JPH11150794A - Method and device for presenting touching feeling - Google Patents

Method and device for presenting touching feeling

Info

Publication number
JPH11150794A
JPH11150794A JP31714697A JP31714697A JPH11150794A JP H11150794 A JPH11150794 A JP H11150794A JP 31714697 A JP31714697 A JP 31714697A JP 31714697 A JP31714697 A JP 31714697A JP H11150794 A JPH11150794 A JP H11150794A
Authority
JP
Japan
Prior art keywords
driving
skin
tactile sensation
coils
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31714697A
Other languages
Japanese (ja)
Other versions
JP3574554B2 (en
Inventor
Hiroyuki Shinoda
裕之 篠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP31714697A priority Critical patent/JP3574554B2/en
Publication of JPH11150794A publication Critical patent/JPH11150794A/en
Application granted granted Critical
Publication of JP3574554B2 publication Critical patent/JP3574554B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To virtually present various kinds of touching feelings by sticking plural fine magnets to the surface of a skin, electromagnetically stimulating each of them so as to stimulate the skin and then controlling the level and phase of electromagnetic driving at each fine magnet. SOLUTION: The fine magnets 2-1 to 2-4 are one-dimensionally arranged at prescribed intervals to be adhered onto the surface of a palm 1 and electromagnetic coils 3-1 to 3-4 are provided opposed to the magnets 2-1 to 2-4 and inserting a very small space. The coils 3-1 to 3-4 are independently driven and drive the magnets 2-1 to 2-4 to generate stimulation to the skin. Namely a driving pattern generating means alternately select-drive the sets of the electromagnetic coils 3-1 to 3-3 and 3-2 to 3-4 to virtually generate the moving feeling of a touching feeling position. Concerning the coils 3-1 to 3-4, the levels or the phases of driving patterns are different between the electromagnetic coil in a center part and that at its peripheral part. Thus a driving phase difference is controlled to change the propagating characteristic of stimulation to the deep layer of the skin.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、触覚を用いた情報
伝達技術に関するものであり、皮膚表面を刺激して、滑
らかな触感や粗い触感などを任意に仮想的に実現するた
めの触感呈示方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technology for transmitting information using a tactile sensation, and a method for presenting a tactile sensation for stimulating a skin surface and arbitrarily virtually realizing a smooth or rough tactile sensation. And an apparatus.

【0002】[0002]

【従来の技術】触覚を介して人間に情報を伝達する技術
については、目や耳のハンディキャップを補う手段とし
て、また特に近年ではバーチャルリアリティーの一分野
としてこれまで数多くの研究がなされてきた〔参考文献
1,2,3〕。それらは力覚や接触の有無のディスプレ
イにはじまり、ピンや振動子の二次元アレイによって三
次元的な局部形状や細かなテクスチャを呈示するもの
〔参考文献4,5,6〕、振動によって物体の滑りを伝
達するもの〔参考文献7〕、強い超音波によるスクイッ
ズ効果によって表面のざらざら感を制御するもの〔参考
文献8〕など多岐にわたっている。
2. Description of the Related Art Numerous studies have been made on the technique of transmitting information to humans through the sense of touch as a means for supplementing handicap of eyes and ears, and particularly in recent years as a field of virtual reality. References 1, 2, 3]. They start with a display of the presence or absence of force and contact, and present a three-dimensional local shape or fine texture by a two-dimensional array of pins or vibrators [Ref. 4, 5, 6]. There are a wide variety of things, such as those that transmit slippage (Reference Document 7) and those that control the roughness of the surface by the squeezing effect of strong ultrasonic waves [Reference Document 8].

【0003】しかしこれらいずれの研究においても、実
際と見分けのつかないような触り心地、触感を呈示する
技術は、非常に困難な将来の課題と考えられてきたよう
に思われる。
[0003] In any of these studies, however, it seems that a technique for presenting a tactile sensation and a tactile sensation that is indistinguishable from the actual situation has been considered to be a very difficult future task.

【0004】それは、人間が、表面の材質や、非常に微
細な構造の違いもその触感によって見分けてしまうこと
ができ、人間の識別可能な触感の膨大なバリエーション
を、何らかの装置の表面に対象と同じ材質や微細形状を
忠実に再現することによって体感させることはほとんど
不可能だからである。 〔参考文献〕 〔1〕K.B.Shimoga, "A Survey of Perceptual Feedbac
k Issue in DexterousTelemanipulation; Part I. Fing
er Force Feedback," Proc. VRAIS '93, pp.263-270, 1
993. 〔2〕K.B.Shimoga, "A Survey of Perceptual Feedbac
k Issue in DexterousTelemanipulation; Part II., Fi
nger Force Feedback," Proc. VRAIS '93, pp.271-279. 〔3〕T.Yoshikawa and A.Nagura, "A Touch and Force
Display System forHaptic Interface, Proc.1997 IEE
E Int. Conf. Robotics and Automation, pp.3018-302
4, 1997. 〔4〕M.Shimojo, M.Shinohara and Y.Fukui, "Shape I
dentification Performance and Pin-matrix Density i
n a 3 dimensional Tactile Display, Proc.1997IEEE V
RAIS, pp.180-187, 1997. 〔5〕Cohn M.B., M.Lam and R.S.Fearing, "Tactile F
eedback for Teleoperation," Telemanipulator Techno
logy Conf., Proc.SPIE, Vol.1833, pp.15-16,1992. 〔6〕Y.Ikei, K.Wakamatsu and S.Fukuda, "Texture P
resentation by Vibratory Tactile Display," 1997 IE
EE VRAIS, pp.199-205, 1997. 〔7〕R.D.Howe, "A Force-Reflecting Teleoperated H
and System for theStudy of Tactile Sensing in Prec
ision Manipulation," Proc.1992 IEEE Int.Conf.Robot
ics and Automation, pp.1321-1326, 1992. 〔8〕T.Watanabe and S.Fukui, "A Method for Contro
lling Tactile Sensation of Surface Roughness Using
Ultrasonic Vibration," Proc.1995 IEEE Int.Conf. R
obotics and Automation, pp.1134-1139, 1995.
[0004] It is possible for human beings to discriminate differences in surface materials and very fine structures by their tactile sensations, and enormous variations in human identifiable tactile sensations can be targeted to the surface of any device. This is because it is almost impossible to experience the same material and fine shape by faithfully reproducing it. [References] [1] KBShimoga, "A Survey of Perceptual Feedbac
k Issue in DexterousTelemanipulation; Part I. Fing
er Force Feedback, "Proc. VRAIS '93, pp.263-270, 1
993. [2] KBShimoga, "A Survey of Perceptual Feedbac
k Issue in DexterousTelemanipulation; Part II., Fi
nger Force Feedback, "Proc. VRAIS '93, pp.271-279. [3] T. Yoshikawa and A. Nagura," A Touch and Force
Display System for Haptic Interface, Proc. 1997 IEE
E Int. Conf. Robotics and Automation, pp. 3018-302
4, 1997. [4] M. Shimojo, M. Shinohara and Y. Fukui, "Shape I
dentification Performance and Pin-matrix Density i
na 3 dimensional Tactile Display, Proc. 1997IEEE V
RAIS, pp.180-187, 1997. [5] Cohn MB, M. Lam and RSFearing, "Tactile F
eedback for Teleoperation, "Telemanipulator Techno
logy Conf., Proc. SPIE, Vol. 1833, pp. 15-16, 1992. [6] Y. Ikei, K. Wakamatsu and S. Fukuda, "Texture P
resentation by Vibratory Tactile Display, "1997 IE
EE VRAIS, pp.199-205, 1997. [7] RDHowe, "A Force-Reflecting Teleoperated H
and System for theStudy of Tactile Sensing in Prec
ision Manipulation, "Proc.1992 IEEE Int.Conf.Robot
ics and Automation, pp.1321-1326, 1992. [8] T. Watanabe and S. Fukui, "A Method for Contro
lling Tactile Sensation of Surface Roughness Using
Ultrasonic Vibration, "Proc. 1995 IEEE Int. Conf. R
obotics and Automation, pp.1134-1139, 1995.

