JPH11147759A - Zirconia-graphite refractory - Google Patents

Zirconia-graphite refractory

Info

Publication number
JPH11147759A
JPH11147759A JP9312500A JP31250097A JPH11147759A JP H11147759 A JPH11147759 A JP H11147759A JP 9312500 A JP9312500 A JP 9312500A JP 31250097 A JP31250097 A JP 31250097A JP H11147759 A JPH11147759 A JP H11147759A
Authority
JP
Japan
Prior art keywords
zirconia
graphite
coarse
refractory
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9312500A
Other languages
Japanese (ja)
Inventor
Koji Ogata
浩二 緒方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurosaki Refractories Co Ltd
Original Assignee
Kurosaki Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurosaki Refractories Co Ltd filed Critical Kurosaki Refractories Co Ltd
Priority to JP9312500A priority Critical patent/JPH11147759A/en
Publication of JPH11147759A publication Critical patent/JPH11147759A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve the thermal impact resistance of a zirconia-graphite refractory without deteriorating the corrosion resistance of the zirconia-graphite refractory and maintain the balance of both the characteristics. SOLUTION: This refractory contains zirconia granules having granule diameters of >=0.2 mm, zirconia granules having granule diameters of <0.2 mm, and graphite as main components. Therein, the zirconia granules having granule diameters of >=0.2 mm are coated with coating layers comprising a mixture consisting mainly of zirconia granules having granule diameters of <0. 2 mm and graphite, and the rate of the graphite at parts brought into contact with the zirconia of the coating layers is higher than that at parts except the coarse zirconia granules.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、溶鋼のような溶融
金属の連続鋳造においてタンディッシュからモールドへ
の溶融金属の注入に使用する浸漬ノズルや、取鍋からタ
ンディッシュへの金属溶湯の注入に使用されるロングノ
ズル等の連続鋳造用ノズルのスラグと接触する部分、あ
るいは流量制御のためのストッパー等に好適に適用でき
るジルコニア−黒鉛質耐火物に関する。
The present invention relates to an immersion nozzle used for injecting molten metal from a tundish into a mold in continuous casting of molten metal such as molten steel, and an injection of molten metal from a ladle to a tundish. The present invention relates to a zirconia-graphite refractory that can be suitably applied to a portion of a continuous casting nozzle, such as a long nozzle, used for contact with slag, or a stopper for controlling flow rate.

【0002】[0002]

【従来の技術】従来から、連続鋳造用ノズルは黒鉛とジ
ルコニア、アルミナ、シリカのような様々な酸化物を組
み合わせることにより、長時間使用に適するように設計
されているが、近年の耐用性向上の要請に対し、特にノ
ズルが溶鋼に浸漬されノズル表面がスラグやモールドパ
ウダーに接する部分は化学的浸食による溶損が大きく、
ノズルの寿命を左右することが多い。
2. Description of the Related Art Conventionally, continuous casting nozzles have been designed to be suitable for long-term use by combining graphite and various oxides such as zirconia, alumina and silica. In particular, where the nozzle is immersed in molten steel and the surface of the nozzle comes into contact with slag or mold powder, the erosion due to chemical erosion is large,
It often affects the life of the nozzle.

【0003】これらの酸化物の中でも、ジルコニアはア
ルミナやシリカに比較して酸化物スラグとの反応性が低
く、とくに、塩基度が低い浸食性の強いスラグに対して
は優れた耐食性を有する。
[0003] Among these oxides, zirconia has low reactivity with oxide slag as compared with alumina and silica, and has excellent corrosion resistance, especially to slag having low basicity and strong erosion.

【0004】このジルコニアと黒鉛を組み合わせたジル
コニア−黒鉛質耐火物は、弾性率が低く、熱伝導率が高
いことにより耐熱衝撃性に優れた特性を有する黒鉛とを
組み合わせることで優れた耐熱衝撃性とともに、アルミ
ナ−黒鉛質耐火物やアルミナ−シリカ−黒鉛質耐火物に
比較して耐食性に優れたものになっている。
The zirconia-graphitic refractory obtained by combining zirconia and graphite has excellent thermal shock resistance by being combined with graphite having characteristics of excellent thermal shock resistance due to low elastic modulus and high thermal conductivity. At the same time, it is superior in corrosion resistance to alumina-graphite refractories and alumina-silica-graphite refractories.

