JPH11153543A - Icp analyzer - Google Patents

Icp analyzer

Info

Publication number
JPH11153543A
JPH11153543A JP9320877A JP32087797A JPH11153543A JP H11153543 A JPH11153543 A JP H11153543A JP 9320877 A JP9320877 A JP 9320877A JP 32087797 A JP32087797 A JP 32087797A JP H11153543 A JPH11153543 A JP H11153543A
Authority
JP
Japan
Prior art keywords
heat
frequency power
light emitting
power supply
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9320877A
Other languages
Japanese (ja)
Inventor
Takeshi Ishigaki
健 石垣
Koji Okada
幸治 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP9320877A priority Critical patent/JPH11153543A/en
Publication of JPH11153543A publication Critical patent/JPH11153543A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To lessen power consumed by an electric heater to be used as a heat source on the occasion of performing constant temperature control of an ICP analyzer. SOLUTION: This analyzer is provided with a light emitting unit 4 which excites a sample by a high-frequency plasma flame 6 and emits light, a high-frequency power device 1 which supplies high-frequency power to this light emitting unit 4, and a spectroscope 10. A heat exchanger 9 is provided, and the heat of plasma of the light emitting unit 4 and the heat of the high-frequency power device 1 are transmitted to the spectroscope 10.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、試料元素の定性・
定量測定等を行うICP(高周波誘導結合プラズマ)発
光分光分析装置およびICP質量分析装置に関する。
The present invention relates to the qualitative analysis of sample elements.
The present invention relates to an ICP (high frequency inductively coupled plasma) emission spectrometer for performing quantitative measurement and the like and an ICP mass spectrometer.

【0002】[0002]

【従来の技術】ICP発光分光分析装置の従来の一例を
図3に示す。ICP発光分光分析装置は発光部4におい
て試料を溶液化して高周波プラズマ炎6中に導入し励起
発光させる。発光スペクトルは分光器10で分光され、
試料中の元素を定性ならびに定量測定する。このプラズ
マはアルゴンガスに高周波を誘導結合方式で供給し放電
させることにより生成されるが、そのために高周波誘導
コイル5に供給する高周波電力は一般的に0.8〜2.
5KW、生成されたプラズマの励起温度は6000〜7
000゜Kに達する高温のプラズマである。従来このプ
ラズマ炎6の発する熱は、強力な空冷ファンによる強制
排気による冷却装置21で外部へ排熱されていた。
2. Description of the Related Art An example of a conventional ICP emission spectrometer is shown in FIG. In the ICP emission spectrometer, the sample is converted into a solution in the light emitting section 4 and introduced into the high-frequency plasma flame 6 to cause excitation light emission. The emission spectrum is separated by the spectroscope 10,
The elements in the sample are qualitatively and quantitatively measured. This plasma is generated by supplying a high frequency to an argon gas by an inductive coupling method and discharging the same. For this purpose, the high frequency power supplied to the high frequency induction coil 5 is generally 0.8 to 2..
5KW, excitation temperature of generated plasma is 6000-7
It is a high-temperature plasma that reaches 000K. Conventionally, the heat generated by the plasma flame 6 has been exhausted to the outside by the cooling device 21 which is forcibly exhausted by a powerful air cooling fan.

【0003】さらに高周波誘導コイル5に供給する高周
波を発生させる高周波電源装置1においても、そのDC
電源部に用いられるダイオードやトランジスタの発熱、
ならびにRF部での大電力を処理するダミーロード用抵
抗器からの発熱があり、これら発熱の冷却のため従来は
ファンによる強制空冷やDC電源部熱交換器2およびR
F部熱交換器3として水冷ジャケットを設置し、冷却装
置22を使用するなどの方法によって装置外部への排熱
が行われていた。
Further, in the high-frequency power supply device 1 for generating a high frequency to be supplied to the high-frequency induction coil 5,
Heat of diodes and transistors used in the power supply,
In addition, there is heat generated from a dummy load resistor that processes a large amount of power in the RF unit. For cooling such heat, conventionally, forced air cooling by a fan or a DC power supply heat exchanger 2 and R
A water-cooling jacket was installed as the F-section heat exchanger 3, and the heat was discharged to the outside of the apparatus by a method such as using a cooling device 22.

