JPH11150265A - Semiconductor device - Google Patents
Semiconductor deviceInfo
- Publication number
- JPH11150265A JPH11150265A JP31544397A JP31544397A JPH11150265A JP H11150265 A JPH11150265 A JP H11150265A JP 31544397 A JP31544397 A JP 31544397A JP 31544397 A JP31544397 A JP 31544397A JP H11150265 A JPH11150265 A JP H11150265A
- Authority
- JP
- Japan
- Prior art keywords
- gate electrode
- semiconductor substrate
- region
- drain region
- source region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 81
- 239000000758 substrate Substances 0.000 claims abstract description 37
- 230000005669 field effect Effects 0.000 claims description 7
- 230000010354 integration Effects 0.000 abstract description 7
- 238000000926 separation method Methods 0.000 abstract 1
- 238000009792 diffusion process Methods 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 8
- 239000012212 insulator Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000002955 isolation Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66787—Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0684—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
- H01L29/0692—Surface layout
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42356—Disposition, e.g. buried gate electrode
- H01L29/4236—Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、高集積化に寄与
する半導体装置に関する。The present invention relates to a semiconductor device that contributes to high integration.
【0002】[0002]
【従来の技術】近年、半導体集積回路は回路の主な構成
要素となる電界効果トランジスタ、例えばMOSFET
等の半導体装置の微細化により、高密度集積化の傾向を
実現してきた。特にMOSFETの半導体装置は、主と
してゲート電極、ソース電極、ドレイン電極という3つ
の電極部を形成するだけでよく、それぞれの領域を平面
的に縮小することにより、装置全体の微細化、すなわち
高集積化を図ってきた。2. Description of the Related Art In recent years, a semiconductor integrated circuit has become a main component of the circuit, for example, a field effect transistor such as a MOSFET.
The trend of high-density integration has been realized by miniaturization of semiconductor devices. In particular, a MOSFET semiconductor device only needs to mainly form three electrode portions, that is, a gate electrode, a source electrode, and a drain electrode. By reducing each of the regions in a planar manner, the overall device can be miniaturized, that is, highly integrated. Has been planned.
【0003】しかしながら、従来の半導体装置では、ゲ
ート電極が半導体基板上に平面的に形成されるため、ゲ
ート電極の幅に律速される形で占有面積の低減には限界
があった。すなわち、トランジスタの駆動電流をある程
度確保するためには、ゲート幅をある程度大きくとる必
要があり、そのゲート幅は、ゲート長や、ゲート幅方向
と垂直方向のソース/ドレイン拡散層のディメンジョン
より大きくなる傾向にあった。これにより、トランジス
タのサイズはゲート幅の方向に大きくなり、その大きさ
を律速要因としてそれ以上の微細化には限界があった。However, in the conventional semiconductor device, since the gate electrode is formed in a plane on the semiconductor substrate, there is a limit in reducing the occupied area in a manner limited by the width of the gate electrode. That is, in order to secure a certain amount of drive current for the transistor, it is necessary to increase the gate width to some extent. The gate width is larger than the gate length or the dimension of the source / drain diffusion layer in the direction perpendicular to the gate width direction. There was a tendency. As a result, the size of the transistor increases in the direction of the gate width, and there is a limit to further miniaturization due to the size-limiting factor.
【0004】[0004]
【発明が解決しようとする課題】以上説明したように、
従来の電界効果トランジスタの半導体装置にあっては、
ゲート電極が半導体基板上に平面的に形成され、トラン
ジスタの駆動力に応じてゲート電極の幅が半導体基板の
表面に対して平行に増減していた。このため、半導体装
置の製造プロセス技術が飛躍的に進歩したとしても、ト
ランジスタの構造上の観点から半導体基板の表面方向に
対する平面的なトランジスタサイズの縮小化には限界が
あった。これは、半導体集積回路を高集積化する上での
障害となり、半導体集積回路全体としての高集積化が困
難になるという不具合を招いていた。As described above,
In a conventional field effect transistor semiconductor device,
The gate electrode is formed planarly on the semiconductor substrate, and the width of the gate electrode increases and decreases in parallel with the surface of the semiconductor substrate according to the driving force of the transistor. For this reason, even if the manufacturing process technology of the semiconductor device has advanced remarkably, there is a limit in reducing the planar transistor size in the surface direction of the semiconductor substrate from the viewpoint of the structure of the transistor. This has been an obstacle in increasing the degree of integration of the semiconductor integrated circuit, and has caused a problem that it is difficult to achieve higher integration of the entire semiconductor integrated circuit.