【0005】例えば、浸漬ノズルの場合には、モールド
パウダーに接する部分にはジルコニア−黒鉛質耐火物を
適用して優れた耐食性を得ている。また、ロングノズル
の一部にはスラグと接触する部位にジルコニア−黒鉛質
耐火物を適用して、塩基度が低い浸食性の強いスラグに
対して優れた耐食性を得ている。
For example, in the case of an immersion nozzle, a zirconia-graphite refractory is applied to a portion in contact with mold powder to obtain excellent corrosion resistance. In addition, a zirconia-graphite refractory is applied to a portion of the long nozzle in contact with the slag, thereby obtaining excellent corrosion resistance to slag having a low basicity and a high erodibility.

【0006】そして、このように優れた耐食性を有する
ジルコニア−黒鉛質耐火物の特性を生かしながら、黒鉛
が溶鋼などの溶融金属に溶解しやすく酸化されやすい欠
点を解消するために、高温下で黒鉛などのカーボンと反
応し強固な結合を形成するアルミニウムやシリコンなど
の金属を添加することも行われ、その結果、ジルコニア
−黒鉛質耐火物の耐磨耗性は向上できた。
[0006] In order to eliminate the disadvantage that graphite is easily dissolved in molten metal such as molten steel and easily oxidized while taking advantage of the characteristics of zirconia-graphitic refractory having excellent corrosion resistance, graphite at high temperatures is used. Metals such as aluminum and silicon which react with carbon to form a strong bond are also added, and as a result, the abrasion resistance of the zirconia-graphite refractory was improved.

【0007】さらに、ジルコニア−黒鉛質耐火物が有す
る優れた耐食性をさらに向上させる試みも種々行われて
おり、そのためには、黒鉛の配合量を少なくしジルコニ
ア量を増やすことが最も効果的である。ところが、黒鉛
量が少なくなるために耐熱衝撃性が低下する問題があ
る。
Further, various attempts have been made to further improve the excellent corrosion resistance of zirconia-graphitic refractories. For this purpose, it is most effective to reduce the amount of graphite and increase the amount of zirconia. . However, there is a problem that the thermal shock resistance is reduced due to the reduced amount of graphite.

【0008】この問題の解決手段として、特開平7−2
14260公報には、立方晶系ZrO2を主成分とする
部分安定化ZrO2を75〜90重量%と、純度が固定
炭素にして94重量%以上の黒鉛を10〜25重量%含
有するジルコニア−黒鉛質耐火物が開示されている。こ
のように使用原料を特定したり、粒度構成を特定する試
みも行われているが、充分な耐熱衝撃性の向上は得られ
ていない。
As means for solving this problem, Japanese Patent Laid-Open No. 7-2
The 14260 publication, cubic and the ZrO 2 partially stabilized ZrO 2 as a main component 75 to 90 wt%, zirconia purity contains 10 to 25 wt% of 94 wt% or more of graphite in the fixed carbon - Graphitic refractories are disclosed. As described above, attempts have been made to specify a raw material to be used or a particle size composition, but a sufficient improvement in thermal shock resistance has not been obtained.

【0009】[0009]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、ジルコニア−黒鉛質耐火物の耐食性を低下
させることなく耐熱衝撃性を向上し、両特性のバランス
を改善することである。
An object of the present invention is to improve the thermal shock resistance of the zirconia-graphite refractory without deteriorating its corrosion resistance and to improve the balance between the two properties.

【0010】[0010]

【課題を解決するための手段】本発明は、ジルコニア−
黒鉛質耐火物におけるジルコニアと黒鉛の配置を適正化
することによって耐食性及び耐熱衝撃性のバランスを向
上させることが可能であるという知見に基づいて完成し
た。
SUMMARY OF THE INVENTION The present invention provides a zirconia
The present invention was completed based on the finding that the balance between corrosion resistance and thermal shock resistance can be improved by optimizing the arrangement of zirconia and graphite in a graphite refractory.

【0011】従来のジルコニア−黒鉛質耐火物は、ジル
コニアと黒鉛に主としてフェノールレジンからなるバイ
ンダーを添加して均一に混練した配合物とし、これを成
形・焼成することによって作成している。従って、ジル
コニアに対する黒鉛の配置については特に考慮されてお
らず、一般的には黒鉛とジルコニアは均一に分散してい
る。
A conventional zirconia-graphitic refractory is prepared by adding a binder mainly composed of phenolic resin to zirconia and graphite to obtain a uniform mixture, followed by molding and firing. Therefore, no particular consideration is given to the arrangement of graphite with respect to zirconia, and graphite and zirconia are generally uniformly dispersed.

【0012】粒子径の大きな粗粒ジルコニアは耐食性の
改善に効果があり、また亀裂発生時には亀裂を迂回させ
る効果があり耐用性改善に効果的である。しかしなが
ら、粒子径が大きいことは部分的に弾性率が非常に大き
い部位が存在することになり全体としても弾性率が増大
するため、耐熱衝撃性が低下するという問題が生じる。
しかし、粗粒ジルコニアを被覆する黒鉛の量を増加させ
ると、黒鉛が緩衝材の役割を果たして弾性率の増加が抑
制される。
Coarse-grained zirconia having a large particle diameter is effective in improving corrosion resistance, and has the effect of bypassing cracks when cracks occur, which is effective in improving durability. However, when the particle diameter is large, there is a portion where the elastic modulus is extremely large, and the elastic modulus is increased as a whole, so that there is a problem that the thermal shock resistance is reduced.
However, when the amount of the graphite covering the coarse zirconia is increased, the graphite plays a role of a buffer, and the increase in the elastic modulus is suppressed.

【0013】本発明の効果は、ジルコニアの粒子径が
0.2mm以上の粗粒ジルコニアに対して顕著に現れ
る。0.2mm未満の中間粒と微粉ジルコニアは弾性率
増大への影響が少ないため耐熱衝撃性の低下はほとんど
ない。
The effect of the present invention is remarkable for coarse zirconia having a zirconia particle diameter of 0.2 mm or more. Intermediate grains of less than 0.2 mm and finely divided zirconia hardly affect the increase in the elastic modulus, so that the thermal shock resistance hardly decreases.

【0014】また、ジルコニアの全量に対する粒子径が
0.2mm以上の粗粒ジルコニアの重量割合は5〜50
%が好適である。5%未満では粗粒の存在による弾性率
の増大の影響が少ないため本発明を適用する必要性が少
ないためである。50%以上では弾性率増大を抑制する
ために多量の黒鉛の被覆が必要となるため相対的に微粉
部分の黒鉛が大幅に減少し微粉の固まりが生じて実質的
に粗粒と同じ形態となるため弾性率が高くなるという弊
害が生じる。
The weight ratio of coarse zirconia having a particle diameter of 0.2 mm or more to the total amount of zirconia is 5 to 50.
% Is preferred. If the content is less than 5%, the influence of the increase in the elastic modulus due to the presence of the coarse particles is small, so that the necessity of applying the present invention is small. If it is 50% or more, a large amount of graphite must be coated in order to suppress the increase in the elastic modulus, so that the graphite in the fine powder portion is relatively significantly reduced, and the fine powder is agglomerated, resulting in substantially the same form as coarse particles. Therefore, there is a problem that the elastic modulus is increased.

【0015】以下、粒子径0.2mm以上の粗粒ジルコ
ニアを単に粗粒ジルコニアと称する。
Hereinafter, coarse zirconia having a particle diameter of 0.2 mm or more is simply referred to as coarse zirconia.

【0016】本発明は添加されている粗粒ジルコニアの
全てについて黒鉛割合の高い被覆層が形成されている場
合が最も好ましいが、一部の粗粒ジルコニアのみに適用
しても適用した割合に応じて改善効果が得られる。ま
た、粗粒ジルコニアを被覆する黒鉛の割合は多くなるに
従って弾性率低減の効果が得られるが、粗粒ジルコニア
の周囲にのみ黒鉛が集まると微粉ジルコニア部分の黒鉛
が相対的に少なくなり、微粉の固まりが生じて実質的に
粗粒と同じ形態となるために弾性率が高くなるという弊
害が生じるので、その点を考慮して適正化する必要があ
る。好ましい範囲について一例を挙げると、粗粒ジルコ
ニアを被覆する黒鉛量は、その耐火物中の粗粒ジルコニ
ア以外の部分の黒鉛割合の1.2〜2.6倍程度が適当
である。
In the present invention, it is most preferable that a coating layer having a high proportion of graphite is formed for all of the added coarse zirconia. The effect is improved. In addition, the effect of reducing the elastic modulus is obtained as the proportion of the graphite covering the coarse zirconia increases, but when the graphite gathers only around the coarse zirconia, the graphite in the fine zirconia portion is relatively reduced, and the fine zirconia portion is reduced. Since agglomeration occurs and the form becomes substantially the same as that of the coarse particles, there is a disadvantage that the elastic modulus is increased. To give an example of a preferred range, the amount of graphite covering the coarse zirconia is suitably about 1.2 to 2.6 times the proportion of graphite in the portion of the refractory other than the coarse zirconia.

【0017】粗粒ジルコニアを被覆して黒鉛量を適正化
する被覆層の厚みの範囲については微粉の量や黒鉛の量
に影響を受けるので一義的に規定することはできない
が、例を挙げると0.05mm以上、0.3mm以下の
範囲について被覆層を形成するのが好ましい。被覆層の
厚みが小さすぎる場合は弾性率低減の効果が小さくな
り、大きすぎる場合は強度の低下を招く場合があるので
適当な範囲に調整するのが好ましい。なお、一部の粗粒
が範囲外の被覆厚みで適正化されていても少量であれば
問題ない。
The range of the thickness of the coating layer, which covers the coarse zirconia and optimizes the amount of graphite, cannot be uniquely defined because it is affected by the amount of fine powder and the amount of graphite. It is preferable to form a coating layer in a range of 0.05 mm or more and 0.3 mm or less. If the thickness of the coating layer is too small, the effect of reducing the elastic modulus is reduced, and if it is too large, the strength may be reduced. Therefore, the thickness is preferably adjusted to an appropriate range. It should be noted that there is no problem if a small amount of coarse particles is appropriate even if the coating thickness is out of the range.

【0018】粗粒ジルコニアが、粒子径0.2mm未満
のジルコニアと黒鉛とを主成分とする原料混合物で被覆
され、この被覆層の粗粒ジルコニアと接する部分すなわ
ち1層目の黒鉛割合がその耐火物中の粒子径0.2mm
以上のジルコニアを除いた部分の黒鉛割合よりも高い黒
鉛割合とすることによって、組織中に同じ量の黒鉛を均
一に分散させた場合と比較して、弾性率が低下し耐熱衝
撃性が改善される。
The coarse zirconia is coated with a raw material mixture mainly composed of zirconia having a particle diameter of less than 0.2 mm and graphite, and the portion of the coating layer in contact with the coarse zirconia, that is, the proportion of graphite in the first layer is determined by the fire resistance. 0.2 mm particle diameter
By setting the graphite ratio higher than the graphite ratio in the portion excluding the zirconia, the elastic modulus is reduced and the thermal shock resistance is improved as compared with the case where the same amount of graphite is uniformly dispersed in the structure. You.

【0019】すなわち、本発明のジルコニア−黒鉛質耐
火物は、粗粒ジルコニア粒子と粒子径0.2mm未満の
ジルコニア粒子と黒鉛とを主成分とするもので、粗粒ジ
ルコニア粒子が、粒子径0.2mm未満のジルコニア粒
子と黒鉛を主成分とする混合物からなる被覆層によって
被覆されている。
That is, the zirconia-graphitic refractory of the present invention comprises coarse zirconia particles, zirconia particles having a particle diameter of less than 0.2 mm and graphite as main components, and the coarse zirconia particles have a particle diameter of 0%. .2 mm and covered with a coating layer composed of a mixture mainly composed of graphite and zirconia particles.

【0020】そして、この被覆層の粗粒ジルコニアと接
する部分すなわち1層目の黒鉛割合がこの耐火物中の粗
粒ジルコニアを除いた部分の黒鉛割合よりも高い黒鉛割
合からなっていることを特徴とする。
The portion of the coating layer in contact with the coarse zirconia, that is, the graphite ratio of the first layer is higher than the graphite ratio of the portion excluding the coarse zirconia in the refractory. And

【0021】[0021]

【発明の実施の形態】粗粒ジルコニアを被覆する黒鉛量
を増加させるためには、たとえば最初に粗粒ジルコニア
と全体の平均よりも多量の黒鉛を含んだ粗粒を除くジル
コニアにバインダーを添加して混練することで被覆層を
形成した後で、残りの原料とバインダーとを添加し再度
混練後、通常の方法で成形後熱処理する手段を採用する
ことができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In order to increase the amount of graphite covering coarse zirconia, for example, a binder is first added to zirconia excluding coarse zirconia and coarse particles containing a larger amount of graphite than the average of the whole. After kneading and kneading to form a coating layer, a method of adding the remaining raw materials and binder, kneading again, and performing heat treatment after molding by a usual method can be adopted.

【0022】粗粒ジルコニアの被覆層は、最初の混練方
法あるいは残りの原料との混練方法により、1層のみあ
るいは複数層形成される場合があるが、粗粒ジルコニア
と接する1層目の部分が、その耐火物中の粒子径0.2
mm以上のジルコニアを除いた部分の黒鉛割合よりも高
い黒鉛割合からなっていることで十分な効果が得られ
る。
The coating layer of coarse zirconia may be formed as a single layer or a plurality of layers depending on the initial kneading method or the kneading method with the remaining raw materials, but the first layer in contact with the coarse zirconia may be formed. , The particle size of the refractory is 0.2
A sufficient effect can be obtained by having a graphite ratio higher than the graphite ratio in a portion excluding zirconia of mm or more.

【0023】なお、本発明はジルコニアの単味に限ら
ず、ジルコニアに黒鉛の酸化防止のためのSi、Si
C、B4C等を3重量%程度まで少量添加した場合に
も、また、ジルコニアに代えてZrB2の場合も同様に
適用できる。
It should be noted that the present invention is not limited to simple zirconia, but zirconia may contain Si, Si for preventing the oxidation of graphite.
The same applies to the case where C, B 4 C and the like are added in small amounts up to about 3% by weight, and the case where ZrB 2 is used instead of zirconia.

【0024】実施例1 この実施例は、粗粒ジルコニアへの被覆層の粗粒ジルコ
ニアと接する1層目の黒鉛の割合による効果を確認する
ものである。
Example 1 This example confirms the effect of the proportion of the graphite in the first layer in contact with the coarse zirconia in the coating layer on the coarse zirconia.

【0025】表1は適用した配合例を示すもので、表
中、No.1は比較のための従来品を示し、No.2〜
No.4は本発明の実施例を示す。
Table 1 shows an example of the applied composition. No. 1 shows a conventional product for comparison. Two
No. 4 shows an embodiment of the present invention.

【0026】同表のNo.1の混練は黒鉛全量とジルコ
ニア全量を混合し、これにフェノールレジンを添加して
おこなったものである。また、実施例であるNo.2〜
No.4はそれぞれ粒径0.2mm以上の粗粒ジルコニ
アへの黒鉛の被覆量を増加させるため、最初に前混練用
の原料をあらかじめ混練し、No.1の試料よりも黒鉛
の被覆量を増加させた造粒子を作製し、これに後混練用
の原料を加えてさらに混練し配合物を得た。
In the table, No. The kneading of No. 1 was carried out by mixing the entire amount of graphite and the entire amount of zirconia, and adding phenolic resin thereto. In addition, in Example No. Two
No. No. 4 first kneaded the raw materials for pre-kneading in advance to increase the amount of graphite coated on coarse zirconia having a particle size of 0.2 mm or more. Particles having a greater graphite coverage than the sample No. 1 were prepared, and a raw material for post-kneading was added thereto, followed by further kneading to obtain a blend.

【0027】得られた配合物を1000kg/cm2
圧力でノズル形状にCIP成形し、コークス中に埋め込
んで最高温度1000℃にて還元焼成を行った。焼成後
のサンプルの断面を顕微鏡で観察すると粗粒ジルコニア
の周囲に1層あるいは2層の被覆層を確認することがで
き、粗粒ジルコニアと接する1層目の被覆層厚みは、表
1の計算値とほぼ一致するものであった。
The obtained composition was CIP-molded into a nozzle at a pressure of 1000 kg / cm 2 , embedded in coke, and reduced and fired at a maximum temperature of 1000 ° C. By observing the cross section of the sample after firing with a microscope, one or two coating layers can be confirmed around the coarse zirconia, and the thickness of the first coating layer in contact with the coarse zirconia is calculated according to Table 1. The value almost coincided with the value.

【0028】また、焼成したノズルから、曲げ強度、弾
性率、熱膨張率を測定した。測定結果及び耐スポール性
を表す熱衝撃抵抗係数の結果を表1に示す。曲げ強度は
3点曲げ法により、弾性率は超音波法により、熱膨張率
は市販の熱膨張計で測定し1500℃までの平均線膨張
係数を示した。熱衝撃抵抗係数はポアソン比がほぼ一定
のため次式により算出した。
Further, the bending strength, the elastic modulus, and the coefficient of thermal expansion were measured from the fired nozzle. Table 1 shows the measurement results and the results of the thermal shock resistance coefficient representing the spall resistance. The bending strength was measured by a three-point bending method, the elastic modulus was measured by an ultrasonic method, and the thermal expansion coefficient was measured by a commercially available thermal dilatometer, and showed an average linear expansion coefficient up to 1500 ° C. The thermal shock resistance coefficient was calculated by the following equation since the Poisson's ratio was almost constant.

【0029】 (曲げ強度)/[(弾性率)×(熱膨張率)] 数字は大きいほど耐スポール性に優れていることを示
す。測定結果から明らかなように、従来品のNo.1と
比較して本発明の実施例であるNo.2〜4は弾性率が
低下した効果により熱衝撃抵抗係数が改善されているこ
とが明らかである。ただし、黒鉛の含有量がNo.1の
約2.6倍のNo.4についてはNo.3と比較して強
度および熱衝撃抵抗係数が低下しており、これ以上の黒
鉛の増量は改善効果が小さくなり不適当である。従っ
て、より好ましい被覆層中の黒鉛の割合は、耐火物中の
粗粒ジルコニアを除いた部分の黒鉛の割合の1.2から
2.6倍程度が適当であることが分かった。
(Bending strength) / [(elastic modulus) × (thermal expansion coefficient)] The larger the number, the better the spall resistance. As is clear from the measurement results, the No. 1 No. 1, which is an embodiment of the present invention, as compared with No. 1. It is clear that Nos. 2 to 4 have improved thermal shock resistance coefficients due to the effect of lowering the elastic modulus. However, when the content of graphite was no. No. 1 which is about 2.6 times that of No. 1 No. 4 is No. As compared with No. 3, the strength and the thermal shock resistance coefficient were reduced, and an increase in the amount of graphite beyond this value was inappropriate because the improvement effect was small. Accordingly, it was found that the more preferable ratio of graphite in the coating layer is about 1.2 to 2.6 times the ratio of graphite in the portion of the refractory other than coarse zirconia.

【0030】[0030]

【表1】 実施例2 この実施例は被覆層の厚みの効果を確認するもので、表
2にNo.5からNo.10の6種類の配合例と得られ
た耐火物の特性を示す。No.5は比較例を示し、実施
例1のNo.1と同様に均一に混練した。No.6〜N
o.10は、本発明の実施例を示すもので、実施例1の
No.2〜No.4の場合と同様に、粗粒への黒鉛被覆
量を増加させた。配合作製以降の成形、焼成、品質評価
等については実施例1の場合と全く同様の方法で行っ
た。品質評価の結果、本発明の実施例であるNo.6〜
No.10については従来品のNo.5よりも弾性率が
小さく耐熱衝撃性に優れていることが明らかである。実
施例中、被覆層の厚みが0.05mm以下であるNo.
6と0.3mm以上であるNo.10は耐熱衝撃性に劣
っており、好ましい被覆厚みは0.05mm〜0.3m
mであることが明らかである。
[Table 1] Example 2 In this example, the effect of the thickness of the coating layer was confirmed. 5 to No. 5 10 shows six types of formulation examples and the characteristics of the obtained refractories. No. 5 shows a comparative example. Kneaded uniformly as in Example 1. No. 6-N
o. Reference numeral 10 denotes an embodiment of the present invention. 2-No. As in the case of No. 4, the amount of graphite coating on the coarse particles was increased. The molding, firing, quality evaluation, and the like after the preparation of the blend were performed in exactly the same manner as in Example 1. As a result of the quality evaluation, No. 1 of the embodiment of the present invention was obtained. 6 ~
No. No. 10 of the conventional product. It is apparent that the modulus of elasticity is smaller than that of No. 5 and the thermal shock resistance is excellent. In Examples, the thickness of the coating layer was 0.05 mm or less.
No. 6 and 0.3 mm or more. 10 is inferior in thermal shock resistance, and the preferable coating thickness is 0.05 mm to 0.3 m.
It is clear that m.

【0031】[0031]

【表2】 実施例3 粗粒ジルコニアの添加量について検討した結果を表3に
示す。表中、No.11からNo.14は、本発明の実
施例であり、弾性率が低く良好である。比較例のNo.
15は、本発明の請求項4の範囲外であり、弾性率が高
い。
[Table 2] Example 3 Table 3 shows the results of studies on the amount of coarse zirconia added. In the table, No. 11 to No. 14 is an example of the present invention, which has a low elastic modulus and is good. No. of the comparative example.
No. 15 is outside the scope of claim 4 of the present invention, and has a high elastic modulus.

【0032】[0032]

【表3】 実施例4 実炉試験に供した結果を示すもので、前記比較例として
挙げた試料No.lと本発明の実施例であるNo.3の
材質をパウダーラインに適用して浸漬ノズルを作製しス
ラブ連鋳機にて実炉試験に供した。取鍋の容量は300
ton、1chあたりの鋳造時間は約40分で、同一T
DにNo.1とNo.3を適用した浸漬ノズルをセット
した。テスト本数は各々5本ずつで、1本あたり平均し
て約300分使用した。使用後のノズルを回収しパウダ
ーライン部の溶損速度を調査した結果ほぼ同等であっ
た。No.3はNo.1と比較して耐熱衝撃性に優れて
いることから、本発明品は耐食性が同等でしかも安定鋳
造に寄与することが判明した。また、耐熱衝撃性が優位
であることはさらにジルコニアの含有量を増加させる余
地があることを意味しており、本発明が耐用向上にも寄
与することが明らかである。
[Table 3] Example 4 This shows the result of being subjected to an actual furnace test. l and No. 1 which is an embodiment of the present invention. The material of No. 3 was applied to a powder line to prepare an immersion nozzle, which was subjected to an actual furnace test using a continuous slab casting machine. Ladle capacity is 300
ton, casting time per ch is about 40 minutes, same T
No. D 1 and No. The immersion nozzle to which No. 3 was applied was set. The number of test pieces was five each, and each piece was used for about 300 minutes on average. The used nozzles were collected and the erosion rate in the powder line was examined. The results were almost the same. No. No. 3 is No. It was found that the product of the present invention had the same corrosion resistance and contributed to stable casting because it was superior in thermal shock resistance as compared with Comparative Example 1. Further, superior thermal shock resistance means that there is room for further increasing the content of zirconia, and it is clear that the present invention also contributes to improvement in durability.

【0033】[0033]

【発明の効果】(1) 同じ黒鉛の使用量の従来のジル
コニア−黒鉛質耐火物と比較して耐スポーリング性が著
しく向上する。
(1) The spalling resistance is remarkably improved as compared with the conventional zirconia-graphitic refractory using the same amount of graphite.

【0034】(2) 粗粒添加による弾性率の増大が抑
制されるので、従来のものよりも粗粒ジルコニアの含有
率を増加することができるので、耐食性がさらに向上す
る。
(2) Since the increase in elastic modulus due to the addition of coarse particles is suppressed, the content of coarse zirconia can be increased as compared with the conventional one, so that the corrosion resistance is further improved.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 粒子径が0.2mm以上の粗粒ジルコニ
アと粒子径が0.2mm未満のジルコニアと黒鉛とを主
成分とし、前記粗粒ジルコニアが粒子径が0.2mm未
満のジルコニアと黒鉛とを主成分とする混合物からなる
被覆層によって被覆されているジルコニア−黒鉛質耐火
物において、 前記被覆層の粗粒ジルコニアと接する部分の黒鉛割合
が、耐火物中の粗粒ジルコニアを除いた部分の黒鉛割合
よりも高いことを特徴とするジルコニア−黒鉛質耐火
物。
1. A zirconia having a particle diameter of at least 0.2 mm, zirconia having a particle diameter of less than 0.2 mm, and graphite as a main component, wherein the coarse zirconia has a particle diameter of less than 0.2 mm. In the zirconia-graphitic refractory covered with the coating layer composed of a mixture containing as the main component, the proportion of graphite in a portion of the coating layer in contact with the coarse zirconia is a portion excluding the coarse zirconia in the refractory. A zirconia-graphitic refractory, characterized by having a higher graphite proportion than
【請求項2】 被覆層の粗粒ジルコニアと接する部分の
黒鉛割合が、耐火物中の粗粒ジルコニア粒子を除いた部
分の黒鉛の重量割合の1.2倍から2.6倍高いことを
特徴とする請求項1に記載のジルコニア−黒鉛質耐火
物。
2. The graphite ratio of the portion of the coating layer in contact with the coarse zirconia is 1.2 to 2.6 times higher than the weight ratio of graphite in the portion of the refractory other than the coarse zirconia particles. The zirconia-graphitic refractory according to claim 1.
【請求項3】 粗粒ジルコニアのジルコニア全量に対す
る割合が5〜50重量%であることを特徴とする請求項
1あるいは請求項2の何れかに記載のジルコニア−黒鉛
質耐火物。
3. The zirconia-graphite refractory according to claim 1, wherein the proportion of the coarse zirconia to the total amount of zirconia is 5 to 50% by weight.
【請求項4】 粗粒ジルコニアと接する被覆層の厚みが
0.05mm以上、0.3mm以下であることを特徴と
する請求項1から請求項3の何れかに記載のジルコニア
−黒鉛質耐火物。
4. The zirconia-graphitic refractory according to claim 1, wherein the thickness of the coating layer in contact with the coarse zirconia is 0.05 mm or more and 0.3 mm or less. .
JP9312500A 1997-11-13 1997-11-13 Zirconia-graphite refractory Pending JPH11147759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9312500A JPH11147759A (en) 1997-11-13 1997-11-13 Zirconia-graphite refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9312500A JPH11147759A (en) 1997-11-13 1997-11-13 Zirconia-graphite refractory

Publications (1)

Publication Number Publication Date
JPH11147759A true JPH11147759A (en) 1999-06-02

Family

ID=18029972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9312500A Pending JPH11147759A (en) 1997-11-13 1997-11-13 Zirconia-graphite refractory

Country Status (1)

Country Link
JP (1) JPH11147759A (en)

Similar Documents

Publication Publication Date Title
JPH03502091A (en) Refractory lining composition
JP3593101B2 (en) Carbonaceous refractory and method for producing the same
JP4132212B2 (en) Zirconia-graphite refractory with excellent corrosion resistance and nozzle for continuous casting using the same
JPH09202667A (en) Castable refractory for slide gate
JPH07214259A (en) Nozzle for continuous casting of molten steel
JPH05200508A (en) Nozzle for continuous casting of molten steel
JP3096586B2 (en) Alumina-carbon casting nozzle refractories
JPS6119584B2 (en)
JPH11147759A (en) Zirconia-graphite refractory
JP7162504B2 (en) Method for producing zirconia-carbon-containing refractories
JP3312373B2 (en) Long nozzle for continuous casting
JP3363330B2 (en) Refractory for casting, nozzle for continuous casting and method for producing the same
JP3159432B2 (en) Zirconia-graphitic refractory with excellent thermal shock resistance
JPH11246265A (en) High corrosion resistant fused silica-containing refractory
JPH02180753A (en) Production of immersion nozzle for continuous casting
JP3383185B2 (en) Nozzle for casting
JP6464831B2 (en) Immersion nozzle for continuous casting and method for continuous casting of steel
JP3031192B2 (en) Sliding nozzle plate refractories
JPH033631B2 (en)
JP2002338347A (en) Zirconia-graphite fire resisting material and immersion nozzle for continuous casting using the material
JP3579231B2 (en) Zirconia / graphite refractories containing boron nitride
JPS6214510B2 (en)
JPH0692272B2 (en) Carbon-containing ladle lining Irregular refractory
JPH11147761A (en) Zirconia-graphite refractory
JP3035858B2 (en) Graphite-containing refractory and method for producing the same