【0005】[0005]

【発明が解決しようとする課題】本発明は、多様な触感
を単一の機構で簡単に生成できる方法及び装置を提供す
ることを目的としている。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method and an apparatus that can easily generate various tactile sensations with a single mechanism.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記課題
の解決を図るために、人間の皮膚の物理的特性と触覚受
容器の特徴を分析し、皮膚表面への刺激の時間空間的パ
ターンからどのような特徴を捉えて触感が決定されてい
るかを考察して、それに基づいて、触感を呈示する方法
及び装置を提案した。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors analyzed the physical characteristics of human skin and the characteristics of tactile receptors, and analyzed the spatio-temporal distribution of stimulation to the skin surface. A method and an apparatus for presenting a tactile sensation based on the characteristics of the tactile sensation determined by considering the characteristics of the pattern are proposed.

【0007】図1は、本発明の原理説明図である。図1
において、1は、手掌、たとえば母指球である。
FIG. 1 is a diagram illustrating the principle of the present invention. FIG.
1 is a palm, for example, a ball of the thumb.

【0008】2−1〜2−4は、たとえば1mm×2mm×
0.5mmのサイズの微小磁石であり、それぞれ2mm間隔で
一次元状に配列されて、手掌1の表面に接着される。3
−1〜3−4は、電磁コイルであり、それぞれ微小磁石
2−1〜2−4に対向し、微小磁石との間に僅かな空間
を置いて設けられる。各電磁コイルは独立して駆動さ
れ、それぞれが対向している微小磁石を駆動して、皮膚
への刺激を生じさせる。図示省略されているが、4本の
電磁コイル3−1〜3−4は1つのブロックに固定保持
されており、さらにブロックを手掌に対して安定に支持
するための手段が設けられている。
2-1 to 2-4 are, for example, 1 mm × 2 mm ×
The micromagnets have a size of 0.5 mm, are arranged one-dimensionally at intervals of 2 mm, and are adhered to the surface of the palm 1. 3
Numerals -1 to 3-4 denote electromagnetic coils, which face the micromagnets 2-1 to 2-4, respectively, and are provided with a slight space between them. Each electromagnetic coil is independently driven and drives an opposing micromagnet to cause irritation to the skin. Although not shown, the four electromagnetic coils 3-1 to 3-4 are fixedly held in one block, and further provided with means for stably supporting the block on the palm.

【0009】4は、電磁コイル3−1〜3−4をそれぞ
れ駆動するためのドライバである。5は、ドライバ4に
各電磁コイル3−1〜3−4を駆動するのに必要なレベ
ル、位相を指示する駆動パターン発生手段であり、たと
えばコンピュータで構成される。
Reference numeral 4 denotes a driver for driving the electromagnetic coils 3-1 to 3-4, respectively. Reference numeral 5 denotes a drive pattern generating means for instructing the driver 4 of a level and a phase necessary for driving each of the electromagnetic coils 3-1 to 3-4, and is constituted by, for example, a computer.

【0010】駆動パターン発生手段5は、電磁コイル3
−1,3−2,3−3の組と、電磁コイル3−2,3−
3,3−4の組とを交互に選択して駆動することによ
り、仮想的に触感位置の移動感覚を生成する。また各選
択された3個の電磁コイルについては、中央部の電磁コ
イルとその周辺部の電磁コイルとでは、駆動パターンの
レベル、あるいは位相が異ならされる。
The driving pattern generating means 5 includes the electromagnetic coil 3
-1,3-2,3-3 and the electromagnetic coil 3-2,3-
By alternately selecting and driving a set of 3 and 3-4, a virtual sense of movement of the tactile position is generated. Also, with respect to the three selected electromagnetic coils, the level or phase of the driving pattern is different between the electromagnetic coil at the center and the electromagnetic coil at the periphery thereof.

【0011】人間は対象に軽く触れさすことで毛皮や布
地、木や金属の表面など、様々な触り心地を知覚・識別
することができる。その感覚は能動的・受動的いずれの
場合にも生じ〔参考文献9〕、人間の皮膚のほとんどの
部分で同じような感覚として知覚される。ここではその
ような物体表面の細かい構造や材質に関して得られる普
遍的な情報を“触感”と呼ぶことにし、点字を読んだ
り、マクロな形状を認識したりする知覚とは区別するこ
とにする。
[0011] By touching the object lightly, a human can perceive and identify various touch feelings such as fur, cloth, wood and metal surfaces. The sensations occur in both active and passive situations [Ref. 9] and are perceived as similar sensations in most parts of human skin. Here, such universal information obtained on the fine structure and material of the object surface is referred to as "tactile sensation", and is distinguished from the perception of reading braille and recognizing a macro shape.