【0004】一方、発光スペクトルを分光させる分光器
10はプラズマ炎6による試料励起光を入射スリット1
3に集光させ、分光器10がポリクロメータの場合、回
折格子11によって各波長毎に光を分散させ、各々の波
長毎に設置された複数の射出スリット12にそのスペク
トル像を結像させ、検出器でスペクトル強度が光電測光
される。分光器10がモノクロメータの場合は回折格子
11が回転して一個の射出スリットへ順次各波長を走査
して光電測光が行われる。いずれの分光器においてもス
ペクトルは正しくシャープに射出スリット12上に結像
されていなければならず、シャープさが満足されている
か否かは分光器の最も重要な性能である分解能の優劣に
直接関係し、また正しい位置になければ波長誤差とな
る。
On the other hand, a spectroscope 10 for dispersing the emission spectrum emits the sample excitation light by the plasma flame 6 into the entrance slit 1.
3, when the spectroscope 10 is a polychromator, the light is dispersed for each wavelength by the diffraction grating 11, and the spectrum image is formed on a plurality of exit slits 12 provided for each wavelength. The spectral intensity is measured photometrically by the detector. When the spectroscope 10 is a monochromator, the diffraction grating 11 rotates and scans each wavelength sequentially to one exit slit to perform photoelectric photometry. In any spectrometer, the spectrum must be correctly and sharply imaged on the exit slit 12, and whether or not the sharpness is satisfied is directly related to the most important performance of the spectrometer, that is, the resolution. If it is not at the correct position, a wavelength error will occur.

【0005】ICP発光分析に用いられる分光器は、分
解能500,000〜100,000、逆線分散2〜
0.2nm/mmを得るために焦点距離75〜100c
mの大型の分光器が使用され、入射スリットおよび射出
スリットの開口幅は20〜50μmで測定される。この
ような大型の分光器で上述した性能を得るためには分光
器の入射スリット、回折格子、射出スリット等の光学素
子の相対的位置関係はμmのオーダで温度変化や振動に
対して安定であることが要求される。このためには通常
の恒温室に装置を設置しているだけでは不十分であって
根本的に温度変化がないように分光器の外周に恒温の空
気を循環させるようになっている。この循環空気の温度
調節は温度調節装置14によって行われるが、コストの
問題および温度変化が極力小さくできるように、電気ヒ
ータ15を設置して温度センサ16で温度を検出し、電
気ヒータ15の電圧を調整して常に一定温度の温風をフ
ァン17で循環させるように工夫されている。
[0005] The spectroscope used for ICP emission analysis has a resolution of 500,000 to 100,000 and a reverse linear dispersion of 2 to 2.
Focal length 75-100c to obtain 0.2nm / mm
m large spectrometer is used, and the opening width of the entrance slit and exit slit is measured at 20 to 50 μm. In order to obtain the above-mentioned performance with such a large spectroscope, the relative positions of the optical elements such as the entrance slit, the diffraction grating, and the exit slit of the spectroscope are stable on temperature change and vibration on the order of μm. It is required that there be. For this purpose, it is not sufficient to install the device in a normal constant temperature chamber, and constant temperature air is circulated around the outer periphery of the spectroscope so that there is no fundamental temperature change. The temperature of the circulating air is adjusted by the temperature adjusting device 14. An electric heater 15 is installed and the temperature is detected by the temperature sensor 16 so that the cost problem and the temperature change can be minimized. Is adjusted so that warm air of a constant temperature is always circulated by the fan 17.

