JPH11148233A - Reinforcing method for reinforced concrete structure of tough resin frp - Google Patents

Reinforcing method for reinforced concrete structure of tough resin frp

Info

Publication number
JPH11148233A
JPH11148233A JP31502497A JP31502497A JPH11148233A JP H11148233 A JPH11148233 A JP H11148233A JP 31502497 A JP31502497 A JP 31502497A JP 31502497 A JP31502497 A JP 31502497A JP H11148233 A JPH11148233 A JP H11148233A
Authority
JP
Japan
Prior art keywords
resin
reinforcing
reinforced concrete
sheet
frp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP31502497A
Other languages
Japanese (ja)
Inventor
Hajime Sato
元 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP31502497A priority Critical patent/JPH11148233A/en
Publication of JPH11148233A publication Critical patent/JPH11148233A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a reinforcing method for a reinforced concrete of tough resin FRP, capable of restricting the separation of a FRP sheet from the concrete surface and improving the bending resistance of the reinforced concrete structure after reinforced. SOLUTION: A carbon fiber sheet is impregnated with tough resin, as impregnating resin, which has an elastic modulus of 1500-2700 Mpa in hardening and an elongation of 2% or more in a time from stress yielding up to rupture after yielding to form a FRP sheet. The sheet is adhered to the concrete surface of a reinforced concrete structure.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、特定範囲の弾性率
と降伏後の伸びをもつ靱性樹脂を含浸用樹脂として含浸
させた補強用素繊維シート、すなわち、靱性樹脂系FR
P(繊維補強プラスチック)のシートを用いた、鉄筋コ
ンクリート構造の曲げ耐力を向上させ補強効果に優れ
る、靱性樹脂系FRPによる鉄筋コンクリート構造の補
強方法に関する。
The present invention relates to a reinforcing fiber sheet impregnated with a tough resin having a specific range of elastic modulus and elongation after yield as an impregnating resin, that is, a tough resin FR.
The present invention relates to a method for reinforcing a reinforced concrete structure by using a tough resin-based FRP, which uses a sheet of P (fiber reinforced plastic) to improve the bending strength of the reinforced concrete structure and has an excellent reinforcing effect.

【0002】[0002]

【従来の技術】靱性樹脂の代表であるエポキシ樹脂系F
RPによる鉄筋コンクリート構造の補強方法は、ここ数
年耐震補強の有力な方法として普及してきている。この
補強方法は、補強用繊維等の繊維シートに含浸用樹脂と
して2液型エポキシ樹脂を含浸させたエポキシ樹脂系F
RPのシートを、コンクリート表面に貼り付けて接着す
ることにより、コンクリートの曲げ補強、剪断補強、靱
性補強をする工法である。この補強方法では、作業性の
改善や、含浸用樹脂であるエポキシ樹脂の含浸性の改善
が、その開発目標とされてきた。また、含浸用樹脂担体
の性能に関しては、引張や圧縮、曲げといった強度要求
が開発目標の主たるものである。エポキシ樹脂の力学的
性質の一つである靱性も、エポキシ樹脂系FRPの破壊
強度を強く左右する要因である。しかしながら、破壊エ
ネルギーに注目したエポキシ樹脂の靱性の効果について
の研究はこれまで行われておらず、エポキシ樹脂系FR
Pによる鉄筋コンクリート構造の補強方法におけるエポ
キシ樹脂の靱性の効果について、研究、開発はない。
2. Description of the Related Art Epoxy resin F which is a representative of tough resin
The method of reinforcing a reinforced concrete structure by RP has been popular as an effective method of seismic reinforcement in recent years. This reinforcing method is based on an epoxy resin F obtained by impregnating a fiber sheet such as a reinforcing fiber with a two-pack type epoxy resin as an impregnating resin.
This is a method of reinforcing, bending, shearing and toughening concrete by adhering and bonding RP sheets to the concrete surface. In this reinforcing method, improvement of workability and improvement of impregnation of an epoxy resin as an impregnation resin have been development goals. Regarding the performance of the resin carrier for impregnation, strength requirements such as tension, compression and bending are the main development goals. Toughness, which is one of the mechanical properties of epoxy resins, is also a factor that strongly affects the breaking strength of epoxy resin-based FRP. However, no research has been conducted on the effect of the toughness of the epoxy resin focusing on the fracture energy.
There is no research or development on the effect of epoxy resin toughness on the method of reinforcing reinforced concrete structures with P.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、FR
Pのシートの含浸用樹脂の靱性を制御して、コンクリー
ト表面からのFRPのシートの剥離を抑制すると共に、
FRPのシートに生ずる微小な破壊の伝播や発達を抑制
して、被補強体の鉄筋コンクリート構造の曲げ耐力を向
上させる、靱性樹脂系FRPによる鉄筋コンクリート構
造の補強方法を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide an FR
By controlling the toughness of the impregnating resin of the sheet of P and suppressing the peeling of the sheet of FRP from the concrete surface,
An object of the present invention is to provide a method for reinforcing a reinforced concrete structure using a tough resin-based FRP, which suppresses the propagation and development of minute fractures generated in an FRP sheet and improves the bending strength of the reinforced concrete structure as a member to be reinforced.

