JPH11150877A - Voltage correction circuit of secondary battery - Google Patents

Voltage correction circuit of secondary battery

Info

Publication number
JPH11150877A
JPH11150877A JP9315275A JP31527597A JPH11150877A JP H11150877 A JPH11150877 A JP H11150877A JP 9315275 A JP9315275 A JP 9315275A JP 31527597 A JP31527597 A JP 31527597A JP H11150877 A JPH11150877 A JP H11150877A
Authority
JP
Japan
Prior art keywords
voltage
secondary batteries
terminal
secondary battery
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9315275A
Other languages
Japanese (ja)
Other versions
JP3934760B2 (en
Inventor
Noriyuki Ito
紀幸 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP31527597A priority Critical patent/JP3934760B2/en
Publication of JPH11150877A publication Critical patent/JPH11150877A/en
Application granted granted Critical
Publication of JP3934760B2 publication Critical patent/JP3934760B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the voltage correction circuit of a secondary battery for correcting the voltage difference due to the variations of discharge amount of a plurality of secondary batteries which are connected in series and the scattered in the discharge amount. SOLUTION: Discharge circuits 2, 3, and 4 that can be turned on or off are connected to each both terminals of secondary batteries B1, B2, and B3, each terminal voltage of the batteries B1, B2, and B3, is measured by a microcontroller 7 via a switching circuit 5 and a differential amplifier 6, and the variations degree of the terminal voltage of the batteries B1, B2, and B3 and the variations degree of the capacities are discriminated based on the measurement result. When the variations degree of the terminal voltage is large, a discharge circuit connected to the secondary battery in which the terminal voltage indicates a maximum value from among the batteries B1, B2, and B3 is kept on until the terminal voltage decreases to a set value. When the variations degree of the capacity is large, the discharge circuit is maintained to be off, regardless of the degree of dispersion of the terminal voltage, and voltage correction for prohibition is controlled.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、二次電池の電圧補
正回路に係り、特に直列接続された複数個の二次電池の
端子電圧のばらつきを補正するための電圧補正回路に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a voltage correction circuit for a secondary battery, and more particularly to a voltage correction circuit for correcting variations in terminal voltages of a plurality of secondary batteries connected in series.

【0002】[0002]

【従来の技術】リチウム二次電池などの非水溶媒系二次
電池や鉛蓄電池は、放電や放置で端子電圧が低下し過ぎ
たり、あるいは逆に充電中に端子電圧が高くなり過ぎる
と、電池性能が劣化したり、安全性が損なわれることが
ある。このため、これらの二次電池では端子電圧を監視
して、端子電圧が所定範囲内となるように充電や放電を
制御して使用する必要があった。
2. Description of the Related Art A non-aqueous solvent secondary battery such as a lithium secondary battery and a lead storage battery have a problem in that if the terminal voltage becomes too low due to discharging or leaving, or if the terminal voltage becomes too high during charging, the battery will not be charged. Performance may be degraded and safety may be impaired. For this reason, in these secondary batteries, it is necessary to monitor the terminal voltage and control the charging and discharging so that the terminal voltage is within a predetermined range before use.

【0003】特に、リチウム二次電池の場合には、例え
ば端子電圧が2V以下となると、負極に使われている集
電体の銅が電解液内に溶解し始めて電池性能が劣化し、
また端子電圧が4.5V以上になると、電解液の分解に
よりガスが発生し、その結果電池内部の圧力が上昇して
安全弁が作動し、漏液することがある。そのため、リチ
ウム二次電池を使用する場合には、端子電圧が低下して
予め設定した放電禁止電圧に達すると放電電流を遮断
し、端子電圧が上昇して充電禁止電圧に達すると充電を
遮断する機能を有する保護回路を介して充放電を行うよ
うにすることが一般的である。放電禁止電圧は、負極の
銅が溶解し始める電圧2Vより若干高い電圧(例えば
2.3V)に設定され、充電禁止電圧は電解液の分解が
始まる電圧より若干低い電圧(例えば4.35V)に設
定される。
In particular, in the case of a lithium secondary battery, for example, when the terminal voltage becomes 2 V or less, the current collector copper used for the negative electrode begins to dissolve in the electrolytic solution, and the battery performance deteriorates.
When the terminal voltage exceeds 4.5 V, gas is generated due to decomposition of the electrolytic solution, and as a result, the pressure inside the battery rises, the safety valve operates, and liquid leakage may occur. Therefore, when a lithium secondary battery is used, the discharge current is cut off when the terminal voltage decreases and reaches a preset discharge prohibition voltage, and the charge is cut off when the terminal voltage rises and reaches the charge prohibition voltage. Generally, charging and discharging are performed via a protection circuit having a function. The discharge prohibition voltage is set to a voltage slightly higher than the voltage 2V at which the negative electrode copper begins to dissolve (eg, 2.3 V), and the charge prohibition voltage is set to a voltage slightly lower than the voltage at which the decomposition of the electrolytic solution starts (eg, 4.35 V). Is set.

【0004】また、従来の二次電池の保護回路では、複
数個の二次電池を直列接続して用いる場合は、個々の端
子電圧を検出して同様の保護動作を行っていた。すなわ
ち、複数個の二次電池を直列接続して使用する場合、電
池毎に端子電圧を検出し、いずれかの電池の端子電圧が
放電禁止電圧以下に達すると放電を禁止し、また、いず
れかの電池の端子電圧が充電禁止電圧以上に達すると充
電を禁止することによって、二次電池を保護する方法を
とっていた。
In a conventional secondary battery protection circuit, when a plurality of secondary batteries are used in series, a similar protection operation is performed by detecting individual terminal voltages. That is, when a plurality of secondary batteries are connected in series and used, the terminal voltage is detected for each battery, and when the terminal voltage of any of the batteries reaches the discharge prohibition voltage or lower, discharging is prohibited, and When the terminal voltage of the battery reaches a charging prohibition voltage or higher, charging is prohibited, thereby protecting the secondary battery.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述し
た従来の保護回路では、複数個の二次電池を直列接続し
て使用する場合に、各々の二次電池の充電量、自己放電
量や容量が異なっていると、二次電池の端子電圧がばら
つきを生じる。
However, in the above-described conventional protection circuit, when a plurality of secondary batteries are connected in series and used, the amount of charge, the amount of self-discharge, and the capacity of each secondary battery are reduced. If they are different, the terminal voltage of the secondary battery varies.

【0006】このため、放電時には充電量の少ない電池
の端子電圧が他の電池の端子電圧より早く低下して放電
禁止電圧に達してしまい、二次電池の端子電圧は平均的
に十分高くとも放電が停止してしまうことがある。ま
た、充電時は逆に充電量の多い電池が充電禁止電圧に早
く達してしまうことにより、満充電まで充電ができず、
使用時間が短くなってしまう。さらに、このような不都
合を避けようとすると、各電池をそれぞれの端子電圧を
揃えてから直列接続して使用しなければならないという
煩雑さがある。
For this reason, at the time of discharging, the terminal voltage of a battery with a small charge drops earlier than the terminal voltage of another battery and reaches the discharge prohibition voltage. May stop. Also, when charging, on the contrary, a battery with a large amount of charge reaches the charge prohibition voltage quickly, so it can not be charged until full charge,
Use time will be shortened. Further, in order to avoid such inconveniences, there is a trouble that each battery must be used after being connected in series after adjusting their terminal voltages.

