JPH11150503A - Radio communication system - Google Patents

Radio communication system

Info

Publication number
JPH11150503A
JPH11150503A JP31314197A JP31314197A JPH11150503A JP H11150503 A JPH11150503 A JP H11150503A JP 31314197 A JP31314197 A JP 31314197A JP 31314197 A JP31314197 A JP 31314197A JP H11150503 A JPH11150503 A JP H11150503A
Authority
JP
Japan
Prior art keywords
communication
signal
wave
communication system
master station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31314197A
Other languages
Japanese (ja)
Inventor
Mitsuyoshi Kegasa
光容 毛笠
Yuichiro Goto
有一郎 後藤
Takuya Kusaka
卓也 日下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP31314197A priority Critical patent/JPH11150503A/en
Publication of JPH11150503A publication Critical patent/JPH11150503A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress the transmission power of a communication wave while the reliability of communication is maintained, to eliminate waste and to reduce the cost of a whole system by setting the communication speed of the communication wave communicated between a master station and slave stations so that it is different between the slave stations and/or temporally. SOLUTION: Occupied frequency band variable types for changing the occupied frequency band of a radio signal are used for modulation devices 102' and 208' and demodulation devices 111' and 206'. The different communication bands are set in the slave stations. When a distance between the master station and the slave stations is comparatively far, for example, the communication band of the communication wave is set to be narrow. When the distance between the master station and the slave stations is comparatively near, the communication band of the communication wave is taken to be wide. When it rains and an environment condition changes, the communication band of the communication wave is set to be narrower than that when it does not rain. Thus, the communication band and a modulation system are changed and communication speed is set so that it is different between the slave stations and/or temporally.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,無線通信システム
に係り,詳しくは,親局と複数の子局とを結ぶ無線通信
システムに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radio communication system, and more particularly, to a radio communication system connecting a master station and a plurality of slave stations.

【0002】[0002]

【従来の技術】近年のインターネット接続等の急速な普
及に伴って高速な回線網への需要はますます増加してい
る。しかしながら,有線網によって提供される高速回線
は,一般の消費者にとって依然として高価なものであ
り,より低価格なサービスを提供することができるロー
カルな無線通信網の研究開発が盛んに行われている。こ
のローカル無線網は,準ミリ波(3GHz〜30GH
z),さらにはミリ波帯(30GHz〜300GHz)
という高い周波数帯域を利用して,例えば電話交換局か
ら所定範囲の地域にいる複数の加入者に高速な双方向デ
ータ通信回線を提供したり,ローカルなテレビ電話サー
ビスを行う場合等に利用される。図7に示すように,こ
のようなローカル無線網(無線通信システム)では,一
般家庭等に設置される複数の子局100は,放射状の送
受信可能領域71(セル)を有する親局200に無線回
線を介して接続される。準ミリ波やミリ波帯のような高
い周波数帯域では,見通し距離は数km程度が限界とな
り,上記セル71の大きさもそれに準じたものとなる。
都市部等比較的広い領域をカバーする場合,上記親局2
00は当該領域に対して複数設けられる。各親局200
間は,電話交換局等に設置された中央局72に光ファイ
バー等の高速回線73を介して接続されており,他のセ
ル71にある子局100へ親局200及び中央局73を
介して通信を行うことも可能である。
2. Description of the Related Art The demand for a high-speed network has been increasing with the rapid spread of the Internet connection and the like in recent years. However, high-speed lines provided by wired networks are still expensive for ordinary consumers, and local wireless communication networks capable of providing lower-cost services are being actively researched and developed. . This local wireless network uses quasi-millimeter waves (3 GHz to 30 GHz).
z), and also in the millimeter wave band (30 GHz to 300 GHz)
Is used to provide a high-speed two-way data communication line from a telephone exchange to a plurality of subscribers in a predetermined area, or to provide a local videophone service. . As shown in FIG. 7, in such a local wireless network (wireless communication system), a plurality of slave stations 100 installed in a general home or the like are wirelessly connected to a master station 200 having a radially communicable area 71 (cell). Connected via a line. In a high frequency band such as a quasi-millimeter wave band or a millimeter wave band, the line-of-sight distance is limited to about several kilometers, and the size of the cell 71 is also in accordance therewith.
To cover a relatively large area such as an urban area,
00 is provided for the area. Each parent station 200
Between the stations, a central office 72 installed in a telephone exchange or the like is connected via a high-speed line 73 such as an optical fiber, and communicates with a slave station 100 in another cell 71 via the master station 200 and the central office 73. It is also possible to do.

【0003】例えば図8の機能ブロック図に示すよう
に,上記無線通信システムにおける複数の子局100そ
れぞれの送信側には,外部に接続されたインターフェイ
ス装置101と,変調装置102と,変調装置102か
ら出力された変調信号を送信用の中間周波数へ変換する
周波数変換装置103と,上記周波数変換装置103か
ら出力された中間周波数の信号を送信用の無線周波数へ
変換する周波数変換装置104と,上記周波数変換装置
104から出力された無線信号を増幅する送信用高出力
固体増幅器105と,ダイプレクサ106と,送受信兼
用のアンテナ107とが設けられる。また,上記子局1
00それぞれの受信側には,上記アンテナ107,ダイ
プレクサ106を介して受信された無線信号を増幅する
低雑音増幅器108と,低雑音増幅器から出力された信
号を受信用の中間周波数へ変換する周波数変換装置10
9と,チューナ110と,復調装置111とが設けられ
る。一方,上記複数の子局100とマイクロ波,準ミリ
波,ミリ波帯の帯域を使用した無線回線によって接続さ
れた親局200の受信側には,受信用のアンテナ201
と,アンテナ201から供給された無線信号を増幅する
低雑音増幅器202と,低雑音増幅器202から出力さ
れた信号を受信用の中間周波数へ変換する周波数変換装
置203と,分配器204と,子局100と同調し受信
用中間周波数を選局するための複数のチューナ205
と,各チューナ205毎に設けられた復調装置206
と,外部に接続されたインターフェース装置207とが
設けられる。また,上記親局200の送信側には,上記
インターフェース装置207から供給された送信データ
を変調する複数の変調装置208と,変調装置208か
ら出力された信号を送信用の中間周波数へ変換する周波
数変換装置209と,合成器210と,合成器210か
らの信号を送信用の無線周波数へ変換する周波数変換装
置211と,周波数変換装置211の出力を増幅する送
信用高出力固体増幅器212と,送信用のアンテナ21
3とが設けられる。
For example, as shown in a functional block diagram of FIG. 8, a transmitting side of each of a plurality of slave stations 100 in the wireless communication system includes an interface device 101, a modulator 102, and a modulator 102 which are connected to the outside. A frequency conversion device 103 for converting the modulated signal output from the above to an intermediate frequency for transmission, a frequency conversion device 104 for converting the intermediate frequency signal output from the frequency conversion device 103 to a radio frequency for transmission, A transmission high-output solid-state amplifier 105 for amplifying a wireless signal output from the frequency converter 104, a diplexer 106, and an antenna 107 for both transmission and reception are provided. The above slave station 1
00, a low-noise amplifier 108 for amplifying a radio signal received via the antenna 107 and the diplexer 106, and a frequency converter for converting a signal output from the low-noise amplifier to an intermediate frequency for reception. Apparatus 10
9, a tuner 110 and a demodulation device 111. On the other hand, a receiving antenna 201 is provided on the receiving side of the master station 200 connected to the plurality of slave stations 100 by a radio line using a microwave, quasi-millimeter wave, or millimeter wave band.
A low-noise amplifier 202 for amplifying a radio signal supplied from an antenna 201, a frequency converter 203 for converting a signal output from the low-noise amplifier 202 to an intermediate frequency for reception, a distributor 204, and a slave station. A plurality of tuners 205 for tuning to the intermediate frequency for reception in synchronization with 100
And a demodulation device 206 provided for each tuner 205
And an interface device 207 connected to the outside. The transmitting side of the master station 200 includes a plurality of modulators 208 for modulating transmission data supplied from the interface device 207, and a frequency for converting a signal output from the modulator 208 to an intermediate frequency for transmission. A converter 209, a synthesizer 210, a frequency converter 211 for converting a signal from the synthesizer 210 into a radio frequency for transmission, a transmission high-power solid-state amplifier 212 for amplifying an output of the frequency converter 211, Trust antenna 21
3 are provided.