【0004】[0004]

【課題を解決するための手段】すなわち、本発明は、樹
脂単独の硬化時の弾性率が1500〜2700MPaで
あり、かつ、応力により降伏し降伏後破断するまでの伸
びが2%以上である靱性樹脂を、補強用繊維シートに含
浸させて鉄筋コンクリート構造のコンクリート表面に接
着する靱性樹脂系FRPによる鉄筋コンクリート構造の
補強方法を提供する。
That is, the present invention relates to a toughness wherein the elasticity of the resin alone at the time of curing is from 1500 to 2700 MPa, and the elongation before yielding and breaking after yielding is 2% or more by stress. Provided is a method for reinforcing a reinforced concrete structure by using a tough resin-based FRP that impregnates a fiber sheet for reinforcement with a resin and adheres to a concrete surface of the reinforced concrete structure.

【0005】前記靱性樹脂が2液型エポキシ樹脂組成物
であるのが好ましい。
It is preferable that the tough resin is a two-pack type epoxy resin composition.

【0006】前記補強方法は、FRPフープを形成しな
い補強方法の場合に効果的である。
The above-mentioned reinforcing method is effective in the case of a reinforcing method without forming an FRP hoop.

【0007】[0007]

【発明の実施の形態】以下、本発明についてさらに詳細
に説明する。本発明は、FRPによる鉄筋コンクリート
(RC)補強工法における含浸用樹脂の靱性を、従来使
用されている脆性エポキシ系等とは違った範囲に制御す
ることで、コンクリート表面からのFRPのシートの剥
離等を抑制し、ひび割れの発生している被補強RC体に
おいて、曲げ耐力の向上を図るものである。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. The present invention controls the toughness of an impregnating resin in a reinforced concrete (RC) reinforcing method using FRP to a range different from that of a conventionally used brittle epoxy system or the like, thereby removing the FRP sheet from the concrete surface or the like. To improve the bending strength of the reinforced RC body having cracks.

【0008】本発明の鉄筋コンクリート構造の補強方法
(以下、本発明の補強方法と記す)の好ましい例は、以
下のようにして行う。まず、鉄筋コンクリート構造のコ
ンクリート表面から、レイタンス層をサンダー、コンク
リート鉋等で取り除き、プライマー(例えば、1液型ま
たは2液型のエポキシ系溶剤希釈型プライマー)を塗布
する。プライマーが指触乾燥した後、弾性率と降伏率を
特定範囲に制御した本発明の補強方法で用いられる靱性
樹脂を、乾燥したプライマー表面にローラー刷毛で塗布
する。ついで、補強用繊維シート、例えば炭素繊維シー
トを1枚貼りつけ、繊維シートの上から含浸用樹脂とし
て上記靱性樹脂をローラー刷毛で塗布し、さらに、ゴム
へらにて繊維シートを十分に扱き、上記靱性樹脂を繊維
シートに含浸させるとともに靱性樹脂中から脱泡を行
う。このようにして繊維シートと靱性樹脂からなる靱性
樹脂系CFRPシートがコンクリート表面に形成され
る。上記靱性樹脂の塗布量は、繊維シートの接着に十分
な量であればよく特に限定はないが、例えば、目付け量
として500〜1000〔g/m2 〕塗布すれば、繊維
シートとコンクリートとを十分に接着することができ
る。補強効果を高めるために繊維シートを複数枚積層す
る場合は、上記靱性樹脂を繊維シートに含浸させた後、
繊維シート上に次の繊維シートを1枚貼り付け、該繊維
シート上に上記靱性樹脂をローラー刷毛で塗布しゴムへ
らにて含浸、脱泡を行う工程を繰り返す。橋桁や、建物
の柱のように、靱性樹脂系FRPのシートを巻きたてて
フープを形成できる場合でも、梁や床板のように靱性樹
脂系FRPのシートを巻きたてられずフープを形成しな
い場合でも、本発明の補強方法が利用できる。繊維シー
トを必要枚数積層接着した後、養生し表面を硬化させ
る。表面が硬化した後、必要に応じて塗装や耐火被覆の
設置をしてもよい。
A preferred example of the method for reinforcing a reinforced concrete structure of the present invention (hereinafter referred to as the reinforcing method of the present invention) is performed as follows. First, the latence layer is removed from the concrete surface of the reinforced concrete structure with a sander, a concrete plane, or the like, and a primer (for example, a one-part or two-part epoxy solvent-diluted primer) is applied. After the primer is dried to the touch, the tough resin used in the reinforcing method of the present invention, whose elastic modulus and yield rate are controlled to specific ranges, is applied to the dried primer surface with a roller brush. Next, a reinforcing fiber sheet, for example, a carbon fiber sheet is stuck, and the above-mentioned tough resin is applied as a resin for impregnation with a roller brush from above the fiber sheet. Further, the fiber sheet is sufficiently handled with a rubber spatula. The fiber sheet is impregnated with the tough resin and defoamed from the tough resin. In this way, a tough resin-based CFRP sheet comprising a fiber sheet and a tough resin is formed on the concrete surface. The amount of the tough resin to be applied is not particularly limited as long as it is an amount sufficient for bonding the fiber sheet. For example, if the basis weight is 500 to 1000 [g / m 2 ], the fiber sheet and the concrete are Can be sufficiently adhered. When laminating a plurality of fiber sheets to enhance the reinforcing effect, after impregnating the fiber sheet with the above tough resin,
The following process is repeated in which one fiber sheet is pasted on the fiber sheet, the tough resin is applied on the fiber sheet with a roller brush, impregnated with a rubber spatula, and defoamed. Even when a hoop can be formed by winding a sheet of tough resin-based FRP, such as a bridge girder or a pillar of a building, a hoop cannot be formed by winding a sheet of tough resin-based FRP, such as a beam or a floorboard. Even in this case, the reinforcing method of the present invention can be used. After laminating and adhering the required number of fiber sheets, they are cured and the surface is cured. After the surface has hardened, painting and / or installation of a fire-resistant coating may be performed as necessary.