【0005】そこで、この発明は、上記に鑑みてなされ
たものであり、その目的とするところは、微細化を図り
高集積化を達成し得る半導体装置を提供することにあ
る。Accordingly, the present invention has been made in view of the above, and it is an object of the present invention to provide a semiconductor device which can be miniaturized to achieve high integration.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するため
に、請求項1記載の発明は、接合型電界効果トランジス
タの半導体装置であって、半導体基板中に形成されたソ
ース領域とドレイン領域に挟まれた前記半導体基板中
に、前記半導体基板の表面方向に対して垂直方向にゲー
ト電極が形成され、ソース領域とドレイン領域間を流れ
る電流のチャネル領域が前記ゲート電極に沿って前記半
導体基板の表面に対して垂直方向に形成されてなること
を特徴とする。According to a first aspect of the present invention, there is provided a semiconductor device of a junction type field effect transistor, wherein a source region and a drain region formed in a semiconductor substrate are provided. A gate electrode is formed in the semiconductor substrate sandwiched therebetween in a direction perpendicular to a surface direction of the semiconductor substrate, and a channel region of a current flowing between a source region and a drain region is formed along the gate electrode. It is characterized by being formed in a direction perpendicular to the surface.
【0007】請求項2記載の発明は、接合型電界効果ト
ランジスタの半導体装置であって、多層配線構造におけ
る配線層間に形成された半導体層中に形成されたソース
領域とドレイン領域に挟まれた前記半導体層中に、前記
半導体層の表面方向に対して垂直方向にゲート電極が形
成され、ソース領域とドレイン領域間を流れる電流のチ
ャネル領域が前記ゲート電極に沿って前記半導体層の表
面に対して垂直方向に形成されてなることを特徴とす
る。According to a second aspect of the present invention, there is provided a semiconductor device of a junction field effect transistor, wherein the semiconductor device is sandwiched between a source region and a drain region formed in a semiconductor layer formed between wiring layers in a multilayer wiring structure. A gate electrode is formed in the semiconductor layer in a direction perpendicular to a surface direction of the semiconductor layer, and a channel region of a current flowing between a source region and a drain region extends along the gate electrode with respect to the surface of the semiconductor layer. It is characterized by being formed in the vertical direction.
【0008】請求項3記載の発明は、請求項1又は2記
載の半導体装置において、前記ソース領域又は前記ドレ
イン領域は、前記半導体基板又は前記半導体層の表面方
向の断面が正多角形又は円形に形成され、前記ゲート電
極は前記ソース領域又はドレイン領域の正多角形の外周
辺又は円形の外周に沿って複数形成され、ゲート電極が
分割された1つのトランジスタを形成してなることを特
徴とする。According to a third aspect of the present invention, in the semiconductor device according to the first or second aspect, the source region or the drain region has a regular polygonal or circular cross section in a surface direction of the semiconductor substrate or the semiconductor layer. A plurality of the gate electrodes are formed along the outer periphery of a regular polygon or the outer periphery of a circle of the source region or the drain region, and the gate electrode is formed as one divided transistor. .
【0009】[0009]
【発明の実施の形態】以下、図面を用いてこの発明の実
施の形態を説明する。Embodiments of the present invention will be described below with reference to the drawings.
【0010】図1は請求項1記載の発明の一実施形態に
係わる半導体装置の構成を示す図であり、同図(A)は
正面図、同図(B)は同図(A)のA−A線に沿った断
面図である。FIG. 1 is a diagram showing a configuration of a semiconductor device according to an embodiment of the first aspect of the present invention. FIG. 1A is a front view, and FIG. It is sectional drawing which followed the -A line.