【0004】上記無線通信システムにおいて,子局10
0から親局200へ信号が送信される上り回線では,ま
ず外部のネットワーク等から供給された送信データが,
インターフェース装置101を介して変調装置102へ
供給される。この変調装置102によって,上記送信デ
ータは所定の占有周波数帯域BW1の変調信号に変換さ
れる。上記変調装置102から出力された変調信号は,
周波数変換装置103により送信用の中間周波数へ変換
され,さらに周波数変換装置104により送信用の無線
周波数へ変換される。上記周波数変換装置104から出
力された無線信号は,送信用高出力固体増幅器105に
より必要な送信出力レベルまで増幅された後,送受信兼
用アンテナ107に供給され,親局200へ送信され
る。子局100のアンテナから送信された通信波RF−
Uは,親局200の受信アンテナ201で受信され,受
信用低雑音増幅器202により増幅された後,周波数変
換装置203により受信用中間周波数へ変換される。こ
の受信用中間周波数の信号は分配器204で分配されて
チューナ205群に供給される。子局100に同調して
いるチューナ205によって,上記受信用中間周波数が
選局され,該チューナ205に対してそれぞれ設けられ
た復調器206に供される。復調器206により復調さ
れた変調波は,元の送信データに戻り,インターフェー
ス装置207を経由して外部のネットワークに接続され
たり,他の子局への送信データとなる。
In the above wireless communication system, the slave station 10
In the uplink where a signal is transmitted from 0 to the master station 200, first, transmission data supplied from an external network or the like is
The signal is supplied to the modulation device 102 via the interface device 101. The transmission data is converted by the modulator 102 into a modulated signal of a predetermined occupied frequency band BW1. The modulation signal output from the modulation device 102 is
The frequency is converted to an intermediate frequency for transmission by the frequency converter 103, and further converted to a radio frequency for transmission by the frequency converter 104. The radio signal output from the frequency conversion device 104 is amplified to a required transmission output level by the transmission high-output solid-state amplifier 105, supplied to the transmission / reception antenna 107, and transmitted to the master station 200. Communication wave RF- transmitted from the antenna of slave station 100
U is received by the receiving antenna 201 of the master station 200, amplified by the low-noise amplifier 202 for reception, and then converted by the frequency converter 203 into an intermediate frequency for reception. The signal of the intermediate frequency for reception is distributed by the distributor 204 and supplied to the tuner 205 group. The intermediate frequency for reception is selected by a tuner 205 tuned to the slave station 100, and is supplied to demodulators 206 provided for the respective tuners 205. The modulated wave demodulated by the demodulator 206 returns to the original transmission data, is connected to an external network via the interface device 207, or becomes transmission data to another slave station.

【0005】また,親局200から子局100へ信号が
送信される下り回線では,まず外部のネットワークや他
の子局からの送信データがインターフェース装置207
を介して変調装置208に供給される。変調器208に
よって,上記送信データは所定の占有周波数帯域BW2
の変調信号に変換される。上記変調装置208から出力
された変調信号は,周波数変換装置209により送信用
の中間周波数へ変換され,合成器210により他の送信
用の中間周波数の信号と合成される。合成器210によ
り合成された中間周波数の信号は,さらに周波数変換装
置211により送信用無線周波数へ変換され,送信用高
出力固体増幅器212により必要な送信出力レベルまで
増幅された後,送信用アンテナ213に供給され,子局
100へ送信される。親局200の送信用アンテナ21
3から送信された通信波RF−Dは,子局100の送受
信兼用アンテナ107で受信され,ダイプレクサ106
により送信信号と分離される。ダイプレクサ106から
出力された受信信号は受信用低雑音増幅器108により
増幅され,周波数変換装置109により受信用中間周波
数の信号に変換される。チューナ110により,上記受
信用中間周波数の信号が選局され,復調装置111へ供
給される。復調装置111により復調された変調波は,
元の送信用データに戻り,インターフェース装置101
を経由して外部のネットワーク等に接続される。
In a downlink where a signal is transmitted from the master station 200 to the slave station 100, first, transmission data from an external network or another slave station is transmitted to the interface device 207.
Is supplied to the modulation device 208 via the. The modulator 208 converts the transmission data into a predetermined occupied frequency band BW2.
Is converted into a modulated signal. The modulated signal output from the modulator 208 is converted by the frequency converter 209 into an intermediate frequency for transmission, and the combiner 210 combines the signal with another intermediate frequency signal for transmission. The signal of the intermediate frequency synthesized by the synthesizer 210 is further converted to a radio frequency for transmission by a frequency converter 211 and amplified to a required transmission output level by a high-power solid-state amplifier 212 for transmission. And transmitted to the slave station 100. Transmission antenna 21 of master station 200
3 is received by the transmission / reception antenna 107 of the slave station 100 and is transmitted to the diplexer 106.
Is separated from the transmission signal. The reception signal output from the diplexer 106 is amplified by the reception low-noise amplifier 108, and is converted by the frequency converter 109 into a signal of the reception intermediate frequency. The tuner 110 selects the signal of the intermediate frequency for reception and supplies the signal to the demodulation device 111. The modulated wave demodulated by the demodulator 111 is
Returning to the original transmission data, the interface device 101
Via an external network.