【0006】またICP発光分光分析装置と同様の高周
波誘導結合プラズマによって液体試料を励起し、この
時、試料元素がイオン化されることを利用して質量分析
法によって試料元素の定性・定量測定を行うICP質量
分析装置がある。ICP質量分析装置の従来の一例を図
4に示すが、試料をイオン化するイオン化部4Iおよび
高周波電源装置1はICP発光分光分析装置とまったく
同じ装置が使われるので分析装置の発熱に関してはIC
P発光分光分析装置とまったく同じであるので説明を省
略する。分析部分に使用される質量分析装置は通常四重
極マスアナライザ18が使われる。これは四本の円柱に
直流と高周波を重ねた電場をかけて双曲線電場を作り、
特定なイオンだけが通過できることを利用してイオンを
分離検出をするもので、この高周波電場を安定化させる
ために出力高周波をダイオードで整流してモニタ用フィ
ードバック信号を得るが、この際にもダイオードの動作
特性上の温度依存性は重要な問題で、固定電圧のときの
ダイオード電流は温度と共にほぼ指数関数的に増大する
(固定電流のときの電圧は温度と共にほぼ直線的に減少
する)。従ってダイオードを一定温度で動作させる必要
があり、ICP発光分光分析装置の分光器と同様、高周
波信号を得る高周波発振部19内を一定温度とするため
に電気ヒータ15を用いた温度制御が行われている。こ
の温度制御の手法についてもICP発光分光分析装置の
分光器の場合と同様であるので詳細説明は省略する。
A liquid sample is excited by a high-frequency inductively coupled plasma similar to that of an ICP emission spectrometer, and qualitative and quantitative measurement of the sample element is performed by mass spectrometry utilizing the ionization of the sample element. There is an ICP mass spectrometer. FIG. 4 shows an example of a conventional ICP mass spectrometer. The ionization unit 4I for ionizing a sample and the high-frequency power supply 1 are exactly the same as the ICP emission spectrometer.
The description is omitted because it is exactly the same as the P emission spectrometer. A quadrupole mass analyzer 18 is usually used as a mass spectrometer used in the analysis part. This creates a hyperbolic electric field by applying an electric field with DC and high frequency superimposed on four cylinders,
In order to stabilize this high-frequency electric field, the output high-frequency is rectified by a diode to obtain a monitor feedback signal. The temperature dependence of the operating characteristics of the diode is an important issue, and the diode current at a fixed voltage increases almost exponentially with temperature (the voltage at a fixed current decreases almost linearly with temperature). Therefore, it is necessary to operate the diode at a constant temperature, and similarly to the spectroscope of the ICP emission spectrometer, temperature control using the electric heater 15 is performed to keep the inside of the high-frequency oscillation unit 19 for obtaining a high-frequency signal at a constant temperature. ing. The method of this temperature control is the same as that of the spectroscope of the ICP emission spectroscopy analyzer, and the detailed description is omitted.

【0007】[0007]

【発明が解決しようとする課題】従来のICP発光分光
分析装置やICP質量分析装置は以上のように構成され
ているが、分光器10や高周波発振部19の恒温温度制
御を行うためには通常の室温より高い温度、例えば前者
で38℃、後者で42℃の一定値になるよう温度制御が
行われ、そのために200W程度の電気ヒータ15が設
置されており、比較的大きなヒータ電力を必要とする問
題があった。
The conventional ICP emission spectrometer and ICP mass spectrometer are constructed as described above. However, in order to control the temperature of the spectroscope 10 and the high-frequency oscillator 19 at a constant temperature, a conventional method is used. The temperature is controlled so as to be a constant value higher than the room temperature of, for example, 38 ° C. in the former case and 42 ° C. in the latter case. For this reason, an electric heater 15 of about 200 W is installed, and a relatively large heater power is required. There was a problem to do.