【0011】図1において、この実施形態の半導体装置
は、金属又は半導体からなるゲート電極と半導体との間
に酸化物や窒化物等の絶縁物を挟んだ接合型の電界効果
トランジスタ(FET)であって、半導体基板1中にソ
ース領域2となる拡散層とドレイン領域3となる拡散層
が、所定の距離だけ離れて半導体基板1の表面方向(図
1の左右方向)に対して垂直な方向(図1(B)の上下
方向,深さ方向)に形成されている。また、ソース領域
2とドレイン領域3との間の半導体基板1中には、ゲー
ト酸化膜4を介して半導体基板1の表面方向に対して垂
直方向にゲート電極5が形成されている。したがって、
ソース領域2とドレイン領域3間を流れる電流のチャネ
ル領域は、ゲート電極5に沿って半導体基板1の表面方
向に対して垂直方向に形成され、図1(A)においてゲ
ート電極5の上方辺側と下方辺側の半導体基板1中の双
方にチャネル領域が形成されることになる。また、これ
らの領域を取り囲むように半導体基板1中にこのトラン
ジスタと他の領域を分離する素子分離領域となる絶縁体
層6が形成されている。In FIG. 1, the semiconductor device of this embodiment is a junction type field effect transistor (FET) in which an insulator such as an oxide or a nitride is interposed between a gate electrode made of a metal or a semiconductor and a semiconductor. The direction in which the diffusion layer serving as the source region 2 and the diffusion layer serving as the drain region 3 are separated by a predetermined distance in the semiconductor substrate 1 and are perpendicular to the surface direction of the semiconductor substrate 1 (the left-right direction in FIG. 1). (The vertical direction and the depth direction in FIG. 1B). In the semiconductor substrate 1 between the source region 2 and the drain region 3, a gate electrode 5 is formed in a direction perpendicular to the surface direction of the semiconductor substrate 1 via a gate oxide film 4. Therefore,
The channel region of the current flowing between the source region 2 and the drain region 3 is formed along the gate electrode 5 in a direction perpendicular to the surface direction of the semiconductor substrate 1, and the upper side of the gate electrode 5 in FIG. Thus, a channel region is formed on both the semiconductor substrate 1 and the lower side. An insulator layer 6 serving as an element isolation region for isolating this transistor from other regions is formed in the semiconductor substrate 1 so as to surround these regions.
【0012】次に、このような構造を製造する製造方法
の一実施形態を説明する。Next, an embodiment of a manufacturing method for manufacturing such a structure will be described.
【0013】まず、従来から採用されている方法で素子
分離領域となる絶縁体層6を半導体基板1中の深さ方向
に形成する。次に、高加速インプラによりソース領域2
及びドレイン領域3となる深い拡散層を形成する。な
お、高加速インプラでは図1に示すようなシャープでか
つ深い拡散層を形成することが難しい場合には、半導体
基板1を開口した後CVD法により堆積とドーピングを
同時に行いドープされた例えばポリシリコンをデポし、
最後にCMP法により不要部分を除去するようにしても
よい。このようにしてソース領域2ならびにドレイン領
域3の拡散層が形成された後、ゲート電極5となる電極
材を埋め込むための溝を半導体基板1中に開口形成す
る。開口後、溝の側面の半導体基板1を少量酸化し、開
口された溝の側面にゲート酸化膜4を形成する。最後
に、ゲート電極材となる例えばドープされたポリシリコ
ンもしくは金属を溝に埋め込みゲート電極5を形成して
この実施形態の半導体装置は完成する。なお、各領域か
らの引き出し線やパッシベーション膜等は従来から採用
されている方法により形成される。また、ゲート長が短
くなってきた時にはゲート電極5へのコンタクトの形成
が難しくなると思われるが、この場合には、従来から使
われている埋め込み型の引き出し線を用いてゲート電極
5に引き出し線を形成すればよい。First, an insulator layer 6 serving as an element isolation region is formed in a depth direction in the semiconductor substrate 1 by a conventionally employed method. Next, the source region 2 is formed by high acceleration implantation.
And a deep diffusion layer to be the drain region 3 is formed. In the case where it is difficult to form a sharp and deep diffusion layer as shown in FIG. 1 with a high-acceleration implant, if the semiconductor substrate 1 is opened, deposition and doping are performed simultaneously by the CVD method, for example, doped polysilicon. Depot,
Finally, unnecessary portions may be removed by a CMP method. After the diffusion layers of the source region 2 and the drain region 3 are formed in this manner, an opening is formed in the semiconductor substrate 1 for embedding an electrode material to be the gate electrode 5. After the opening, a small amount of the semiconductor substrate 1 on the side surface of the groove is oxidized, and a gate oxide film 4 is formed on the side surface of the opened groove. Finally, for example, doped polysilicon or metal serving as a gate electrode material is buried in the trench to form the gate electrode 5, and the semiconductor device of this embodiment is completed. Note that the lead lines from each region, the passivation film, and the like are formed by a conventionally used method. Also, when the gate length becomes shorter, it is considered that it is difficult to form a contact to the gate electrode 5. In this case, however, the lead line is connected to the gate electrode 5 by using a conventionally used buried lead line. May be formed.
【0014】このような製造方法によって得られる図1
に示す構造においては、面積的には以下に説明するよう
な効果があると考察される。例えば、近い将来のゲート
アレイで使用されるトランジスタのトランジスタ幅は5
μm程度であると推定される。したがって、このトラン
ジスタと同等の性能を得るために図1に示す構造のトラ
ンジスタにおいては、ゲート電極5の両側に電流が流れ
てチャネル領域が形成されるため、2.5μm程度の深
さのゲート電極を形成すればよいことになる。そこで、
図1において、ソース横方向(図1(A)で左右方向)
長、ゲート長、ドレイン横方向長、素子分離幅を現在の
製造プロセスにおいて製造可能な妥当な値である例えば
0.4μm程度とし、ソース領域2及びドレイン領域3
の縦方向(図1(A)で上下方向)の長さを0.8μm
程度とすると、図1に示す構造のトランジスタの占有面
積は3.2μm2 程度と試算される。一方、ゲート電極
が絶縁膜を介して半導体基板上に形成された従来型のト
ランジスタでは、ゲート幅が5μm程度であるので、ゲ
ート幅方向の長辺が5.8μm程度となり、ゲート長方
向の短辺は図1と同じ2μm程度となり、占有面積は1
1.6μm2 程度と試算される。この結果、図1に示す
構造を採用したこの実施形態のトランジスタは従来に比
べて約(1/3.6)倍程度の占有面積で同等の性能を
得ることができる。したがって、この実施形態では、従
来に比べて占有面積を73%程度縮小化することが可能
となり、占有面積を格段に低減することができる。FIG. 1 obtained by such a manufacturing method.
It is considered that the structure shown in FIG. 1 has the following effects in terms of area. For example, transistors used in gate arrays in the near future will have a transistor width of 5
It is estimated to be about μm. Therefore, in the transistor having the structure shown in FIG. 1 in order to obtain the same performance as this transistor, a current flows on both sides of the gate electrode 5 to form a channel region. Should be formed. Therefore,
In FIG. 1, the horizontal direction of the source (the horizontal direction in FIG. 1A)
The length, the gate length, the lateral length in the drain, and the element isolation width are set to reasonable values that can be manufactured in the current manufacturing process, for example, about 0.4 μm, and the source region 2 and the drain region 3
0.8 μm in the vertical direction (vertical direction in FIG. 1A)
In this case, the area occupied by the transistor having the structure shown in FIG. 1 is estimated to be about 3.2 μm 2 . On the other hand, in a conventional transistor in which a gate electrode is formed on a semiconductor substrate with an insulating film interposed therebetween, the gate width is about 5 μm, so the long side in the gate width direction is about 5.8 μm, The side is about 2 μm as in FIG. 1, and the occupied area is 1
It is estimated to be about 1.6 μm 2 . As a result, the transistor of this embodiment employing the structure shown in FIG. 1 can obtain the same performance with an occupied area of about (1 / 3.6) times that of the conventional transistor. Therefore, in this embodiment, the occupied area can be reduced by about 73% as compared with the conventional case, and the occupied area can be significantly reduced.
【0015】なお、上記構造の半導体装置は半導体基板
中に形成されているが、例えば多層配線構造における配
線層間に絶縁膜に挟まれて形成された半導体中に形成す
ることも可能であり、このような場合であっても上記と
同様の効果を得ることができる。Although the semiconductor device having the above structure is formed in a semiconductor substrate, it can be formed in a semiconductor formed between insulating layers between wiring layers in a multilayer wiring structure. Even in such a case, the same effect as described above can be obtained.
【0016】図2は請求項3記載の発明の一実施形態に
係わる半導体装置の構成を示す正面図である。FIG. 2 is a front view showing the structure of a semiconductor device according to an embodiment of the present invention.
【0017】この実施形態の特徴とするところは、図1
に示す構造のトランジスタを正多角形例えば最密充填型
の正六角形状に配列して1つのトランジスタを構成した
ことにある。図2において、六角形に形成されたソース
拡散層7の外周辺に沿って6個のゲート電極8が配列さ
れ、ゲート電極8の外側をドレイン拡散層9が六角形状
に取り囲み、ドレイン拡散層9の外周を絶縁体層10が
取り囲むように形成されている。なお、トランジスタを
配列する形状は最密充填型の正六角形に限ることはな
く、正多角形あるいは円形もしくは直線状に配列しても
よい。The feature of this embodiment is shown in FIG.
Are arranged in a regular polygon, for example, a close-packed regular hexagon, to form one transistor. In FIG. 2, six gate electrodes 8 are arranged along the outer periphery of the source diffusion layer 7 formed in a hexagon, and a drain diffusion layer 9 surrounds the outside of the gate electrode 8 in a hexagonal shape. Is formed so as to surround the outer periphery thereof. Note that the shape in which the transistors are arranged is not limited to a close-packed regular hexagon, but may be a regular polygon, a circle, or a straight line.