【0007】一方、パーソナルコンピュータのようにR
AMなどの揮発性記憶装置を内蔵している機器では、電
源に使用される二次電池の端子電圧が低下すると、揮発
性記憶装置のデータをハードディスクなどの不揮発性記
憶装置に転送してデータの消失を防止するようにしてい
る。しかし、このような機器で従来の保護回路を使用し
た場合には、充電量の少ない、あるいは自己放電量の多
い一部の二次電池の端子電圧が低下して放電禁止電圧に
達してしまうと、その時点で二次電池の端子電圧が平均
的に十分高くとも突然放電が遮断してしまうことがあ
り、その結果、揮発性記憶装置のデータが消失してしま
うという問題があった。
On the other hand, like a personal computer, R
In devices with a built-in volatile storage device such as AM, when the terminal voltage of the secondary battery used for the power supply drops, the data in the volatile storage device is transferred to a non-volatile storage device such as a hard disk to transfer the data. We try to prevent loss. However, when a conventional protection circuit is used in such a device, if the terminal voltage of some secondary batteries having a small amount of charge or a large amount of self-discharge decreases and reaches the discharge prohibition voltage, However, at that time, even if the terminal voltage of the secondary battery is sufficiently high on average, the discharge may be suddenly interrupted, resulting in a problem that data in the volatile storage device is lost.

【0008】本発明は、直列接続された複数個の二次電
池の充電量や放電量のばらつきを補正して、放電時や充
電時の上述した不都合を回避できる二次電池の電圧補正
回路を提供することを目的とする。
The present invention provides a voltage correction circuit for a secondary battery which can correct the variation in the amount of charge and the amount of discharge of a plurality of secondary batteries connected in series to avoid the above-mentioned inconveniences during discharge and charge. The purpose is to provide.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するた
め、本発明は直列接続された複数個の二次電池の端子電
圧ばらつきを求め、このばらつきを補正するように二次
電池を放電させるようにしたことを骨子とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention is to determine a terminal voltage variation of a plurality of secondary batteries connected in series and discharge the secondary battery so as to correct the variation. The main point is what we did.

【0010】すなわち、本発明に係る二次電池の電圧補
正回路は、直列接続された複数個の二次電池のそれぞれ
の両端に接続されたオン・オフ可能な放電手段と、複数
個の二次電池の端子電圧のばらつき度合いを第1の設定
値と比較して判定する第1の判定手段と、複数個の二次
電池の容量のばらつき度合いを第2の設定値と比較して
判定する第2の判定手段と、第1および第2の判定手段
の判定結果に基づいて放電手段を制御する制御手段とを
有する。
That is, the voltage correction circuit for a secondary battery according to the present invention comprises: a discharge means which can be turned on / off connected to both ends of a plurality of secondary batteries connected in series; First determining means for determining the degree of variation in the terminal voltage of the battery by comparing it with the first set value; and determining whether the degree of variation in the capacity of the plurality of secondary batteries is compared with the second set value. And a control unit that controls the discharging unit based on the determination results of the first and second determination units.

【0011】そして、制御手段は(a) 第1の判定手段に
より端子電圧のばらつき度合いが第1の設定値を越えた
と判定され、かつ第2の判定手段により容量のばらつき
度合いが第2の設定値以下と判定されたとき、複数個の
二次電池のうち端子電圧が最大値を示す二次電池に接続
された放電手段をオン状態とし、該端子電圧が所定値ま
で低下した時点で該放電手段をオフ状態として該最大値
を示す二次電池の電圧補正を行い、(b) 第2の判定手段
により容量のばらつき度合いが第2の設定値を越えたと
判定されたときは、第1の判定手段の判定結果に関係な
く放電手段をオフ状態に維持して該電圧補正を禁止す
る。
The control means (a) determines that the degree of variation of the terminal voltage exceeds the first set value by the first determination means, and determines the degree of variation of the capacitance to the second set value by the second determination means. When it is determined that the terminal voltage is equal to or less than the predetermined value, the discharging unit connected to the secondary battery having the maximum terminal voltage among the plurality of secondary batteries is turned on. Means is turned off to correct the voltage of the secondary battery exhibiting the maximum value, and (b) when the second determining means determines that the degree of variation in capacity exceeds the second set value, the first The voltage correction is prohibited by maintaining the discharging means in the off state irrespective of the determination result of the determining means.

【0012】このように構成される本発明による二次電
池の電圧補正回路では、直列接続された複数個の二次電
池の端子電圧が何らかの原因でばらつきを生じ、ばらつ
きが大きくなったとき、端子電圧が最大値を示す二次電
池を放電させて、その端子電圧を例えば他の二次電池の
端子電圧と略同一の電圧まで低下させて電圧補正を行う
ことにより、端子電圧のばらつきを小さくすることがで
きる。すなわち、充電量や自己放電量の違いによる二次
電池の端子電圧のばらつきが補正される。
In the voltage correction circuit for a secondary battery according to the present invention, the terminal voltages of a plurality of series-connected secondary batteries vary for some reason. By discharging the secondary battery whose voltage indicates the maximum value and reducing the terminal voltage thereof to, for example, substantially the same voltage as the terminal voltage of another secondary battery, and performing voltage correction, the terminal voltage variation is reduced. be able to. That is, variations in the terminal voltage of the secondary battery due to differences in the amount of charge and the amount of self-discharge are corrected.

【0013】また、この電圧補正回路では、端子電圧の
ばらつきが大きい場合でも、容量のばらつきが大きいと
きは二次電池の放電を行わず、電圧補正を禁止する。こ
うすることにより、放電時に端子電圧が平均的に高い状
態にもかかわらず、放電が遮断されてしまうことはな
い。
Further, in this voltage correction circuit, even when the terminal voltage varies widely, when the capacity varies greatly, the secondary battery is not discharged and the voltage correction is prohibited. By doing so, the discharge is not interrupted even when the terminal voltage is high on average during the discharge.

【0014】すなわち、二次電池の容量のばらつきが大
きくなると、容量の少ない二次電池は容量の多い二次電
池に比較して、充電時には過充電、放電時には過放電と
なる傾向があるため、電圧補正が働くと容量の少ない二
次電池を放電させることになり、放電時にさらに過放電
となってしまう。この結果、単純に上記のような電圧補
正を行うと、放電時に端子電圧が平均的に高くとも放電
が遮断され、かえって逆効果となる可能性がある。そこ
で、本発明では容量のばらつきが大きいときは電圧補正
を禁止することにより、このような弊害を防止してい
る。
That is, when the variation in the capacity of the secondary battery becomes large, the secondary battery having a small capacity tends to be overcharged when charging and overdischarged when discharging, as compared with a secondary battery having a large capacity. When the voltage correction works, the secondary battery having a small capacity is discharged, and the battery is further overdischarged at the time of discharging. As a result, if the above-described voltage correction is simply performed, the discharge is interrupted even if the terminal voltage is high on average during the discharge, which may have an adverse effect. Thus, in the present invention, such a problem is prevented by prohibiting the voltage correction when the variation in capacitance is large.