【0009】本発明の補強方法に用いられる靱性樹脂
は、弾性率と伸びを特定範囲とした靱性樹脂である。す
なわち、靱性樹脂単独で硬化したときの弾性率が150
0〜2700MPaであり、かつ、応力により降伏現象
を示し降伏後破断するまでの伸びが2%以上の靱性樹脂
を用いる。
The tough resin used in the reinforcing method of the present invention is a tough resin having a specific range of elastic modulus and elongation. That is, the elastic modulus when cured with the tough resin alone is 150.
A tough resin having a pressure of 0 to 2700 MPa and an elongation of 2% or more, which exhibits a yield phenomenon due to stress and breaks after yield, is used.

【0010】FRPによる鉄筋コンクリート(RC)構
造の補強では、引張り方向ばかりでなく、剪断方向の力
に対する靱性樹脂系FRPのシートとコンクリート表面
との接着性の確保が重要である。弾性率が1500〜2
700MPaであると、シートとコンクリート表面の剪
断方向の力による応力の集中が有効に分散され、シート
とコンクリート表面の接着性が確保されるので補強効果
に優れる。また、靱性が高い(破断までのエネルギーが
大きい)ので、シートとコンクリート表面との破断等に
よる衝撃波のエネルギーが有効に吸収されシート内を伝
播しにくく、さらに、被補強RC体の剪断方向、引張り
方向への大きな変形に追随できる。これに対し、弾性率
が2700MPa超であると、従来、FRPによる鉄筋
コンクリート(RC)補強工法における含浸用樹脂とし
て使用されている弾性率2700〜3500MPaのエ
ポキシ系樹脂に見られるように、シートに応力が集中
し、硬くて脆い。また、弾性率が1500MPa未満
と、過度に低いと、外部からの力がかかった際の、シー
トから被補強RC体への応力の伝達、即ち補強効果の伝
達が十分ではなくなり好ましくない。弾性率は、好まし
くは、2000〜2600MPaである。
In the reinforcement of a reinforced concrete (RC) structure by FRP, it is important to ensure the adhesion between the sheet of the tough resin-based FRP and the concrete surface not only in the tensile direction but also in the shear direction. The elastic modulus is 1500-2
When the pressure is 700 MPa, the concentration of stress due to the force in the shearing direction between the sheet and the concrete surface is effectively dispersed, and the adhesion between the sheet and the concrete surface is ensured, so that the reinforcing effect is excellent. In addition, since the toughness is high (the energy to break is large), the energy of the shock wave due to the break between the sheet and the concrete surface is effectively absorbed and hardly propagated in the sheet. Can follow large deformation in the direction. On the other hand, if the elastic modulus is more than 2700 MPa, stress is applied to the sheet as seen in an epoxy resin having an elastic modulus of 2700 to 3500 MPa conventionally used as an impregnating resin in a reinforced concrete (RC) reinforcing method by FRP. Concentrated, hard and brittle. On the other hand, if the elastic modulus is too low, less than 1500 MPa, the transmission of stress from the sheet to the reinforced RC body when the external force is applied, that is, the transmission of the reinforcing effect is not sufficient, which is not preferable. The elastic modulus is preferably from 2000 to 2600 MPa.