【0008】本発明は、このような事情に鑑みてなされ
たものであって、温度制御に用いられる電気ヒータ15
を低電力で済ませられるICP分析装置を提供すること
を目的とする。
[0008] The present invention has been made in view of such circumstances, and an electric heater 15 used for temperature control is provided.
It is an object of the present invention to provide an ICP analyzer which can be operated with low power.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
め、本発明のICP分析装置は、高周波プラズマ炎で試
料を励起して発光させる発光部と、この発光部に高周波
電力を供給する高周波電源装置と、前記発光部からの光
を分光する分光器を備えたICP発光分光分析装置にお
いて、前記発光部のプラズマの熱、あるいは高周波電源
装置の熱を分光器に送る熱交換器を設けたものである。
さらに、高周波プラズマ炎で試料を励起してイオン化さ
せるイオン化部と、このイオン化部に高周波電力を供給
する高周波電源装置と、前記イオン化部からのイオンの
質量分離・検出を行う質量分析装置を備えたICP質量
分析装置において、イオン化部のプラズマの熱あるいは
高周波電源装置の熱を質量分析装置の高周波発振部に送
る熱交換器を設けた分析装置である。
In order to achieve the above object, an ICP analyzer according to the present invention comprises a light emitting section for exciting a sample with a high frequency plasma flame to emit light, and a high frequency power supply for supplying high frequency power to the light emitting section. In an ICP emission spectrometer equipped with a power supply device and a spectroscope for splitting light from the light emitting unit, a heat exchanger for sending the heat of the plasma of the light emitting unit or the heat of the high frequency power supply device to the spectrometer is provided. Things.
Furthermore, an ionization unit that excites and ionizes the sample with a high-frequency plasma flame, a high-frequency power supply that supplies high-frequency power to the ionization unit, and a mass spectrometer that separates and detects ions from the ionization unit are provided. The ICP mass spectrometer is an analyzer provided with a heat exchanger for sending the heat of the plasma of the ionization unit or the heat of the high-frequency power supply to the high-frequency oscillation unit of the mass spectrometer.

【0010】[0010]

【発明の実施の形態】本発明のICP分析装置の一実施
例をICP発光分光分析装置については図1により、I
CP質量分析装置については図2により説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the ICP analyzer of the present invention is shown in FIG.
The CP mass spectrometer will be described with reference to FIG.

【0011】図1において、1は高周波誘導コイル5に
高周波電力を供給する高周波電源装置である。内部の熱
発生源となるDC電源部とRF部に各々DC電源部熱交
換器2とRF部熱交換器3が設置されている。4はプラ
ズマによる試料励起発光を行う発光部で、内部に試料を
励起するプラズマ炎6、プラズマを生成させる高周波誘
導コイル5、そしてプラズマ炎6の上部に熱交換器7が
ある。10は試料の発光スペクトルを分散させてスペク
トル強度を測定する分光器で、内部に入射スリット1
3、回折格子11、射出スリット12があって、分光器
10の外側に電気ヒータ15、温度センサ16、ファン
17があり、温度調節装置14で制御される。さらに電
気ヒータ15の近傍に熱交換器9が置かれている。熱交
換器の2、3、7、9は配管20で一つの閉じたループ
を形成しており、配管20中には熱の媒体として水が満
たされ、途中にポンプ8が接続されている。
In FIG. 1, reference numeral 1 denotes a high-frequency power supply for supplying high-frequency power to a high-frequency induction coil 5. The DC power supply unit heat exchanger 2 and the RF unit heat exchanger 3 are installed in the DC power supply unit and the RF unit serving as internal heat generation sources, respectively. Reference numeral 4 denotes a light emitting unit for performing sample excitation emission by plasma. A light emitting unit 4 includes a plasma flame 6 for exciting a sample, a high-frequency induction coil 5 for generating plasma, and a heat exchanger 7 above the plasma flame 6. Reference numeral 10 denotes a spectroscope for measuring the spectral intensity by dispersing the emission spectrum of the sample.
3. There is a diffraction grating 11, an exit slit 12, and an electric heater 15, a temperature sensor 16, and a fan 17 outside the spectroscope 10, which are controlled by a temperature controller 14. Further, the heat exchanger 9 is placed near the electric heater 15. The heat exchangers 2, 3, 7, and 9 form one closed loop with a pipe 20. The pipe 20 is filled with water as a heat medium, and a pump 8 is connected on the way.