【0015】従って、パーソナルコンピュータのように
揮発性記憶装置を内蔵し、二次電池の端子電圧が低下す
ると揮発性記憶装置のデータを不揮発性記憶装置に転送
してデータの消失を防止するような機器の電源として二
次電池を使用する場合、一部の二次電池の端子電圧が早
く低下して放電禁止電圧に達してしまうことにより放電
が突然遮断してしまうことがなく、揮発性記憶装置のデ
ータが確実に保存される。
Therefore, a volatile storage device such as a personal computer is built in, and when the terminal voltage of the secondary battery drops, the data in the volatile storage device is transferred to the nonvolatile storage device to prevent data loss. When a secondary battery is used as the power supply for the device, the terminal voltage of some of the secondary batteries drops quickly and reaches the discharge prohibition voltage, so that the discharge is not suddenly interrupted, and the volatile storage device is used. Data is securely stored.

【0016】一方、充電時には全ての二次電池が均等に
充電されるために、満充電まで確実に充電が行われ、使
用時間が長くなる。しかも、従来のように複数個の二次
電池の端子電圧を揃えてから直列接続するという煩雑な
手間が不要となる。
On the other hand, at the time of charging, since all the secondary batteries are charged evenly, the charging is reliably performed until the battery is fully charged, and the use time is prolonged. In addition, there is no need for the troublesome work of connecting the series voltages after adjusting the terminal voltages of a plurality of secondary batteries as in the related art.

【0017】本発明において、放電手段は例えば複数個
の二次電池のそれぞれの両端に直列接続されたスイッチ
素子と抵抗素子によって構成され、制御手段によりスイ
ッチ素子がオン/オフ制御されることにより放電状態の
オン/オフが行われる。
In the present invention, the discharging means is constituted by, for example, a switching element and a resistance element connected in series to both ends of each of the plurality of secondary batteries. The state is turned on / off.

【0018】また、本発明における第1の判定手段は、
具体的には例えば(a) 複数個の二次電池の端子電圧の最
大値と最小値との電圧差、(b) 複数個の二次電池の端子
電圧の最大値と平均値との電圧差、(c) 複数個の二次電
池の端子電圧の最大値と端子電圧が最大値を示す二次電
池を除いた他の二次電池の端子電圧の平均値との電圧差
のいずれかと第1の設定値とを比較することによって、
端子電圧のばらつき度合いを判定する。
Further, the first judging means in the present invention comprises:
Specifically, for example, (a) the voltage difference between the maximum value and the minimum value of the terminal voltage of a plurality of secondary batteries, and (b) the voltage difference between the maximum value and the average value of the terminal voltages of a plurality of secondary batteries. (C) any one of the voltage difference between the maximum value of the terminal voltages of the plurality of secondary batteries and the average value of the terminal voltages of the other secondary batteries excluding the secondary battery having the maximum terminal voltage; By comparing with the setting value of
The degree of variation in terminal voltage is determined.

【0019】また、本発明における第2の判定手段は、
具体的には例えば複数個の二次電池の放電終了時の端子
電圧の最大値と最小値との電圧差をVcとし、複数個の
二次電池の充電に際して電圧補正を行ったときと行わな
かったときのVcの値をそれぞれVc1、Vc2としたと
き、Vc1−Vc2の値を第2の設定値と比較することによ
って、容量のばらつき度合いを判定する。
Further, the second judging means in the present invention comprises:
Specifically, for example, the voltage difference between the maximum value and the minimum value of the terminal voltage at the end of discharging of the plurality of secondary batteries is set to Vc, and when the voltage correction is performed when charging the plurality of secondary batteries and not performed. When the values of Vc at this time are Vc1 and Vc2, respectively, the degree of variation in capacitance is determined by comparing the value of Vc1−Vc2 with the second set value.

【0020】さらに、本発明における制御手段は、オン
状態にある放電手段に接続された二次電池の端子電圧が
(a) 他の二次電池の端子電圧のうちの最小値の電圧まで
低下した時点、(b) 他の二次電池の端子電圧の平均値の
電圧まで低下した時点、(c)複数個の二次電池の端子電
圧の平均値まで低下した時点のいずれかの時点でその放
電手段をオフ状態とする。
Further, the control means according to the present invention is arranged such that the terminal voltage of the secondary battery connected to the discharge means in the ON state is reduced.
(a) when the voltage has dropped to the minimum value of the terminal voltages of the other secondary batteries, (b) when the voltage has dropped to the average value of the terminal voltages of the other secondary batteries, (c) a plurality of At any point in time when the terminal voltage of the secondary battery has dropped to the average value, the discharging means is turned off.

【0021】ただし、複数個の二次電池の直列接続した
両端の電圧が所定値以下の場合、または複数個の二次電
池の端子電圧の最大値が所定値以下の場合は、放電手段
をオン状態としないようにすることが望ましい。
However, when the voltage between both ends of the plurality of secondary batteries connected in series is equal to or less than a predetermined value, or when the maximum value of the terminal voltages of the plurality of secondary batteries is equal to or less than a predetermined value, the discharging means is turned on. It is desirable not to be in a state.

【0022】[0022]

【発明の実施の形態】以下、本発明の一実施形態を図面
を参照して説明する。図1は、本発明の一実施形態に係
る二次電池の電圧補正回路を示すブロック図である。同
図において、二次電池群1は複数個(この例では、3
個)の二次電池B1,B2,B3を直列接続して構成さ
れている。二次電池B1の+端子は外部接続端子aに、
二次電池B1の−端子と二次電池B2の+端子は外部接
続端子bに、二次電池B2の−端子と二次電池B3の+
端子は外部接続端子cに、二次電池B3の−端子は外部
接続端子dにそれぞれ接続されている。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing a voltage correction circuit for a secondary battery according to one embodiment of the present invention. In the figure, there are a plurality of secondary battery groups 1 (3 in this example).
) Of secondary batteries B1, B2, and B3 are connected in series. The + terminal of the secondary battery B1 is connected to the external connection terminal a,
The minus terminal of the secondary battery B1 and the plus terminal of the secondary battery B2 are connected to the external connection terminal b, and the minus terminal of the secondary battery B2 and the plus terminal of the secondary battery B3.
The terminal is connected to the external connection terminal c, and the negative terminal of the secondary battery B3 is connected to the external connection terminal d.

【0023】SW1,SW2,SW3はスイッチ素子、
R1,R2,R3は放電用抵抗であり、スイッチ素子S
W1と抵抗R1とで第1の放電回路2を構成し、スイッ
チ素子SW2と抵抗R2とで第2の放電回路3を構成
し、スイッチ素子SW3と抵抗R3とで第3の放電回路
4を構成している。第1の放電回路2の両端は二次電池
群1の外部接続端子a,bに、第2の放電回路3の両端
は二次電池群1の外部接続端子b,cに、第3の放電回
路4の両端は二次電池群1の外部接続端子c,dにそれ
ぞれ接続されている。
SW1, SW2, SW3 are switch elements,
R1, R2 and R3 are discharge resistors, and the switching element S
A first discharge circuit 2 is formed by W1 and the resistor R1, a second discharge circuit 3 is formed by the switch element SW2 and the resistor R2, and a third discharge circuit 4 is formed by the switch element SW3 and the resistor R3. doing. Both ends of the first discharge circuit 2 are connected to the external connection terminals a and b of the secondary battery group 1, and both ends of the second discharge circuit 3 are connected to the external connection terminals b and c of the secondary battery group 1. Both ends of the circuit 4 are connected to external connection terminals c and d of the secondary battery group 1, respectively.