【0011】従来の鉄筋コンクリート補強方法で含浸用
樹脂として用いられてきたエポキシ樹脂の硬化物は、引
張り時には降伏することがなくて、最大荷重で一気に破
断する。弾性率についても、2700〜3500MPa
の範囲にあり、本発明の補強方法で用いる靱性樹脂より
も硬くて脆い。これに対し、本発明の補強方法では、樹
脂単独で硬化した時の弾性率が従来の含浸用樹脂よりも
低く、降伏後破断するまでの伸びが2%以上の靱性樹脂
を含浸用樹脂として用いることにより応力集中が避けら
れ、本発明の補強方法を用いた鉄筋コンクリートの耐力
は、従来のエポキシ樹脂系CFRPによる補強方法で補
強された鉄筋コンクリートの耐力を上回る。
A cured product of an epoxy resin used as an impregnating resin in a conventional method of reinforcing reinforced concrete does not yield at the time of pulling but breaks at a maximum load at a stretch. The elastic modulus is also 2700-3500 MPa
And it is harder and more brittle than the tough resin used in the reinforcing method of the present invention. On the other hand, in the reinforcing method of the present invention, the toughness resin having a lower elastic modulus when cured with the resin alone than the conventional impregnation resin, and having an elongation to break after yielding of 2% or more is used as the impregnation resin. Thereby, stress concentration is avoided, and the proof strength of the reinforced concrete using the reinforcing method of the present invention exceeds the proof strength of the reinforced concrete reinforced by the conventional reinforcing method using epoxy resin-based CFRP.

【0012】本発明の補強方法で用いる靱性樹脂として
は、樹脂単独の硬化時に弾性率が1500〜2700M
Paであり、かつ、降伏後破断するまでの伸びが2%以
上である靱性樹脂であれば、特に限定されない。このよ
うな物性を持ちうる樹脂としては、従来、FRPマトリ
ックス樹脂として主に用いられてきたエポキシ樹脂や、
ポリエステル樹脂、ビニルエステル等が挙げられる。こ
れらの中でも、2液型エポキシ樹脂が好ましい。エポキ
シ樹脂は、機械的強さ、電気的特性、接着性、耐熱性、
耐薬品性等に優れ、外的環境の影響を受けやすい鉄筋コ
ンクリート構造の補強で安定した性能を示すことのでき
る範囲が広いからである。エポキシ樹脂単独での硬化時
の弾性率を1500〜2700MPaと低くするには、
エポキシ樹脂に可塑剤や可撓性付与剤を混合する、また
は、エポキシ樹脂にゴム骨格のオリゴマーを共重合させ
る、充填剤を選択する、あるいはアマイドワックスを配
合する等の方法によることができる。また、硬化時のエ
ポキシ樹脂の降伏後破断するまでの伸びを2%以上とす
るには、エポキシ樹脂として弾性エポキシを選択する、
あるいは、エポキシ樹脂の弾性率を下げる等の手法を適
当に組み合わせる方法によることができる。
The tough resin used in the reinforcing method of the present invention has an elastic modulus of 1500 to 2700 M when the resin alone is cured.
It is not particularly limited as long as it is a tough resin having Pa and an elongation to break after yielding of 2% or more. As a resin having such physical properties, an epoxy resin conventionally used mainly as an FRP matrix resin,
Examples include polyester resins and vinyl esters. Among these, a two-pack type epoxy resin is preferable. Epoxy resin has mechanical strength, electrical properties, adhesiveness, heat resistance,
This is because it has excellent chemical resistance and the like, and has a wide range in which stable performance can be exhibited by reinforcing a reinforced concrete structure that is easily affected by an external environment. To lower the elastic modulus at the time of curing with epoxy resin alone to 1500 to 2700 MPa,
Methods such as mixing a plasticizer or a flexibility imparting agent with the epoxy resin, copolymerizing an oligomer of a rubber skeleton with the epoxy resin, selecting a filler, or compounding an amide wax can be used. In addition, in order to increase the elongation of the epoxy resin from yielding to breaking at the time of curing to 2% or more, select an elastic epoxy as the epoxy resin.
Alternatively, a method of appropriately combining techniques such as lowering the elastic modulus of the epoxy resin can be used.

【0013】エポキシ樹脂としては、上記条件を満た
す、例えば、ビスフェノールA型エポキシ樹脂、ノボラ
ック型エポキシ樹脂、ビスフェノールF型エポキシ樹脂
等が挙げられる。これらは1種単独で用いても2種を併
用してもよい。これらの中でもビスフェノールA型エポ
キシ樹脂、ビスフェノールF型エポキシ樹脂が、接着性
と作業性を両立しやすいという理由から好ましい。ま
た、市販品を利用することもでき、住友化学社製、スミ
エポキシELAシリーズが好適に挙げられる。
As the epoxy resin, for example, bisphenol A type epoxy resin, novolak type epoxy resin, bisphenol F type epoxy resin, etc., which satisfy the above conditions, can be used. These may be used alone or in combination of two. Among these, bisphenol A type epoxy resin and bisphenol F type epoxy resin are preferable because they can easily achieve both adhesiveness and workability. In addition, commercially available products can also be used, and Sumiepoxy ELA series manufactured by Sumitomo Chemical Co., Ltd. is preferably mentioned.