【0012】次に図1の恒温温度制御動作を説明する。
高周波電源装置1内の発熱源であるDC電源部およびR
F部からの発熱は、DC電源部熱交換器2およびRF熱
交換器3で吸熱され、さらに発光部4内の熱交換器7に
よってプラズマ炎6の熱が吸熱され、高温になった配管
20内の還流水はポンプ8の圧力によって、分光器10
の外周に設置された熱交換器9において放熱される。こ
の放熱は熱交換器9が本来の温度調節装置14の発熱源
である電気ヒータ15の近傍に設置されているから従来
法のように電気ヒータ15のみの熱だけでなく、この熱
交換器9の熱と電気ヒータ15の熱とが合流して分光器
10の外周を還流し、温度センサ16の働きで温度調節
装置14は電気ヒータ15の電圧を調節して分光器10
を一定温度に保つ。
Next, the constant temperature control operation of FIG. 1 will be described.
DC power source and R which are heat sources in the high-frequency power supply 1
The heat generated from the F section is absorbed by the DC power supply section heat exchanger 2 and the RF heat exchanger 3, and further, the heat of the plasma flame 6 is absorbed by the heat exchanger 7 in the light emitting section 4, and the temperature of the pipe 20 becomes high. The reflux water in the inside is changed by the pressure of the pump 8 into the spectroscope 10.
The heat is radiated in the heat exchanger 9 installed on the outer periphery of the heat exchanger. This heat is dissipated not only by the heat of the electric heater 15 as in the conventional method but also by the heat exchanger 9 because the heat exchanger 9 is installed near the electric heater 15 which is the original heat source of the temperature control device 14. The heat of the electric heater 15 and the heat of the electric heater 15 merge and return to the outer periphery of the spectroscope 10, and the temperature control device 14 adjusts the voltage of the electric heater 15 by the operation of the temperature sensor 16 to
Is kept at a constant temperature.

【0013】図2はICP質量分析装置の例である。図
2において、1は高周波誘導コイル5に高周波電力を供
給する高周波電源装置で、内部の熱発生源となるDC電
源部とRF部に各々DC電源部熱交換器2とRF部熱交
換器3が設置されている。4Iはプラズマによる試料励
起イオン化を行うイオン化部で、内部に試料を励起する
プラズマ炎6、プラズマを生成させる高周波誘導コイル
5、そしてプラズマ炎6の上部に熱交換器7がある。1
8は四重極マスアナライザであって試料中の元素がイオ
ン化されたこれらのイオンを質量分離させて質量スペク
トルを測定するが、この四重極マスアナライザ18に高
周波電場を供給する高周波発振部19がある。内部は電
気ヒータ15、温度センサ16、ファン17が設置さ
れ、温度調節装置14で温度制御される。さらに電気ヒ
ータ15の近傍に熱交換器9が置かれている。熱交換器
2、3、7、9は配管20で一つの閉じたループを形成
しており、配管20中には熱の媒体として水が満たさ
れ、途中にポンプ8が接続されている。
FIG. 2 shows an example of an ICP mass spectrometer. In FIG. 2, reference numeral 1 denotes a high-frequency power supply for supplying high-frequency power to a high-frequency induction coil 5, and includes a DC power supply heat exchanger 2 and an RF heat exchanger 3 in a DC power supply unit and an RF unit serving as internal heat sources. Is installed. Reference numeral 4I denotes an ionization section for performing sample excitation ionization by plasma, in which a plasma flame 6 for exciting a sample, a high-frequency induction coil 5 for generating plasma, and a heat exchanger 7 above the plasma flame 6 are provided. 1
Reference numeral 8 denotes a quadrupole mass analyzer, which mass-separates these ions in which the elements in the sample are ionized to measure a mass spectrum. A high-frequency oscillator 19 for supplying a high-frequency electric field to the quadrupole mass analyzer 18 There is. Inside, an electric heater 15, a temperature sensor 16, and a fan 17 are installed, and the temperature is controlled by a temperature controller 14. Further, the heat exchanger 9 is placed near the electric heater 15. The heat exchangers 2, 3, 7, and 9 form one closed loop with a pipe 20. The pipe 20 is filled with water as a heat medium, and a pump 8 is connected on the way.