【0024】切替回路5は、切替接点e,f,gと共通
接点kからなる第1の切替スイッチSW4と、切替接点
h,i,jと共通接点lからなる第2の切替スイッチS
W5とで構成され、スイッチSW4とSW5は連動して
いる。すなわち、共通接点kが切替接点eに切り替えら
れたときは、共通接点lは切替接点hに切り替えられ、
共通接点kが切替接点fに切り替えられたときは共通接
点lは切替接点iに切り替えられ、共通接点kが切替接
点gに切り替えられたときは共通接点lは切替接点jに
切り替えられる。そして、切替回路5の第1の切替スイ
ッチSW4の切替接点e,f,gは二次電池群1の端子
a,b,cにそれぞれ接続され、第2の切替スイッチS
W5の切替接点h,i,jは二次電池群1の端子b,
c,dにそれぞれ接続されている。
The switching circuit 5 comprises a first switch SW4 comprising switching contacts e, f, g and a common contact k, and a second switching switch S4 comprising switching contacts h, i, j and a common contact l.
W5, and the switches SW4 and SW5 are linked. That is, when the common contact k is switched to the switching contact e, the common contact l is switched to the switching contact h,
When the common contact k is switched to the switching contact f, the common contact l is switched to the switching contact i, and when the common contact k is switched to the switching contact g, the common contact l is switched to the switching contact j. The switching contacts e, f, and g of the first switching switch SW4 of the switching circuit 5 are connected to the terminals a, b, and c of the secondary battery group 1, respectively, and the second switching switch S
The switching contacts h, i, j of W5 are terminals b,
are connected to c and d, respectively.

【0025】切替回路5の第1および第2の切替スイッ
チSW4,SW5の共通端子k,lは、差動増幅器6の
入力端子m,nにそれぞれ接続される。差動増幅器6は
オペアンプAと複数個の抵抗からなり、入力端子m,n
間の電圧差に相当する電圧を出力端子Oに発生する。こ
れら切替回路5と差動増幅器6によって、二次電池群1
における二次電池B1,B2,B3の個々の端子電圧を
測定する電圧測定回路が構成されている。
The common terminals k, l of the first and second switches SW4, SW5 of the switching circuit 5 are connected to the input terminals m, n of the differential amplifier 6, respectively. The differential amplifier 6 includes an operational amplifier A and a plurality of resistors, and has input terminals m and n.
A voltage corresponding to the voltage difference between the two is generated at the output terminal O. By the switching circuit 5 and the differential amplifier 6, the secondary battery group 1
Of the secondary batteries B1, B2, and B3 are configured.

【0026】差動増幅器6の出力端子Oは、マイクロコ
ントローラ7の入力端子Pに接続される。マイクロコン
トローラ7はA/Dコンバータを内蔵しており、このA
/Dコンバータによって入力端子Pに入力される差動増
幅器6の出力電圧をディジタル値に変換する。このA/
Dコンバータにより得られたディジタル値から、マイク
ロコントローラ7での内部のプログラムによるソフトウ
ェア処理によって、切替回路5と差動増幅器6およびA
/Dコンバータで測定された二次電池B1,B2,B3
の端子電圧のばらつきの度合いを第1の設定値と比較し
て判定する第1の判定と、二次電池B1,B2,B3の
容量のばらつき度合いを第2の設定値と比較して判定す
る第2の判定が行われる。
The output terminal O of the differential amplifier 6 is connected to the input terminal P of the microcontroller 7. The microcontroller 7 has a built-in A / D converter.
The output voltage of the differential amplifier 6 input to the input terminal P is converted into a digital value by the / D converter. This A /
From the digital value obtained by the D converter, the switching circuit 5, the differential amplifier 6, and the A
Batteries B1, B2, B3 measured by the / D converter
The first determination is made by comparing the degree of variation of the terminal voltage of the secondary battery with the first set value, and the degree of variation of the capacity of the secondary batteries B1, B2, and B3 is determined by comparing with the second set value. A second determination is made.

【0027】マイクロコントローラ7は、切替スイッチ
5の切替接点を選択するための制御信号を出力端子Qよ
り出力する。この出力端子Qからの制御信号によって、
共通端子kとlは切替接点eとh、切替接点fとi、切
替接点gとjに順次切り替えられる。
The microcontroller 7 outputs a control signal for selecting a changeover contact of the changeover switch 5 from an output terminal Q. By the control signal from the output terminal Q,
The common terminals k and l are sequentially switched to switching contacts e and h, switching contacts f and i, and switching contacts g and j.

【0028】さらに、マイクロコントローラ7は上記第
1および第2の判定結果に基づいて放電回路2,3,4
のスイッチSW1,SW2,SW3のON/OFF制御
を行う。すなわち、マイクロコントローラ7は、さらに
3つの出力端子R,S,Tを備えており、出力端子Rを
介して放電回路2のスイッチ素子SW1をON/OFF
制御し、出力端子Sを介して放電回路3のスイッチ素子
SW2をON/OFF制御し、出力端子Tを介して放電
回路4のスイッチ素子SW3をON/OFF制御する。
Further, the microcontroller 7 makes the discharge circuits 2, 3, 4 based on the first and second judgment results.
ON / OFF control of the switches SW1, SW2, SW3. That is, the microcontroller 7 further includes three output terminals R, S, and T, and turns on / off the switch element SW1 of the discharge circuit 2 via the output terminal R.
The control circuit controls ON / OFF of the switch element SW2 of the discharge circuit 3 via the output terminal S, and ON / OFF controls the switch element SW3 of the discharge circuit 4 via the output terminal T.

【0029】次に、このように構成された図1の二次電
池の電圧補正回路の動作について、図2のフローチャー
トを用いて説明する。充電が開始すると、二次電池B
1,B2,B3の端子電圧が検出される(ステップS1
0)。この場合、マイクロコントローラ7からの制御に
より切替回路5のスイッチSW4,SW5は二次電池B
1を選択し、差動増幅器6は二次電池B1の端子電圧に
相当する電圧を発生する。この差動増幅器6の出力電圧
は、マイクロコントローラ7の入力端子Pに入力され、
A/Dコンバータでディジタル値に変換された後、メモ
リに記憶される。以下、同様にして切替回路5のスイッ
チSW4,SW5は二次電池B2,B3を順次選択し、
そのときの差動増幅器6の出力電圧がマイクロコントロ
ーラ7に入力され、ディジタル値に変換された後、メモ
リに記憶される。
Next, the operation of the thus configured secondary battery voltage correction circuit of FIG. 1 will be described with reference to the flowchart of FIG. When charging starts, the secondary battery B
, B2, and B3 are detected (step S1).
0). In this case, the switches SW4 and SW5 of the switching circuit 5 are controlled by the
1 and the differential amplifier 6 generates a voltage corresponding to the terminal voltage of the secondary battery B1. The output voltage of the differential amplifier 6 is input to the input terminal P of the microcontroller 7,
After being converted into a digital value by the A / D converter, it is stored in the memory. Hereinafter, similarly, the switches SW4 and SW5 of the switching circuit 5 sequentially select the secondary batteries B2 and B3,
The output voltage of the differential amplifier 6 at that time is input to the microcontroller 7, converted into a digital value, and stored in the memory.