【0012】皮膚の応力伝達特性について考察すると、
弾性体表面に応力を与えた場合、表面の細かい応力パタ
ーンは内部へとボケながら伝達する。言い換えれば弾性
体は、その表面応力分布に対して空間的な低域フィルタ
として働く。もし人間の皮膚が半無限均質な弾性体であ
ると仮定するならば、そのフィルタリング特性は容易に
計算される。いま均質・等方な弾性がx−y−z空間に
おける半無限な領域z>0を満たしているとする。ある
深さzにおける表面に平行な面内での圧力分布をP
z (k) とし、表面での圧力分布をP(k) と書くことにす
る。ただしkは波数ベクトルk=(kx ,ky )であ
る。そのときP(k) とPz (k) は Pz (k) =P(k) exp(−|k|z) (1) のように結ばれ〔参考文献10〕、各周波数成分は弾性
体内部で指数関数的に減少する。またその減衰の度合い
は高い周波数成分ほど急である。(なおここで「圧力」
という言葉は主応力3成分の和を意味するものとして用
いた。応力テンソルの各成分は一般にkの一次以下の関
数と exp(−|k|z)の積で書かれる〔参考文献1
1〕。) 次に式(1)をもとにして、図2に示される人間の皮膚
構造について検討する。人間の手掌部において表層受容
器(マイスナ小体)と深層受容器(バチニ小体)は皮膚
表面よりそれぞれおよそ0.7mmと2mmの深さに存在する
と言われている。このとき例えば皮膚表面に与えられた
応力パターンのうち波長2mm(k=π[rad/mm])の空
間周波数成分は表層受容器の配置された深さz=0.7
[mm]で1/9、深層受容器の深さz=2[mm]で1/
500まで減衰する。波長1mmの成分は表層受容器の深
さですら1/81まで減衰する。以上より次のことがい
える。 1.各皮膚機械受容器はその深さに応じて異なった特性
の空間的低域フィルタリングを受けた応力パターンに刺
激される。 2.皮膚の低域通過特性が指数関数的な減衰特性を有し
ていることにより、波長1mmよりも細かい周波数成分は
どの受容器にもほとんど伝わらない。
Considering the stress transmission characteristics of the skin,
When stress is applied to the surface of the elastic body, the fine stress pattern on the surface is transmitted to the inside while blurring. In other words, the elastic body acts as a spatial low-pass filter for the surface stress distribution. If we assume that human skin is a semi-infinite homogeneous elastic body, its filtering characteristics are easily calculated. Now, it is assumed that homogeneous and isotropic elasticity satisfies a semi-infinite region z> 0 in an xyz space. The pressure distribution in a plane parallel to the surface at a certain depth z is represented by P
z (k), and the pressure distribution on the surface is written as P (k). Where k is the wave vector k = (k x, k y ). Then, P (k) and P z (k) are connected as P z (k) = P (k) exp (− | k | z) (1), and each frequency component is elastic. Exponentially decreases inside the body. The degree of the attenuation is sharper for higher frequency components. (Note that here "pressure"
The term "" is used to mean the sum of the three principal stress components. Each component of the stress tensor is generally written as a product of a function of k or lower order k and exp (− | k | z) [Ref.
1]. Next, the human skin structure shown in FIG. 2 will be examined based on equation (1). It is said that the surface receptor (Meissna body) and the deep receptor (Batini body) exist at a depth of about 0.7 mm and 2 mm from the skin surface, respectively, in the human palm. At this time, for example, a spatial frequency component having a wavelength of 2 mm (k = π [rad / mm]) in the stress pattern given to the skin surface has a depth z = 0.7 at which the surface receptor is arranged.
1/9 at [mm], 1/9 at depth z = 2 [mm]
Decays to 500. The 1 mm wavelength component attenuates to 1/81 even at the surface receptor depth. From the above, the following can be said. 1. Each skin mechanoreceptor is stimulated with a spatially low-pass filtered stress pattern of different characteristics depending on its depth. 2. Since the low-pass characteristic of the skin has an exponential attenuation characteristic, a frequency component finer than a wavelength of 1 mm is hardly transmitted to any receptor.

【0013】ここで人間の触感を決定する主要因につい
て考察する。人間はその触感によって表面の非常に細か
い特徴を簡単に識別することができる。ミクロンオーダ
の粒子からなるサンドペーパーについてもその表面荒さ
の違いを指の感触から識別可能であることが知られてい
る。しかし、皮膚表面に生じる応力のうち、高い空間周
波数成分は内部の機械受容器まではほとんど届かない。
したがって、その優れた知覚は、スティックスリップや
指紋に起因する数mmよりも大きい波長の空間周波数成分
を検出することによってもたらされていると考えられ
る。そしてそのとき、各受容器は種類ごとにほぼ一定の
深さに配置されているため、同一種類の受容器は同じ特
性の(空間的)低減フィルタを通して表面応力を知覚
し、スティックスリップによって生じる低い空間周波数
成分の位相は対象表面の微細な幾何的な特徴を保存して
いないもの、と予想される。
Here, the main factors that determine the human tactile sensation will be considered. Humans can easily identify very fine features of the surface by their tactile sensations. It is known that the difference in surface roughness of sandpaper made of micron-order particles can be distinguished from the feel of a finger. However, high spatial frequency components of the stress generated on the skin surface hardly reach the internal mechanoreceptors.
Therefore, it is considered that the excellent perception is brought about by detecting a spatial frequency component having a wavelength larger than several mm due to a stick-slip or a fingerprint. Then, since each receiver is arranged at a substantially constant depth for each type, the same type of receptor perceives the surface stress through a (spatial) reducing filter of the same characteristic, and the low level caused by stick-slip It is expected that the phase of the spatial frequency component does not preserve the fine geometric features of the target surface.

【0014】以上の考察から、物体表面の細かい構造に
起因する触感を決定する主要な要因は、 (1)各皮膚機械受容器が知覚する刺激の時間波形 (2)およびその皮膚表面での巨視的な空間的移動 のみであると推測できる。
From the above considerations, the main factors that determine the tactile sensation due to the fine structure of the object surface are: (1) the temporal waveform of the stimulus perceived by each skin mechanoreceptor; and (2) the macroscopic vision on the skin surface. It can be inferred that there is only a spatial movement.

【0015】要因の(1)は同一機械受容器に対する刺
激の横方向の詳細な分布は触感決定にほとんど影響しな
いことを意味する。また各皮膚機械受容器が知覚する
“時間波形”とは、機械的刺激と熱的刺激の両方を含む
と考えられるが、本発明では簡単化のため熱的刺激は除
いている。
Factor (1) means that the detailed lateral distribution of the stimulus for the same mechanoreceptor has little effect on the tactile determination. The “time waveform” perceived by each skin mechanoreceptor is considered to include both a mechanical stimulus and a thermal stimulus, but the thermal stimulus is excluded in the present invention for simplicity.

【0016】図1に示された本発明の構成例では、微小
磁石の質量は0.006g程度であり、駆動周波数を数百
Hz以下とすると、その機械的インピーダンスは皮膚表
面の機械的インピーダンスよりも小さいとみなせるの
で、皮膚に与えられる力は、コイルの電流に比例する。
In the configuration example of the present invention shown in FIG. 1, the mass of the micromagnet is about 0.006 g, and when the driving frequency is set to several hundred Hz or less, the mechanical impedance is smaller than the mechanical impedance of the skin surface. Is also small, the force applied to the skin is proportional to the coil current.