【0014】次に図2の恒温温度制御動作を説明する。
高周波電源装置1内の発熱源であるDC電源部およびR
F部からの発熱は、DC電源部熱交換器2およびRF熱
交換器3で吸熱され、さらにイオン化部4I内の熱交換
器7によってプラズマ炎6の熱が吸熱され、高温になっ
た配管20内の還流水はポンプ8の圧力によって、高周
波発振部19の内に設置された熱交換器9において放熱
される。この放熱は熱交換器9が本来の温度調節装置1
4の発熱源である電気ヒータ15の近傍に設置されてい
るから従来法のように電気ヒータ15のみの熱だけでな
く、この熱交換器9の熱と電気ヒータ15の熱とが合流
して高周波発振部19の内を還流し、温度センサ16の
働きで温度調節装置14は電気ヒータ15の電圧を調節
して高周波発振部19の内を一定温度に保つ。
Next, the constant temperature control operation of FIG. 2 will be described.
DC power source and R which are heat sources in the high-frequency power supply 1
The heat generated from the F section is absorbed by the DC power supply section heat exchanger 2 and the RF heat exchanger 3, and the heat of the plasma flame 6 is absorbed by the heat exchanger 7 in the ionization section 4 </ b> I, so that the pipe 20 is heated to a high temperature. The reflux water inside is radiated by the pressure of the pump 8 in the heat exchanger 9 installed in the high-frequency oscillator 19. This heat is released by the heat exchanger 9 from the original temperature control device 1.
4, the heat of the heat exchanger 9 and the heat of the electric heater 15 are combined together with the heat of the electric heater 15 as in the conventional method. The inside of the high-frequency oscillator 19 is refluxed, and the temperature controller 16 adjusts the voltage of the electric heater 15 by the operation of the temperature sensor 16 to maintain the inside of the high-frequency oscillator 19 at a constant temperature.

【0015】本発明では熱交換の媒体に水の還流を用い
たが、熱の移動にヒートパイプを用いることも可能であ
る。ヒートパイプは密閉した管内に作動流体と呼ばれる
気相と液相に相互に変化しやすい媒体を封入し、一端を
熱源部である熱交換器2、3および7に置き、他端を放
熱部である熱交換器9に置くことによって熱源部で蒸発
し蒸気流となった媒体は放熱部で凝縮して液流として熱
源部に戻り、この相変化の潜熱を仲介にした流動によっ
て熱を輸送して熱交換作用を繰り返す。このヒートパイ
プを利用する方法によれば優れた伝熱効果が期待でき、
また伝熱素子を運ぶのにポンプ8のような動力をまった
く必要としない(液体を凝縮部から蒸発部へ還流させる
のにウイックと呼ばれる多孔質物質の毛細管圧力が利用
されるから)利点がある。
In the present invention, the reflux of water is used as a medium for heat exchange, but a heat pipe can be used for transferring heat. The heat pipe encloses a medium, which is called a working fluid, which is easily changed into a gas phase and a liquid phase, in a closed pipe, and has one end placed in the heat exchangers 2, 3 and 7, which are heat source sections, and the other end placed in a heat radiating section. The medium that evaporates in the heat source section and becomes a vapor stream by being placed in a certain heat exchanger 9 is condensed in the heat radiating section and returns to the heat source section as a liquid stream. To repeat the heat exchange action. According to the method using this heat pipe, an excellent heat transfer effect can be expected,
In addition, there is an advantage that no power such as the pump 8 is required to carry the heat transfer element (since the capillary pressure of a porous substance called a wick is used to reflux the liquid from the condensation section to the evaporation section). .

