A 1-x N (0 <x ≦ 1) layer, wherein the n-type In x Ga 1-x
A gallium nitride-based compound semiconductor substrate, wherein the N (0 <x ≦ 1) layer is a surface protective layer.
【請求項2】 基板上にn型GaN層を有し、前記n型
GaN層上は選択成長領域と非選択成長領域に分けら
れ、 選択成長領域では前記n型GaN層上に、窒化ガリウム
系化合物半導体層からなる一対のクラッド層及び活性層
を有する層を含む積層構造体を有し、 非選択成長領域では、n型InxGa1-xN(0<x≦
1)層とn型電極とを有することを特徴とする窒化ガリ
ウム系化合物半導体発光素子。
2. An n-type GaN layer is provided on a substrate, and the n-type GaN layer is divided into a selective growth region and a non-selective growth region. It has a laminated structure including a pair of cladding layers made of a compound semiconductor layer and a layer having an active layer. In a non-selective growth region, n-type In x Ga 1 -xN (0 <x ≦
1) A gallium nitride-based compound semiconductor light-emitting device having a layer and an n-type electrode.
【請求項3】 前記基板上のn型GaN層のn型不純物
濃度が2×1018cm-3から1×1019cm-3の範囲で
あり、 前記n型GaN層に接した前記積層構造体の半導体層の
n型不純物濃度が8×1017cm-3から2×1018cm
-3の範囲であることを特徴とする請求項2に記載の窒化
ガリウム系化合物半導体発光素子。
3. The laminated structure in contact with the n-type GaN layer, wherein an n-type impurity concentration of the n-type GaN layer on the substrate is in a range of 2 × 10 18 cm −3 to 1 × 10 19 cm −3. The n-type impurity concentration of the body semiconductor layer is 8 × 10 17 cm −3 to 2 × 10 18 cm
3. The gallium nitride-based compound semiconductor light emitting device according to claim 2, wherein the range is -3 .
【請求項4】 基板上にn型GaN層を形成し、前記n
型GaN層上にn型InxGa1-xN(0<x≦1)層を
形成する工程と、 前記n型InxGa1-xN(0<x≦1)層上に酸化膜を
形成する工程と、 前記選択成長領域上の酸化膜を除去し、選択成長領域の
n型InxGa1-xN(0<x≦1)層を再蒸発させる工
程と、 前記選択成長領域に積層構造体を積層する工程と、を包
含することを特徴とする窒化ガリウム系化合物半導体発
光素子の製造方法。
4. An n-type GaN layer is formed on a substrate.
Type GaN n-type on the layer In x Ga 1-x N ( 0 <x ≦ 1) forming a layer, the n-type In x Ga 1-x N ( 0 <x ≦ 1) oxide film on the layer Forming an oxide film on the selective growth region and re-evaporating an n-type In x Ga 1 -xN (0 <x ≦ 1) layer in the selective growth region; And a step of laminating a laminated structure on the gallium nitride-based compound semiconductor light emitting device.
【請求項5】 非選択成長領域の残存させた前記n型I
xGa1-xN(0<x≦1)層上の酸化膜を除去する工
程と、前記n型InxGa1-xN(0<x≦1)層にn型
電極を形成することを特徴とする請求項4に記載の窒化
ガリウム系化合物半導体発光素子の製造方法。
5. The n-type I in which a non-selective growth region remains.
removing the n x Ga 1-x N ( 0 <x ≦ 1) oxide film on the layer to form an n-type electrode on the n-type In x Ga 1-x N ( 0 <x ≦ 1) layer The method for manufacturing a gallium nitride-based compound semiconductor light emitting device according to claim 4, wherein:
【請求項6】 前記選択成長領域に対する前記非選択成
長領域の割合が0.1〜0.5であることを特徴とする
請求項4に記載の窒化ガリウム系化合物半導体発光素子
の製造方法。
6. The method according to claim 4, wherein a ratio of the non-selective growth region to the selective growth region is 0.1 to 0.5.
JP32082997A 1997-11-21 1997-11-21 Semiconductor substrate and luminous element made of gallium nitride-based compound semiconductor, and manufacture thereof Pending JPH11154765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32082997A JPH11154765A (en) 1997-11-21 1997-11-21 Semiconductor substrate and luminous element made of gallium nitride-based compound semiconductor, and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32082997A JPH11154765A (en) 1997-11-21 1997-11-21 Semiconductor substrate and luminous element made of gallium nitride-based compound semiconductor, and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH11154765A true JPH11154765A (en) 1999-06-08

Family

ID=18125707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32082997A Pending JPH11154765A (en) 1997-11-21 1997-11-21 Semiconductor substrate and luminous element made of gallium nitride-based compound semiconductor, and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH11154765A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002374002A (en) * 2001-06-15 2002-12-26 Seiwa Electric Mfg Co Ltd Gallium nitride-based compound semiconductor light- emitting device and manufacturing method therefor
JP2009527898A (en) * 2006-02-17 2009-07-30 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Method for growing semipolar (Al, In, Ga, B) N optoelectronic device
JP2010225657A (en) * 2009-03-19 2010-10-07 Denso Corp Semiconductor laser structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002374002A (en) * 2001-06-15 2002-12-26 Seiwa Electric Mfg Co Ltd Gallium nitride-based compound semiconductor light- emitting device and manufacturing method therefor
JP2009527898A (en) * 2006-02-17 2009-07-30 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Method for growing semipolar (Al, In, Ga, B) N optoelectronic device
JP2010225657A (en) * 2009-03-19 2010-10-07 Denso Corp Semiconductor laser structure

Similar Documents

Publication Publication Date Title
US6635901B2 (en) Semiconductor device including an InGaAIN layer
US6452214B2 (en) Group III nitride compound semiconductor light-emitting device having a light emission output of high light intensity
JP2003152220A (en) Manufacturing method for semiconductor light emitting element and the semiconductor light emitting element
US7186620B2 (en) Method of making substrates for nitride semiconductor devices
JP3723434B2 (en) Semiconductor light emitting device
EP1788619A2 (en) Semiconductor device and method of fabricating the same
JP2003142728A (en) Manufacturing method of semiconductor light emitting element
JP2003037289A (en) Group iii nitride light-emitting element with low-drive voltage
WO2007060931A1 (en) Nitride semiconductor device
JPH11251632A (en) Manufacture of gallium nitride semiconductor element
JPH07263748A (en) Iii group nitride semiconductor light emitting element and manufacture of it
JPH104210A (en) Iii-group nitrogen compound semiconductor light emitting element
JP2002094112A (en) Method for fabricating iii nitride compound semiconductor light emitting device
KR20040016724A (en) Nitride semiconductor and fabrication method for thereof
JP2010040692A (en) Nitride based semiconductor device and method of manufacturing the same
JP2005064204A (en) Group iii nitride compound semiconductor light emitting device, and method for manufacturing gallium nitride (gan) substrate for use in device
JP2002053399A (en) Nitride semiconductor substrate and method for producing the same
JP2005085932A (en) Light-emitting diode and its manufacturing method
JP2003163375A (en) Nitride semiconductor element and its manufacturing method
JPH08255929A (en) Fabrication of semiconductor light emitting element
JPH11177135A (en) Gallium nitride semiconductor element and its manufacture
JP3705637B2 (en) Group 3 nitride semiconductor light emitting device and method of manufacturing the same
JP2001210861A (en) Gallium nitride semiconductor light emitting element and its manufacturing method
JPH11154765A (en) Semiconductor substrate and luminous element made of gallium nitride-based compound semiconductor, and manufacture thereof
JP3566476B2 (en) Method for manufacturing semiconductor light emitting device