【0017】ここで一次元配列された3つの微小磁石の
駆動力をf1 ,f2 ,f3 とすると、中央部の1つの微
小磁石の駆動力f2 と周辺部の2つの微小磁石の駆動力
1,f3 が同相の同相駆動モードと、逆相の逆相駆動
モードについて述べる。
Here, assuming that the driving forces of the three minute magnets arranged one-dimensionally are f 1 , f 2 and f 3 , the driving force f 2 of one minute magnet at the center and the two small magnets at the periphery are determined. The in-phase driving mode in which the driving forces f 1 and f 3 are in-phase and the anti-phase driving mode in which the driving forces f 1 and f 3 are in the opposite phase will be described.

【0018】 i)同相駆動モード: (f1 (t), f2 (t), f3 (t))=(1,1,1)f(t) (2) ii)逆相駆動モード: (f1 (t), f2 (t), f3 (t))=(-0.5,1,-0.5) f(t) (3) 図3の(a)と(b)は、それぞれ同相駆動モードと逆
相駆動モードにおけるf1 ,f2 ,f3 刺激の伝達特性
を示す。
I) In-phase driving mode: (f 1 (t), f 2 (t), f 3 (t)) = (1, 1, 1) f (t) (2) ii) Negative-phase driving mode: (f 1 (t), f 2 (t), f 3 (t)) = (− 0.5,1, −0.5) f (t) (3) FIGS. shows the transfer characteristics of f 1, f 2, f 3 stimulation in the drive mode and the reverse-phase drive mode.

【0019】図3の(a)に示す同相駆動モードでは、
表層と深層の受容器に同程度の刺激が伝わる。逆相駆動
モードでは深層受容器は表層受容器よりも小さい応力を
受ける。
In the in-phase driving mode shown in FIG.
Similar stimuli are transmitted to the surface and deep receptors. In the reverse-phase drive mode, the deep receiver receives less stress than the surface receiver.

【0020】したがって、3本のコイルを (f1 , f2 , f3 ) =c(t)(1,1,1) +r(t)(-0.5,1,-0.5) (4) のように駆動すれば、c(t) +r(t) が表層受容器に、
c(t) が深層受容器に近似的に与えられ、異なった深さ
にある受容器を選択的に刺激することができる。(ただ
し本装置においては(1)与えられる力は垂直成分だけ
であり、(2)皮膚表層と深層の中間にある受容器〔メ
ルケル触盤とルフィニ終末〕への刺激を特定することは
できない、という制約がある。) なお図1の例におけるように微小磁石の間隔が2mmの場
合、深層受容器に到達する垂直応力は(ただし等方均質
な弾性体を仮定して計算した場合)、図3の(a)の同
相駆動モードでは表層受容器に到達する垂直応力の75
%であり、図3の(b)の逆相駆動モードでは22%で
ある。 〔参考文献〕
Therefore, the three coils are expressed as (f 1 , f 2 , f 3 ) = c (t) (1,1,1) + r (t) (− 0.5,1, −0.5) (4) Driving, c (t) + r (t) becomes a surface receptor,
c (t) is approximately given to the deep receptors and can selectively stimulate receptors at different depths. (However, in this device, (1) the applied force is only the vertical component, and (2) it is not possible to specify the stimulus to the receptor [Merkel tactile device and Ruffini terminal] located between the skin surface layer and the deep layer. In the case where the distance between the micromagnets is 2 mm as in the example of FIG. 1, the normal stress reaching the deep receptor (when calculated assuming an isotropic homogeneous elastic body) is shown in FIG. In the in-phase driving mode of FIG. 3 (a), the normal stress reaching the surface receptor is 75%.
% In the reverse-phase driving mode of FIG. 3B. (References)

〔9〕G.D.Lamb, "Tactile Discrimination of Texture
d Surface: Psychophysical Performance Measure-ment
sin Humans," J.Physiol.Vol.338, pp.551-565,1983. 〔10〕H.Shinoda, M.Uehara and S.Ando, "A Tactile S
ensor Using Three-Dimensional Structure," Proc.199
3 IEEE Int. Conf. Robotics and Automation,pp.435-4
41, 1993. 〔11〕S.P.Timoshenko and J.N.Goodier: "Theory of E
lasticity," McGraw Hill, 1970.
[9] GDLamb, "Tactile Discrimination of Texture
d Surface: Psychophysical Performance Measure-ment
sin Humans, "J. Physiol. Vol. 338, pp. 551-565, 1983. [10] H. Shinoda, M. Uehara and S. Ando," A Tactile S
ensor Using Three-Dimensional Structure, "Proc.199
3 IEEE Int. Conf. Robotics and Automation, pp. 435-4
41, 1993. [11] SPTimoshenko and JNGoodier: "Theory of E
lasticity, "McGraw Hill, 1970.

【0021】[0021]

【発明の実施の形態】図4は、本発明による触感呈示装
置の1実施例構成を示す。図4において、2−1〜2−
4は微小磁石、3−1〜3−4は電磁コイル、4−1〜
4−4はドライバ、6−1〜6−4はポート、7−1〜
7−4はD/Aコンバータ、8はCPU、9はメモリ、
10は触感制御プログラム、11は駆動パターンテーブ
ルである。
FIG. 4 shows an embodiment of a tactile sensation providing apparatus according to the present invention. In FIG. 4, 2-1 to 2-
4 is a micro magnet, 3-1 to 3-4 are electromagnetic coils, 4-1 to 4
4-4 is a driver, 6-1 to 6-4 are ports, 7-1 to
7-4 is a D / A converter, 8 is a CPU, 9 is a memory,
10 is a tactile sensation control program, and 11 is a drive pattern table.

