JPH11147792A - Single crystal silicon carbide and its production - Google Patents

Single crystal silicon carbide and its production

Info

Publication number
JPH11147792A
JPH11147792A JP31512497A JP31512497A JPH11147792A JP H11147792 A JPH11147792 A JP H11147792A JP 31512497 A JP31512497 A JP 31512497A JP 31512497 A JP31512497 A JP 31512497A JP H11147792 A JPH11147792 A JP H11147792A
Authority
JP
Japan
Prior art keywords
sic
crystal
single crystal
layer
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31512497A
Other languages
Japanese (ja)
Other versions
JP3043687B2 (en
Inventor
Kichiya Yano
吉弥 谷野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to JP31512497A priority Critical patent/JP3043687B2/en
Publication of JPH11147792A publication Critical patent/JPH11147792A/en
Application granted granted Critical
Publication of JP3043687B2 publication Critical patent/JP3043687B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently grow a large-sized and high-quality single crystal hardly containing micropipe defects and crystal grain boundaries while reducing thermal energy required for the crystal growth. SOLUTION: A composite M prepared by forming an α-2H-SiC layer 2 on the surface of an α-SiC single crystal substrate 1 according to a thermal chemical vapor deposition(CVD) method and transforming the phase of a part of the α-2H-SiC layer 2 into α-6H (or 4H)-SiC is heat-treated at 1,600-2,400 deg.C to thereby convert the whole of the α-2H-SiC layer 2 into α-SiC and orient the resultant α-SiC in the same direction as the crystal axis of the α-SiC single crystal substrate 1. As a result, a single crystal is integrally grown.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、単結晶SiCおよ
びその製造方法に関するもので、詳しくは、発光ダイオ
ードや電子デバイスの基板ウエハなどとして用いられる
単結晶SiC及びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a single crystal SiC and a method of manufacturing the same, and more particularly, to a single crystal SiC used as a light emitting diode or a substrate wafer of an electronic device, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】SiC(炭化珪素)は、耐熱性および機
械的強度に優れているだけでなく、放射線にも強く、さ
らに不純物の添加によって電子や正孔の価電子制御が容
易である上、広い禁制帯幅を持つ(因みに、6H型のS
iC単結晶で約3.0eV、4H型のSiC単結晶で
3.26eV)ために、Si(シリコン)やGaAs
(ガリウムヒ素)などの既存の半導体材料では実現する
ことができない大容量、高周波、耐圧、耐環境性を実現
することが可能で、次世代のパワーデバイス用半導体材
料として注目され、かつ期待されている。
2. Description of the Related Art SiC (silicon carbide) is not only excellent in heat resistance and mechanical strength, but also resistant to radiation. In addition, it is easy to control valence electrons and holes by adding impurities. Has a wide forbidden band (By the way, 6H type S
about 3.0 eV for an iC single crystal and 3.26 eV for a 4H type SiC single crystal), such as Si (silicon) or GaAs.
(Gallium arsenide) and other materials that can not be realized with existing semiconductor materials, can achieve high capacity, high frequency, withstand voltage and environmental resistance, and are attracting attention and expected as next-generation semiconductor materials for power devices I have.

【0003】ところで、この種のSiC単結晶の成長
(製造)方法として、従来、種結晶を用いた昇華再結晶
法によってSiC単結晶を成長させる方法と、高温度で
の場合はシリコン基板上に化学気相成長法(CVD法)
を用いてエピタキシャル成長させることにより立方晶の
SiC単結晶(β−SiC)を成長させる方法とが知ら
れている。
Conventionally, as a method of growing (manufacturing) this kind of SiC single crystal, there is a method of growing a SiC single crystal by a sublimation recrystallization method using a seed crystal, and a method of growing a SiC single crystal on a silicon substrate at high temperature. Chemical vapor deposition (CVD)
There is known a method of growing a cubic SiC single crystal (β-SiC) by performing epitaxial growth using GaN.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記し
た従来の製造方法は共に結晶成長速度が1μm/hr.
と非常に低いだけでなく、昇華再結晶法にあっては、マ
イクロパイプ欠陥と呼ばれ半導体デバイスを作製した際
の漏れ電流等の原因となる結晶の成長方向に貫通する直
径数ミクロンのピンホールが100〜1000/cm2
程度成長結晶中に多数存在し、このことが既述のように
SiやGaAsなどの既存の半導体材料に比べて多くの
優れた特徴を有しながらも、結晶品質が不十分であるこ
とから、その実用化を阻止する要因になっている。
However, both of the above-mentioned conventional manufacturing methods have a crystal growth rate of 1 μm / hr.
Not only is it extremely low, but also in the sublimation recrystallization method, a pinhole with a diameter of several microns penetrates in the crystal growth direction called micropipe defect, which causes leakage current etc. when manufacturing semiconductor devices Is 100 to 1000 / cm 2
A large number of crystals are present in the grown crystal, which have many excellent characteristics as compared with existing semiconductor materials such as Si and GaAs as described above, but have insufficient crystal quality. This is a factor preventing its practical use.