【0018】図1に示す構造の埋め込み型のゲート電極
を採用したトランジスタにあっては、ゲート電極を半導
体基板上に形成した従来の構造に比べてゲート幅のサイ
ズに制約が生じる可能性が高くなる。すなわち、様々な
ゲート幅(深さ)のゲート電極を形成することは製造方
法の観点からは難しいので、ゲート幅をある幾つかのサ
イズに限定したほうが製造が容易となる。しかしなが
ら、ゲート幅が限定されると、トランジスタの駆動力も
限られ回路を構築する際に制約が生じることになる。そ
こで、図2に示すようにゲート電極を分割して1つのト
ランジスタを構成することにより、幾つかの限られたゲ
ート幅のトランジスタからゲート幅がより大きなトラン
ジスタを形成することができる。図2に示す構造におい
て、例えばゲートの深さ(ゲート幅)を2.5μm程度
とすると、12箇所のチャネルが存在するのでゲート幅
が30μm程度の従来型のトランジスタと同等の駆動力
を得ることが可能となる。In the transistor employing the buried gate electrode having the structure shown in FIG. 1, there is a high possibility that the size of the gate width is restricted as compared with the conventional structure in which the gate electrode is formed on a semiconductor substrate. Become. That is, since it is difficult to form gate electrodes having various gate widths (depths) from the viewpoint of the manufacturing method, manufacturing is easier if the gate width is limited to a certain size. However, when the gate width is limited, the driving force of the transistor is also limited, and there is a restriction when constructing a circuit. Therefore, by dividing the gate electrode to form one transistor as shown in FIG. 2, a transistor having a larger gate width can be formed from several transistors having a limited gate width. In the structure shown in FIG. 2, for example, when the gate depth (gate width) is about 2.5 μm, since there are 12 channels, a driving force equivalent to that of a conventional transistor having a gate width of about 30 μm is obtained. Becomes possible.
【0019】この場合に、この実施形態と従来のトラン
ジスタの占有面積を比較すると、図2に示す構造におい
て、前記図1に示す場合と同様の製造条件を想定し、最
密充填型の正六角形のソース領域7の中心から素子分離
領域の絶縁体層9の外周に垂線を引き各領域の長さをそ
れぞれ0.4μm程度とすると、占有面積は約8.9μ
m2 程度と試算される。一方、従来例では、ゲート電極
が6分割されて1つのゲート電極のゲート幅が5μm程
度の場合を想定し、ソース/ドレイン領域の拡散層の短
辺、及びゲート長をそれぞれ0.4μm程度とすると、
トランジスタの形成領域は6μm×5.8μmの辺を持
つ長方形となり、占有面積は34.8μm2 程度とな
る。この結果、この実施形態の構成によれば従来例に比
べて1/4程度の占有面積で従来と同等の性能を得るこ
とが可能となり、従来に比べて格段に微細化を図ること
ができる。In this case, comparing the occupied area of this embodiment with that of a conventional transistor, the structure shown in FIG. 2 assumes the same manufacturing conditions as those shown in FIG. When a perpendicular line is drawn from the center of the source region 7 to the outer periphery of the insulator layer 9 in the element isolation region and the length of each region is about 0.4 μm, the occupied area is about 8.9 μm.
m 2 about to be estimated. On the other hand, in the conventional example, assuming that the gate electrode is divided into six and the gate width of one gate electrode is about 5 μm, the short side of the diffusion layer of the source / drain region and the gate length are each about 0.4 μm. Then
The transistor formation region is a rectangle having sides of 6 μm × 5.8 μm, and the occupied area is about 34.8 μm 2 . As a result, according to the configuration of this embodiment, it is possible to obtain the same performance as the conventional one with an occupied area of about 程度 of that of the conventional example, and it is possible to achieve a much smaller size than the conventional one.
【0020】図3は請求項3記載の発明の他の実施形態
に係わる半導体装置の構成を示す正面図である。FIG. 3 is a front view showing the structure of a semiconductor device according to another embodiment of the present invention.
【0021】図3において、この実施形態の特徴とする
ところは、前記図2に示す実施形態のトランジスタ11
を隙間なく規則的に配列して半導体装置を構築するよう
にしたことにある。このような実施形態にあっては、1
つのトランジスタの平面的形状が最密充填の配列が可能
な正六角形となっているので、ゲートアレイ等の規則的
なパターンの集積回路を高密度に配置という目的には好
適である。In FIG. 3, the feature of this embodiment is that the transistor 11 of the embodiment shown in FIG.