【0014】また、エポキシ樹脂には、必要に応じて、
各種の配合物を添加することができる。配合物として
は、炭酸カルシウム、タルク等の充填剤、無機または有
機の着色用顔料類、着色用染料類、強化剤、溶剤、可塑
剤等が挙げられる。
[0014] In addition, epoxy resin, if necessary,
Various formulations can be added. Examples of the compound include fillers such as calcium carbonate and talc, inorganic or organic coloring pigments, coloring dyes, reinforcing agents, solvents, plasticizers, and the like.

【0015】本発明の補強方法で用いる補強繊維シート
としては、炭素繊維、アラミド繊維等を用いた繊維シー
トが挙げられる。中でも炭素繊維シートは高強度繊維
で、耐疲労性、耐熱性に優れるので好ましい。炭素繊維
シートとしては、従来、FRPによる鉄筋コンクリート
補強工法で用いられている炭素繊維シートを用いること
ができる。このような炭素繊維シートは、市販品を利用
することができ、例えば、グラノック(R) HT300
(35000kg/cm2 クラス、日本石油社製)をあ
げることができる。
Examples of the reinforcing fiber sheet used in the reinforcing method of the present invention include a fiber sheet using carbon fiber, aramid fiber, or the like. Among them, carbon fiber sheets are preferable because they are high-strength fibers and have excellent fatigue resistance and heat resistance. As the carbon fiber sheet, a carbon fiber sheet conventionally used in a reinforced concrete reinforcing method by FRP can be used. Such carbon fiber sheet may be commercially available products, for example, Guranokku (R) HT300
(35,000 kg / cm 2 class, manufactured by Nippon Oil Co., Ltd.).

【0016】本発明の補強方法では、上述の特性を有す
る靱性樹脂、特に2液型エポキシ樹脂を使用することに
より、従来のFRPによる鉄筋コンクリート補強工法で
用いられている靱性のない樹脂に比較して、以下の点で
コンクリート補強効果が向上する。従来のFRPによる
鉄筋コンクリート補強工法では、硬質かつ脆性なエポキ
シ樹脂を含浸用樹脂としているため、ひび割れや風化し
ているカブリコンクリートとの接着破壊(コンクリート
側の薄層剥離)の限界が低い。これに対し、本発明の補
強方法では、後述の実施例に示すように、10〜30%
耐力を高めることができ、結果として補強繊維の引張り
強度を有効に生かした補強が可能である。また、コンク
リート表面からのFRPのシートの剥離が抑制され、従
来のFRPによる鉄筋コンクリート補強工法では困難で
あった大きな剪断方向や引張り方向の伸びに追随でき
る。また、補強繊維として炭素繊維(CF)を用いた場
合、CFRP(炭素繊維強化プラスチック)のシートの
一部に起こった破断による衝撃波が樹脂に吸収され炭素
繊維(CF)に直接伝わらず、CFRPの弱点であるト
ランスバースクラック(脆性破壊)の進展が抑えられ、
予想以下の載荷状態で確率的に稀に起きるCFの破断を
予防することも可能である。本発明の補強方法では、靱
性樹脂系FRPのシートとコンクリート表面の接着性に
優れるので、補強用のコンクリート鉄筋の外周を1回以
上巻回する工法である巻きたててフープを形成しなくと
も、シートとコンクリート表面との接着性が確保され補
強効果に優れる。
In the reinforcing method of the present invention, by using a tough resin having the above-mentioned properties, particularly a two-pack type epoxy resin, compared with a resin having no toughness used in a conventional FRP reinforced concrete reinforcing method. In addition, the concrete reinforcing effect is improved in the following points. In the conventional reinforced concrete reinforcement method using FRP, since a hard and brittle epoxy resin is used as the impregnating resin, the limit of cracking and destruction of adhesion to weathered fog concrete (thin layer peeling on the concrete side) is low. On the other hand, in the reinforcing method of the present invention, as shown in Examples described later, 10 to 30%
It is possible to increase the proof stress, and as a result, it is possible to perform reinforcement by effectively utilizing the tensile strength of the reinforcing fiber. In addition, the peeling of the FRP sheet from the concrete surface is suppressed, and it is possible to follow a large shear or tensile elongation which was difficult with the conventional FRP reinforced concrete reinforcing method. Further, when carbon fiber (CF) is used as the reinforcing fiber, the shock wave due to the rupture that occurred in a part of the CFRP (carbon fiber reinforced plastic) sheet is absorbed by the resin and is not directly transmitted to the carbon fiber (CF). The development of transversal cracks (brittle fracture), which is a weak point, is suppressed,
It is also possible to prevent CF breakage that rarely occurs stochastically under a load state lower than expected. In the reinforcing method of the present invention, since the adhesiveness between the sheet of the tough resin-based FRP and the concrete surface is excellent, it is not necessary to form a freshly wound hoop, which is a method of winding the outer circumference of a reinforcing concrete reinforcing bar at least once. In addition, the adhesiveness between the sheet and the concrete surface is ensured, and the reinforcing effect is excellent.