【0006】ところで,上記のような無線通信システム
では,準ミリ波やミリ波等の高い周波数帯域が用いられ
るため,例えば降雨により親局と子局との間で通信され
る通信波RF−U,RF−Dに減衰が生じる。信頼度の
高い無線通信を行うには,無線系の回線設計が重要とな
る。もちろん,降雨以外にも上記通信波RF−U,RF
−Dは,さまざまな増幅や減衰を受ける。例えば送信用
高出力固体増幅器105からの通信波あたりの送信電力
をPt1とすれば,上記通信波RF−Uの占有周波数帯
域BW1に一様に分配され,そのパワー密度はPt1/
BW1となる。そして,上記通信波RF−Uは,送信ア
ンテナ107により指向性利得Gatで増幅された後,
通信距離の二乗に比例した距離減衰量lossD×d12
減衰される。それと共に,降雨等があれば通信距離に比
例した降雨減衰量lossR×d1で減衰される。また,上
記通信波RF−Uの受信時には,受信アンテナ201に
より指向性利得Garで増幅された後,受信用低雑音増
幅器202に入力される。ここで,上記距離減衰量は,
例えば準ミリ波帯の26GHzの無線の場合,親局20
0から250m離れた地点で100dB程度,500m
離れた地点で106dB程度,1km離れた地点で11
2dB程度となる。また,上記降雨減衰量は,例えば準
ミリ波帯の26GHzの無線を日本で使用する場合,年
間5分程度発生するとされている100mm/hにも対
応するならば,20dB/km程度となる。これらの増
幅及び減衰から,上記通信波RF−Uの受信用低雑音増
幅器202の入力におけるパワー密度PD1は, PD1=(Pt1/BW1)×Gat/(lossD×d1
2 )/(lossR×d1)×Gar となる。このパワー密度PD1と上記受信用低雑音増幅
器202の入力における雑音のパワー密度NPによって
定まる信号対雑音比S/Nによって,上記通信波RF−
Uの信頼性を評価することができる。信号対雑音比S/
Nは,次式のように表すことができる。 S/N=PD1/NP=(Pt1/BW1)×Gat/
(lossD×d12 )/(lossR×d1)×Gar/NP 上記受信用低雑音増幅器202の入力での雑音のパワー
密度NPは,増幅器の絶対温度と雑音指数で定まる。上
記式を変形すれば,信号対雑音比S/Nは次のように表
すことができる。 S/N=定数×Pt1/(BW1×(lossD×d12
×(lossR×d1)) 即ち,信号対雑音比S/Nは,送信電力Pt1に比例
し,占有周波数帯域BW1に反比例し,距離d1の二乗
に反比例し,降雨がある場合には,さらに雨量lossR及
び距離d1に反比例した減衰が加わる。尚,通信波RF
−Dについても同様である。
In the above-described radio communication system, since a high frequency band such as a quasi-millimeter wave or a millimeter wave is used, a communication wave RF-U communicated between a master station and a slave station due to, for example, rainfall. , RF-D are attenuated. In order to perform highly reliable wireless communication, the line design of the wireless system is important. Of course, besides rain, the above communication waves RF-U, RF
−D undergoes various amplifications and attenuations. For example, if the transmission power per communication wave from the transmission high-output solid-state amplifier 105 is Pt1, the transmission power is uniformly distributed to the occupied frequency band BW1 of the communication wave RF-U, and the power density is Pt1 / Pt1 /
BW1. The communication wave RF-U is amplified by the transmission antenna 107 with the directivity gain Gat,
It is attenuated by a distance attenuation lossD × d1 2 proportional to the square of the communication distance. At the same time, if there is rain or the like, it is attenuated by a rain attenuation lossR × d1 proportional to the communication distance. When receiving the communication wave RF-U, the signal is amplified by the receiving antenna 201 with the directional gain Gar, and then input to the receiving low-noise amplifier 202. Here, the distance attenuation is
For example, in the case of 26 GHz radio in the quasi-millimeter wave band, the master station 20
About 100 dB, 500 m at a point 250 m away from 0
About 106 dB at a distance, 11 at a distance of 1 km
It is about 2 dB. The rain attenuation is about 20 dB / km if, for example, a quasi-millimeter wave band 26 GHz radio is used in Japan, which corresponds to 100 mm / h, which is generated for about 5 minutes per year. From these amplifications and attenuations, the power density PD1 at the input of the low-noise amplifier 202 for receiving the communication wave RF-U is PD1 = (Pt1 / BW1) × Gat / (lossD × d1)
2 ) / (lossR × d1) × Gar By the power density PD1 and the signal-to-noise ratio S / N determined by the power density NP of the noise at the input of the reception low noise amplifier 202, the communication wave RF-
The reliability of U can be evaluated. Signal to noise ratio S /
N can be represented by the following equation. S / N = PD1 / NP = (Pt1 / BW1) × Gat /
(LossD × d1 2 ) / (lossR × d1) × Gar / NP The power density NP of noise at the input of the low noise receiving amplifier 202 is determined by the absolute temperature and noise figure of the amplifier. By modifying the above equation, the signal-to-noise ratio S / N can be expressed as follows. S / N = constant × Pt1 / (BW1 × (lossD × d1 2 )
× (lossR × d1)) That is, the signal-to-noise ratio S / N is proportional to the transmission power Pt1, inversely proportional to the occupied frequency band BW1, inversely proportional to the square of the distance d1, and if there is rainfall, the rainfall is further increased. Damping inversely proportional to lossR and distance d1 is added. In addition, communication wave RF
The same applies to −D.

【0007】上記信号対雑音比S/Nが,変調方式によ
って定まるしきい値よりも大きければ,信頼性の高い通
信が可能である。例えば4相位相変調方式(QPSK)
の場合,信号対雑音比が14dB以上であれば,誤り率
は0.0001%以下となる。上記無線システムでは,
上記子局100はセル71内に点在し,親局200との
距離は各子局100毎にそれぞれ異なる。例えば図4に
示すように,子局Aが親局200から250mのところ
に設置され,子局Bが子局Aよりも離れた親局200か
ら1kmのところに設置された場合,子局Aの距離減衰
量D1が100dBであるとすると,距離が4倍となる
ので,子局Bの距離減衰量D2は112dBとなる。ま
た,図6に示すように,降雨減衰量R1,R2は,距離
d1,d2と降雨量にほぼ比例し,降雨量が100mm
/hで通信波の周波数が26GHzの場合,250mの
距離では約5dB,1kmの距離では約20dB程度減
衰する。子局への通信波の減衰量は,晴天時と豪雨時と
で20dB=100倍も変化する。
If the signal-to-noise ratio S / N is larger than a threshold determined by the modulation scheme, highly reliable communication is possible. For example, four-phase modulation (QPSK)
In this case, if the signal-to-noise ratio is 14 dB or more, the error rate becomes 0.0001% or less. In the above wireless system,
The slave stations 100 are scattered in the cell 71, and the distance from the master station 200 differs for each slave station 100. For example, as shown in FIG. 4, when the slave station A is installed at a distance of 250 m from the master station 200 and the slave station B is installed at a distance of 1 km from the master station 200 distant from the slave station A, the slave station A If the distance attenuation D1 is 100 dB, the distance is quadrupled, so that the distance attenuation D2 of the slave station B is 112 dB. Further, as shown in FIG. 6, the rain attenuation amounts R1 and R2 are almost proportional to the distances d1 and d2 and the rainfall amount, and the rainfall amount is 100 mm.
When the frequency of the communication wave is 26 GHz at / h, the attenuation is about 5 dB at a distance of 250 m and about 20 dB at a distance of 1 km. The amount of attenuation of the communication wave to the slave station changes by 20 dB = 100 times between fine weather and heavy rain.

【0008】このように同じセル71内にある子局10
0と通信する場合でも,各子局100と親局200との
距離や降雨等の環境条件に応じて信号対雑音比S/Nは
大きく変動する。このため,上記無線通信システムにお
ける通信波の送信電力と帯域幅は,例えば最悪の条件と
なる,最遠方の子局100と親局200との間で最大の
降雨時に通信を行うことを想定して定められる。例え
ば,1.5Mbpsの通信速度を得るには,QPSK変
調方式で約1MHzの周波数帯域が必要となるが,準ミ
リ波帯26GHzの周波数帯で,親局200に指向性利
得14dBi程度のホーンアンテナ,子局100に利得
34dBi程度のパラボラアンテナを用いて,最大1k
mの距離で最大10の子局100と100mm/h程度
の豪雨のなか信頼性の高い通信を行う場合,子局100
の送信用高出力固体増幅器105には,最大電力が10
0mW程度のものが必要となり,親局200の送信用高
出力増幅器212には最大電力が1W程度のものが必要
となる。
[0008] Thus, the slave station 10 in the same cell 71
Even when communication is performed with 0, the signal-to-noise ratio S / N greatly varies depending on the distance between each slave station 100 and the master station 200 and environmental conditions such as rainfall. For this reason, the transmission power and the bandwidth of the communication wave in the wireless communication system are assumed to be the worst conditions, for example, when the communication is performed between the farthest slave station 100 and the master station 200 during the maximum rainfall. Is determined. For example, in order to obtain a communication speed of 1.5 Mbps, a frequency band of about 1 MHz is required in the QPSK modulation method, but a horn antenna having a directivity gain of about 14 dBi is provided to the master station 200 in a quasi-millimeter wave band of 26 GHz. , Using a parabolic antenna with a gain of about 34 dBi
When performing highly reliable communication with a maximum of 10 slave stations 100 at a distance of m in heavy rain of about 100 mm / h, the slave station 100
The high power solid-state amplifier 105 for transmission has a maximum power of 10
A transmitter having a power of about 0 mW is required, and a transmitter having a maximum power of about 1 W is required for the transmission high-output amplifier 212 of the master station 200.