【0016】また、上記実施例では高周波電源装置から
発生する熱およびプラズマ炎から発生する熱を用いた
が、いずれか一方のみを用いても十分な効果を得ること
ができる。
In the above embodiment, the heat generated from the high-frequency power supply device and the heat generated from the plasma flame are used, but a sufficient effect can be obtained by using only one of them.

【0017】[0017]

【発明の効果】本発明のICP分析装置は上記のように
構成されており、高周波電源装置のDC電源部やRF部
から発生する熱、およびプラズマ炎から発生する熱を外
部へ捨てることなく装置の分光器や高周波発振部を恒温
温度制御するための熱源の一部に取り込むようにしたの
で、本来制御用の熱源である電気ヒータの消費電力を少
なくすることができる。
The ICP analyzer of the present invention is constructed as described above, and does not discard heat generated from the DC power supply or RF part of the high-frequency power supply and heat generated from the plasma flame to the outside. Since the spectroscope and the high-frequency oscillation section are taken into a part of the heat source for controlling the temperature at a constant temperature, the power consumption of the electric heater, which is the heat source for control, can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のICP発光分光分析装置の一実施例を
示す図である。
FIG. 1 is a diagram showing one embodiment of an ICP emission spectrometer of the present invention.

【図2】本発明のICP質量分析装置の一実施例を示す
図である。
FIG. 2 is a diagram showing one embodiment of an ICP mass spectrometer of the present invention.

【図3】従来のICP発光分光分析装置の一実施例を示
す図である。
FIG. 3 is a view showing one embodiment of a conventional ICP emission spectrometer.

【図4】従来のICP質量分析装置の一実施例を示す図
である。
FIG. 4 is a diagram showing one embodiment of a conventional ICP mass spectrometer.

【符号の説明】[Explanation of symbols]

1… 高周波電源装置 2…DC電源部熱交換器 3…RF部熱交換器 4…発光部 4I…イオン化部 5…高周波誘導コイル 6…プラズマ炎 7…熱交換器 8…ポンプ 9…熱交換器 10…分光器 11…回折格子 12…射出スリット 13…入射スリット 14…温度調節装置 15…電気ヒータ 16…温度センサ 17…ファン 18…四重極マスアナライザ 19…高周波発振部 20…配管 21…冷却装置 22…冷却装置 DESCRIPTION OF SYMBOLS 1 ... High frequency power supply device 2 ... DC power supply part heat exchanger 3 ... RF part heat exchanger 4 ... Light emitting part 4I ... Ionization part 5 ... High frequency induction coil 6 ... Plasma flame 7 ... Heat exchanger 8 ... Pump 9 ... Heat exchanger DESCRIPTION OF SYMBOLS 10 ... Spectroscope 11 ... Diffraction grating 12 ... Emission slit 13 ... Ingress slit 14 ... Temperature control device 15 ... Electric heater 16 ... Temperature sensor 17 ... Fan 18 ... Quadrupole mass analyzer 19 ... High frequency oscillation part 20 ... Piping 21 ... Cooling Device 22 ... Cooling device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 高周波プラズマ炎で試料を励起して発光
させる発光部と、この発光部に高周波電力を供給する高
周波電源装置と、前記発光部からの光を分光する分光器
を備えたICP発光分光分析装置において、前記発光部
のプラズマの熱あるいは高周波電源装置の熱を分光部に
送る熱交換器を設けたことを特徴とするICP発光分光
分析装置。
1. An ICP light emitting device comprising: a light emitting unit for exciting a sample with a high frequency plasma flame to emit light; a high frequency power supply device for supplying high frequency power to the light emitting unit; and a spectroscope for dispersing light from the light emitting unit. An ICP emission spectroscopy apparatus, further comprising a heat exchanger for sending the heat of the plasma of the light emitting section or the heat of the high frequency power supply to the spectroscopic section.
【請求項2】 高周波プラズマ炎で試料を励起してイオ
ン化させるイオン化部と、このイオン化部に高周波電力
を供給する高周波電源装置と、前記イオン化部からのイ
オンの質量分離・検出を行う質量分析装置を備えたIC
P質量分析装置において、イオン化部のプラズマの熱、
あるいは高周波電源装置の熱を質量分析装置の高周波発
振部に送る熱交換器を設けたことを特徴とするICP質
量分析装置。
2. An ionization section for exciting and ionizing a sample with a high-frequency plasma flame, a high-frequency power supply for supplying high-frequency power to the ionization section, and a mass spectrometer for separating and detecting mass of ions from the ionization section. IC equipped with
In the P mass spectrometer, the heat of the plasma in the ionization section,
Alternatively, an ICP mass spectrometer is provided with a heat exchanger that sends heat of the high frequency power supply to a high frequency oscillator of the mass spectrometer.
JP9320877A 1997-11-21 1997-11-21 Icp analyzer Pending JPH11153543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9320877A JPH11153543A (en) 1997-11-21 1997-11-21 Icp analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9320877A JPH11153543A (en) 1997-11-21 1997-11-21 Icp analyzer