【0005】また、高温CVD法によるエピタキシャル
成長の場合は、基板温度が1700〜1800℃と高い
上に、高純度の還元性雰囲気を作ることが必要であっ
て、このような条件に耐える構造材がほとんどなく、設
備的に非常に困難であり、さらに、エピタキシャル成長
のため成長速度にも自ずと限界があるという問題があっ
た。
In the case of epitaxial growth by high-temperature CVD, it is necessary to create a high-purity reducing atmosphere in addition to a substrate temperature as high as 1700 to 1800 ° C., and a structural material that can withstand such conditions is required. There is almost no problem in that it is very difficult in terms of equipment and the growth rate is naturally limited due to epitaxial growth.

【0006】本発明は上記実情に鑑みてなされたもの
で、結晶成長に要する熱エネルギーが少なくてすみなが
ら、マイクロパイプ欠陥および結晶粒界のほとんどない
大型かつ高品質の単結晶を効率良く育成でき、半導体材
料としての実用化を促進することができる単結晶SiC
及びその製造方法を提供することを目的としている。
The present invention has been made in view of the above circumstances, and can efficiently grow a large and high-quality single crystal having almost no micropipe defects and crystal grain boundaries while requiring less heat energy for crystal growth. Single crystal SiC that can promote practical use as a semiconductor material
And a method for producing the same.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、請求項1記載の発明に係る単結晶SiCは、α−S
iC単結晶基材の表面に熱化学的蒸着法でα−2H−S
iC層を形成してなる複合体を熱処理することにより、
上記α−2H−SiC層をα−SiCに転化させ、か
つ、上記α−SiC単結晶基材の結晶軸と同方位に配向
させて単結晶を一体に成長させていることを特徴とする
ものであり、α−SiC単結晶基材の表面に該α−Si
C単結晶基材の結晶構造に近い規則性を持つ結晶構造の
α−2H−SiC層を熱化学的蒸着法で形成させること
により、この熱化学的蒸着時にα−2H−SiC層の一
部をα−6H(または4H)−SiCに相変態させた
上、その複合体を熱処理することによって、この熱処理
時における熱エネルギー(熱×時間)が小さいものであ
りながら、α−2H−SiC層の全体をα−6H(また
は4H)−SiCに素早く転化(相変態)させると共
に、α−SiC単結晶基材の結晶軸と同方位に配向させ
て該基材の単結晶と一体化した大型の単結晶SiCが育
成される。このように育成された単結晶SiCはマイク
ロパイプ欠陥および結晶粒界がほとんどなく、高品質な
単結晶SiCを得ることが可能である。
In order to achieve the above object, a single crystal SiC according to the first aspect of the present invention has an α-S
α-2H-S on the surface of iC single crystal substrate by thermochemical vapor deposition
By heat-treating the composite formed with the iC layer,
Wherein the α-2H-SiC layer is converted into α-SiC, and is oriented in the same direction as the crystal axis of the α-SiC single crystal base material to grow a single crystal integrally. And the surface of the α-SiC single crystal substrate
By forming an α-2H-SiC layer having a crystal structure having a regularity close to the crystal structure of the C single crystal base material by a thermochemical vapor deposition method, a part of the α-2H-SiC layer is formed during the thermochemical vapor deposition. Is transformed into α-6H (or 4H) -SiC, and the composite is subjected to a heat treatment, so that the heat energy (heat × time) during the heat treatment is small, and the α-2H-SiC layer is formed. Is converted into α-6H (or 4H) -SiC quickly (phase transformation), and is oriented in the same direction as the crystal axis of the α-SiC single crystal base material to be integrated with the single crystal of the base material. Of single crystal SiC is grown. The single-crystal SiC grown in this way has few micropipe defects and crystal grain boundaries, and high-quality single-crystal SiC can be obtained.