【0030】こうして、二次電池B1,B2,B3の端
子電圧が全てディジタル値としてメモリに記憶される
と、次に第1の判定、つまりB1,B2,B3の端子電
圧のばらつき度合いの判定が行われる(ステップS1
1)。すなわち、ステップS11では、メモリに記憶さ
れた二次電池B1,B2,B3の端子電圧のうちの最大
値Vmax と最小値Vmin が求められ、両者の差つまり端
子電圧のばらつき度合いが第1の設定値Vaと大小比較
される。ここで、通常は二次電池B1,B2,B3の端
子電圧の差はほとんどなく、Vmax −Vmin ≦Vaであ
るため(ステップS11でNO)、ステップS10に戻
って端子電圧の検出が続行される。
When the terminal voltages of the secondary batteries B1, B2, and B3 are all stored in the memory as digital values, the first determination, that is, the determination of the degree of variation in the terminal voltages of B1, B2, and B3 is performed. (Step S1
1). That is, in step S11, the maximum value Vmax and the minimum value Vmin of the terminal voltages of the secondary batteries B1, B2, and B3 stored in the memory are obtained, and the difference between the two, that is, the degree of variation of the terminal voltage is determined by the first setting. The value Va is compared with the value Va. Here, normally, there is almost no difference between the terminal voltages of the secondary batteries B1, B2, and B3, and Vmax−Vmin ≦ Va (NO in step S11). Therefore, the process returns to step S10 and the detection of the terminal voltage is continued. .

【0031】一方、何らかの原因、例えば充電量や自己
放電量の違いにより二次電池B1,B2,B3の端子電
圧に大きなばらつきが発生すると、Vmax −Vmin >V
aとなり(ステップS11でYES)、この場合はステ
ップS12に進んで第2の判定、つまりB1,B2,B
3の容量のばらつき度合いの判定が行われる。すなわ
ち、ステップS12では、予めメモリに記憶保持されて
いたVc1とVc2の差が第2の設定値Vbと大小比較され
る。但し、 Vc:放電終了時のVmax −Vmin の値 Vc1:充電に際して、電圧補正が行われたときのVcの
値 Vc2:充電に際して、電圧補正が行われなかったときの
Vcの値 であり、Vc1−Vc2は二次電池B1,B2,B3の容量
のばらつき度合いを表している。
On the other hand, if a large variation occurs in the terminal voltages of the secondary batteries B1, B2, and B3 due to any cause, for example, a difference in the amount of charge or the amount of self-discharge, Vmax−Vmin> V
a (YES in step S11), and in this case, the process proceeds to step S12 to perform the second determination, that is, B1, B2, B
The determination of the degree of variation of the capacitance of No. 3 is performed. That is, in step S12, the difference between Vc1 and Vc2 previously stored and held in the memory is compared with the second set value Vb. Here, Vc: a value of Vmax−Vmin at the end of discharging Vc1: a value of Vc when voltage correction is performed during charging Vc2: a value of Vc when voltage correction is not performed during charging, Vc1 -Vc2 represents the degree of variation in the capacity of the secondary batteries B1, B2, B3.

【0032】ここで、通常は二次電池B1,B2,B3
の容量はほぼ同じなので、後述する電圧補正が行われれ
ば、B1,B2,B3のそれぞれの充電量が調整され、
放電時の端子電圧のばらつきも、電圧補正が行われなか
ったときと比較すると小さいので、B1,B2,B3の
端子電圧が平均的に高くとも、放電時に放電が遮断され
ることはない。
Here, normally, the secondary batteries B1, B2, B3
Are substantially the same, the charge amounts of B1, B2, and B3 are adjusted if the voltage correction described below is performed.
Since the variation in terminal voltage at the time of discharge is smaller than that when no voltage correction is performed, even if the terminal voltages of B1, B2, and B3 are high on average, the discharge is not interrupted at the time of discharge.

【0033】これに対し、二次電池B1,B2,B3の
容量のばらつきが大きくなると、容量の少ない二次電池
は容量の多い二次電池に比較して、充電時には過充電、
放電時には過放電となる傾向があるため、電圧補正が行
われると容量の少ない二次電池を放電させることにな
り、放電時にさらに過放電となってしまう。この結果、
電圧補正を行うと、放電時に二次電池B1,B2,B3
の端子電圧が平均的に高くとも放電が遮断され、電圧補
正動作が逆効果となる可能性がある。
On the other hand, when the variation in the capacity of the secondary batteries B1, B2, and B3 becomes large, the secondary battery having a small capacity is overcharged at the time of charging compared to the secondary battery having a large capacity.
Since the battery tends to be over-discharged at the time of discharge, if the voltage correction is performed, the secondary battery having a small capacity is discharged, and the discharge is further over-discharged. As a result,
When the voltage is corrected, the secondary batteries B1, B2, B3
Even if the terminal voltage is high on average, the discharge is interrupted, and the voltage correction operation may have an adverse effect.

【0034】そこで、二次電池B1,B2,B3の容量
のばらつきが小さく、Vc1−Vc2≦Vbのとき(ステッ
プS12でNO)には、ステップS13に進んで電圧補
正を行うが、容量のばらつきが大きくVc1−Vc2>Vb
のとき(ステップS12でYES)には、電圧補正を行
わず、ステップS10に戻って端子電圧の検出を続行す
る。このようにすれば、容量のばらつきが大きい場合に
電圧補正を行うことによる上記のような弊害を避けるこ
とができる。
Therefore, when the variation in the capacity of the secondary batteries B1, B2, and B3 is small and Vc1−Vc2 ≦ Vb (NO in step S12), the process proceeds to step S13 to perform the voltage correction. Is large and Vc1-Vc2> Vb
In the case of (YES in step S12), voltage correction is not performed, and the process returns to step S10 to continue the detection of the terminal voltage. In this way, it is possible to avoid the above-described adverse effects caused by performing the voltage correction when the variation in capacitance is large.

【0035】ステップS13の電圧補正においては、二
次電池B1,B2,B3のうち端子電圧が最大値を示す
電池に接続されている放電回路のスイッチをON状態と
してその二次電池の放電を開始させ、この端子電圧が二
次電池B1,B2,B3の端子電圧のうちの最小値まで
低下した時点でそのスイッチをOFF状態として放電を
終了させる。
In the voltage correction in step S13, the switch of the discharge circuit connected to the battery whose terminal voltage is the maximum value among the secondary batteries B1, B2, and B3 is turned on to start discharging the secondary battery. When the terminal voltage drops to the minimum value among the terminal voltages of the secondary batteries B1, B2, and B3, the switch is turned off and the discharge is terminated.

【0036】このように、本発明では直列接続した複数
の二次電池B1,B2,B3の端子電圧が何らかの原因
でばらつきが生じても、最大の端子電圧を示す二次電池
を放電させて端子電圧を下げて電圧補正を行うことによ
り、端子電圧のばらつきを小さくすることができる。
As described above, according to the present invention, even if the terminal voltages of the plurality of secondary batteries B1, B2, and B3 connected in series fluctuate for some reason, the secondary battery showing the maximum terminal voltage is discharged to discharge the terminal. By performing the voltage correction by lowering the voltage, the variation in the terminal voltage can be reduced.

【0037】また、本発明では特に二次電池B1,B
2,B3の容量のばらつきが大きい場合には、端子電圧
のばらつきが大きくとも電圧補正を禁止することによ
り、このような場合の電圧補正の弊害を避けることがで
きる。
In the present invention, the secondary batteries B1, B
In the case where there is a large variation in the capacitances of the capacitors B2 and B3, even if the variation in the terminal voltage is large, the voltage correction is prohibited, so that the adverse effect of the voltage correction in such a case can be avoided.

【0038】本発明は、上記実施形態に限定されるもの
ではなく、次のように種々変形して実施することができ
る。 (1)上記実施形態では、二次電池を3個直列接続した
例で説明したが、2個あるいは4個以上の二次電池を直
列接続した場合にも本発明の電圧補正回路を適用するこ
とができる。
The present invention is not limited to the above embodiment, but can be implemented with various modifications as follows. (1) In the above embodiment, an example in which three secondary batteries are connected in series has been described. However, the voltage correction circuit of the present invention can be applied to a case where two or four or more secondary batteries are connected in series. Can be.

【0039】(2)上記実施形態では、複数個の二次電
池B1,B2,B3の端子電圧のばらつき度合いとして
最大値と最小値との電圧差を求め、これを第1の設定値
と比較したが、端子電圧のばらつき度合いとして最大値
と平均値の電圧差、あるいは最大値と最大値を除いた他
の端子電圧の平均値との電圧差を求めて第1の設定値と
比較してもよい。
(2) In the above embodiment, the voltage difference between the maximum value and the minimum value is determined as the degree of variation in the terminal voltage of the plurality of secondary batteries B1, B2, B3, and this is compared with the first set value. However, a voltage difference between the maximum value and the average value or a voltage difference between the maximum value and the average value of the other terminal voltages excluding the maximum value is obtained as the degree of variation of the terminal voltage and compared with the first set value. Is also good.

【0040】(3)上記実施形態では、電圧補正に際し
て端子電圧が最大値を示す二次電池を端子電圧が最小値
を示す電池の端子電圧となるまで放電させるようにした
が、全ての二次電池の端子電圧の平均値、あるいは端子
電圧が最大値を示した二次電池を除く二次電池(すなわ
ち、電圧補正を行っていない二次電池)の端子電圧の平
均値にまで低下したら放電を停止するようにしてもよ
い。
(3) In the above embodiment, the secondary battery whose terminal voltage has the maximum value is discharged until the terminal voltage reaches the terminal voltage of the battery whose terminal voltage has the minimum value at the time of voltage correction. Discharge is performed when the average value of the terminal voltage of the battery or the average value of the terminal voltage of the rechargeable batteries excluding the rechargeable battery with the maximum value of the terminal voltage (that is, the rechargeable battery without voltage correction) is reduced. You may make it stop.

【0041】(4)上記実施形態では、充電中の端子電
圧のみを監視しているが、充電開始直後は、端子電圧が
安定しないことがあるため、充電開始から一定時間は端
子電圧の監視動作を禁止するようにしてもよい。
(4) In the above embodiment, only the terminal voltage during charging is monitored. However, immediately after the start of charging, the terminal voltage may not be stable. May be prohibited.

【0042】(5)上記実施形態では、充電時に電圧補
正を行った場合についして説明したが、放電時または休
止時に電圧補正を行う場合にも本発明を適用することが
できる。その他、本発明は要旨を逸脱しない範囲で種々
変形して実施することが可能である。
(5) In the above embodiment, the case where the voltage correction is performed at the time of charging has been described. However, the present invention can be applied to the case where the voltage correction is performed at the time of discharging or at rest. In addition, the present invention can be variously modified and implemented without departing from the gist.

【0043】[0043]

【発明の効果】以上説明したように、本発明によれば直
列接続された複数個の二次電池の端子電圧が何らかの原
因でばらつきを生じた場合、最大の端子電圧を示す二次
電池を放電させ、他の二次電池の端子電圧とほぼ同一の
電圧まで低下させて電圧補正を行うことにより、端子電
圧のばらつきを小さく抑えることができる。すなわち、
充電量や自己放電量のばらつきがあっても、それらを自
動的に補正することができる。
As described above, according to the present invention, when the terminal voltages of a plurality of secondary batteries connected in series vary for some reason, the secondary battery showing the maximum terminal voltage is discharged. Then, by performing the voltage correction by reducing the voltage to substantially the same as the terminal voltage of the other secondary batteries, the variation in the terminal voltage can be reduced. That is,
Even if there are variations in the amount of charge and the amount of self-discharge, they can be automatically corrected.

【0044】さらに、複数個の二次電池の容量のばらつ
きが大きいときは、端子電圧のばらつきが大きくとも電
圧補正を行わないようにしたことにより、電圧補正によ
り容量の少ない二次電池を放電させて過放電としてしま
ったり、充電時の端子電圧のばらつきを逆に電圧補正に
よって大きくしてしまうことがなく、これによって端子
電圧が平均的に高くとも放電が遮断され電圧補正が逆効
果となるような弊害を避けることができる。
Further, when the variation in the capacity of the plurality of secondary batteries is large, the voltage correction is not performed even if the variation in the terminal voltage is large, so that the secondary battery having a small capacity is discharged by the voltage correction. This prevents over-discharge from occurring and does not increase the variation in terminal voltage during charging by voltage correction.This ensures that even if the terminal voltage is high on average, discharge is interrupted and voltage correction has the opposite effect. Adverse effects can be avoided.

【0045】従って、放電時に二次電池の端子電圧が平
均的に高い状態で放電が遮断されることはないので、パ
ーソナルコンピュータのように電源である二次電池の端
子電圧が低下したとき揮発性記憶装置のデータを不揮発
性記憶装置に転送してデータの消失を防止するような機
器の場合、一部の二次電池の端子電圧が早く低下して放
電禁止電圧に達してしまい、放電が突然遮断してしまう
ことによる揮発性記憶装置のデータの消失を避けること
が可能となる。
Therefore, the discharge is not interrupted when the terminal voltage of the secondary battery is high on average during the discharge. Therefore, when the terminal voltage of the secondary battery which is the power source is lowered as in a personal computer, the discharge becomes volatile. In the case of devices that transfer data from a storage device to a non-volatile storage device to prevent data loss, the terminal voltage of some rechargeable batteries drops quickly and reaches the discharge prohibition voltage, causing sudden discharge. It is possible to avoid loss of data in the volatile storage device due to the interruption.

【0046】一方、複数個の二次電池の充電時には、全
ての二次電池が均等に充電されるために、満充電まで確
実に充電を行うことができ、二次電池全体としての使用
時間を長くすることができ、さらに従来のように複数個
の二次電池の端子電圧を揃えてから直列接続するという
煩雑な手間が不要となる。
On the other hand, at the time of charging a plurality of secondary batteries, all the secondary batteries are charged evenly, so that charging can be reliably performed until the secondary battery is fully charged. The length of the battery can be lengthened, and the troublesome work of connecting the terminal voltages of a plurality of secondary batteries and connecting them in series as in the related art is not required.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係る二次電池の電圧補正
回路の構成を示すブロック図
FIG. 1 is a block diagram showing a configuration of a voltage correction circuit of a secondary battery according to an embodiment of the present invention.

【図2】同実施形態の動作を説明するためのフローチャ
ート
FIG. 2 is a flowchart for explaining the operation of the embodiment;

【符号の説明】[Explanation of symbols]

1…二次電池群 B1,B2,B3…二次電池 2,3,4…放電回路 5…切替回路 6…差動増幅器 7…マイクロコントローラ DESCRIPTION OF SYMBOLS 1 ... Secondary battery group B1, B2, B3 ... Secondary battery 2,3,4 ... Discharge circuit 5 ... Switching circuit 6 ... Differential amplifier 7 ... Microcontroller

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】直列接続された複数個の二次電池のそれぞ
れの両端に接続されたオン・オフ可能な放電手段と、 前記複数個の二次電池の端子電圧のばらつき度合いを第
1の設定値と比較して判定する第1の判定手段と、 前記複数個の二次電池の容量のばらつき度合いを第2の
設定値と比較して判定する第2の判定手段と、 前記第1および第2の判定手段の判定結果に基づいて前
記放電手段を制御する制御手段とを備え、 前記制御手段は、 (a) 前記第1の判定手段により前記端子電圧のばらつき
度合いが第1の設定値を越えたと判定され、かつ前記第
2の判定手段により前記容量のばらつき度合いが第2の
設定値以下と判定されたとき、前記複数個の二次電池の
うち端子電圧が最大値を示す二次電池に接続された前記
放電手段をオン状態とし、該端子電圧が所定値まで低下
した時点で該放電手段をオフ状態として該最大値を示す
二次電池の電圧補正を行い、 (b) 前記第2の判定手段により前記容量のばらつき度合
いが第2の設定値を越えたと判定されたときは、前記第
1の判定手段の判定結果に関係なく前記放電手段をオフ
状態に維持して該電圧補正を禁止することを特徴とする
二次電池の電圧補正回路。
An on / off discharging means connected to both ends of a plurality of secondary batteries connected in series, and a first setting of a degree of variation in terminal voltages of the plurality of secondary batteries. A first determination unit that determines by comparing the first and second values with each other; a second determination unit that determines a degree of variation in the capacity of the plurality of secondary batteries by comparing with a second set value; Control means for controlling the discharging means based on the determination result of the second determination means, the control means comprising: (a) the first determination means determines the degree of variation of the terminal voltage to a first set value; When it is determined that the voltage has exceeded the threshold value and when the degree of variation in the capacity is determined to be equal to or less than a second set value by the second determination unit, the secondary battery whose terminal voltage has the maximum value among the plurality of secondary batteries Turn on the discharging means connected to the When the terminal voltage decreases to a predetermined value, the discharging means is turned off to perform voltage correction of the secondary battery indicating the maximum value, and (b) the degree of variation in the capacity is determined by the second determining means to be a second degree. When it is determined that the voltage exceeds the set value, the voltage correction is prohibited by maintaining the discharging unit in an off state regardless of the determination result of the first determining unit. circuit.
【請求項2】前記放電手段は、前記複数個の二次電池の
それぞれの両端に直列接続されたスイッチ素子と抵抗素
子からなることを特徴とする請求項1に記載の二次電池
の電圧補正回路。
2. The voltage correction of a secondary battery according to claim 1, wherein said discharging means comprises a switch element and a resistance element connected in series to both ends of each of said plurality of secondary batteries. circuit.
【請求項3】前記第1の判定手段は、 (a) 前記複数個の二次電池の端子電圧の最大値と最小値
との電圧差、(b) 前記複数個の二次電池の端子電圧の最
大値と平均値との電圧差、(c) 前記複数個の二次電池の
端子電圧の最大値と端子電圧が最大値を示す二次電池を
除いた他の二次電池の端子電圧の平均値との電圧差のい
ずれかと第1の設定値とを比較して前記端子電圧のばら
つき度合いを判定することを特徴とする請求項1記載の
二次電池の電圧補正回路。
3. The first determination means includes: (a) a voltage difference between a maximum value and a minimum value of terminal voltages of the plurality of secondary batteries, and (b) a terminal voltage of the plurality of secondary batteries. (C) the maximum value of the terminal voltages of the plurality of secondary batteries and the terminal voltage of the other secondary batteries excluding the secondary battery whose terminal voltage indicates the maximum value. 2. The voltage correction circuit for a secondary battery according to claim 1, wherein a degree of variation of the terminal voltage is determined by comparing any one of a voltage difference from an average value and a first set value.
【請求項4】前記第2の判定手段は、前記複数個の二次
電池の放電終了時の端子電圧の最大値と最小値との電圧
差をVcとし、前記複数個の二次電池の充電に際して前
記電圧補正を行ったときと行わなかったときのVcの値
をそれぞれVc1、Vc2としたとき、Vc1−Vc2の値を第
2の設定値と比較して前記容量のばらつき度合いを判定
することを特徴とする請求項1記載の二次電池の電圧補
正回路。
4. The method according to claim 1, wherein the second determining means sets a voltage difference between a maximum value and a minimum value of the terminal voltage at the end of discharging of the plurality of secondary batteries to Vc, and charges the plurality of secondary batteries. In this case, when the values of Vc when the voltage correction is performed and when they are not performed are Vc1 and Vc2, respectively, the value of Vc1−Vc2 is compared with a second set value to determine the degree of variation of the capacitance. The voltage correction circuit for a secondary battery according to claim 1, wherein:
【請求項5】前記制御手段は、オン状態にある前記放電
手段に接続された二次電池の端子電圧が(a) 他の二次電
池の端子電圧のうちの最小値の電圧まで低下した時点、
(b)他の二次電池の端子電圧の平均値の電圧まで低下し
た時点、(c) 前記複数個の二次電池の端子電圧の平均値
まで低下した時点のいずれかの時点で該放電手段をオフ
状態とすることを特徴とする請求項1項記載の二次電池
の電圧補正回路。
5. The control unit according to claim 1, wherein the terminal voltage of the secondary battery connected to the discharging unit in the on state is reduced to (a) the minimum voltage among the terminal voltages of the other secondary batteries. ,
(b) at the time when the voltage has decreased to the average value of the terminal voltages of the other secondary batteries, and (c) at the time when the voltage has decreased to the average value of the terminal voltages of the plurality of secondary batteries. 2. The voltage correction circuit for a secondary battery according to claim 1, wherein the voltage is turned off.
JP31527597A 1997-11-17 1997-11-17 Secondary battery voltage correction circuit Expired - Fee Related JP3934760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31527597A JP3934760B2 (en) 1997-11-17 1997-11-17 Secondary battery voltage correction circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31527597A JP3934760B2 (en) 1997-11-17 1997-11-17 Secondary battery voltage correction circuit

Publications (2)

Publication Number Publication Date
JPH11150877A true JPH11150877A (en) 1999-06-02
JP3934760B2 JP3934760B2 (en) 2007-06-20

Family

ID=18063459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31527597A Expired - Fee Related JP3934760B2 (en) 1997-11-17 1997-11-17 Secondary battery voltage correction circuit

Country Status (1)

Country Link
JP (1) JP3934760B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002008732A (en) * 2000-06-27 2002-01-11 Denso Corp Voltage compensating device for battery assembly in electric vehicle
JP2002075387A (en) * 2000-08-29 2002-03-15 Fuji Photo Film Co Ltd Battery check device
KR20030037642A (en) * 2001-11-07 2003-05-14 현대자동차주식회사 Battery imbalance controlling device of electric vehicle
US6960899B2 (en) 2003-02-10 2005-11-01 Denso Corporation Apparatus for discharging a combination battery consisting of a plurality of secondary batteries
EP1679523A1 (en) * 2003-08-14 2006-07-12 Panasonic EV Energy Co., Ltd. Secondary battery voltage correcting method and unit and battery residual capacity estimating method and unit
WO2008072650A1 (en) * 2006-12-14 2008-06-19 Panasonic Corporation Set battery control method, set battery control circuit, charging circuit having the control circuit, and battery pack
JP2009081989A (en) * 2007-09-25 2009-04-16 O2 Micro Inc System and method for cell balancing
US7564217B2 (en) 2004-11-18 2009-07-21 Denso Corporation Battery pack manager and method of detecting a line cut
EP2148384A1 (en) 2008-07-24 2010-01-27 Kabushiki Kaisha Toshiba Battery system using secondary battery
EP2276138A2 (en) 2009-07-17 2011-01-19 Kabushiki Kaisha Toshiba Assembled battery unit and vehicle
US8368353B2 (en) 2009-08-31 2013-02-05 Kabushiki Kaisha Toshiba Secondary battery device and vehicle
US8461806B2 (en) 2007-10-15 2013-06-11 O2Micro Inc Systems and methods for cell balancing
US8643328B2 (en) 2009-09-30 2014-02-04 Kabushiki Kaisha Toshiba Battery management device, secondary battery device, and vehicle
JP2015012681A (en) * 2013-06-28 2015-01-19 三洋電機株式会社 Power source device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002008732A (en) * 2000-06-27 2002-01-11 Denso Corp Voltage compensating device for battery assembly in electric vehicle
JP2002075387A (en) * 2000-08-29 2002-03-15 Fuji Photo Film Co Ltd Battery check device
KR20030037642A (en) * 2001-11-07 2003-05-14 현대자동차주식회사 Battery imbalance controlling device of electric vehicle
US6960899B2 (en) 2003-02-10 2005-11-01 Denso Corporation Apparatus for discharging a combination battery consisting of a plurality of secondary batteries
DE102004006022B4 (en) 2003-02-10 2018-05-30 Denso Corporation Devices for discharging a battery composite, which consists of a plurality of secondary batteries
EP1679523A1 (en) * 2003-08-14 2006-07-12 Panasonic EV Energy Co., Ltd. Secondary battery voltage correcting method and unit and battery residual capacity estimating method and unit
EP1679523A4 (en) * 2003-08-14 2009-07-29 Panasonic Ev Energy Co Ltd Secondary battery voltage correcting method and unit and battery residual capacity estimating method and unit
US7564217B2 (en) 2004-11-18 2009-07-21 Denso Corporation Battery pack manager and method of detecting a line cut
JP2008154317A (en) * 2006-12-14 2008-07-03 Matsushita Electric Ind Co Ltd Battery pack control method, battery pack control circuit, and charging circuit and battery pack equipped with the same
US8120319B2 (en) 2006-12-14 2012-02-21 Panasonic Corporation Set battery control method and set battery control circuit as well as charging circuit and battery pack having the set battery control circuit
WO2008072650A1 (en) * 2006-12-14 2008-06-19 Panasonic Corporation Set battery control method, set battery control circuit, charging circuit having the control circuit, and battery pack
JP2009081989A (en) * 2007-09-25 2009-04-16 O2 Micro Inc System and method for cell balancing
US8461806B2 (en) 2007-10-15 2013-06-11 O2Micro Inc Systems and methods for cell balancing
EP2148384A1 (en) 2008-07-24 2010-01-27 Kabushiki Kaisha Toshiba Battery system using secondary battery
EP2276138A2 (en) 2009-07-17 2011-01-19 Kabushiki Kaisha Toshiba Assembled battery unit and vehicle
US8400102B2 (en) 2009-07-17 2013-03-19 Kabushiki Kaisha Toshiba Assembled battery unit and vehicle
US8368353B2 (en) 2009-08-31 2013-02-05 Kabushiki Kaisha Toshiba Secondary battery device and vehicle
US8643328B2 (en) 2009-09-30 2014-02-04 Kabushiki Kaisha Toshiba Battery management device, secondary battery device, and vehicle
JP2015012681A (en) * 2013-06-28 2015-01-19 三洋電機株式会社 Power source device

Also Published As

Publication number Publication date
JP3934760B2 (en) 2007-06-20

Similar Documents

Publication Publication Date Title
JP3330295B2 (en) Correction circuit for secondary battery
KR101190356B1 (en) Battery apparatus and discharge controlling method of battery apparatus
JP4736317B2 (en) Battery pack and remaining battery charge calculation method
US8212525B2 (en) Battery pack and method of controlling the same
JP3618472B2 (en) Battery unit and device using battery unit
US20150349551A1 (en) Bottom Based Balancing in Lithium Ion System
US5684387A (en) Voltage cutoff compensation method for a battery in a charger
JPH07255134A (en) Series connection circuit of secondary cells
JP3229696B2 (en) How to charge the battery
JPH11150877A (en) Voltage correction circuit of secondary battery
JP3398304B2 (en) Voltage measurement circuit for secondary battery and protection circuit using the same
JP2001157369A (en) Method of controlling charging and discharging of battery
KR200189819Y1 (en) Battery pack capable of balanced charging cell
JPH10123225A (en) Discharging device and charging/discharging device for parallel batteries
JPH07105986A (en) Battery pack
KR100781794B1 (en) Battery Protection Circuit
KR102623626B1 (en) Apparatus and method for charging control
JPH0787673A (en) Charging controlling system
JP2001157366A (en) Method of controlling charging and discharging of battery pack
JP2004229391A (en) Battery pack
JP3133534B2 (en) Battery overcharge / overdischarge prevention method
CN113078720A (en) Charging and discharging circuit and method
JPH11146570A (en) Control device of secondary battery, battery pack with the control device of secondary battery and control method of the secondary battery
JP4218587B2 (en) Battery pack capacity adjustment device
JP4333058B2 (en) Secondary battery charger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041028

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060621

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070207

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070316

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees