JPH1114940A - Optical isolator - Google Patents

Optical isolator

Info

Publication number
JPH1114940A
JPH1114940A JP18173897A JP18173897A JPH1114940A JP H1114940 A JPH1114940 A JP H1114940A JP 18173897 A JP18173897 A JP 18173897A JP 18173897 A JP18173897 A JP 18173897A JP H1114940 A JPH1114940 A JP H1114940A
Authority
JP
Japan
Prior art keywords
adhesive
optical
cutting
isolator
adhesion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18173897A
Other languages
Japanese (ja)
Inventor
Hiroki Yoshikawa
博樹 吉川
Toshihiko Riyuuou
俊彦 流王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP18173897A priority Critical patent/JPH1114940A/en
Priority to US08/902,882 priority patent/US6275336B1/en
Publication of JPH1114940A publication Critical patent/JPH1114940A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an optical isolator which has high yield at the time of cutting. SOLUTION: A proplarizing element of double refraction element and a Faraday rotator have their optical surfaces adhered together with an adhesive which has rubber elasticity at least 10 to 40 deg.C, the adhesion element is cut into chip type adhesion type optical elements having optical surfaces of =<2 mm<2> in area, and those elements are put in a magnetic field to obtain the optical isolator. When the adhesion layer is 10 to 10 μm thick, damage such as the peeling of the adhesion boundary surface is hardly caused even by cutting the adhesion element obtained by adhering the optical surfaces of the polarizing element or birefringent element and Faradary rotator across the rubber elasticity type adhesive of adhesion strength having rubber elasticity almost at room temperature, thereby improving the cutting yield of the stuck type isolator.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光アイソレータの
製造において高い切断加工時歩留まりが得られる光アイ
ソレータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical isolator capable of obtaining a high yield at the time of cutting in the manufacture of an optical isolator.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
情報通信量の増加に伴い、基幹通信網のみならず通常の
通信回線やCATV等の有線放送等の光ケーブル化が進
んでいる。これら支線回線における情報量は基幹回線よ
りも少なく、光ケーブル化に伴う投資の回収が容易では
ない。従って、光ケーブル化に伴う費用を低減するべく
努力がなされている。
2. Description of the Related Art In recent years,
With an increase in the amount of information communication, not only a backbone communication network but also an ordinary communication line and an optical cable such as a cable broadcast such as a CATV have been developed. The amount of information on these branch lines is smaller than that of the trunk lines, and it is not easy to recover the investment associated with the use of optical cables. Therefore, efforts are being made to reduce the costs associated with the use of optical cables.

【0003】光アイソレータは、レーザー発信器から送
り出された光が再びレーザー発信器に戻るのを防ぐため
に用いられるが、これについても低コスト化が要求され
ている。
An optical isolator is used to prevent light sent from a laser oscillator from returning to the laser oscillator again, and it is also required to reduce the cost.

【0004】しかし、光アイソレータに用いられる光学
素子は、酸化物単結晶などの高価な部材が多い上に、各
素子を組み合わせる時の精度を厳重に管理しなければな
らないため、組立費用及び各素子を保持固定するための
ホルダー等の部材費がコスト低減の妨げとなっている。
However, optical elements used in optical isolators are often expensive members such as oxide single crystals, and the precision in combining the elements must be strictly controlled. The cost of a member such as a holder for holding and fixing the device hinders cost reduction.

【0005】組み立てに関連するコストの削減手段とし
て、光学素子を予め積層接着しておき、その後、必要な
寸法に切断する方法が知られている。
[0005] As a means of reducing costs associated with assembly, there is known a method in which optical elements are laminated and bonded in advance and then cut into required dimensions.

【0006】図1は、このような接着型アイソレータの
製造フローを示すもので、図中1及び2はそれぞれ偏光
素子又は複屈折素子、3はファラデー回転子を示し、こ
れら偏光素子又は複屈折素子1,2とファラデー回転子
3との間は接着剤にて接着されているものである。そし
て、図1(A)に示したような大きなサイズの素子4を
所用の大きさに切断して、図1(B)に示すような接着
素子チップ5を得、これを図1(C)に示すように磁石
6と金属製ホルダー7と組み合わせて、図1(D)に示
すアイソレータ8を得るものである。
FIG. 1 shows a manufacturing flow of such an adhesive type isolator, wherein 1 and 2 denote a polarizing element or a birefringent element, respectively, and 3 denotes a Faraday rotator. The parts 1 and 2 and the Faraday rotator 3 are bonded with an adhesive. Then, the element 4 having a large size as shown in FIG. 1A is cut into a required size to obtain an adhesive element chip 5 as shown in FIG. 1B, which is shown in FIG. 1 (D) is obtained by combining the magnet 6 and the metal holder 7 as shown in FIG.

【0007】ここで、本発明者は、先にここに用いる接
着剤として、アイソレータの使用温度域においてゴム弾
性(エントロピー弾性)を有する樹脂が、熱衝撃に優れ
たアイソレータを形成するのに有効であることを特願平
8−200088号で示した。また、上記接着剤は、光
学素子に大きな応力をかけることがないので消光比の優
れたアイソレータを得るのにも適している。しかし、接
着強度は、エネルギー弾性を有する接着剤と比較して小
さいため、接着後、所望のサイズに切断加工するとき
に、接着界面にダメージを受けやすく、歩留まり低下の
原因となっていた。
The inventor of the present invention has made it clear that a resin having rubber elasticity (entropic elasticity) in an operating temperature range of an isolator is effective for forming an isolator excellent in thermal shock as an adhesive used here. This is shown in Japanese Patent Application No. 8-200888. Further, the above adhesive is suitable for obtaining an isolator having an excellent extinction ratio because a large stress is not applied to the optical element. However, since the bonding strength is smaller than that of an adhesive having energy elasticity, when cutting into a desired size after bonding, the bonding interface is easily damaged, which causes a reduction in yield.

【0008】本発明は上記事情に鑑みなされたもので、
切断加工時に高い歩留まりが得られる光アイソレータを
提供することを目的とする。
[0008] The present invention has been made in view of the above circumstances,
It is an object of the present invention to provide an optical isolator that can obtain a high yield at the time of cutting.

【0009】[0009]

【課題を解決するための手段及び発明の実施の形態】本
発明は、上記目的を達成するため、偏光素子又は複屈折
素子とファラデー回転子とを少なくとも10〜40℃で
ゴム弾性を有する接着剤を介して光学面同士を接着し、
この接着素子を切断して光学面の面積が2mm2以下で
あるチップ状の接着型光学素子とし、これを磁場中に配
置してなる光アイソレータであって、前記接着型光学素
子の接着層の厚みが10〜100μmであることを特徴
とする光アイソレータを提供する。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a polarizing or birefringent element and an Faraday rotator having a rubber elasticity at least at 10 to 40 ° C. Glue the optical surfaces together through
This adhesive element is cut to form a chip-type adhesive optical element having an optical surface area of 2 mm 2 or less, and an optical isolator obtained by arranging the chip in a magnetic field. An optical isolator having a thickness of 10 to 100 μm is provided.

【0010】即ち、前述のように、ゴム弾性(エントロ
ピー弾性)を有する接着剤を使用すると耐熱衝撃性や光
学特性の優れた接着型アイソレータが得られるが、接着
後の切断工程において接着層の剥離が起こり易い。この
傾向は、切断サイズが小さいほど顕著に現れる。この場
合、通常の接着剤では、接着層の厚さが薄いほど強い接
着力が得られる。しかし、ゴム弾性を有する接着剤を使
用した場合、接着層を薄くしても切断時にブレードから
加わる衝撃に接着界面が耐えきれずに接着層の一部又は
全部が剥離してしまうものと考えられた。
That is, as described above, when an adhesive having rubber elasticity (entropic elasticity) is used, an adhesive isolator excellent in thermal shock resistance and optical characteristics can be obtained. Is easy to occur. This tendency becomes more pronounced as the cutting size is smaller. In this case, with a normal adhesive, the thinner the adhesive layer, the stronger the adhesive strength. However, when an adhesive having rubber elasticity is used, it is considered that even if the adhesive layer is made thin, the adhesive interface cannot withstand the impact applied from the blade at the time of cutting, and a part or all of the adhesive layer is peeled off. Was.

【0011】この問題を解決するために接着層の厚みと
切断歩留まりの関係を検討したところ、接着層がある一
定の厚さの領域で切断歩留まりが改善されることが見出
された。その領域は、10〜100μmであり、特に1
5〜50μmの範囲では、95%を超える切断歩留まり
(接着層の剥離に関しての歩留まり)が得られることが
見出されたものである。
In order to solve this problem, the relationship between the thickness of the adhesive layer and the cutting yield was examined, and it was found that the cutting yield was improved in a region where the adhesive layer had a certain thickness. The area is 10 to 100 μm, particularly 1 μm.
It has been found that in the range of 5 to 50 μm, a cutting yield exceeding 95% (a yield relating to peeling of the adhesive layer) can be obtained.

【0012】なお、接着剤の厚みと切断歩留まりの関係
は、以下のメカニズムによって現れると考えられる。即
ち、接着層が薄い場合、切断時にブレードから印加され
る衝撃は接着層で緩和されることなく接着界面に集中
し、その結果、接着界面が破壊される。接着層がある程
度厚くなると、切断時の衝撃は、接着層全体に分散緩和
されるために、接着界面への影響が減少し、接着界面の
破壊が回避される。更に、接着層が厚くなると、接着力
そのものが低下するために切断時の剥離が再び多発す
る。
It is considered that the relationship between the thickness of the adhesive and the cutting yield appears by the following mechanism. That is, when the adhesive layer is thin, the impact applied from the blade at the time of cutting is concentrated on the adhesive interface without being reduced by the adhesive layer, and as a result, the adhesive interface is broken. When the adhesive layer becomes thick to some extent, the impact at the time of cutting is dispersed and alleviated throughout the adhesive layer, so that the influence on the adhesive interface is reduced and destruction of the adhesive interface is avoided. Further, when the thickness of the adhesive layer is increased, peeling at the time of cutting occurs again frequently because the adhesive force itself is reduced.

【0013】以下、本発明につき更に詳述する。本発明
の光アイソレータは、偏光素子又は複屈折素子とファラ
デー回転子を室温付近でゴム弾性を有する接着剤を介し
て光学面同士を接着した構造のアイソレータにおいて、
前記接着剤の厚みが10〜100μmであることを特徴
とする。
Hereinafter, the present invention will be described in more detail. The optical isolator of the present invention is an isolator having a structure in which a polarizing element or a birefringent element and a Faraday rotator are bonded to each other through an adhesive having rubber elasticity at around room temperature, and optical surfaces are bonded to each other.
The thickness of the adhesive is 10 to 100 μm.

【0014】ここで、偏光素子、複屈折素子やファラデ
ー回転子としては、光アイソレータとして公知の材質の
ものが用いられる。
Here, as the polarizing element, the birefringent element and the Faraday rotator, a material known as an optical isolator is used.

【0015】また、接着剤としては、室温付近、即ち1
0〜40℃においてゴム弾性を有するものであれば特に
制限はないが、アイソレータの使用温度範囲でゴム弾性
を有することが望ましく、ガラス転移点が−40℃以下
である樹脂が好ましい。この特性に該当する樹脂とし
て、シリコーン樹脂、エポキシ樹脂、(メタ)アクリル
樹脂などが挙げられる。上記樹脂の中でシリコーン樹脂
は広い温度領域でゴム弾性を有し、耐環境性にも優れて
いる。また、耐熱性の向上のためにフッ素変性樹脂の利
用も有効である。
The adhesive may be used at around room temperature, ie, 1
There is no particular limitation as long as it has rubber elasticity at 0 to 40 ° C, but it is preferable that the resin has rubber elasticity in the operating temperature range of the isolator, and a resin having a glass transition point of -40 ° C or less is preferable. Examples of the resin corresponding to this property include a silicone resin, an epoxy resin, and a (meth) acrylic resin. Among the above resins, silicone resins have rubber elasticity in a wide temperature range and have excellent environmental resistance. Use of a fluorine-modified resin is also effective for improving heat resistance.

【0016】ここで、本発明においては、接着剤の厚さ
を10〜100μmとして接着するもので、この範囲外
では本発明の目的を達成し得ない。
Here, in the present invention, the adhesive is applied with the thickness of the adhesive being 10 to 100 μm, and the object of the present invention cannot be achieved outside this range.

【0017】本発明においては、サイズの大きい、好ま
しくは2mm×2mm〜100mm×100mm、特に
7mm×7mm〜20mm×20mmの偏光素子又は複
屈折素子とファラデー回転子とを上記接着剤で接着した
後、これを2mm2以下、特に1mm2以下に切断する際
に効果を発揮し、上記接着剤の厚さを10〜100μm
とすることにより、歩留まり低下の生じ易い2mm2
下の光学面面積を有する接着素子チップに切断しても、
接着界面の剥離などのダメージが起こり難く、切断加工
歩留まりが向上するものである。
In the present invention, after a polarizing element or a birefringent element having a large size, preferably 2 mm × 2 mm to 100 mm × 100 mm, particularly 7 mm × 7 mm to 20 mm × 20 mm, and a Faraday rotator are bonded with the above-mentioned adhesive. , which 2 mm 2 or less, and effective particularly when cut into 1 mm 2 or less, 10 to 100 [mu] m thickness of the adhesive
By cutting, even when cut into an adhesive element chip having an optical surface area of 2 mm
Damage such as peeling of the adhesive interface is unlikely to occur, and the cutting yield is improved.

【0018】このように切断されたチップは、次いで図
1(C)に示すような円筒磁石6内に挿入するなど磁場
中に配置して光アイソレータが構成されるものである。
The chip thus cut is then placed in a magnetic field, for example, inserted into a cylindrical magnet 6 as shown in FIG. 1 (C) to constitute an optical isolator.

【0019】[0019]

【実施例】以下、実施例と比較例を示し、本発明を具体
的に説明するが、本発明は下記の実施例に制限されるも
のではない。
EXAMPLES The present invention will be described below in detail with reference to examples and comparative examples, but the present invention is not limited to the following examples.

【0020】〔実施例、比較例〕偏光ガラスとして、コ
ーニング製ポラコア1.3μm用15×15mmに対空
気反射防止膜及び対接着剤反射防止膜を施したものを使
用した。また、ファラデー回転子としては、ビスマス置
換希土類鉄ガーネット(θf=45°at1.31μ
m)15×15mmに対接着剤反射防止膜を両面に施し
たものを使用した。接着剤としては、シリコーン系2液
式熱硬化型樹脂を使用した。この接着剤は、ガラス転移
点が−45℃であり、−45℃〜250℃の領域でゴム
弾性を示す。
[Examples and Comparative Examples] As a polarizing glass, a polarizing glass having a polarizer core of 1.3 μm and a size of 15 × 15 mm with an anti-reflection film for air and an anti-reflection film for adhesive was used. As the Faraday rotator, bismuth-substituted rare earth iron garnet (θf = 45 ° at 1.31 μm)
m) A 15 × 15 mm coated anti-reflection film on both sides was used. As the adhesive, a silicone two-component thermosetting resin was used. This adhesive has a glass transition point of −45 ° C. and exhibits rubber elasticity in a range of −45 ° C. to 250 ° C.

【0021】それぞれの光学素子の接着手順は、以下の
ように行った。まず、第一の偏光ガラスの対接着反射防
止膜面とファラデー回転子(FR)を上記接着剤で仮接
着(熱硬化条件:150℃、10分、大気中)し、第一
偏光ガラス/FR接着素子を作成した。次に、第二の偏
光ガラスの対接着反射防止膜面に接着剤を滴下し、偏光
ガラス/FR接着素子のFR面と密着し、第一偏光ガラ
ス/FR/第二偏光ガラスの構成とした。接着剤が、F
Rと第二の偏光ガラスの接着面全体に行き渡ったことを
確認してから、150℃、6時間、大気中で熱硬化させ
た。
The bonding procedure of each optical element was performed as follows. First, the first anti-reflection film surface of the first polarizing glass and the Faraday rotator (FR) were temporarily bonded (thermosetting conditions: 150 ° C., 10 minutes, in the air) with the above-mentioned adhesive to obtain the first polarizing glass / FR. An adhesive element was made. Next, an adhesive was dropped on the anti-reflection film surface of the second polarizing glass with respect to the adhesive, and adhered to the FR surface of the polarizing glass / FR adhesive element to form a first polarizing glass / FR / second polarizing glass structure. . The adhesive is F
After confirming that R and the second polarizing glass had spread over the entire bonding surface, the substrate was thermally cured at 150 ° C. for 6 hours in the air.

【0022】上記手順で接着剤の厚さが2〜200μm
の間の任意の厚さとなるように試料を作成した。
According to the above procedure, the thickness of the adhesive is 2 to 200 μm.
A sample was prepared so as to have an arbitrary thickness in between.