Are arranged regularly without gaps to construct a semiconductor device. In such an embodiment, 1
Since the planar shape of the two transistors is a regular hexagon in which close-packed arrangement is possible, it is suitable for the purpose of densely arranging integrated circuits having a regular pattern such as a gate array.
【0022】[0022]
【発明の効果】以上説明したように、この発明によれ
ば、ゲート電極を半導体基板表面と垂直方向に半導体基
板中に形成してチャネル領域を半導体基板の表面と垂直
方向に形成するようにしたので、従来に比べて格段に微
細化したトランジスタを提供することが可能となり、こ
のトランジスタを用いて回路を構築することにより半導
体装置の高集積化を達成することができる。As described above, according to the present invention, the gate electrode is formed in the semiconductor substrate in a direction perpendicular to the surface of the semiconductor substrate, and the channel region is formed in the direction perpendicular to the surface of the semiconductor substrate. Therefore, it is possible to provide a transistor which is significantly finer than in the past, and a high integration of a semiconductor device can be achieved by constructing a circuit using the transistor.
【図1】請求項1記載の発明の一実施形態に係わる半導
体装置の構成を示す図である。FIG. 1 is a diagram showing a configuration of a semiconductor device according to an embodiment of the present invention.
【図2】請求項3記載の発明の一実施形態に係わる半導
体装置の構成を示す図である。FIG. 2 is a diagram showing a configuration of a semiconductor device according to an embodiment of the invention described in claim 3;
【図3】請求項3記載の発明の他の実施形態に係わる半
導体装置の構成を示す図である。FIG. 3 is a diagram showing a configuration of a semiconductor device according to another embodiment of the invention described in claim 3;
1 半導体基板 2,7 ソース領域 3,9 ドレイン領域 4 ゲート酸化膜 5,8 ゲート電極 6,10 絶縁体層 11 トランジスタ DESCRIPTION OF SYMBOLS 1 Semiconductor substrate 2, 7 Source region 3, 9 Drain region 4 Gate oxide film 5, 8 Gate electrode 6, 10 Insulator layer 11 Transistor
Claims (3)
置であって、 半導体基板中に形成されたソース領域とドレイン領域に
挟まれた前記半導体基板中に、前記半導体基板の表面方
向に対して垂直方向にゲート電極が形成され、ソース領
域とドレイン領域間を流れる電流のチャネル領域が前記
ゲート電極に沿って前記半導体基板の表面に対して垂直
方向に形成されてなることを特徴とする半導体装置。1. A semiconductor device of a junction field effect transistor, comprising: a semiconductor device sandwiched between a source region and a drain region formed in a semiconductor substrate; And a channel region for current flowing between the source region and the drain region is formed along the gate electrode in a direction perpendicular to the surface of the semiconductor substrate.
置であって、 多層配線構造における配線層間に形成された半導体層中
に形成されたソース領域とドレイン領域に挟まれた前記
半導体層中に、前記半導体層の表面方向に対して垂直方
向にゲート電極が形成され、ソース領域とドレイン領域
間を流れる電流のチャネル領域が前記ゲート電極に沿っ
て前記半導体層の表面に対して垂直方向に形成されてな
ることを特徴とする半導体装置。2. A semiconductor device of a junction field effect transistor, wherein said semiconductor layer sandwiched between a source region and a drain region formed in a semiconductor layer formed between wiring layers in a multilayer wiring structure, A gate electrode is formed in a direction perpendicular to a surface direction of the semiconductor layer, and a channel region of a current flowing between a source region and a drain region is formed in a direction perpendicular to the surface of the semiconductor layer along the gate electrode. A semiconductor device, comprising:
は、前記半導体基板又は前記半導体層の表面方向の断面
が正多角形又は円形に形成され、前記ゲート電極は前記
ソース領域又はドレイン領域の正多角形の外周辺又は円
形の外周に沿って複数形成され、ゲート電極が分割され
た1つのトランジスタを形成してなることを特徴とする
請求項1又は2記載の半導体装置。3. The source region or the drain region has a regular polygonal or circular cross section in the surface direction of the semiconductor substrate or the semiconductor layer, and the gate electrode has a regular polygonal shape of the source region or the drain region. 3. The semiconductor device according to claim 1, wherein a plurality of transistors are formed along the outer periphery or the outer periphery of the circle, and the gate electrode is divided into one transistor. 4.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31544397A JPH11150265A (en) | 1997-11-17 | 1997-11-17 | Semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31544397A JPH11150265A (en) | 1997-11-17 | 1997-11-17 | Semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11150265A true JPH11150265A (en) | 1999-06-02 |
Family
ID=18065439
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31544397A Pending JPH11150265A (en) | 1997-11-17 | 1997-11-17 | Semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11150265A (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100357303B1 (en) * | 1999-12-28 | 2002-10-19 | 주식회사 하이닉스반도체 | Manufacturing method of semiconductor device |
US6525375B1 (en) | 1999-10-19 | 2003-02-25 | Denso Corporation | Semiconductor device having trench filled up with gate electrode |
JP2003086795A (en) * | 2001-09-11 | 2003-03-20 | Sharp Corp | Semiconductor device, manufacturing method therefor, integrated circuit and semiconductor system |
JP2003101013A (en) * | 2001-09-26 | 2003-04-04 | Sharp Corp | Semiconductor device, manufacturing method therefor, integrated circuit and semiconductor system |
US6570239B2 (en) | 2000-03-16 | 2003-05-27 | Denso Corporation | Semiconductor device having resistive element |
US6642577B2 (en) | 2000-03-16 | 2003-11-04 | Denso Corporation | Semiconductor device including power MOSFET and peripheral device and method for manufacturing the same |
US6670673B2 (en) | 2001-04-18 | 2003-12-30 | Denso Corporation | Semiconductor device and method for manufacturing semiconductor device |
GB2404283A (en) * | 2003-07-24 | 2005-01-26 | Samsung Electronics Co Ltd | Multi channel TFT |
US6960507B2 (en) | 2003-07-24 | 2005-11-01 | Samsung Electronics Co., Ltd. | Vertical double-channel silicon-on-insulator transistor and method of manufacturing the same |
JP2009081397A (en) * | 2007-09-27 | 2009-04-16 | Fuji Electric Device Technology Co Ltd | Semiconductor device and its manufacturing method |
JP2010503200A (en) | 2006-08-28 | 2010-01-28 | マイクロン テクノロジー, インク. | Semiconductor device, semiconductor component and semiconductor structure, and method for forming semiconductor device, semiconductor component and semiconductor structure |
US8436421B2 (en) | 2010-01-25 | 2013-05-07 | Renesas Electronics Corporation | Semiconductor device with trench gate transistors and method for production thereof |
JP2013222839A (en) * | 2012-04-17 | 2013-10-28 | Mitsubishi Electric Corp | Semiconductor device and semiconductor device manufacturing method |
US8742483B2 (en) | 2006-05-17 | 2014-06-03 | Micron Technology, Inc. | DRAM arrays |
US9263455B2 (en) | 2013-07-23 | 2016-02-16 | Micron Technology, Inc. | Methods of forming an array of conductive lines and methods of forming an array of recessed access gate lines |
-
1997
- 1997-11-17 JP JP31544397A patent/JPH11150265A/en active Pending
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6525375B1 (en) | 1999-10-19 | 2003-02-25 | Denso Corporation | Semiconductor device having trench filled up with gate electrode |
US6696323B2 (en) | 1999-10-19 | 2004-02-24 | Denso Corporation | Method of manufacturing semiconductor device having trench filled up with gate electrode |
KR100357303B1 (en) * | 1999-12-28 | 2002-10-19 | 주식회사 하이닉스반도체 | Manufacturing method of semiconductor device |
US6570239B2 (en) | 2000-03-16 | 2003-05-27 | Denso Corporation | Semiconductor device having resistive element |
US6642577B2 (en) | 2000-03-16 | 2003-11-04 | Denso Corporation | Semiconductor device including power MOSFET and peripheral device and method for manufacturing the same |
US6781201B2 (en) | 2000-03-16 | 2004-08-24 | Denso Corporation | Semiconductor device including power MOSFET and peripheral MOSFET device having gate electrodes formed in the trenches |
US6867456B2 (en) | 2001-04-18 | 2005-03-15 | Denso Corporation | Semiconductor device having high breakdown voltage without increased on resistance |
US6670673B2 (en) | 2001-04-18 | 2003-12-30 | Denso Corporation | Semiconductor device and method for manufacturing semiconductor device |
JP2003086795A (en) * | 2001-09-11 | 2003-03-20 | Sharp Corp | Semiconductor device, manufacturing method therefor, integrated circuit and semiconductor system |
JP2003101013A (en) * | 2001-09-26 | 2003-04-04 | Sharp Corp | Semiconductor device, manufacturing method therefor, integrated circuit and semiconductor system |
US6960507B2 (en) | 2003-07-24 | 2005-11-01 | Samsung Electronics Co., Ltd. | Vertical double-channel silicon-on-insulator transistor and method of manufacturing the same |
GB2404283A (en) * | 2003-07-24 | 2005-01-26 | Samsung Electronics Co Ltd | Multi channel TFT |
GB2404283B (en) * | 2003-07-24 | 2005-11-23 | Samsung Electronics Co Ltd | Silicon-on-insulator transistor and method of manufacturing the same |
US7262462B2 (en) | 2003-07-24 | 2007-08-28 | Samsung Electronics Co., Ltd. | Vertical double-channel silicon-on-insulator transistor and method of manufacturing the same |
FR2858114A1 (en) * | 2003-07-24 | 2005-01-28 | Samsung Electronics Co Ltd | Vertical double channel silicon-on-insulator field-effect-transistor for making integrated circuits, has source, drain and channel regions on each of pair of vertical semiconductor layers, gate oxide, and gate source, and drain electrodes |
US8742483B2 (en) | 2006-05-17 | 2014-06-03 | Micron Technology, Inc. | DRAM arrays |
US8921909B2 (en) | 2006-05-17 | 2014-12-30 | Micron Technology, Inc. | Semiconductor constructions, DRAM arrays, and methods of forming semiconductor constructions |
US8791506B2 (en) | 2006-08-28 | 2014-07-29 | Micron Technology, Inc. | Semiconductor devices, assemblies and constructions |
JP2010503200A (en) | 2006-08-28 | 2010-01-28 | マイクロン テクノロジー, インク. | Semiconductor device, semiconductor component and semiconductor structure, and method for forming semiconductor device, semiconductor component and semiconductor structure |
JP2009081397A (en) * | 2007-09-27 | 2009-04-16 | Fuji Electric Device Technology Co Ltd | Semiconductor device and its manufacturing method |
US8436421B2 (en) | 2010-01-25 | 2013-05-07 | Renesas Electronics Corporation | Semiconductor device with trench gate transistors and method for production thereof |
JP2013222839A (en) * | 2012-04-17 | 2013-10-28 | Mitsubishi Electric Corp | Semiconductor device and semiconductor device manufacturing method |
US9263455B2 (en) | 2013-07-23 | 2016-02-16 | Micron Technology, Inc. | Methods of forming an array of conductive lines and methods of forming an array of recessed access gate lines |
US10163908B2 (en) | 2013-07-23 | 2018-12-25 | Micron Technology, Inc. | Array of conductive lines individually extending transversally across and elevationally over a mid-portion of individual active area regions |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5378919A (en) | Semiconductor integrated circuit device with plural gates and plural passive devices | |
US6448135B1 (en) | Semiconductor device and method of fabricating same | |
KR100905209B1 (en) | Method of forming a semiconductor array of floating gate memory cells having strap regions and a peripheral logic device region | |
US5312782A (en) | SOI type vertical channel field effect transistor and process of manufacturing the same | |
US8823101B2 (en) | ESD protection semiconductor device having an insulated-gate field-effect transistor | |
JP5555452B2 (en) | Semiconductor device, manufacturing method thereof, and data processing system | |
JP2021506113A (en) | Non-volatile split gate memory cell with integrated high K metal control gate and manufacturing method | |
JPH11150265A (en) | Semiconductor device | |
US20040075174A1 (en) | Semiconductor device and method of manufacturing the same utilizing permittivity of an insulating layer to provide a desired cross conductive layer capacitance property | |
US20080111197A1 (en) | Semiconductor device including a misfet having divided source/drain regions | |
KR100826650B1 (en) | Semicondutor device having modified recess channel gate and method for fabricating the same | |
KR100280516B1 (en) | Separation structure manufacturing method and semiconductor device manufacturing method of semiconductor device | |
US6593189B2 (en) | Semiconductor memory reducing current consumption and narrow channel effect and method of manufacturing the same | |
KR102605571B1 (en) | Local word line driver device, memory device, and method of manufacturing the same | |
JPH08125144A (en) | Semiconductor memory and fabrication thereof | |
JP4209824B2 (en) | Method for manufacturing semiconductor device | |
JP3764161B2 (en) | Semiconductor device and manufacturing method thereof | |
JP3657337B2 (en) | NAND type nonvolatile memory and manufacturing method thereof | |
JP3950092B2 (en) | NAND type non-volatile memory device | |
US6146933A (en) | Field shield isolated transistor | |
US20230420556A1 (en) | Semiconductor device and method of manufacturing the same | |
JPH0239473A (en) | Semiconductor device having channel on trench groove side wall | |
JPH09205187A (en) | Semiconductor device and its manufacture | |
KR100396636B1 (en) | Method for producing field effect transistors in integrated semiconductor circuits and semiconductor circuit with such a field effect transistor | |
KR19980067670A (en) | Double gate transistor manufacturing method |