【0009】[0009]

【発明が解決しようとする課題】しかしながら,上記よ
うな最大電力を有する準ミリ波,ミリ波帯の送信用高出
力固体増幅器は高価であり,また消費電流も大きいた
め,システム全体のコストが上昇してしまうという問題
があった。また,遠方にある子局に合わせて送信電力が
設定されるため,近距離の子局では,親局の受信用低雑
音増幅器を飽和させないよう,出力レベルを低減して運
用する必要があり,最大電力に対して運用電力が大幅に
低い無駄の多いシステムとなっていた。本発明は,この
ような従来の技術における課題を解決するために,無線
通信システムを改良し,例えば子局と親局との距離に応
じて占有周波数帯域を調整することにより,必要となる
送信電力を削減した無線通信システムを提供することを
目的とするものである。
However, quasi-millimeter-wave and millimeter-wave transmission high-output solid-state amplifiers having the above-mentioned maximum power are expensive and consume a large amount of current, so that the cost of the entire system increases. There was a problem of doing it. In addition, since the transmission power is set according to the remote station located far away, it is necessary to operate the low-level slave station with a reduced output level so as not to saturate the receiving low noise amplifier of the master station. This was a wasteful system in which the operating power was significantly lower than the maximum power. The present invention improves the radio communication system in order to solve the problems in the conventional technology, and for example, adjusts the occupied frequency band according to the distance between the slave station and the master station, thereby making necessary transmission. It is an object of the present invention to provide a wireless communication system with reduced power.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に,請求項1に記載の発明は,親局と複数の子局とを結
ぶ無線通信システムにおいて,親局と子局との間で通信
される通信波の通信速度を子局間及び/又は時間的に異
ならせて設定してなることをその要旨とする。また,請
求項2に記載の発明は,上記請求項1に記載の無線通信
システムにおいて,上記通信波が子局から親局へ送信さ
れる信号であることをその要旨とする。また,請求項3
に記載の発明は,上記請求項1に記載の無線通信システ
ムにおいて,上記通信波が親局から子局へ送信される信
号であることをその要旨とする。また,請求項4に記載
の発明は,上記請求項1〜3のいずれか1項に記載の無
線通信システムにおいて,上記通信速度が,上記通信波
の通信帯域を変更することによって調整されてなること
をその要旨とする。また,請求項5に記載の発明は,上
記請求項1〜4のいずれか1項に記載の無線通信システ
ムにおいて,上記通信速度が,上記通信波の変調方式を
変更することによって調整されてなることをその要旨と
する。また,請求項6に記載の発明は,上記請求項1〜
5のいずれか1項に記載の無線通信システムにおいて,
上記通信速度が,親局と各子局との間の距離に応じて各
子局毎にそれぞれ設定されてなることをその要旨とす
る。また,請求項7に記載の発明は,上記請求項1〜5
のいずれか1項に記載の無線通信システムにおいて,上
記通信速度が,上記通信波が通信される環境条件に応じ
て設定されてなることをその要旨とする。また,請求項
8に記載の発明は,上記請求項1〜5のいずれか1項に
記載の無線通信システムにおいて,上記通信速度が,上
記通信波の信号対雑音比に応じて設定されてなることを
その要旨とする。また,請求項9に記載の発明は,上記
請求項8に記載の無線通信システムにおいて,上記通信
波の信号対雑音比が上記親局側の受信端で監視されてな
ることをその要旨とする。また,請求項10に記載の発
明は,上記請求項8に記載の無線通信システムにおい
て,上記通信波の信号対雑音比が上記子局側の受信端で
監視されてなることをその要旨とする。
In order to achieve the above object, an invention according to claim 1 is provided in a wireless communication system connecting a master station and a plurality of slave stations. The gist is that the communication speed of the communication wave to be communicated is set to be different between the slave stations and / or in terms of time. According to a second aspect of the present invention, in the wireless communication system according to the first aspect, the communication wave is a signal transmitted from a slave station to a master station. Claim 3
The gist of the present invention is that, in the wireless communication system of the first aspect, the communication wave is a signal transmitted from a master station to a slave station. According to a fourth aspect of the present invention, in the wireless communication system according to any one of the first to third aspects, the communication speed is adjusted by changing a communication band of the communication wave. That is the gist. According to a fifth aspect of the present invention, in the wireless communication system according to any one of the first to fourth aspects, the communication speed is adjusted by changing a modulation method of the communication wave. That is the gist. Further, the invention described in claim 6 is the above-described claim 1 to claim 1.
5. In the wireless communication system according to any one of items 5,
The gist is that the communication speed is set for each slave station in accordance with the distance between the master station and each slave station. Further, the invention described in claim 7 provides the above-mentioned claims 1 to 5
In the wireless communication system according to any one of the above, the gist is that the communication speed is set according to environmental conditions in which the communication wave is communicated. According to an eighth aspect of the present invention, in the wireless communication system according to any one of the first to fifth aspects, the communication speed is set according to a signal-to-noise ratio of the communication wave. That is the gist. According to a ninth aspect of the present invention, in the wireless communication system according to the eighth aspect, the signal-to-noise ratio of the communication wave is monitored at the receiving end of the master station. . According to a tenth aspect of the present invention, in the wireless communication system according to the eighth aspect, a signal-to-noise ratio of the communication wave is monitored at a receiving end of the slave station. .

【0011】上記請求項1〜10のいずれか1項に記載
の無線通信システムによれば,各子局と親局との距離,
環境条件,信号対雑音比等に応じて,通信波の通信帯域
や変調方式等が調整され,子局間及び/又は時間的に通
信速度が異なって設定される。例えば,親局と子局との
距離が比較的遠い場合には,通信波の通信帯域が狭く設
定され,親局と子局との距離が比較的近い場合には,通
信波の通信帯域が広く設定される。また,降雨等があっ
て環境条件が悪化した時には,降雨等がない場合と較べ
て通信波の通信帯域が狭く設定される。このように通信
帯域や変調方式を変更して通信速度を子局間及び/又は
時間的に異ならせて設定することにより,通信の信頼性
を維持しながら必要となる送信電力を抑えると共に無駄
をなくし,システム全体のコストを低減させることが可
能となる。
[0011] According to the wireless communication system of any one of claims 1 to 10, the distance between each slave station and the master station,
The communication band and modulation method of the communication wave are adjusted according to the environmental conditions, the signal-to-noise ratio, and the like, and the communication speed is set differently between the slave stations and / or temporally. For example, when the distance between the master station and the slave station is relatively long, the communication band of the communication wave is set narrow, and when the distance between the master station and the slave station is relatively short, the communication band of the communication wave is narrowed. Widely set. Further, when the environmental conditions are deteriorated due to rainfall or the like, the communication band of the communication wave is set to be narrower than when there is no rainfall or the like. In this way, by changing the communication band and the modulation method and setting the communication speed to be different between the slave stations and / or in time, the required transmission power can be suppressed while maintaining the reliability of the communication and the waste can be reduced. It is possible to reduce the cost of the entire system.

【0012】[0012]

【発明の実施の形態】以下,添付図面を参照して,本発
明の実施の形態につき説明し,本発明の理解に供する。
尚,以下の実施の形態は,本発明の具体的な一例であっ
て,本発明の技術的範囲を限定する性格のものではな
い。ここに,図1は本発明の一実施の形態に係る無線通
信システムの一例である。図1に示すように,本発明の
一実施の形態に係る無線通信システムは,従来のものと
ほぼ同様の構成を有する。即ち,本実施の形態に係る無
線通信システムにおける複数の子局100それぞれの送
信側に,外部に接続されたインターフェイス装置101
と,占有周波数帯域可変型の変調装置102’(10
2’a,102’b,…)と,変調装置102’から出
力された変調信号を送信用の中間周波数へ変換する周波
数変換装置103と,上記周波数変換装置103から出
力された中間周波数の信号を送信用の無線周波数へ変換
する周波数変換装置104と,上記周波数変換装置10
4から出力された無線信号を増幅する送信用高出力固体
増幅器105と,ダイプレクサ106と,送受信兼用の
アンテナ107とを具備する。また,上記子局100そ
れぞれの受信側に,上記アンテナ107,ダイプレクサ
106を介して受信された無線信号を増幅する低雑音増
幅器108と,低雑音増幅器から出力された信号を受信
用の中間周波数へ変換する周波数変換装置109と,チ
ューナ110と,占有周波数可変型の復調装置111’
(111’a,111’b,…)とを具備する。一方,
上記複数の子局100とマイクロ波,準ミリ波,ミリ波
帯の帯域を使用した無線回線によって接続された親局2
00の受信側に,受信用のアンテナ201と,アンテナ
201から供給された無線信号を増幅する低雑音増幅器
202と,低雑音増幅器202から出力された信号を受
信用の中間周波数へ変換する周波数変換装置203と,
分配器204と,子局100と同調し受信用中間周波数
を選局するための複数のチューナ205と,各チューナ
205毎に設けられた占有周波数可変型の復調装置20
6’(206’a,206’b,…)と,外部に接続さ
れたインターフェース装置207とを具備する。また,
上記親局200の送信側に,上記インターフェース装置
207から供給された送信データを変調する複数の占有
周波数可変型の変調装置208’(208’a,20
8’b,…)と,変調装置208’から出力された信号
を送信用の中間周波数へ変換する周波数変換装置209
と,合成器210と,合成器210からの信号を送信用
の無線周波数へ変換する周波数変換装置211と,周波
数変換装置211の出力を増幅する送信用高出力固体増
幅器212と,送信用のアンテナ213とを具備する。
本実施の形態に係る無線通信システムが,従来のものと
とりわけ異なる点は,図2及び3に示すように,変調装
置102’,208’及び復調装置111’,206’
に上記無線信号の占有周波数帯域(通信帯域)を変化さ
せる占有周波数帯域可変型のものが用いられ,子局10
0間で異なった通信帯域の設定が行われる点である。
Embodiments of the present invention will be described below with reference to the accompanying drawings to provide an understanding of the present invention.
The following embodiment is a specific example of the present invention and does not limit the technical scope of the present invention. FIG. 1 is an example of a wireless communication system according to an embodiment of the present invention. As shown in FIG. 1, a wireless communication system according to an embodiment of the present invention has a configuration substantially similar to that of a conventional one. That is, the interface device 101 connected to the outside is provided on the transmitting side of each of the plurality of slave stations 100 in the wireless communication system according to the present embodiment.
And a modulation device 102 ′ (10
2′a, 102′b,...), A frequency conversion device 103 that converts a modulated signal output from the modulation device 102 ′ into an intermediate frequency for transmission, and an intermediate frequency signal output from the frequency conversion device 103. Frequency conversion device 104 for converting the frequency into a radio frequency for transmission, and the frequency conversion device 10
4 includes a transmitting high-output solid-state amplifier 105 for amplifying the radio signal output from the transmitting device 4, a diplexer 106, and an antenna 107 for both transmission and reception. Also, on the receiving side of each of the slave stations 100, a low noise amplifier 108 for amplifying a radio signal received via the antenna 107 and the diplexer 106, and a signal output from the low noise amplifier to an intermediate frequency for reception. Frequency converter 109 for conversion, tuner 110, and demodulator 111 ′ of variable occupied frequency
(111′a, 111′b,...). on the other hand,
A master station 2 connected to the plurality of slave stations 100 by a radio line using a microwave, quasi-millimeter wave, or millimeter wave band.
00, a receiving antenna 201, a low-noise amplifier 202 for amplifying a radio signal supplied from the antenna 201, and a frequency conversion for converting a signal output from the low-noise amplifier 202 to an intermediate frequency for reception. Device 203;
A distributor 204, a plurality of tuners 205 for tuning to the slave station 100 to select an intermediate frequency for reception, and a variable occupied frequency demodulator 20 provided for each tuner 205.
6 ′ (206′a, 206′b,...) And an interface device 207 connected to the outside. Also,
On the transmitting side of the master station 200, a plurality of variable occupied frequency modulators 208 '(208'a, 20') for modulating the transmission data supplied from the interface device 207.
8'b,...) And a frequency converter 209 for converting the signal output from the modulator 208 'to an intermediate frequency for transmission.
, A synthesizer 210, a frequency converter 211 for converting a signal from the synthesizer 210 to a radio frequency for transmission, a high-output solid-state amplifier 212 for amplifying an output of the frequency converter 211, and a transmitting antenna 213.
The radio communication system according to the present embodiment is particularly different from the conventional radio communication system, as shown in FIGS. 2 and 3 in that modulation devices 102 ′ and 208 ′ and demodulation devices 111 ′ and 206 ′.
A variable occupied frequency band type that changes the occupied frequency band (communication band) of the radio signal is used for the slave station 10.
The point is that different communication bands are set between 0.

【0013】上記占有周波数帯域可変型の変調装置10
2’,208’は,DSP(Digital Signal Processo
r)400と,上記DSP400から出力された信号を
アナログ信号に変換するD/A変換装置401と,低域
通過フィルター402と,可変減衰器403とを具備す
る。この占有周波数帯域可変型の変調装置102’,2
08’に入力された送信データは,上記DSP400に
よりデジタル信号のままQPSK変調信号に変換され
る。また,上記DSP400により実現されるデジタル
帯域通過フィルターにより上記QPSK変調信号から不
要な周波数帯域の信号が取り去られる。この信号は,D
/A変換装置401によりアナログ信号に変換される。
D/A変換装置401から出力されたアナログ信号は,
低域通過フィルター402によりサンプリング周波数の
1/2以上の周波数成分が取り去られ,滑らかな信号に
変換される。そして,低域通過フィルター402の出力
はデジタル的に設定可能な可変減衰器403に入力さ
れ,適当な信号レベルまで減衰させられる。また,上記
占有周波数帯域可変型の復調装置111’,206’
は,可変減衰器404と,低域通過フィルター405
と,A/D変換装置406と,DSP407とを有す
る。
The occupied frequency band variable type modulation device 10
2 ′ and 208 ′ are DSP (Digital Signal Processo)
r) 400, a D / A converter 401 for converting a signal output from the DSP 400 into an analog signal, a low-pass filter 402, and a variable attenuator 403. The occupied frequency band variable modulators 102 ', 2
The transmission data input to 08 'is converted into a QPSK modulation signal by the DSP 400 as a digital signal. In addition, a signal in an unnecessary frequency band is removed from the QPSK modulated signal by a digital band-pass filter realized by the DSP 400. This signal is D
The signal is converted by the / A converter 401 into an analog signal.
The analog signal output from the D / A converter 401 is
The low-pass filter 402 removes a frequency component equal to or more than の of the sampling frequency, and converts the signal into a smooth signal. The output of the low-pass filter 402 is input to a digitally-settable variable attenuator 403, and is attenuated to an appropriate signal level. In addition, the occupied frequency band variable demodulators 111 'and 206'.
Is a variable attenuator 404 and a low-pass filter 405
, An A / D converter 406, and a DSP 407.

【0014】この占有周波数帯域可変型の復調装置11
1’,206’に入力された変調信号は,デジタル的に
設定可能な可変減衰器404によりA/D変換装置40
6が飽和しない信号レベルまで減衰させられる。減衰し
た信号から,低域通過フィルター405によりA/D変
換装置406のサンプリング周波数の1/2以上の周波
数成分が取り去られる。そして,A/D変換装置406
により変調信号は十分高いサンプリング周波数でデジタ
ル信号に変換される。このデジタル信号は,DSP40
7により実現されるデジタル帯域通過フィルターにより
必要な周波数帯域の信号が選択された後,DSP407
によりQPSK復調され,元の送信データに変換され
る。ここで,上記変調装置102’,208’,及び復
調装置111’,206’におけるDSP400,40
7に用いられる演算用の係数を切り替えることによっ
て,使用する周波数帯域を変化させることができる。ま
た,記憶媒体にQPSK方式やQAM方式等様々な変調
方式に対応する演算手順を格納しておき,状況に応じて
変調方式自体を変更することも可能である。尚,DSP
407を用いる復調装置111’,206’では,A/
D変換装置406での量子化誤差を最小にするために,
A/D変換装置406の入力での信号レベルを,A/D
変換装置406が飽和しない範囲で,できる限り大きく
設定する必要がある。このため,上記復調装置11
1’,206’では,デジタル帯域通過フィルタを通過
した信号の振幅がデジタル的に測定され,振幅がA/D
変換装置406の飽和するレベルの例えば1/4未満に
なれば,可変減衰器404の損失を3dB減少させて信
号レベルが2倍に設定され,振幅がA/D変換装置40
6の飽和するレベルの例えば3/4以上になれば,可変
減衰器404の損失を3dB増加させて信号レベルが1
/2に設定される。これらの設定演算は,上記DSP4
07により行われ,A/D変換装置の量子化誤差が最小
化される。また,上記DSP400,407には,図示
しない雨量計等の環境条件を計測する計測手段が接続さ
れ,当該子局100に対する占有周波数帯域が計測手段
の出力に応じて設定される。また,上記DSP400,
407には,図示しないディスプレイ等の出力装置も接
続され,各子局100や親局200で,現在の占有周波
数帯域や変調方式,通信速度等が表示される。
The occupied frequency band variable demodulator 11
The modulated signals input to 1 'and 206' are converted by an A / D converter 40 by a variable attenuator 404 which can be set digitally.
6 is attenuated to a signal level that does not saturate. From the attenuated signal, a low-pass filter 405 removes a frequency component equal to or more than の of the sampling frequency of the A / D converter 406. Then, the A / D converter 406
Thus, the modulation signal is converted into a digital signal at a sufficiently high sampling frequency. This digital signal is transmitted to the DSP 40
After the signal of the required frequency band is selected by the digital band-pass filter realized by
, And is converted to the original transmission data. Here, the DSPs 400 and 40 in the modulators 102 'and 208' and the demodulators 111 'and 206' are used.
The frequency band to be used can be changed by switching the calculation coefficient used in 7. Further, it is also possible to store calculation procedures corresponding to various modulation schemes such as the QPSK scheme and the QAM scheme in a storage medium and change the modulation scheme itself according to the situation. In addition, DSP
In the demodulators 111 ′ and 206 ′ using 407, A /
In order to minimize the quantization error in the D converter 406,
The signal level at the input of the A / D converter 406 is
It must be set as large as possible within a range where the converter 406 does not saturate. Therefore, the demodulation device 11
At 1 'and 206', the amplitude of the signal passing through the digital band-pass filter is digitally measured, and the amplitude is A / D
If the saturation level of the conversion device 406 becomes less than, for example, 1/4, the loss of the variable attenuator 404 is reduced by 3 dB, the signal level is set to double, and the amplitude of the A / D conversion device 40 is reduced.
6, the loss of the variable attenuator 404 is increased by 3 dB so that the signal level becomes 1
/ 2. These setting calculations are performed by the DSP4
07, the quantization error of the A / D converter is minimized. Further, a measuring means such as a rain gauge (not shown) for measuring environmental conditions is connected to the DSPs 400 and 407, and an occupied frequency band for the slave station 100 is set according to the output of the measuring means. Also, the above DSP400,
An output device such as a display (not shown) is also connected to 407, and the current occupied frequency band, modulation method, communication speed, and the like are displayed on each slave station 100 and master station 200.

【0015】次に,図4を参照して上記無線システムに
ついて,他の条件が同じで通信距離が異なる場合の占有
周波数帯域の設定について説明する。尚,簡単のため,
親局100と2つの子局A,及び子局Bとの間で通信が
行われるものとする。ここで,子局Aは親局200から
距離d1=500mのところにあり,子局Bは親局20
0から距離d2=1km,即ち子局Aより2倍離れたと
ころにあるものとする。また,子局Aの変調装置10
2’aと,対応する親局200の復調装置206’aの
占有周波数帯域幅BWaは上記DSP400,407に
よりBWa=BW1に設定されているものとする。この
場合,子局Aよりも親局200から2倍離れたところに
ある子局Bの占有周波数帯域幅BWbは,例えばBW1
の1/4倍の値,BW1/4に設定される。このように
子局Aと子局Bとについて占有周波数帯域を異ならせて
設定することにより,同じ送信電力で,図5(a)に示
す子局Aのパワー密度よりも,図5(b)に示すよう
に,子局Bのパワー密度を4倍の値に設定することがで
きる。尚,変調装置102’と復調装置206’の占有
周波数帯域は,使用者が予め子局100間で異ならせて
設定してもよいし,例えば占有周波数帯域の情報を含む
信号を無線回線を介して送り,この信号に合わせてDS
P400,407が占有周波数帯域を変更するようにし
てもよい。子局Bの距離減衰量d2は,子局Bの距離減
衰量d2の4倍であるから,占有周波数帯域幅BWbを
狭めることによって,子局Aと子局Bとで同じ信号対雑
音比S/Nが確保される。逆に,子局Bの占有周波数帯
域BWbを基準に設定すれば,同じ信号対雑音比S/N
を確保するには,距離減衰が1/4となるので,子局A
についての占有周波数帯域BWaはBWa=BWb×4
に設定される。即ち,通信速度を4倍に設定することが
できる。上記のように子局Aと子局Bとで占有周波数帯
域を異ならせることによって,遠いところにある子局と
の通信で用いられる通信波の送信電力を抑えることがで
き,全体としてコストを削減することができる。また,
近いところにある子局との通信では,占有周波数帯域を
広く設定して通信速度を高めることにより,電力の無駄
をなくすことができる。
Next, the setting of the occupied frequency band in the above wireless system when the other conditions are the same and the communication distances are different will be described with reference to FIG. For simplicity,
It is assumed that communication is performed between the master station 100 and the two slave stations A and B. Here, the slave station A is located at a distance d1 = 500 m from the master station 200, and the slave station B is located at the master station 20.
It is assumed that the distance d2 is 1 km from 0, that is, twice as far as the slave station A. Also, the modulation device 10 of the slave station A
It is assumed that the occupied frequency bandwidth BWa of 2′a and the corresponding demodulator 206′a of the master station 200 has been set to BWa = BW1 by the DSPs 400 and 407. In this case, the occupied frequency bandwidth BWb of the slave station B, which is twice as far as the master station 200 than the slave station A, is, for example, BW1.
Is set to BW1 / 4. By setting different occupied frequency bands for the slave station A and the slave station B in this way, the power density of the slave station A shown in FIG. As shown in (1), the power density of the slave station B can be set to a quadruple value. Note that the occupied frequency band of the modulation device 102 'and the demodulation device 206' may be set differently by the user in advance between the slave stations 100. For example, a signal including occupied frequency band information may be transmitted via a wireless line. And send DS according to this signal.
P400 and 407 may change the occupied frequency band. Since the distance attenuation d2 of the slave station B is four times the distance attenuation d2 of the slave station B, by narrowing the occupied frequency bandwidth BWb, the same signal-to-noise ratio S in the slave stations A and B is obtained. / N is secured. Conversely, if the occupied frequency band BWb of the slave station B is set as a reference, the same signal-to-noise ratio S / N
In order to secure, the distance attenuation is reduced to 1/4.
The occupied frequency band BWa for BWa = BWb × 4
Is set to That is, the communication speed can be set to four times. By making the occupied frequency bands different between the slave station A and the slave station B as described above, the transmission power of a communication wave used for communication with a slave station located at a distant place can be suppressed, and overall costs can be reduced. can do. Also,
In communication with a nearby slave station, waste of power can be eliminated by setting a wide occupied frequency band and increasing the communication speed.