Publications (1)

Publication Number Publication Date
JPH11153543A true JPH11153543A (en) 1999-06-08

Family

ID=18126269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9320877A Pending JPH11153543A (en) 1997-11-21 1997-11-21 Icp analyzer

Country Status (1)

Country Link
JP (1) JPH11153543A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016166844A (en) * 2015-03-10 2016-09-15 株式会社日立ハイテクサイエンス Inductive coupling plasma generator and inductive coupling plasma analyzer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016166844A (en) * 2015-03-10 2016-09-15 株式会社日立ハイテクサイエンス Inductive coupling plasma generator and inductive coupling plasma analyzer

Similar Documents

Publication Publication Date Title
US9820370B2 (en) Heat transfer system for an inductively coupled plasma device
US6222186B1 (en) Power-modulated inductively coupled plasma spectrometry
JP5161469B2 (en) Plasma processing equipment
US7180059B2 (en) Apparatus and method for sensor control and feedback
JPH10125981A (en) Laser
CN106415240B (en) Device and method for determining the concentration of at least one gas in a sample gas flow by means of infrared absorption spectroscopy
JP2014055785A (en) High frequency power source for plasma and icp emission spectrophotometric analyzer using the same
US20210225629A1 (en) Cooling devices and instruments including them
JPH11153543A (en) Icp analyzer
US6837935B2 (en) Microwave plasma film-forming apparatus for forming diamond film
Bulska et al. Comparative study of argon and helium plasmas in a TM010 cavity and a surfatron and their use for hydride generation microwave-induced plasma atomic emission spectrometry
WO2004061957A1 (en) Method and apparatus for temperature control of optoelectronic semiconductor components
US10375810B2 (en) Capacitively coupled devices and oscillators
JP2004325341A (en) Atomic absorption spectrophotometer
US3743831A (en) Sampling apparatus for photoelectron spectrometry
JP2008051609A (en) Icp emission spectrometer
US10327319B1 (en) Counterflow sample introduction and devices, systems and methods using it
JP2002039944A (en) Icp light source apparatus
JP2002131128A (en) Spectroscopic photometer
JP3345188B2 (en) Glow discharge emission spectroscopy method and apparatus
JP4881775B2 (en) light source
US8742332B2 (en) Mass spectrometer and mass spectrometry method
JP2005257535A (en) Spectrophotometer
Pack et al. Inductively coupled plasma/microwave-induced plasma tandem source for atomic emission spectroscopy
JPH09318540A (en) Icp analyzer