【0017】かかる効果を有する本発明の靱性樹脂系F
RPによる鉄筋コンクリート構造の補強方法は、橋桁、
柱等の一般に補強シートのフープを形成して補強する補
強方法だけでなく、フープを形成できない場所の補強方
法としても使用することができる。
The tough resin system F of the present invention having such an effect
The reinforcement method of the reinforced concrete structure by RP is
The present invention can be used not only as a reinforcing method for forming a hoop of a reinforcing sheet such as a pillar but also for reinforcing a place where a hoop cannot be formed.

【0018】[0018]

【実施例】以下、本発明を実施例、比較例により具体的
に説明する。 (実施例1)高さ25cm、幅15cm、長さ180c
mの、図1に示すコンクリート梁1であって、コンクリ
ート中に長手方向に4本の主鉄筋2が通り、これらの主
鉄筋の外周に、主鉄筋とほぼ直交する方向でアバラ筋3
が巻いてあるコンクリート梁、1本を用いた。この梁
を、支点間距離160cm、載荷幅20cmとして、最
大荷重に達するまで荷重して亀裂を入れ、この梁の一面
に、プライマー(EP201、横浜ゴム(株)製)をロ
ーラー刷毛で塗布し、プライマーが指触乾燥した後、含
浸用樹脂としてエポキシ樹脂(Y−97S、横浜ゴム
(株)製、弾性率25400kgf/cm2 、降伏後の
伸び5%)をローラー刷毛で塗布し、次に炭素繊維シー
ト(グラノック(R) HT300、日本石油社製)1枚
を、長手方向に、プライマーを塗布した一面にのみ貼り
付け、その上から上述の含浸用樹脂をローラー刷毛で再
度塗布し、ゴムへらにて炭素繊維シートを十分にしご
き、含浸用樹脂を炭素繊維シートに含浸させるとともに
樹脂中から脱泡を行って、試験体Aを作製した。試験体
Aに用いた鉄筋コンクリート梁で、損傷を与えず何も補
強しなかったときの梁を、試験体Bとした。試験体Aの
シートを貼った側を下面として、予め、亀裂を導入した
方法と同様の方法で曲げ試験をし、試験体Aが鉄筋降伏
し、最大耐力に達するまでの範囲で、荷重と曲げたわみ
量との関係を測定した。試験体Bについては、亀裂の入
る前に荷重と曲げたわみ量との関係を測定した。図2
に、本発明の補強方法で補強した鉄筋コンクリート梁を
用いて行った曲げ試験における、荷重と曲げたわみ量と
の関係を模式的に表すグラフを示す。図中、P点は、荷
重と曲げたわみ量とが大略比例する弾性範囲の限界(降
伏点)を示し、この点での荷重を降伏荷重(図中、a)
という。Q点は、Q点における変位以上の変位を鉄筋コ
ンクリート梁にかけても、これ以上の曲げ荷重は得られ
ず、コンクリート梁が破壊するという点を示し、Q点に
おいてコンクリート梁にかかる荷重を最大荷重(図中、
b)という。試験体Aの降伏荷重の、試験体Bの降伏荷
重に対する比を、試験体の弾性範囲の向上の度合いとし
て測定値から算出した。試験体Aの最大荷重の、試験体
Bの最大荷重に対する比を、試験体の最大耐力の向上の
度合いとして測定値から算出した。結果を表1に示す。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. (Example 1) Height 25cm, width 15cm, length 180c
m, a concrete beam 1 shown in FIG. 1, wherein four main rebars 2 pass through the concrete in the longitudinal direction, and the abra bars 3 are provided on the outer periphery of these main rebars in a direction substantially orthogonal to the main rebars.
A concrete beam wound with one was used. This beam is set to a distance between supports of 160 cm and a loading width of 20 cm, and is cracked by applying a load until the maximum load is reached. One surface of this beam is coated with a primer (EP201, manufactured by Yokohama Rubber Co., Ltd.) using a roller brush. After the primer is dried to the touch, an epoxy resin (Y-97S, manufactured by Yokohama Rubber Co., Ltd., modulus of elasticity 25400 kgf / cm 2 , elongation after yielding 5%) is applied as a resin for impregnation with a roller brush, and then carbon is applied. fiber sheet (Guranokku (R) HT300, Nippon Oil Co., Ltd.) one, in the longitudinal direction, stuck only on one surface coated with a primer, the impregnating resin described above is coated again with a roller brush thereon, rubber spatula Then, the carbon fiber sheet was sufficiently squeezed, and the impregnating resin was impregnated into the carbon fiber sheet and defoamed from the resin, thereby preparing a test piece A. The reinforced concrete beam used for the test piece A, which was not damaged and was not reinforced, was referred to as a test piece B. A bending test was performed in advance by the same method as the method in which a crack was introduced, with the side of the specimen A having the sheet attached thereon as the lower surface. The relationship with the amount of deflection was measured. With respect to the test piece B, the relationship between the load and the amount of flexure was measured before cracking. FIG.
2 is a graph schematically showing the relationship between the load and the amount of bending in a bending test performed using a reinforced concrete beam reinforced by the reinforcing method of the present invention. In the figure, point P indicates the limit (yield point) of the elastic range in which the load and the amount of bending are approximately proportional, and the load at this point is the yield load (a in the figure).
That. The point Q indicates that even if a displacement greater than the displacement at the point Q is applied to the reinforced concrete beam, no further bending load is obtained and the concrete beam is destroyed. During,
b). The ratio of the yield load of the specimen A to the yield load of the specimen B was calculated from the measured value as the degree of improvement in the elastic range of the specimen. The ratio of the maximum load of the specimen A to the maximum load of the specimen B was calculated from the measured value as the degree of improvement in the maximum proof stress of the specimen. Table 1 shows the results.

【0019】(比較例1)含浸用樹脂に、エポキシ樹脂
(E2500S、コニシ(株)製、弾性率31000k
gf/cm2 、降伏後の伸び0%)を用い、炭素繊維シ
ート(グラノック (R) HT300、日本石油社製)を用
いて試験体Aと同様にして試験体Cを作製した。また、
試験体Bと同様に補強前のコンクリート梁を試験体Dと
して用いた。試験体C、Dについて、実施例1と同様に
して、降伏荷重、最大荷重を測定し、評価した。
(Comparative Example 1) Epoxy resin was used as the impregnating resin.
(E2500S, manufactured by Konishi Co., Ltd., elastic modulus 31000k
gf / cmTwo, Elongation after yield 0%)
(Granock (R)HT300, manufactured by Nippon Oil Corporation)
Specimen C was prepared in the same manner as Specimen A. Also,
The concrete beam before reinforcement was set to the specimen D in the same manner as the specimen B.
Used. Specimens C and D as in Example 1
Then, the yield load and the maximum load were measured and evaluated.

【0020】(実施例2)高さ18cm、幅36cm、
長さ200cmのコンクリート梁を用いた以外は、試験
体Aと同様にして試験体Eを作製した。試験体Eに用い
た鉄筋コンクリート梁で、損傷を与えず何も補強しなか
った梁を、試験体Fとした。試験体E、Fについて、実
施例1と同様にして、降伏荷重、最大荷重を測定し、評
価した。
(Example 2) Height 18 cm, width 36 cm,
Specimen E was made in the same manner as Specimen A, except that a 200 cm long concrete beam was used. The reinforced concrete beam used for the test piece E, which did not cause any damage and was not reinforced, was referred to as a test piece F. Yield load and maximum load were measured and evaluated for the test pieces E and F in the same manner as in Example 1.

【0021】(比較例2)含浸用樹脂に、エポキシ樹脂
(E2500S、コニシ(株)製、弾性率31000k
gf/cm2 、降伏後の伸び0%)を用いた以外は、試
験体Eと同様にして試験体Gを作製した。試験体Fと同
様のコンクリート梁を試験体Hとした。試験体G、Hに
ついて、実施例1と同様にして、弾性限界荷重、最大荷
重を測定し、評価した。結果を表1に示す。
(Comparative Example 2) Epoxy resin (E2500S, manufactured by Konishi Co., Ltd., elastic modulus 31000k) was used as the impregnating resin.
Specimen G was prepared in the same manner as Specimen E, except that gf / cm 2 , elongation after yield was 0%). The same concrete beam as the test body F was used as the test body H. For the test pieces G and H, the elastic limit load and the maximum load were measured and evaluated in the same manner as in Example 1. Table 1 shows the results.

【0022】 [0022]

【0023】[0023]

【発明の効果】本発明の補修方法によれば、特定の範囲
の弾性率、降伏率を有する含浸用樹脂を用いることによ
り、補強された鉄筋コンクリート構造体が弾性を示す範
囲の上限値が向上し、鉄筋コンクリート構造体の曲げ耐
力が向上する。
According to the repair method of the present invention, the upper limit of the range in which the reinforced concrete structure exhibits elasticity is improved by using the impregnating resin having a specific range of elastic modulus and yield rate. In addition, the bending strength of the reinforced concrete structure is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 鉄筋コンクリート梁の配筋を示す模式図であ
る。
FIG. 1 is a schematic view showing a reinforcement arrangement of a reinforced concrete beam.

【図2】 曲げ試験を行った場合の、梁にかかる荷重
と、荷重により生じる曲げたわみ量の関係を模式的に示
すグラフである。
FIG. 2 is a graph schematically showing a relationship between a load applied to a beam and a bending deflection amount caused by the load when a bending test is performed.

【符号の説明】[Explanation of symbols]

1 鉄筋コンクリート梁 2 主鉄筋 3 アバラ筋 1 Reinforced concrete beam 2 Main rebar 3 Abala bar

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】硬化時の弾性率が1500〜2700MP
aであり、かつ、応力により降伏し降伏後破断するまで
の伸びが2%以上である靱性樹脂を、補強繊維シートに
含浸させて鉄筋コンクリート構造のコンクリート表面に
接着する靱性樹脂系FRPによる鉄筋コンクリート構造
の補強方法。
An elastic modulus at the time of curing is 1500-2700MP.
a, and a tough resin, which yields by stress and has an elongation of 2% or more before breaking after yielding, is impregnated into a reinforcing fiber sheet and adheres to the concrete surface of the reinforced concrete structure. Reinforcement method.
【請求項2】前記靱性樹脂が2液型エポキシ樹脂組成物
である請求項1に記載の靱性樹脂系FRPによる鉄筋コ
ンクリート構造の補強方法。
2. The method for reinforcing a reinforced concrete structure by using a tough resin-based FRP according to claim 1, wherein the tough resin is a two-pack type epoxy resin composition.
【請求項3】前記補強方法が、FRPのフープを形成し
ない補強方法である請求項1または2に記載の靱性樹脂
系FRPによる鉄筋コンクリート構造の補強方法に関す
る。
3. The method for reinforcing a reinforced concrete structure by using a tough resin-based FRP according to claim 1, wherein the reinforcing method is a reinforcing method that does not form a hoop of FRP.
JP31502497A 1997-11-17 1997-11-17 Reinforcing method for reinforced concrete structure of tough resin frp Withdrawn JPH11148233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31502497A JPH11148233A (en) 1997-11-17 1997-11-17 Reinforcing method for reinforced concrete structure of tough resin frp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31502497A JPH11148233A (en) 1997-11-17 1997-11-17 Reinforcing method for reinforced concrete structure of tough resin frp

Publications (1)

Publication Number Publication Date
JPH11148233A true JPH11148233A (en) 1999-06-02

Family

ID=18060512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31502497A Withdrawn JPH11148233A (en) 1997-11-17 1997-11-17 Reinforcing method for reinforced concrete structure of tough resin frp

Country Status (1)

Country Link
JP (1) JPH11148233A (en)

Similar Documents

Publication Publication Date Title
Fiore et al. Salt-fog spray aging of jute-basalt reinforced hybrid structures: Flexural and low velocity impact response
JP6436593B2 (en) Adhesive gel sheet having adhesive application, method for producing the same, method for fixing a pair of adherends, and composite material
WO2012029966A1 (en) Steel structure reinforcement method and reinforcement body, and material for forming elastic layer for steel structure reinforcement
WO2002001020A1 (en) Structure reinforcing method, structure-reinforcing reinforcing fiber yarn-containing material, reinforcing structure material and reinforced structure
JP5478651B2 (en) Reinforcing method and reinforcing structure for concrete structure, and elastic layer forming material for reinforcing concrete structure
Song et al. A study on the strengthening performance of concrete beam by fiber-reinforced polyurea (FRPU) reinforcement
Chin et al. Strengthening of reinforced concrete beams using bamboo fiber/epoxy composite plates in flexure
JP3415107B2 (en) Method for reinforcing concrete structure and reinforcing structure
US6599632B1 (en) Composite system and method for reinforcement of existing structures
JP3801726B2 (en) Repair and reinforcement method for existing concrete structures
JP6980563B2 (en) Laminated material for reinforcement of structure, reinforcement method and reinforcement structure
JPH11148233A (en) Reinforcing method for reinforced concrete structure of tough resin frp
Tichá et al. Fiber reinforced concrete: Residual flexure strength enhancement using surface modified fibers
JP2002070323A (en) Concrete structural body reinforcing method and reinforced concrete structural body
JP3553865B2 (en) Method of reinforcing steel structure and buffer layer for reinforcing steel structure
JPH06193281A (en) Concrete repairing method with unidirectionally arranged fiber-reinforced sheet
JPH1144099A (en) Repaired and reinforced concrete structure and method for repairing and reinforcing the same
JPH10339040A (en) Reinforcing method for structure
JPH09228322A (en) Repairing method for concrete with unidirectionally oriented reinforced fiber sheet
JP2000328032A (en) Resin composition for bonding fiber-reinforced sheet and method for reinforcing concrete structure
KR20220022722A (en) Reinforced concrete structure using epoxy resin mixed with reinforced fiber and method for manufacturing the same
KR102397840B1 (en) Fiber reinforced plastic (frp) plate of partial detachment guidance type for delaying debonding failure, and method for the same
KR100524830B1 (en) Reinforcement method of the structure and composition for bonding the bundled fiber sheet used therein
Kumar et al. Tensile and Flexural Properties of Glass and Kenaf (GKG) Mat Reinforced Epoxy Hybrid Composite
CN107060363A (en) The FRP cloth end anchorage device of shear strengthening of concrete beam

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050201