【0022】動作時に、CPU8は触感制御プログラム
10を実行する。駆動パターンテーブル11には、実現
すべき触感の種類ごとに、中央部と周辺部の電磁コイル
にそれぞれ流す電流パターンが格納されている。触感制
御プログラム10は、触感の種類を定めるための駆動パ
ターン発生制御と刺激の移動感を呈示するための電磁コ
イル切替え制御を行う。駆動パターン発生制御により、
各タイミングで駆動パターンテーブル11から連続する
3個の電磁コイルをそれぞれ駆動するのに必要な電流パ
ターンのデータを読み出し、また電磁コイル切替え制御
により、各タイミングにおいて駆動すべき3個の電磁コ
イルを選択する。CPU8は、このようにして選択され
た3個の電磁コイルに対応するポート(6−1〜6−4
のうちの3個)に順次に駆動パターンの電流値を設定
し、それらのポートに設定された電流値は、D/Aコン
バータ(7−1〜7−4のうちの3個)によりアナログ
信号に変換され、ドライバ(4−1〜4−4のうちの3
個)に入力される。各ドライバは、入力されたアナログ
信号に対応する電流を電磁コイルに流し、駆動する。
In operation, the CPU 8 executes the tactile control program 10. The drive pattern table 11 stores, for each type of tactile sensation to be realized, a current pattern to be passed through the central and peripheral electromagnetic coils. The tactile sensation control program 10 performs drive pattern generation control for determining the type of tactile sensation and electromagnetic coil switching control for presenting a sense of stimulus movement. With drive pattern generation control,
At each timing, data of a current pattern necessary for driving each of the three continuous electromagnetic coils is read from the drive pattern table 11, and three electromagnetic coils to be driven at each timing are selected by the electromagnetic coil switching control. I do. The CPU 8 operates the ports (6-1 to 6-4) corresponding to the three electromagnetic coils thus selected.
Of the driving patterns are sequentially set to the three ports, and the current values set to those ports are converted into analog signals by D / A converters (three of 7-1 to 7-4). And the driver (3 of 4-1 to 4-4)
). Each driver supplies a current corresponding to the input analog signal to the electromagnetic coil to drive it.

【0023】図5は、電磁コイル切替え制御の切替えタ
イミングの例を示している。皮膚上の離れた二点に交互
に振動刺激を与えたとき、この二点間を刺激が連続的に
移動したように感じる現象が知られており、これを利用
して図5に示すように4本のコイルのうちの3本の駆動
コイルの選択の仕方を時間間隔Tで切り替えることによ
って、仮想的な物体の連続的な移動感が表現できる。
FIG. 5 shows an example of the switching timing of the electromagnetic coil switching control. When a vibration stimulus is alternately applied to two distant points on the skin, it is known that the stimulus feels as if the stimulus has moved continuously between the two points. As shown in FIG. By switching the way of selecting three drive coils among the four coils at the time interval T, a continuous feeling of movement of the virtual object can be expressed.

【0024】ところで、各電磁コイルの先端と対向する
微小磁石の間には空隙が設けられるが、その大きさには
バラツキがあり、同じ駆動電流でも空隙の大きさが異な
る微小磁石が発生する刺激の強さは異なってくる。その
ため装置を使用するに先立ってバラツキの補償を行う必
要がある。図6は、空隙のバラツキを各ドライバの増幅
器利得を調整することによって補償する較正方法を示
す。
A gap is provided between the end of each electromagnetic coil and the opposing micromagnet, but the size of the gap varies, and even when the same driving current is applied, a stimulus generated by micromagnets having different sizes of the gap is generated. The strength of the different. Therefore, it is necessary to compensate for variations before using the device. FIG. 6 shows a calibration method for compensating for variations in the air gap by adjusting the amplifier gain of each driver.

【0025】図6において、12は4個の電磁コイル3
−1〜3−4を一体に保持固定するコイル固定装置であ
り、13は較正用振動子である。較正用振動子13は、
コイル固定装置12の全体を上下に振動させる働きをも
つ。4−1はドライバであり、内部構成を例示的に示し
ている。他のドライバ4−2〜4−4は図示されていな
いが、4−1と同様な内部構成をもつ。ドライバ4−1
は、可変利得増幅器14、利得制御器15、バッファ増
幅器16、利得1000倍の前置増幅器17、スイッチ
18,19で構成されている。また20は駆動パターン
を発生する信号源である。スイッチ18,19は、較正
時にはa側に接続され、通常動作時にはb側に接続され
る。
In FIG. 6, reference numeral 12 denotes four electromagnetic coils 3
A coil fixing device for integrally holding and fixing -1 to 3-4, and 13 is a vibrator for calibration. The calibration oscillator 13 is
It has a function of vibrating the entire coil fixing device 12 up and down. Reference numeral 4-1 denotes a driver, exemplarily showing an internal configuration. The other drivers 4-2 to 4-4 are not shown, but have the same internal configuration as 4-1. Driver 4-1
Is composed of a variable gain amplifier 14, a gain controller 15, a buffer amplifier 16, a preamplifier 17 with a gain of 1000 times, and switches 18 and 19. Reference numeral 20 denotes a signal source for generating a driving pattern. Switches 18 and 19 are connected to a side during calibration, and connected to b side during normal operation.

【0026】較正時に、振動子13を駆動し、一定振幅
で振動させる。これにより各電磁コイル3−1〜3−4
の先端と微小磁石2−1〜2−4の間の空隙の大きさも
周期的に変化し、各電磁コイル3−1〜3−4には、そ
れぞれの先端の空隙の大きさに応じた電圧が誘起され
る。電磁コイルに誘起した電圧は、それぞれのドライバ
内の前置増幅器17により一定倍率で増幅され、可変利
得増幅器14に入力される。ここで各ドライバにおい
て、可変利得増幅器14の出力部Aの信号レベルが等し
くなるように利得制御器15を調節する。この後、スイ
ッチ18,19をb側に切替えれば、各ドライバ4−1
〜4−4において、空隙のバラツキの補償が完了する。
At the time of calibration, the vibrator 13 is driven to vibrate at a constant amplitude. Thereby, each of the electromagnetic coils 3-1 to 3-4
The size of the gap between the tip of each of the micro magnets 2-1 to 2-4 also changes periodically, and a voltage corresponding to the size of the gap at each tip is applied to each of the electromagnetic coils 3-1 to 3-4. Is induced. The voltage induced in the electromagnetic coil is amplified at a fixed magnification by a preamplifier 17 in each driver, and input to a variable gain amplifier 14. Here, in each driver, the gain controller 15 is adjusted so that the signal level of the output section A of the variable gain amplifier 14 becomes equal. Thereafter, when the switches 18 and 19 are switched to the b side, each driver 4-1
In Steps 4 to 4, compensation for variations in the gap is completed.

【0027】図7に、同相駆動モードと逆相駆動モード
による触感呈示の実験例を示す。4本の電磁コイル3−
1〜3−4のうちの3本の連続する電磁コイル3−1〜
3−3を使用して中央の電磁コイル3−2を150mA
の正弦波電流で駆動し、両側の電磁コイル3−1,3−
3へは逆相の正弦波電流の振幅を0〜150mAで変化
させて供給した。図6の横方向に両側の電磁コイルの駆
動電流の変化をとり、縦方向に駆動電流の周波数が50
Hz,100Hz,200Hzの場合を示している。両
側の電磁コイル3−1,3−3の駆動電流の値が0に近
いか、逆相の150mAに近いとき、つまり刺激が一点
に近づくとき、被験者は例えばスピーカ表面のような振
動体に触れたときと同様な“振動”を感じた。しかし、
電磁コイル3−1,3−3の逆相電流が中央の電磁コイ
ル3−2のおよそ半分のとき、触感の明らかな変化が認
められた。その刺激は非振動的なもので皮膚表面付近に
局在して感じられ、表面方向の広がりの範囲は曖昧であ
った。
FIG. 7 shows an experimental example of providing a tactile sensation in the in-phase drive mode and the anti-phase drive mode. Four electromagnetic coils 3-
Three continuous electromagnetic coils 3-1 to 1-3-4
150 mA at the center electromagnetic coil 3-2 using 3-3
Of the electromagnetic coils 3-1 and 3-
3 was supplied with the amplitude of the opposite-phase sine wave current varied from 0 to 150 mA. The change in the drive current of the electromagnetic coils on both sides in the horizontal direction in FIG.
Hz, 100 Hz, and 200 Hz. When the value of the drive current of the electromagnetic coils 3-1 and 3-3 on both sides is close to 0 or close to 150 mA in the opposite phase, that is, when the stimulus approaches one point, the subject touches a vibrating body such as a speaker surface. I felt the same "vibration" as when I did. But,
When the negative-phase currents of the electromagnetic coils 3-1 and 3-3 were approximately half those of the central electromagnetic coil 3-2, a clear change in the touch was recognized. The stimulus was non-vibratory and felt localized near the skin surface, and the extent of the spread in the surface direction was ambiguous.

【0028】図8に、刺激を横方向移動する触感呈示の
実験例を示す。4本中の3本の電磁コイルを図5のよう
に時間間隔Tで切替え選択し、選択した3本の電磁コイ
ルは逆相駆動モードで駆動して母指球を刺激した。与え
る信号は全て正弦波として、切替え時間T、キャリア信
号の周波数、振幅を変化させて実験を行なった。 <1>振動振幅(中心のコイルに150[mA])を一
定として、皮膚表面に沿って刺激が連続的に移動して感
じられる条件を求めた結果、Tが200〜300[m
s]以上のとき連続移動が感じられることを示してい
る。 <2>T=0.5[s](被験者が刺激の連続的な移動を
感じる条件をみたす)で、駆動周波数と振幅を変化させ
たところ、図9に示すように、振動周波数が30Hz以
下のときに、被験者は(振動ではなく)滑らかな表面の
物体が皮膚上を移動しているかのように感じることが分
かった。なお滑らかな物体を感じているとき、キャリア
信号の周波数による振動はほとんど感じていなかった。
FIG. 8 shows an experimental example of the presentation of a tactile sensation in which a stimulus is moved in the lateral direction. Three of the four electromagnetic coils were switched and selected at time intervals T as shown in FIG. 5, and the selected three electromagnetic coils were driven in the opposite-phase drive mode to stimulate the thumb ball. The experiment was performed by changing the switching time T, the frequency of the carrier signal, and the amplitude of all the applied signals as sine waves. <1> Assuming that the vibration amplitude (150 [mA] for the center coil) is constant, the condition under which the stimulus moves continuously along the skin surface is found, and as a result, T is 200 to 300 [m].
s] indicates that continuous movement is felt. <2> When the driving frequency and the amplitude were changed at T = 0.5 [s] (the condition under which the subject felt continuous movement of the stimulus), as shown in FIG. 9, the vibration frequency was 30 Hz or less. At that time, the subject was found to feel as if an object with a smooth surface (rather than vibration) was moving over the skin. When a smooth object was felt, almost no vibration due to the frequency of the carrier signal was felt.

【0029】図10に、ランダム位相信号による触感呈
示の実験例を示す。この場合は、正弦波に代えて位相が
ランダムな帯域制限信号をコイルに与える。
FIG. 10 shows an experimental example of providing a tactile sensation using a random phase signal. In this case, a band-limited signal having a random phase is applied to the coil instead of the sine wave.

【0030】刺激は全て逆相駆動モードで、図5に示す
ように切り替える。 1.キャリア信号:周波数区間[f1 ,f2 ][Hz]
で均一な強度を持ち、位相はランダムである。中央のコ
イルの電流の実効値は70[mA]である。 2.信号の切替え時間T=0.5[s]とする。
All the stimuli are switched in the reverse-phase drive mode as shown in FIG. 1. Carrier signal: frequency section [f 1 , f 2 ] [Hz]
And uniform intensity, and the phase is random. The effective value of the current in the center coil is 70 [mA]. 2. It is assumed that the signal switching time T is 0.5 [s].

【0031】その結果、図10の(b)のテーブルに示
すように、周波数区間の上限の周波数f2 が200Hz
以下のとき、被験者は、図10の(a)に示すように台
所で使うスポンジで手をさすられているかのように感じ
た。
As a result, as shown in the table of FIG. 10B, the upper limit frequency f 2 of the frequency section is 200 Hz.
At the following times, the subject felt as if he was holding his hand with a sponge used in the kitchen as shown in FIG.

【0032】f2 が200Hzを越える場合には、被験
者は振動を感じ、その感覚を現実の触感になぞらえて表
現することはできなかった。なお図10の(b)のテー
ブル中の“類似性”の項の記号は、その記号が同一であ
るときその感じ方が類似したものであったことを示して
いる。これらの結果は触感が周波数の上限f2 に強く依
存することを示している。
When f 2 exceeds 200 Hz, the subject feels vibration, and cannot express the sense by comparing it with a real tactile sensation. The symbol of the item of "similarity" in the table of FIG. 10B indicates that the feeling is similar when the symbol is the same. These results indicate that the touch is strongly dependent on the upper limit f 2 of the frequency.

【0033】図11に、パルス列による触感呈示の実験
例を示す。この実験では、パルス列の信号を前の実験と
同様に逆相駆動モードで与え、図5に示すような切り替
えを行なう。 1.キャリア信号:各パルスの幅は3[ms]とし、発
生頻度f[pluse/s ]でランダムに発生する。
FIG. 11 shows an experimental example of tactile sensation presentation using a pulse train. In this experiment, a pulse train signal is given in the opposite-phase driving mode as in the previous experiment, and switching is performed as shown in FIG. 1. Carrier signal: Each pulse has a width of 3 [ms] and is randomly generated at an occurrence frequency f [pluse / s].

【0034】中心コイルに与えるパルスのピーク電流は
[150,300][mA]におけるランダムな値とす
る。 2.信号の切替え時間T=0.5[s]とする。
The peak current of the pulse applied to the center coil is a random value in [150, 300] [mA]. 2. It is assumed that the signal switching time T is 0.5 [s].

【0035】その結果、図11の(b)に示すように、
発生頻度fが30[pulsc/s ]程度のとき、被験者は図
11の(a)のようにシャープペンシルの芯など細く尖
ったピン状のもので手掌を軽く撫でられ、それが皮膚表
面の凹凸に引っかかりながら移動するような感じがする
と答えた。
As a result, as shown in FIG.
When the occurrence frequency f is about 30 [pulsc / s], the subject is lightly stroked on the palm with a thin and sharp pin-shaped object such as a pencil lead as shown in FIG. He felt that he felt like moving while being caught in.

【0036】パルス発生頻度が高すぎたり低すぎるとき
には、被験者はそれを日常の触感になぞらえて表現する
ことはできなかった。以上の説明では、4個の微小磁石
と4本の電磁コイルが一次元状に配列して用いられた
が、これに限られるものではなく、任意複数個数の微小
磁石とそれに対応する本数の電磁コイルを一次元状ある
いは二次元状に配列して用いることができる。
When the frequency of occurrence of the pulse was too high or too low, the subject could not express it by comparing it with a daily tactile sensation. In the above description, four micromagnets and four electromagnetic coils are used in a one-dimensional array, but the present invention is not limited to this. Any number of micromagnets and a corresponding number of electromagnetic magnets may be used. The coils can be used in a one-dimensional or two-dimensional array.

【0037】[0037]

【発明の効果】本発明によれば、複数個の微小磁石を皮
膚表面に貼付して、それぞれを電磁駆動することで皮膚
を刺激し、その際各微小電磁における電磁駆動のレベル
や位相などを制御する簡単な方法で、種々の感触を仮想
的に与えることができる。
According to the present invention, the skin is stimulated by attaching a plurality of micromagnets to the skin surface and electromagnetically driving each of the micromagnets. Various feelings can be virtually given by a simple method of controlling.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の原理説明図である。FIG. 1 is a diagram illustrating the principle of the present invention.

【図2】人の手掌皮膚断面図である。FIG. 2 is a sectional view of a human palm skin.

【図3】同相駆動モード及び逆相駆動モードの刺激伝播
説明図である。
FIG. 3 is an explanatory diagram of stimulus propagation in an in-phase drive mode and an anti-phase drive mode.

【図4】本発明による触感呈示装置の1実施例構成図で
ある。
FIG. 4 is a configuration diagram of an embodiment of a tactile sensation providing device according to the present invention.

【図5】電磁コイルの切替えタイミング図である。FIG. 5 is a timing chart of switching electromagnetic coils.

【図6】刺激強度の較正方法説明図である。FIG. 6 is an explanatory diagram of a method for calibrating stimulus intensity.

【図7】同相駆動モード及び逆相駆動モードによる触感
呈示例説明図である。
FIG. 7 is an explanatory diagram of a tactile sensation presentation example in an in-phase drive mode and an anti-phase drive mode.

【図8】刺激の移動感呈示例の説明図である。FIG. 8 is an explanatory diagram of a stimulus movement feeling presentation example.

【図9】駆動周波数と振幅の変化による移動の呈示例説
明図である。
FIG. 9 is an explanatory diagram of a presentation example of movement due to changes in drive frequency and amplitude.

【図10】ランダム位相信号による触感呈示例の説明図
である。
FIG. 10 is an explanatory diagram of a tactile sensation presentation example using a random phase signal.

【図11】パルスによる触感呈示例説明図である。FIG. 11 is an explanatory diagram of a tactile sensation presentation example by a pulse.

【符号の説明】[Explanation of symbols]

1:手掌 2−1〜2−4:微小磁石 3−1〜3−4:電磁コイル 4:ドライバ 5:駆動パターン発生手段 1: palm 2-1 to 2-4: micro magnet 3-1 to 3-4: electromagnetic coil 4: driver 5: drive pattern generating means

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成9年11月27日[Submission date] November 27, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】全図[Correction target item name] All figures

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図1】 FIG.

【図2】 FIG. 2

【図3】 FIG. 3

【図4】 FIG. 4

【図5】 FIG. 5

【図6】 FIG. 6

【図7】 FIG. 7

【図8】 FIG. 8

【図9】 FIG. 9

【図10】 FIG. 10

【図11】 FIG. 11

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 皮膚表面に、それぞれが独立して駆動さ
れる複数の刺激付与手段を、それぞれ近接させて一次元
状あるいは二次元状に配設するとともに、連続する刺激
付与手段について、その駆動位相差を制御して、皮膚深
層への刺激の伝播特性を変更することにより、所要の触
感を得ることを特徴とする触感呈示方法。
1. A plurality of stimulus applying means, each of which is independently driven, is disposed on the skin surface in a one-dimensional or two-dimensional manner in close proximity to each other. A tactile sensation presentation method characterized by obtaining a required tactile sensation by controlling a phase difference and changing a propagation characteristic of a stimulus to a deep skin layer.
【請求項2】 請求項1において、刺激付与手段の各々
は、皮膚表面に貼付される微小磁石と該微小磁石に対向
して設けられる電磁コイルからなり、駆動位相差の制御
は、電磁コイルを駆動する電流の位相を用いて行うこと
を特徴とする触感呈示方法。
2. The stimulus applying means according to claim 1, wherein each of the stimulus applying means comprises a micromagnet attached to the skin surface and an electromagnetic coil provided to face the micromagnet. A tactile sensation presentation method, which is performed using a phase of a driving current.
【請求項3】 皮膚表面に一次元状あるいは二次元状に
配設され、それぞれが独立して駆動される複数の刺激付
与手段と、刺激付与手段の各々を駆動するための刺激付
与手段に対応して設けられる駆動手段と、各駆動手段に
対してそれぞれ所定のパターンの駆動信号を発生する駆
動パターン発生手段とを備え、各発生される駆動信号の
パターンは、連続する刺激付与手段について所定の駆動
位相差を生じさせるものを含むことを特徴とする触感呈
示装置。
3. A plurality of stimulating means arranged one-dimensionally or two-dimensionally on the skin surface, each of which is independently driven, and a stimulating means for driving each of the stimulating means. And driving pattern generating means for generating a driving signal of a predetermined pattern for each driving means, wherein the generated driving signal pattern is a predetermined pattern for a continuous stimulating means. A tactile sensation providing device including a device that generates a driving phase difference.
JP31714697A 1997-11-18 1997-11-18 Tactile presentation method and device Expired - Lifetime JP3574554B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31714697A JP3574554B2 (en) 1997-11-18 1997-11-18 Tactile presentation method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31714697A JP3574554B2 (en) 1997-11-18 1997-11-18 Tactile presentation method and device

Publications (2)

Publication Number Publication Date
JPH11150794A true JPH11150794A (en) 1999-06-02
JP3574554B2 JP3574554B2 (en) 2004-10-06

Family

ID=18084961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31714697A Expired - Lifetime JP3574554B2 (en) 1997-11-18 1997-11-18 Tactile presentation method and device

Country Status (1)

Country Link
JP (1) JP3574554B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005050427A1 (en) * 2003-11-20 2005-06-02 National Institute Of Advanced Industrial Science And Technology Tactile force sense information display system and method
JP2011159110A (en) * 2010-02-01 2011-08-18 Tohoku Univ Force presentation method and apparatus
US8665076B2 (en) 2009-09-03 2014-03-04 Panasonic Corporation Tactile feedback method and system, computer program and storage medium that stores the computer program
US10416767B2 (en) 2003-11-20 2019-09-17 National Institute Of Advanced Industrial Science And Technology Haptic information presentation system and method
JP2020528628A (en) * 2017-07-26 2020-09-24 ベロモエフ, フェドール バレンチノビッチBELOMOEV, Fedor Valentinovich Devices and methods for simulating and transmitting non-contact receptive sensations
US10936074B2 (en) 2003-11-20 2021-03-02 National Institute Of Advanced Industrial Science And Technology Haptic information presentation system and method
CN114779930A (en) * 2021-04-14 2022-07-22 三峡大学 Emotion recognition method for VR user touch experience based on one-to-many support vector machines

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9171437B2 (en) 2003-11-20 2015-10-27 National Institute Of Advanced Industrial Science And Technology Haptic information presentation system and method
US10936074B2 (en) 2003-11-20 2021-03-02 National Institute Of Advanced Industrial Science And Technology Haptic information presentation system and method
WO2005050427A1 (en) * 2003-11-20 2005-06-02 National Institute Of Advanced Industrial Science And Technology Tactile force sense information display system and method
US9495803B2 (en) 2003-11-20 2016-11-15 National Institute Of Advanced Industrial Science And Technology Haptic information presentation system and method
US9495804B2 (en) 2003-11-20 2016-11-15 National Institute Of Advanced Industrial Science And Technology Haptic information presentation system and method
KR101296925B1 (en) * 2003-11-20 2013-08-20 도꾸리쯔교세이호진 상교기쥬쯔 소고겡뀨죠 Tactile force sense communication system
US11385723B2 (en) 2003-11-20 2022-07-12 National Institute Of Advanced Industrial Science And Technology Haptic information presentation system and method
US9041520B2 (en) 2003-11-20 2015-05-26 National Institute Of Advanced Industrial Science And Technology Haptic information presentation system and method
US9135791B2 (en) 2003-11-20 2015-09-15 National Istitute Of Advanced Industrial Science And Technology Haptic information presentation system and method
US9142104B2 (en) 2003-11-20 2015-09-22 National Institute Of Advanced Industrial Science And Technology Haptic information presentation system and method
GB2423846B (en) * 2003-11-20 2008-06-11 Nat Inst Of Advanced Ind Scien Haptic information presentation system and method
KR101169814B1 (en) * 2003-11-20 2012-07-30 도꾸리쯔교세이호진 상교기쥬쯔 소고겡뀨죠 Tactile force sense information display system and method
US11287888B2 (en) 2003-11-20 2022-03-29 National Institute Of Advanced Industrial Science And Technology Haptic information presentation system and method
US10216278B2 (en) 2003-11-20 2019-02-26 National Institute Of Advanced Industrial Science And Technology Haptic information presentation system and method
US10416767B2 (en) 2003-11-20 2019-09-17 National Institute Of Advanced Industrial Science And Technology Haptic information presentation system and method
US10936072B2 (en) 2003-11-20 2021-03-02 National Institute Of Advanced Industrial Science And Technology Haptic information presentation system and method
GB2423846A (en) * 2003-11-20 2006-09-06 Nat Inst Of Advanced Ind Scien Tactile force sense information display system and method
US8665076B2 (en) 2009-09-03 2014-03-04 Panasonic Corporation Tactile feedback method and system, computer program and storage medium that stores the computer program
JP2011159110A (en) * 2010-02-01 2011-08-18 Tohoku Univ Force presentation method and apparatus
JP2020528628A (en) * 2017-07-26 2020-09-24 ベロモエフ, フェドール バレンチノビッチBELOMOEV, Fedor Valentinovich Devices and methods for simulating and transmitting non-contact receptive sensations
CN114779930A (en) * 2021-04-14 2022-07-22 三峡大学 Emotion recognition method for VR user touch experience based on one-to-many support vector machines

Also Published As

Publication number Publication date
JP3574554B2 (en) 2004-10-06

Similar Documents

Publication Publication Date Title
WO2015121971A1 (en) Tactile device and system
Caldwell et al. An integrated tactile/shear feedback array for stimulation of finger mechanoreceptor
EP1927916A1 (en) Apparatus, method, and medium for outputting tactile feedback on display device
US20060279537A1 (en) Method and apparatus for efficiently providing tactile information
US20160342269A1 (en) Tactile sensation providing apparatus and system
JPWO2015121970A1 (en) Educational tactile sensation providing apparatus and system
Asamura et al. A tactile feeling display based on selective stimulation to skin receptors
KR20170015467A (en) Tactile sensation data processing device, tactile sensation providing system, and tactile sensation data processing method
US20190094972A1 (en) Information processing apparatus, information processing method, and non-transitory computer-readable medium
CN110546594B (en) Time reversal interface for producing acoustic lubrication
JP3929881B2 (en) Skin sensation presentation device
Wall et al. A high bandwidth interface for haptic human computer interaction
JP3574554B2 (en) Tactile presentation method and device
JP2001255993A (en) Computer input and output device using elastic wave
Dosen et al. A novel method to generate amplitude-frequency modulated vibrotactile stimulation
JPH0990867A (en) Tactile sensing presentation device
JP3225477B2 (en) Tactile stimulus expression method and apparatus and tactile stimulus display
Konyo et al. Tactile feel display for virtual active touch
KR101278293B1 (en) Traveling vibrotactile wave generation method for implementing traveling vibrotactile wave by sequentially driving multiple actuators changing actuators&#39; driving frequency according to the velocity of virtual object and generating continuously varying area of vibrotactile position
Hasegawa et al. Modulation methods for ultrasound midair haptics
Tsuchiya et al. Vib-touch: virtual active touch interface for handheld devices
KR101540273B1 (en) Multi-channel brain stimulation for inducing tactile sensation
Chubb et al. ShiverPad: A device capable of controlling shear force on a bare finger
JP2008134697A (en) Contact presentation apparatus
JP3073712B2 (en) Tactile presentation device

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040702

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6