【0016】次に,子局100と親局200との距離
や,その他の条件も同じで,降雨等の環境条件が異なる
場合について説明する。図6に示すように,降雨等の環
境条件の変化があると,降雨量と通信距離d1,d2に
比例した降雨減衰量R1,R2が,上記通信波に加わ
る。従来のように例えば20dB程度の最大の降雨減衰
量に合わせてシステムを設計すると,子局100側に最
大送信電力100mW程度の大きな増幅度を有する送信
用高出力固体増幅器を用いる必要が生じる。このような
降雨量は年間5分程度と,ごく少ない時間しか発生しな
い。もちろん,このような時に通信が途絶えてしまって
は問題となるが,通信速度が一時的に1/10程度下が
っても問題がない場合も多い。例えば,テレビ電話サー
ビスを提供する場合に,豪雨の日に全く通信不能となる
と保安上問題が生じるが,少なくとも音声による電話サ
ービスは使用可能であるという条件であれば,致命的な
欠陥にはなり難い。また,データ通信の場合でも,通信
が途絶えてしまうと大きな問題となるが,一時的に転送
速度が遅くなるという条件であれば,許容される場合も
多い。そこで,上記無線通信システムでは,上記計測手
段により計測された降雨量に基づいて上記DSP40
0,407によって通信波の占有周波数帯域が時間的に
異ならせて設定される。通常は占有周波数帯域を1MH
z,通信速度1.5Mbpsで使用するが,年間5分程
度と時間確率の低い降雨条件のときには,占有周波数帯
域を1/10の100kHzまで下げ,通信速度を15
0kbpsにまで下げることにすれば,同じ信号対雑音
比S/Nを維持したままで,送信電力を1/10に抑え
ることができる。このように,本実施の形態における無
線通信システムによれば,親局と各子局との距離や降雨
等の環境条件に応じて,通信波の占有周波数帯域が変更
され通信速度が調整されるため,通信の信頼性を維持し
ながら通信波の送信電力を抑えると共に無駄を無くし,
システム全体,特に子局側のコストを低減することがで
きる。
Next, a case where the distance between the slave station 100 and the master station 200 and other conditions are the same and environmental conditions such as rainfall are different will be described. As shown in FIG. 6, when environmental conditions such as rainfall change, rainfall attenuation amounts R1 and R2 proportional to the rainfall amount and the communication distances d1 and d2 are added to the communication wave. If the system is designed in accordance with the maximum rain attenuation of, for example, about 20 dB as in the related art, it is necessary to use a high-power transmission solid-state amplifier having a large amplification of about 100 mW at the slave station 100 side. Such rainfall occurs only for a very short time, about five minutes a year. Of course, if communication is interrupted in such a case, a problem occurs. However, there is often no problem even if the communication speed is temporarily reduced by about 1/10. For example, when providing a videophone service, a security problem will occur if communication is completely lost on a heavy rainy day, but it will be a fatal flaw, at least if the voice telephone service is available. hard. Also, in the case of data communication, if communication is interrupted, a serious problem will occur, but in many cases it is acceptable if the transfer speed is temporarily reduced. Therefore, in the wireless communication system, the DSP 40 is used based on the rainfall measured by the measuring means.
0,407, the occupied frequency band of the communication wave is set to be different in time. Usually the occupied frequency band is 1 MH
z, the communication speed is 1.5 Mbps. In rainy conditions with a low time probability of about 5 minutes per year, the occupied frequency band is reduced to 1/10 of 100 kHz and the communication speed is reduced to 15 Mbps.
If it is reduced to 0 kbps, the transmission power can be suppressed to 1/10 while maintaining the same signal-to-noise ratio S / N. As described above, according to the wireless communication system of the present embodiment, the occupied frequency band of the communication wave is changed and the communication speed is adjusted according to the distance between the master station and each slave station and environmental conditions such as rainfall. Therefore, the transmission power of the communication wave is reduced while maintaining the reliability of communication, and waste is eliminated.
It is possible to reduce the cost of the entire system, especially the slave station.

【0017】[0017]

【実施例】上記実施の形態では,通信距離や降雨等の環
境条件に応じて各子局100の占有周波数帯域を設定し
通信速度を調整していたが,信号対雑音比S/Nを定期
的にモニターし,該信号対雑音比S/Nに応じて各子局
100の占有周波数帯域を時間的に異ならせて設定する
ようにしてもよい。この信号対雑音比S/Nの監視は子
局100及び/又は親局200の受信端で監視される。
上記信号対雑音比S/Nの測定は,上記DSP及び可変
減衰器を用いて行うことが可能である。例えばDSPに
より実現されるデジタル帯域通過フィルタの周波数を,
信号の存在しない周波数に定期的に設定すると共に,可
変減衰器の損失を最小値まで減少させることによって雑
音の信号レベルを測定することが可能である。そして,
対象となる通信波を受信している時の可変減衰器の損失
及び対象となる通信波の信号レベルと比較すれば,上記
雑音の信号レベルと雑音測定時の損失とから信号対雑音
比を測定することが可能である。このように定期的に信
号対雑音比に合わせて占有周波数帯域を変更することに
より,細かな環境の変化に柔軟に対応したシステムを提
供することができる。また,信号対雑音比に応じて変更
された通信帯域を子局100や親局200で表示手段に
より表示しておけば,使用者は現在の無線回線状況を容
易に確認することができ,それに応じた運用を図ること
ができる。このような無線通信システムも本発明におけ
る無線通信システムの一例である。
In the above embodiment, the occupied frequency band of each slave station 100 is set and the communication speed is adjusted according to the environmental conditions such as the communication distance and rainfall. However, the signal-to-noise ratio S / N is periodically adjusted. It is also possible to set the frequency bands occupied by the slave stations 100 to be different in time according to the signal-to-noise ratio S / N. The monitoring of the signal-to-noise ratio S / N is monitored at the receiving end of the slave station 100 and / or the master station 200.
The measurement of the signal-to-noise ratio S / N can be performed using the DSP and the variable attenuator. For example, the frequency of a digital bandpass filter realized by a DSP is
It is possible to measure the signal level of the noise by periodically setting the frequency where no signal exists and reducing the loss of the variable attenuator to a minimum value. And
By comparing the loss of the variable attenuator when receiving the target communication wave and the signal level of the target communication wave, the signal-to-noise ratio can be measured from the signal level of the noise and the loss during noise measurement. It is possible to As described above, by periodically changing the occupied frequency band in accordance with the signal-to-noise ratio, it is possible to provide a system that can flexibly cope with minute environmental changes. Also, if the communication band changed according to the signal-to-noise ratio is displayed on the display at the slave station 100 or the master station 200, the user can easily check the current wireless line status, and It can be operated accordingly. Such a wireless communication system is also an example of the wireless communication system in the present invention.

【0018】また,通信速度を調整するために通信帯域
ではなく,変調方式自体を例えばQPSK変調方式から
16QAM変調方式に変更するようにしてもよい。この
ような変調方式の変更は,DSP400,407に搭載
される演算プログラムを切り替えることにより行うこと
が可能である。さらに,DSP400,407により通
信帯域と変調方式の両方を変更するようにしてもよい。
このような無線通信システムも本発明における無線通信
システムの一例である。また,上記実施の形態では,雨
量計等の計測手段により降雨量等の環境条件を計測して
通信帯域を時間的に異ならせて設定していたが,子局1
00間で定常的に降雨量の差が激しい場合等には,予め
上記降雨量の差に応じて子局100間で通信速度を異な
らせて設定するようにしてもよい。また,見通しが他の
子局100と較べて良くない等の理由により子局100
間で恒常的に信号対雑音比に差がある場合等も同様であ
る。このような無線通信システムも本発明における無線
通信システムの一例である。また,上記実施の形態で
は,子局100の変調装置102’と,対応する親局2
00の復調装置206’の占有周波数帯域を変更する,
即ち子局100から親局200に上記通信波を送信する
場合について本発明を適用したが,親局200から子局
100へ送信される通信波についても本発明を適用する
ことは可能である。この場合,親局200の変調装置2
08’と,子局100の復調装置111’の占有周波数
帯域を上記DSP400,407により変更すればよ
い。このような無線通信システムも本発明における無線
通信システムの一例である。
In order to adjust the communication speed, the modulation method itself may be changed from, for example, the QPSK modulation method to the 16QAM modulation method instead of the communication band. Such a change in the modulation method can be performed by switching the arithmetic program installed in the DSPs 400 and 407. Further, both the communication band and the modulation method may be changed by the DSPs 400 and 407.
Such a wireless communication system is also an example of the wireless communication system in the present invention. In the above-described embodiment, the environmental conditions such as rainfall are measured by measuring means such as a rain gauge and the communication band is set to be different in time.
For example, when the difference in the amount of rainfall is constantly large between 00 and 00, the communication speed between the slave stations 100 may be set to be different according to the difference in the amount of rainfall in advance. In addition, because the outlook is not good compared to other slave stations 100,
The same applies when there is a constant difference in signal-to-noise ratio between the two. Such a wireless communication system is also an example of the wireless communication system in the present invention. In the above embodiment, the modulation device 102 'of the slave station 100 and the corresponding master station 2
00 to change the occupied frequency band of the demodulation device 206 ′,
That is, the present invention has been applied to the case where the communication wave is transmitted from the slave station 100 to the master station 200. However, the present invention can also be applied to a communication wave transmitted from the master station 200 to the slave station 100. In this case, the modulation device 2 of the master station 200
08 'and the occupied frequency band of the demodulator 111' of the slave station 100 may be changed by the DSPs 400 and 407. Such a wireless communication system is also an example of the wireless communication system in the present invention.

【0019】[0019]

【発明の効果】上記のように,請求項1〜10のいずれ
か1項に記載の無線通信システムによれば,例えば親局
と子局との間の距離や降雨等の環境条件に応じて,各子
局と親局間での通信波の通信帯域や変調方式が調整さ
れ,子局間及び/又は時間的に通信速度が異なって設定
されるため,通信の信頼性を維持しながら通信波の送信
電力を抑えると共に無駄を無くし,システム全体のコス
トを低減することが可能となる。
As described above, according to the wireless communication system according to any one of the first to tenth aspects, for example, the distance between the master station and the slave station and the environmental conditions such as rainfall can be adjusted. Since the communication band and modulation method of the communication wave between each slave station and the master station are adjusted, and the communication speed is set differently between the slave stations and / or in time, communication is maintained while maintaining communication reliability. It is possible to suppress the transmission power of the wave and eliminate waste, thereby reducing the cost of the entire system.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施の形態に係る無線通信システ
ムの概略構成を示す図。
FIG. 1 is a diagram showing a schematic configuration of a wireless communication system according to an embodiment of the present invention.

【図2】 上記無線通信システムにおける変調装置の機
能ブロック図。
FIG. 2 is a functional block diagram of a modulation device in the wireless communication system.

【図3】 上記無線通信システムにおける復調装置の機
能ブロック図。
FIG. 3 is a functional block diagram of a demodulation device in the wireless communication system.

【図4】 距離減衰量を説明するための図。FIG. 4 is a diagram for explaining distance attenuation.

【図5】 占有周波数帯域変更によるパワー密度の変化
を示す図。
FIG. 5 is a diagram showing a change in power density due to a change in occupied frequency band.

【図6】 降雨減衰量を説明するための図。FIG. 6 is a view for explaining rain attenuation.

【図7】 ローカル無線網の一例を示す図。FIG. 7 illustrates an example of a local wireless network.

【図8】 従来の無線通信システムの一例を示す図。FIG. 8 is a diagram showing an example of a conventional wireless communication system.

【符号の説明】[Explanation of symbols]

100…子局 102’,206’…変調装置 111’,208’…復調装置 200…親局 100 slave station 102 ', 206' modulation device 111 ', 208' demodulation device 200 master station

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 親局と複数の子局とを結ぶ無線通信シス
テムにおいて,親局と子局との間で通信される通信波の
通信速度を子局間及び/又は時間的に異ならせて設定し
てなることを特徴とする無線通信システム。
In a wireless communication system connecting a master station and a plurality of slave stations, the communication speed of a communication wave communicated between the master station and the slave stations is varied between the slave stations and / or in time. A wireless communication system characterized by being set.
【請求項2】 上記通信波が子局から親局へ送信される
信号である請求項1に記載の無線通信システム。
2. The wireless communication system according to claim 1, wherein the communication wave is a signal transmitted from a slave station to a master station.
【請求項3】 上記通信波が親局から子局へ送信される
信号である請求項1に記載の無線通信システム。
3. The wireless communication system according to claim 1, wherein the communication wave is a signal transmitted from a master station to a slave station.
【請求項4】 上記通信速度が,上記通信波の通信帯域
を変更することによって調整されてなる請求項1〜3の
いずれか1項に記載の無線通信システム。
4. The wireless communication system according to claim 1, wherein the communication speed is adjusted by changing a communication band of the communication wave.
【請求項5】 上記通信速度が,上記通信波の変調方式
を変更することによって調整されてなる請求項1〜4の
いずれか1項に記載の無線通信システム。
5. The wireless communication system according to claim 1, wherein the communication speed is adjusted by changing a modulation method of the communication wave.
【請求項6】 上記通信速度が,親局と各子局との間の
距離に応じて各子局毎にそれぞれ設定されてなる請求項
1〜5のいずれか1項に記載の無線通信システム。
6. The wireless communication system according to claim 1, wherein the communication speed is set for each slave station according to a distance between the master station and each slave station. .
【請求項7】 上記通信速度が,上記通信波が通信され
る環境条件に応じて設定されてなる請求項1〜5のいず
れか1項に記載の無線通信システム。
7. The wireless communication system according to claim 1, wherein the communication speed is set according to an environmental condition in which the communication wave is communicated.
【請求項8】 上記通信速度が,上記通信波の信号対雑
音比に応じて設定されてなる請求項1〜5のいずれか1
項に記載の無線通信システム。
8. The communication system according to claim 1, wherein the communication speed is set according to a signal-to-noise ratio of the communication wave.
Item 14. The wireless communication system according to Item 1.
【請求項9】 上記通信波の信号対雑音比が上記親局側
の受信端で監視されてなる請求項8に記載の無線通信シ
ステム。
9. The wireless communication system according to claim 8, wherein a signal-to-noise ratio of the communication wave is monitored at a receiving end of the master station.
【請求項10】 上記通信波の信号対雑音比が上記子局
側の受信端で監視されてなる請求項8に記載の無線通信
システム。
10. The wireless communication system according to claim 8, wherein a signal-to-noise ratio of the communication wave is monitored at a receiving end of the slave station.
JP31314197A 1997-11-14 1997-11-14 Radio communication system Pending JPH11150503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31314197A JPH11150503A (en) 1997-11-14 1997-11-14 Radio communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31314197A JPH11150503A (en) 1997-11-14 1997-11-14 Radio communication system

Publications (1)

Publication Number Publication Date
JPH11150503A true JPH11150503A (en) 1999-06-02

Family

ID=18037601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31314197A Pending JPH11150503A (en) 1997-11-14 1997-11-14 Radio communication system

Country Status (1)

Country Link
JP (1) JPH11150503A (en)

Similar Documents

Publication Publication Date Title
EP0969602B1 (en) Dual band transceiver
US5953670A (en) Arrangement for providing cellular communication via a CATV network
JP2520530B2 (en) Microcell communication station, method of radio signal processing in microcell communication station, microcellular communication system, and cellular communication base station
US4004224A (en) Method for fade correction of communication transmission over directional radio paths
EP0442617A1 (en) Apparatus and method for expanding cellular system capacity
US20070019959A1 (en) Apparatus and method for transferring signals between a fiber network and a wireless network antenna
US20070133493A1 (en) Radio communication device
EP0468688B1 (en) Method and apparatus for providing wireless communications between remote locations
US7110715B2 (en) Wireless communication network including an adaptive wireless communication device and a method of operating the same
EP0714218A1 (en) Digital signal modulation in an optical fibre of a microcellular mobile communication system
JP2003318795A (en) Radio apparatus
JP3601943B2 (en) Wireless CATV video signal transmission system
CN104682994A (en) Radio frequency chip and system for wireless local area network and broadcast integrated transmission
US6873860B2 (en) Base transceiver station with distortion compensation
KR100375318B1 (en) System of mobile communication for in-building using frequence transfer method
JPH11150503A (en) Radio communication system
CA2285198C (en) Parallel transmission method
KR100377935B1 (en) Sysyem for monitoring adjacent channel power in a wireless base station
JPH02192231A (en) Transmission power control system
KR100627800B1 (en) System, apparatus and method for reapeating a digital data
CN201054595Y (en) CDMA RF optical transmission module
JP2885143B2 (en) Optical communication system
JP2003264470A (en) Radio communication system and radio transmitter
JP3700337B2 (en) Mobile phone equipment
JP2000031883A (en) Radio communication system

Legal Events

Date Code Title Description
A02 Decision of refusal

Effective date: 20040406

Free format text: JAPANESE INTERMEDIATE CODE: A02