【0023】得られた接着素子をガラス台にワックスで
固定してダイサーにセットし、切断を行った。切断サイ
ズは、0.49〜4mm2とした。切断後、ガラス台か
ら接着素子を取り外し、接着界面を顕微鏡で観察し、剥
離の有無を調べた。
The obtained adhesive element was fixed on a glass table with wax, set on a dicer, and cut. The cutting size was 0.49 to 4 mm 2 . After cutting, the adhesive element was removed from the glass table, and the adhesive interface was observed with a microscope to check for peeling.

【0024】その結果、接着層の厚さを5μmに固定し
て切断サイズを変化させると、図2に示すように、切断
サイズが2mm2以下で接着層の剥離が増大することが
確認できた。そこで、接着層の厚みを2〜200μmの
間で切断サイズ0.49mm2と2mm2のチップを切り
だし、接着界面の剥離を確認したところ、図3に示すよ
うに、接着層の厚みが10〜100μmの間では、切断
歩留まりが90%を超えることが確認できた。また、接
着層の厚みが15〜50μmの領域では、切断歩留まり
が95%以上となり、非常に良好な結果が得られた。
As a result, it was confirmed that when the thickness of the adhesive layer was fixed at 5 μm and the cut size was changed, as shown in FIG. 2, the peeling of the adhesive layer increased when the cut size was 2 mm 2 or less. . Therefore, chips having cut sizes of 0.49 mm 2 and 2 mm 2 were cut out at a thickness of the adhesive layer of 2 to 200 μm, and peeling of the adhesive interface was confirmed. As shown in FIG. It was confirmed that the cutting yield exceeded 90% in the range of 100100 μm. In the region where the thickness of the adhesive layer was 15 to 50 μm, the cutting yield was 95% or more, and very good results were obtained.

【0025】なお、本実施例では、偏光ガラスを用いた
が、偏光ガラスの代わりにルチルなどの複屈折材料を用
いてアイソレータを構成する場合においても、本発明が
切断歩留まりの向上に有効である。
In this embodiment, the polarizing glass is used. However, the present invention is also effective for improving the cutting yield when an isolator is formed by using a birefringent material such as rutile instead of the polarizing glass. .

【0026】[0026]

【発明の効果】本発明によれば、接着層の厚みを10〜
100μmとすることによって、偏光素子又は複屈折素
子とファラデー回転子を室温付近でゴム弾性を有する接
着強度の小さなゴム弾性型接着剤を介して光学面同士を
接着した接着素子を光学面の面積が2mm2以下のチッ
プ状に切断しても、接着界面の剥離などのダメージが起
こり難くなり、貼り合わせ型アイソレータの切断加工歩
留まりが向上する。
According to the present invention, the thickness of the adhesive layer is 10 to
By setting the thickness of the optical element to 100 μm, the area of the optical surface of the adhesive element obtained by bonding the optical surfaces of the polarizing element or the birefringent element and the Faraday rotator to each other through a rubber elastic adhesive having a small adhesive strength having rubber elasticity at around room temperature is reduced. Even when cut into chips of 2 mm 2 or less, damage such as peeling of the bonding interface is less likely to occur, and the cutting yield of the bonded isolator is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】接着型アイソレータの製造フローを示すもの
で、(A)はサイズの大きい接着素子の斜視図、(B)
は該接着素子を切断した接着素子チップの斜視図、
(C)は該チップの組み立て状態を示す斜視図、(D)
はアイソレータの斜視図である。
1A and 1B show a manufacturing flow of an adhesive type isolator, in which FIG. 1A is a perspective view of a large-sized adhesive element, and FIG.
Is a perspective view of an adhesive element chip obtained by cutting the adhesive element,
(C) is a perspective view showing the assembled state of the chip, (D)
FIG. 3 is a perspective view of an isolator.

【図2】接着剤の厚さを5μmとした場合の接着素子光
学面面積と接着層剥離発生率との関係を示すグラフであ
る。
FIG. 2 is a graph showing the relationship between the optical surface area of an adhesive element and the rate of occurrence of adhesive layer peeling when the thickness of the adhesive is 5 μm.

【図3】接着層の厚さと接着層剥離発生率との関係を示
すグラフである。
FIG. 3 is a graph showing the relationship between the thickness of the adhesive layer and the rate of occurrence of peeling of the adhesive layer.

【符号の説明】[Explanation of symbols]

1,2 偏光素子又は複屈折素子 3 ファラデー回転子 4 接着素子 5 接着素子チップ 6 磁石 7 金属製ホルダー 8 光アイソレータ 1, 2 polarizing element or birefringent element 3 Faraday rotator 4 adhesive element 5 adhesive element chip 6 magnet 7 metal holder 8 optical isolator

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 偏光素子又は複屈折素子とファラデー回
転子とを少なくとも10〜40℃でゴム弾性を有する接
着剤を介して光学面同士を接着し、この接着素子を切断
して光学面の面積が2mm2以下であるチップ状の接着
型光学素子とし、これを磁場中に配置してなる光アイソ
レータであって、前記接着型光学素子の接着層の厚みが
10〜100μmであることを特徴とする光アイソレー
タ。
An optical surface is adhered to a polarizing element or a birefringent element and a Faraday rotator at least at 10 to 40 ° C. via an adhesive having rubber elasticity, and the adhesive element is cut to obtain an area of the optical surface. Is a chip-shaped adhesive optical element having a diameter of 2 mm 2 or less, and an optical isolator obtained by arranging the adhesive optical element in a magnetic field, wherein the adhesive layer of the adhesive optical element has a thickness of 10 to 100 μm. Optical isolator.
JP18173897A 1996-07-30 1997-06-23 Optical isolator Pending JPH1114940A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP18173897A JPH1114940A (en) 1997-06-23 1997-06-23 Optical isolator
US08/902,882 US6275336B1 (en) 1996-07-30 1997-07-30 Optical isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18173897A JPH1114940A (en) 1997-06-23 1997-06-23 Optical isolator

Publications (1)

Publication Number Publication Date
JPH1114940A true JPH1114940A (en) 1999-01-22

Family

ID=16106030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18173897A Pending JPH1114940A (en) 1996-07-30 1997-06-23 Optical isolator

Country Status (1)

Country Link
JP (1) JPH1114940A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006511834A (en) * 2002-12-19 2006-04-06 コーニング インコーポレイテッド Polarizer, isolator, and manufacturing method
JP2016090872A (en) * 2014-11-07 2016-05-23 株式会社エス・エム・エムプレシジョン Optical component for optical isolator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006511834A (en) * 2002-12-19 2006-04-06 コーニング インコーポレイテッド Polarizer, isolator, and manufacturing method
JP2016090872A (en) * 2014-11-07 2016-05-23 株式会社エス・エム・エムプレシジョン Optical component for optical isolator

Similar Documents

Publication Publication Date Title
JPH10274724A (en) Method of packaging optical parts and method of assembling collimator
US5161049A (en) Optical isolator and method for preparing same
JPH09325299A (en) Optical fiber terminal with optical isolator and semiconductor laser module using the same
JPH1114940A (en) Optical isolator
JP3439275B2 (en) Manufacturing method of optical isolator
US11409144B2 (en) Optical isolator
JP2003322826A (en) Optical isolator
JP2001021838A (en) Production of optical isolator
JP2000249983A (en) Production of optical non-reciprocal device
JP2021006856A (en) Faraday rotor, manufacturing method therefor, optical isolator and optical transmission device
JP2003315736A (en) Optical isolator
JP2005010518A (en) Method for manufacturing optical isolator and optical isolator
JP2003248192A (en) Optical isolator chip and manufacturing method thereof, and optical isolator and optical isolator module using the optical isolator chip
JP2967157B2 (en) Optical isolator
JP2000241765A (en) Faraday rotator and optical isolator
JP3556010B2 (en) Optical isolator
JP2004029568A (en) Optical device
JP2002341290A (en) Optical isolator, optical connector equipped with the same, and laser light source unit
JP2004102218A (en) Optical isolator element, its manufacturing method, and optical isolator using the same
JP2003329975A (en) Optical device and method of manufacturing same
JPH1048571A (en) Optical isolator
JP3582913B2 (en) Manufacturing method of optical isolator
JP3554140B2 (en) Optical isolator element and method of manufacturing the same
JP2003255207A (en) Optical element and method of adhering them
JP4456223B2 (en) Optical isolator

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050307

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20051214

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20060130

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060405