【0008】また、請求項2記載の発明に係る単結晶S
iCは、請求項1記載の発明の構成のうち、上記α−2
H−SiC層が、1300〜1500℃範囲の熱化学的
蒸着法によりα−SiC単結晶基材の表面に形成された
ものであり、このα−2H−SiC層の一部が比較的低
温かつ短時間の熱化学的蒸着で素早くα−SiCに転化
されて単結晶に成長されるために、不純物原子の拡散が
抑えられ、α−SiC単結晶基材よりも不純物や格子欠
陥などのない高純度の単結晶を得ることが可能である。
[0008] The single crystal S according to the second aspect of the present invention.
iC is the value of α-2 in the configuration of the invention described in claim 1.
The H-SiC layer is formed on the surface of the α-SiC single crystal base material by a thermochemical vapor deposition method in the range of 1300 to 1500 ° C., and a part of the α-2H-SiC layer has a relatively low temperature and Since it is quickly converted into α-SiC and grown into a single crystal by a short-time thermochemical vapor deposition, diffusion of impurity atoms is suppressed, and a high-density material having less impurities and lattice defects than an α-SiC single crystal base material. It is possible to obtain single crystals of purity.

【0009】さらに、請求項3記載の発明に係る単結晶
SiCの製造方法は、α−SiC単結晶基材の表面に熱
化学的蒸着法でα−2H−SiC層を形成した後、その
複合体を熱処理して上記α−2H−SiC層をα−Si
Cに転化させ、かつ、上記α−SiC単結晶基材の結晶
軸と同方位に配向して単結晶を一体化し育成することを
特徴とするものであって、請求項1記載の発明でいうと
ころのマイクロパイプ欠陥および結晶粒界のほとんどな
い大型かつ高品質な単結晶SiCを容易かつ効率よく成
長させ、半導体材料としての実用化の促進に寄与する単
結晶SiCを工業的規模で安定に製造し供給することが
可能である。
Further, according to a third aspect of the present invention, there is provided a method for producing single crystal SiC, comprising forming an α-2H-SiC layer on a surface of an α-SiC single crystal substrate by a thermochemical vapor deposition method, and then forming a composite thereof. The body is heat-treated to convert the α-2H-SiC layer into α-Si
C, and is oriented and oriented in the same direction as the crystal axis of the α-SiC single crystal substrate to integrate and grow the single crystal. However, large and high-quality single-crystal SiC having almost no micropipe defects and crystal grain boundaries is grown easily and efficiently, and single-crystal SiC that contributes to the practical use as a semiconductor material is stably manufactured on an industrial scale. It is possible to supply.

【0010】さらにまた、請求項4記載の発明に係る単
結晶SiCの製造方法は、請求項3記載の発明における
複合体の熱処理温度を熱化学的蒸着の温度よりも高温、
具体的には請求項5に記載のように、1600〜240
0℃で、かつSiC飽和蒸気圧中で行なうものであり、
高品質の単結晶SiCを設備的にも非常に容易に製造す
ることが可能である。
Further, in the method for producing single-crystal SiC according to the invention of claim 4, the heat treatment temperature of the composite according to the invention of claim 3 is higher than the temperature of thermochemical vapor deposition.
Specifically, as described in claim 5, 1600 to 240
At 0 ° C. and in a saturated vapor pressure of SiC,
High-quality single-crystal SiC can be produced very easily in terms of equipment.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態を図面
にもとづいて説明する。図1は本発明に係る単結晶Si
Cの熱処理前の状態を示す模式図であり、同図におい
て、1は六方晶系(6H型または4H型)のα−SiC
単結晶基材で、その表面に1300〜1500℃の範囲
の熱CVD法によりα−2H−SiC層2を成膜するこ
とにより、格子欠陥を含むα−SiC単結晶基材1の表
面にα−2H−SiC層2の一部の相変態によりα−6
H(または4H)−SiC単結晶体が成長された複合体
Mが形成される。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a single crystal Si according to the present invention.
FIG. 2 is a schematic view showing a state before heat treatment of C, in which 1 is a hexagonal (6H type or 4H type) α-SiC;
By forming the α-2H-SiC layer 2 on the surface of the single-crystal base material by a thermal CVD method at a temperature in the range of 1300 to 1500 ° C., α Α-6 due to a partial phase transformation of -2H-SiC layer 2
A composite M in which an H (or 4H) -SiC single crystal is grown is formed.

【0012】この後、上記複合体Mの全体を、1600
〜2400℃、好ましくは2000〜2200℃の温度
範囲、具体的には2000℃×5時間もしくは2200
℃×4時間で、かつSiC飽和蒸気圧中で熱処理するこ
とにより、一部が既に上記α−6H(または4H)−S
iC単結晶体に成長している上記α−2H−SiC層2
の全体がα−6H(または4H)−SiCに転化すると
共に上記α−SiC単結晶基材1の結晶軸と同方位に配
向して該基材1の単結晶と一体化し図2に示すような大
型の単結晶SiC5が育成される。
Thereafter, the entirety of the above-mentioned complex M is 1600
To 2400 ° C., preferably 2000 to 2200 ° C., specifically 2000 ° C. × 5 hours or 2200 ° C.
C. for 4 hours and in a saturated vapor pressure of SiC, a part of which is already α-6H (or 4H) -S
The α-2H-SiC layer 2 growing on the iC single crystal body
Is converted to α-6H (or 4H) -SiC, and is oriented in the same direction as the crystal axis of the α-SiC single crystal substrate 1 to be integrated with the single crystal of the substrate 1 as shown in FIG. Large single crystal SiC5 is grown.

【0013】上記のようにα−SiC単結晶基材1の表
面に該α−SiC単結晶基材1の結晶構造に近い規則性
を持つ結晶構造のα−2H−SiC層2を熱化学的蒸着
法で形成させてその結晶の一部がα−6H(または4
H)−SiC単結晶体に成長された複合体Mに熱処理を
施すことにより、α−SiC単結晶基材1の表面にβ−
SiC(3C−SiC)層を熱化学的蒸着法で形成させ
た複合体を熱処理する場合に比べて、この熱処理時に上
述のような小さい熱エネルギーを付与するだけで、マイ
クロパイプ欠陥および結晶粒界がほとんどない(1cm2
あたり10以下)高品質で、かつ、大型の単結晶SiC
を効率よく製造することができる。
As described above, the α-2H-SiC layer 2 having a crystal structure having a regularity close to the crystal structure of the α-SiC single crystal substrate 1 is formed on the surface of the α-SiC single crystal substrate 1 by thermochemical treatment. A part of the crystal is formed by α-6H (or 4
By subjecting the composite M grown to H) -SiC single crystal to a heat treatment, the surface of the α-SiC single crystal
Compared to the case where the composite in which the SiC (3C-SiC) layer is formed by the thermal chemical vapor deposition method is subjected to the heat treatment, the micropipe defects and the grain boundaries can be obtained only by applying the small heat energy as described above during the heat treatment. Almost no (1cm 2
Less than 10) high quality and large single crystal SiC
Can be manufactured efficiently.

【0014】[0014]

【発明の効果】以上のように、請求項1記載の発明によ
れば、α−SiC単結晶基材にそれの結晶構造に近い規
則性を持つ結晶構造のα−2H−SiC層を熱化学的蒸
着法で形成させてα−2H−SiC層の一部をα−6H
(または4H)−SiCに相変態させたうえ、その複合
体を熱処理することで、結晶成長に要する熱エネルギー
(熱×時間)が小さくすむものでありながら、α−2H
−SiC層の全体をα−6H(または4H)−SiCに
素早く転化(相変態)させると共に、α−SiC単結晶
基材の結晶軸と同方位に配向させ該基材の単結晶と一体
化した大型で、かつマイクロパイプ欠陥および結晶粒界
がほとんどない高品質な単結晶SiCを効率よく得るこ
とができる。これによって、Si(シリコン)やGaA
s(ガリウムヒ素)などの既存の半導体材料に比べて大
容量、高周波、耐圧、耐環境性に優れパワーデバイス用
半導体材料として期待されている単結晶SiCの実用化
を促進することができるという効果を奏する。
As described above, according to the first aspect of the present invention, an α-2H-SiC layer having a crystal structure having a regularity close to that of the α-SiC single crystal base material is formed on the α-SiC single crystal base material by thermochemistry. And a part of the α-2H-SiC layer is formed by α-6H
(Or 4H) -SiC, and then heat-treating the composite to reduce the heat energy (heat × time) required for crystal growth while maintaining α-2H.
-The entire SiC layer is quickly converted to α-6H (or 4H) -SiC (phase transformation), and is oriented in the same direction as the crystal axis of the α-SiC single crystal base, and integrated with the single crystal of the base. A large-sized high-quality single crystal SiC substantially free from micropipe defects and crystal grain boundaries can be efficiently obtained. Thereby, Si (silicon) or GaAs
Compared to existing semiconductor materials such as s (gallium arsenide), the effect of being able to promote the practical use of single crystal SiC which is excellent in large capacity, high frequency, withstand voltage and environmental resistance and expected as a semiconductor material for power devices. To play.

【0015】また、請求項2記載の発明によれば、上記
請求項1記載の発明で得られる単結晶SiCを不純物や
格子欠陥などがより一層少ない高純度の単結晶とするこ
とができる。
According to the second aspect of the present invention, the single crystal SiC obtained by the first aspect of the present invention can be made into a high-purity single crystal with less impurities and lattice defects.

【0016】さらに、請求項3記載の発明によれば、請
求項1記載の発明でいうところのマイクロパイプ欠陥お
よび結晶粒界の極めて少ない高品質な単結晶SiCを容
易に、かつ効率よく成長させ、半導体材料として工業的
規模で安定よく供給することができるという効果を奏す
る。
Furthermore, according to the third aspect of the present invention, high-quality single-crystal SiC having extremely few micropipe defects and crystal grain boundaries according to the first aspect of the present invention can be easily and efficiently grown. In addition, there is an effect that the semiconductor material can be stably supplied on an industrial scale.

【0017】さらにまた、請求項4および請求項5記載
の発明によれば、高品質の単結晶SiCを設備的にも非
常に容易に製造することができる。
Furthermore, according to the fourth and fifth aspects of the present invention, high-quality single-crystal SiC can be produced very easily in terms of equipment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る単結晶SiCの熱処理前の状態を
示す模式図である。
FIG. 1 is a schematic diagram showing a state before heat treatment of single crystal SiC according to the present invention.

【図2】本発明に係る単結晶SiCの熱処理後の状態を
示す模式図である。
FIG. 2 is a schematic diagram showing a state after heat treatment of single crystal SiC according to the present invention.

【符号の説明】[Explanation of symbols]

1 α−SiC単結晶基材 2 α−2H−SiC層 5 単結晶SiC M 複合体 Reference Signs List 1 α-SiC single crystal base material 2 α-2H-SiC layer 5 single crystal SiC M composite

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 α−SiC単結晶基材の表面に熱化学的
蒸着法でα−2H−SiC層を形成してなる複合体を熱
処理することにより、上記α−2H−SiC層をα−S
iCに転化させ、かつ、上記α−SiC単結晶基材の結
晶軸と同方位に配向させて単結晶を一体に成長させてい
ることを特徴とする単結晶SiC。
An α-2H-SiC layer is formed on a surface of an α-SiC single crystal base material by a thermal chemical vapor deposition method and heat-treated to form an α-2H-SiC layer. S
A single-crystal SiC, which is converted into iC and is oriented in the same direction as the crystal axis of the α-SiC single-crystal substrate to grow a single crystal integrally.
【請求項2】 上記α−2H−SiC層が、1300〜
1500℃範囲の熱化学的蒸着法によりα−SiC単結
晶基材の表面に形成されたものである請求項1に記載の
単結晶SiC。
2. The method according to claim 1, wherein said α-2H-SiC layer is 1300-300.
The single-crystal SiC according to claim 1, wherein the single-crystal SiC is formed on the surface of the α-SiC single-crystal substrate by a thermochemical deposition method in a range of 1500 ° C.
【請求項3】 α−SiC単結晶基材の表面に熱化学的
蒸着法でα−2H−SiC層を形成した後、 その複合体を熱処理して上記α−2H−SiC層をα−
SiCに転化させ、かつ、上記α−SiC単結晶基材の
結晶軸と同方位に配向して単結晶を一体化し育成するこ
とを特徴とする単結晶SiCの製造方法。
3. An α-2H-SiC layer is formed on the surface of an α-SiC single crystal base material by a thermochemical vapor deposition method, and then the composite is heat-treated to convert the α-2H-SiC layer into an α-SiC layer.
A method for producing single-crystal SiC, wherein the single-crystal SiC is converted into SiC, and oriented in the same direction as the crystal axis of the α-SiC single-crystal substrate to integrate and grow the single crystal.
【請求項4】 上記熱処理温度が、熱化学的蒸着温度よ
りも高温で、かつ、SiC飽和蒸気圧中で行なわれる請
求項3に記載の単結晶SiCの製造方法。
4. The method for producing single crystal SiC according to claim 3, wherein the heat treatment is performed at a temperature higher than a thermochemical vapor deposition temperature and in a SiC saturated vapor pressure.
【請求項5】 上記熱処理温度が、1600〜2400
℃である請求項4に記載の単結晶SiCの製造方法。
5. The heat treatment temperature is from 1600 to 2400.
The method for producing single crystal SiC according to claim 4, wherein the temperature is ° C.
JP31512497A 1997-11-17 1997-11-17 Single crystal SiC and method for producing the same Expired - Fee Related JP3043687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31512497A JP3043687B2 (en) 1997-11-17 1997-11-17 Single crystal SiC and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31512497A JP3043687B2 (en) 1997-11-17 1997-11-17 Single crystal SiC and method for producing the same

Publications (2)

Publication Number Publication Date
JPH11147792A true JPH11147792A (en) 1999-06-02
JP3043687B2 JP3043687B2 (en) 2000-05-22

Family

ID=18061702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31512497A Expired - Fee Related JP3043687B2 (en) 1997-11-17 1997-11-17 Single crystal SiC and method for producing the same

Country Status (1)

Country Link
JP (1) JP3043687B2 (en)

Also Published As

Publication number Publication date
JP3043687B2 (en) 2000-05-22

Similar Documents

Publication Publication Date Title
US6053973A (en) Single crystal SiC and a method of producing the same
US6153166A (en) Single crystal SIC and a method of producing the same
JP3296998B2 (en) Single crystal SiC and method for producing the same
JP3003027B2 (en) Single crystal SiC and method for producing the same
JP3254559B2 (en) Single crystal SiC and method for producing the same
JP2884085B1 (en) Single crystal SiC and method for producing the same
JP3248071B2 (en) Single crystal SiC
JP3043675B2 (en) Single crystal SiC and method for producing the same
JP3254557B2 (en) Single crystal SiC and method for producing the same
JP3043690B2 (en) Single crystal SiC and method for producing the same
JP2896667B1 (en) Single crystal SiC and method for producing the same
JP2917143B1 (en) Single crystal SiC and method for producing the same
JP3043687B2 (en) Single crystal SiC and method for producing the same
JP3087030B2 (en) SiC composite, method for producing the same, and single crystal SiC
JP2936481B1 (en) Single crystal SiC and method for producing the same
JP3043688B2 (en) Single crystal SiC and method for producing the same
JP2939615B2 (en) Single crystal SiC and method for producing the same
JP2917149B1 (en) Single crystal SiC and method for producing the same
JP2946410B2 (en) Single crystal SiC and method for producing the same
JP2964080B1 (en) Single crystal SiC and method for producing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees