JPH11147757A - Light-transmitting ceramic, arc tube made therefrom, high-pressure discharge lamp using the arc tube, and production of light-transmitting ceramic - Google Patents

Light-transmitting ceramic, arc tube made therefrom, high-pressure discharge lamp using the arc tube, and production of light-transmitting ceramic

Info

Publication number
JPH11147757A
JPH11147757A JP30345197A JP30345197A JPH11147757A JP H11147757 A JPH11147757 A JP H11147757A JP 30345197 A JP30345197 A JP 30345197A JP 30345197 A JP30345197 A JP 30345197A JP H11147757 A JPH11147757 A JP H11147757A
Authority
JP
Japan
Prior art keywords
arc tube
light
discharge lamp
pressure discharge
translucent ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30345197A
Other languages
Japanese (ja)
Inventor
Takakimi Yanagiya
高公 柳谷
Hideki Yagi
秀喜 八木
Moriteru Imagawa
盛輝 今川
Hitoshi Kubo
仁 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konoshima Chemical Co Ltd
Original Assignee
Konoshima Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konoshima Chemical Co Ltd filed Critical Konoshima Chemical Co Ltd
Priority to JP30345197A priority Critical patent/JPH11147757A/en
Publication of JPH11147757A publication Critical patent/JPH11147757A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a highly light-transmitting ceramic by using a compound selected from Er3 Al5 O12 , Tm3 Al5 O12 , Ho3 Al5 O12 , Dy3 Al5 O12 , Lu3 Al5 O12 , and Tb3 Al5 O12 . SOLUTION: This light-transmitting ceramic is obtained by using a compound of garnet structure shown by the formula: M3 Al5 O12 (M is Er, Tm, Ho, Dy, Lu or Tb), having the following characteristics: average three-point flexural strength: >=400 MPa; Weibull modulus: >=6; and the linear transmittance by visible rays except for intrinsic absorption: >=50%. This light-transmitting ceramic is obtained by the following process: a rare earth element and an aluminum inorganic acid salt are dissolved in water and mixed so as to be 0.005-1.0 mol/L in the total metallic ion concentration, the resulting aqueous solution is dripped into an aqueous solution of a carbonate such as Na2 CO3 adjusted to pH 7.5-11 under agitation; after ending the dripping, the system is aged, and the precipitate thus formed is filtered, washed with water, dried, and then preliminarily baked at 800-1,500 deg.C to effect conversion to a multiple oxide, which, in turn, is incorporated with a binder to carry out a molding operation followed by sintering the molded form at a temperature of >=1,500 deg.C but >=50 deg.C lower than the melting point of the final sintered compact.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の利用分野】この発明は、透光性セラミックスや
その製造方法、得られた透光性セラミックスを用いた発
光管及びこの発光管を用いた高圧放電灯に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a translucent ceramic, a method for producing the same, an arc tube using the obtained translucent ceramic, and a high-pressure discharge lamp using the arc tube.

【0002】[0002]

【従来技術】透光性セラミックスは種々のものが様々な
用途に検討されているが、中でも高圧水銀灯や高圧ナト
リウムランプ等の高圧放電灯では、発光管に高温での耐
圧,耐触性が要求されるため、利用可能な材料が限られ
ている。発光物質として、発光効率が高く演色性に優れ
た金属ハロゲン化物が最近注目されているが、発光管内
に腐食性の強い金属ハロゲン化物を封入するため、発光
管と金属ハロゲン化物との反応が高圧放電灯特性の低下
を招いている。
2. Description of the Related Art Various types of translucent ceramics are being studied for various applications. Among them, high-pressure discharge lamps such as high-pressure mercury lamps and high-pressure sodium lamps require the arc tube to withstand high pressure and high resistance at high temperatures. Therefore, available materials are limited. As a luminescent substance, metal halides having high luminous efficiency and excellent color rendering properties have recently attracted attention, but since a highly corrosive metal halide is enclosed in the arc tube, the reaction between the arc tube and the metal halide is at a high pressure. This leads to a decrease in discharge lamp characteristics.

【0003】透光性セラミックス発光管の材料として、
石英ガラス(SiO2)や透光性アルミナ(Al2O3)等
が用いられてきたが、石英ガラスは耐触性に劣り、かつ
耐熱性の点でも不十分である。透光性アルミナでは石英
ガラスの欠点を補える反面、結晶構造が六方晶系である
ため、直線透過率が10〜20%程度と低く、両者とも
発光管材料としては不十分である。
[0003] As a material of a translucent ceramic arc tube,
Quartz glass (SiO2), translucent alumina (Al2O3), and the like have been used, but quartz glass is inferior in touch resistance and insufficient in heat resistance. Although translucent alumina can compensate for the disadvantages of quartz glass, it has a low linear transmittance of about 10 to 20% because of its hexagonal crystal structure, and both are insufficient as arc tube materials.

【0004】また最近、発光管材料としてイットリウム
・アルミニウム・ガーネット(Y3Al5O12:以下YA
Gと記す)が検討されている(例えば、特開平9−45
287号)。YAGは結晶構造が立方晶で、石英ガラス
と同等の高い透明度(理論透過率84%)と、透光性ア
ルミナに匹敵する機械的強度や耐熱性を兼ね備えた材料
である。
Recently, yttrium aluminum garnet (Y3Al5O12: hereinafter referred to as YA) has been used as an arc tube material.
G) (for example, see Japanese Patent Application Laid-Open No. 9-45).
287). YAG is a material having a cubic crystal structure and having both high transparency equivalent to quartz glass (theoretical transmittance 84%) and mechanical strength and heat resistance comparable to translucent alumina.

【0005】しかしながらYAGは、メタルハライドラ
ンプで利用される希土類元素のハロゲン化物と反応しや
すく、この反応で点灯中に発光管に白濁が生じ光束維持
率が低下する。発光管内部の白濁反応は、以下の機構で
進行すると考えられる。 (M'−X)(g)+(M"−O)(s)→(M'−O)(s)+
(M"+X)(g) なお式中(g)はガスを、(s)は固体を、Xはハロゲン元素
を、M',M"は希土類元素を表す。この機構では、高温
で発光物質の金属ハロゲン化物(M'−X)(g)は、M'
(g)とX(g)に解離し、解離したM'(g)が酸化物セラミッ
クス(M"−O)(s)から酸素原子を奪い、(M'−O)
(s)として発光管内壁に付着固定化するものと考えられ
る。そしてこれに伴って発光管は白濁するものと推定さ
れる。
[0005] However, YAG easily reacts with a halide of a rare earth element used in a metal halide lamp, and this reaction causes white turbidity in the arc tube during lighting, thereby lowering the luminous flux retention rate. It is considered that the cloudiness reaction inside the arc tube proceeds by the following mechanism. (M'-X) (g) + (M "-O) (s) → (M'-O) (s) +
(M "+ X) (g) In the formula, (g) represents a gas, (s) represents a solid, X represents a halogen element, and M 'and M" represent a rare earth element. According to this mechanism, at high temperature, the metal halide (M′-X) (g) of the luminescent substance is converted to M ′
(g) and X (g), and the dissociated M '(g) deprives the oxide ceramic (M "-O) (s) of an oxygen atom, resulting in (M'-O)
It is considered that (s) is adhered and fixed to the inner wall of the arc tube. It is presumed that the arc tube becomes cloudy with this.

【0006】上記の白濁反応を回避するため、Hg系ガ
ス等の封入圧を高め、金属ハロゲン化物から解離した金
属原子と発光管材料との接触の機会を少なくすること
や、発光管を均一に加熱してハロゲンサイクルを円滑に
行わせることが考えられる。しかしながら、封入圧を上
げたり発光管を必要以上に加熱すると、発光管が破損し
易くなる。
[0006] In order to avoid the above-mentioned cloudy reaction, the filling pressure of Hg-based gas or the like is increased to reduce the chance of contact between the metal atoms dissociated from the metal halide and the arc tube material, and to make the arc tube uniform. It is considered that the halogen cycle is smoothly performed by heating. However, if the filling pressure is increased or the arc tube is heated more than necessary, the arc tube is easily damaged.

【0007】[0007]

【発明の課題】この発明の課題は、透光性が高く、放電
灯としての使用時に白濁が生じない透光性セラミックス
と、その製造方法や、それを用いた発光管及び高圧放電
灯を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a translucent ceramic which has high translucency and does not cause white turbidity when used as a discharge lamp, a method for producing the same, an arc tube and a high pressure discharge lamp using the same. Is to do.

【0008】[0008]

【発明の構成】この発明は、組成式M3Al5O12からな
るガーネット構造の化合物で、MはEr,Tm,Ho,D
y,Lu,及びTbからなる群の少なくとも1員の元素で
ある透光性セラミックスにある。なおこの化合物は単一
相の化合物に限られ、分相して複数の相からなる場合
や、材料間の偏析がある場合は、光の直線透過率が低下
するので、この発明には含まれない。この発明はまた、
Er3Al5O12,Tm3Al5O12,Ho3Al5O12,Dy3Al5
O12,Lu3Al5O12,Tb3Al5O12からなる群の一員の
化合物を用いた透光性セラミックスにある。これらはい
ずれもガーネット構造の化合物で、安定相はガーネット
構造の1相のみであり、例えば請求項7の製法で製造す
れば偏析は生じない。ここで好ましくは、透光性セラミ
ックスの平均3点曲げ強度を400MPa以上、ワイブ
ル係数を6以上、固有の吸収を除く可視光における直線
透過率を50%以上とする。そしてこのような透光性セ
ラミックスは、例えば高圧放電灯の発光管に用いること
ができる。
The present invention relates to a compound having a garnet structure having the composition formula M3Al5O12, wherein M is Er, Tm, Ho, D
Transparent ceramics that are at least one member of the group consisting of y, Lu, and Tb. Note that this compound is limited to a single-phase compound, and is included in the present invention because the linear transmittance of light decreases when the phase is divided into multiple phases or when there is segregation between materials. Absent. The invention also provides
Er3Al5O12, Tm3Al5O12, Ho3Al5O12, Dy3Al5
Transparent ceramics using a compound of a member of the group consisting of O12, Lu3Al5O12, and Tb3Al5O12. These are all compounds having a garnet structure, and the stable phase is only one phase having a garnet structure. For example, if the compound is produced by the method of claim 7, no segregation occurs. Preferably, the translucent ceramic has an average three-point bending strength of 400 MPa or more, a Weibull coefficient of 6 or more, and a linear transmittance of 50% or more in visible light excluding intrinsic absorption. Such a translucent ceramic can be used, for example, for an arc tube of a high-pressure discharge lamp.

【0009】この発明の高圧放電灯は、透光性セラミッ
クスからなる発光管内に、少なくとも金属ハロゲン化物
を内封すると共に発光管開口を気密に封止したものにお
いて、前記発光管が、Er3Al5O12,Tm3Al5O12,H
o3Al5O12,Dy3Al5O12,Lu3Al5O12,及びTb3A
l5O12からなる群の1員の化合物を用いた透光性セラミ
ックスからなることを特徴とする。好ましくは、高圧放
電灯の発光管開口を、発光管の構成希土類酸化物とアル
ミナ及びシリカからなる封着材で封着する。
A high-pressure discharge lamp according to the present invention is characterized in that at least a metal halide is enclosed in an arc tube made of translucent ceramics and an arc tube opening is hermetically sealed, wherein the arc tube is composed of Er3Al5O12, Tm3Al5O12. , H
o3Al5O12, Dy3Al5O12, Lu3Al5O12, and Tb3A
It is characterized by being made of a translucent ceramic using a one-membered compound of the group consisting of l5O12. Preferably, the arc tube opening of the high pressure discharge lamp is sealed with a sealing material made of a rare earth oxide, alumina and silica constituting the arc tube.

【0010】この発明の透光性セラミックスの製造方法
は、希土類元素の無機酸塩とアルミニウムの無機酸塩と
を、両者の合計金属イオン濃度が0.005〜1.0mol
/Litterとなるように水に溶解した後、pH7.5〜1
1.0の炭酸塩水溶液に滴下して沈澱させ、得られた沈
澱を水洗乾燥後に、800℃〜1500℃で仮焼するこ
とにより複合酸化物の単一相原料を得、該単一相原料を
成形した後、1500℃以上で焼結体の融点よりも50
℃以上低い温度で焼結する。希土類元素としては、E
r,Tm,Ho,Dy,Lu,及びTbからなる群の少なくと
も1員の元素が好ましく、特にこれらの元素のいずれか
1員のみを用いることが好ましい。
In the method for producing a translucent ceramic according to the present invention, the inorganic acid salt of a rare earth element and the inorganic acid salt of aluminum are combined so that the total metal ion concentration of both is 0.005 to 1.0 mol.
/ Litter and dissolved in water, pH 7.5-1
The resulting precipitate was washed with water, dried and calcined at 800 to 1500 ° C. to obtain a single-phase raw material for the composite oxide. After molding, at a temperature of 1500 ° C. or more, 50
Sinter at a temperature lower than ℃. As rare earth elements, E
At least one member of the group consisting of r, Tm, Ho, Dy, Lu, and Tb is preferable, and it is particularly preferable to use only one of these elements.

【0011】[0011]

【発明の作用】この発明の透光性セラミックスでは、組
成式M3Al5O12からなるガーネット構造の化合物を用
い、MはEr,Tm,Ho,Dy,Lu,及びTbからなる群
の少なくとも1員の元素とする。またこの発明では、E
r3Al5O12,Tm3Al5O12,Ho3Al5O12,Dy3Al5O
12,Lu3Al5O12,及びTb3Al5O12からなる群の1員
の化合物を、透光性セラミックスとする。このような化
合物は透光性が高く、例えば少なくとも50%以上で、
かつ実験範囲で60%以上の直線透過率が得られた。な
お直線透過率は可視光の波長で測定し、各化合物が可視
光領域に固有の吸収を有する場合は吸収のない波長で測
定するものとする。また直線透過率は、試料表面を鏡面
研磨した厚さ1.0mmの試料で測定するものとする。
In the translucent ceramic of the present invention, a compound having a garnet structure represented by the composition formula M3Al5O12 is used, wherein M is at least one element selected from the group consisting of Er, Tm, Ho, Dy, Lu, and Tb. I do. Also, in the present invention, E
r3Al5O12, Tm3Al5O12, Ho3Al5O12, Dy3Al5O
A member of the group consisting of 12, Lu3Al5O12, and Tb3Al5O12 is a translucent ceramic. Such compounds have high translucency, for example, at least 50% or more,
In addition, a linear transmittance of 60% or more was obtained in the experimental range. Note that the linear transmittance is measured at the wavelength of visible light, and when each compound has a specific absorption in the visible light region, it is measured at a wavelength without absorption. In addition, the linear transmittance is measured on a sample having a thickness of 1.0 mm whose surface is mirror-polished.

【0012】これらの化合物はいずれもガーネット構造
で、発光管に内封する金属ハロゲン化物に対して高温高
圧で安定で、表3に示すようにErを用いると、Sc系を
除き、実質上全ての金属ハロゲン化物発光物質に対して
安定で、TmではSc系,Er系の発光物質を除く全ての
金属ハロゲン化物系発光物質に安定である。またHoで
は Sc系,Er系とTm系を除く全ての金属ハロゲン化
物系発光物質に安定で、Dy,Lu,TbではSc系,Ho
系、Er系,Tm系を除く全ての金属ハロゲン化物系発光
物質に対して安定である。この発明の透光性セラミック
スはScI3等の発光物質には不安定であるが、これはS
c系等の発光物質を用いなければ問題にはならない。そ
してこれらの化合物を用いた放電灯では、ランプ点灯か
ら1000時経過後の光束維持率が90%以上となる。
All of these compounds have a garnet structure, are stable at high temperatures and high pressures against metal halides sealed in an arc tube, and when Er is used as shown in Table 3, substantially all of them except for the Sc type are used. And Tm is stable to all metal halide-based luminescent materials except Sc-based and Er-based luminescent materials. Ho is stable for all metal halide luminescent materials except Sc-based, Er-based and Tm-based, and Sc-based and Ho-based for Dy, Lu and Tb.
It is stable against all metal halide-based luminescent materials except for those based on Er, Er and Tm. The translucent ceramic of the present invention is unstable to a luminescent substance such as ScI3,
This is not a problem unless a luminescent substance such as a c-based substance is used. And, in the discharge lamp using these compounds, the luminous flux maintenance ratio after 1000 hours from the lamp lighting becomes 90% or more.

【0013】発明者は当初、透光性セラミックの金属ハ
ロゲン化物系発光物質に対する安定性を、ハロゲン交換
に伴う酸化物の標準生成ギブスエネルギーの観点から理
解した。YAGセラミックス発光管の場合、イットリウ
ム酸化物の標準生成ギブスエネルギー(△Gf゜)は、
−1727KJ/ molとされ(日本化学会編 化学便
覧第1版)、発光管内に封入する金属ハロゲン化物を構
成する希土類元素である、Sc,Tm,Dy,Hoの酸化物
の標準生成ギブスエネルギー(△Gf゜)は、−181
9.4KJ/mol,−1795KJ/mol,−1772K
J/mol,−1791KJ/molで、イットリウム酸化物
の標準生成ギブスエネルギーよりも絶対値が大きい。こ
のため、YAGはこれらの希土類元素に対して熱力学的
に不安定で、YAGセラミックス発光管内にこれらの発
光物質を封入した場合、ハロゲン交換に伴い発光管内面
での白濁反応が起こり、光束維持率(初期値に対する光
束の比で、直線透過率の低下に対応する)が低下するも
のと考えた。
[0013] The inventor first understood the stability of the translucent ceramic to the metal halide-based luminescent material from the viewpoint of the standard Gibbs energy of oxide formation accompanying halogen exchange. In the case of a YAG ceramic arc tube, the standard Gibbs energy of formation of yttrium oxide ({Gf}) is
The standard Gibbs energy of oxides of Sc, Tm, Dy, and Ho, which are rare earth elements that constitute a metal halide enclosed in an arc tube, is set to −1727 KJ / mol (Chemical Handbook, 1st edition, edited by The Chemical Society of Japan). ΔGf ゜) is -181
9.4KJ / mol, -1795KJ / mol, -1772K
At J / mol and -1791 KJ / mol, the absolute value is larger than the standard Gibbs energy of yttrium oxide. For this reason, YAG is thermodynamically unstable with respect to these rare earth elements, and when these luminescent substances are sealed in a YAG ceramic arc tube, a white turbidity reaction occurs on the inner surface of the arc tube due to halogen exchange, and the luminous flux is maintained. The ratio (the ratio of the luminous flux to the initial value, corresponding to the decrease in the linear transmittance) was considered to decrease.

【0014】なおイットリウム酸化物の標準生成ギブス
エネルギーよりも、酸化物生成の標準生成ギブスエネル
ギーが絶対値で小さい希土類元素としては、La(−1
706KJ/mol),Ce(−1706KJ/mol),Nd
(−1721KJ/mol)の3種類がある。そしてこれ
らの元素を発光物質としてYAGセラミックス発光管に
封入した場合、反応は起きずに高圧放電灯の直線透過率
の低下は見られなかった。
The rare earth element whose standard Gibbs energy of oxide formation is smaller in absolute value than the standard Gibbs energy of yttrium oxide is La (−1).
706 KJ / mol), Ce (-1706 KJ / mol), Nd
(-1721 KJ / mol). When these elements were sealed in a YAG ceramic arc tube as a luminescent substance, no reaction occurred and no decrease in the linear transmittance of the high pressure discharge lamp was observed.

【0015】しかしながら、イットリウム酸化物の標準
生成ギブスエネルギーは実際には、−1816KJ/mo
l(化学便覧 第4版)で、Tm,Dy,Ho系の発光物質
と反応して白濁することを説明できない。なお酸化物の
標準生成ギブスエネルギーの比較による白濁反応の有無
の予測は、YAG以外のガーネット化合物には当てはま
った。そこで標準生成ギブスエネルギーによる評価は、
例外があるものの、一応適応可能である。
However, the standard Gibbs energy of formation of yttrium oxide is actually -1816 KJ / mo.
l (Chemical Handbook, 4th edition) cannot explain the fact that it reacts with Tm, Dy, and Ho-based luminescent substances and becomes cloudy. The prediction of the presence or absence of a cloudiness reaction by comparison of the standard Gibbs energies of oxide formation was applied to garnet compounds other than YAG. Therefore, evaluation using the standard generation Gibbs energy
Applicable, with exceptions.

【0016】例えば発光物質としてDy(△Gf゜=−
1772KJ/mol)を用いる場合、Ho(△Gf゜=−
1791KJ/mol),Lu(△Gf゜=−1789KJ
/mol)やEr,Dy,Tbとアルミナとのガーネット構造
の単一相化合物である、Er3Al5O12,Dy3Al5O12,
Ho3Al5O12,Lu3Al5O12,Tb3Al5O12等が発光管
材料の透光性セラミックスに適しており、発光効率が高
く、直線透過率の低下が少ない放電灯が得られる。例え
ばこの発明では、放電灯点灯から1000時間後で90
%以上の光束維持率を得ることができる。
For example, Dy ({Gf} =-
When using 1772 KJ / mol), Ho ({Gf} =-
1791KJ / mol), Lu ({Gf} =-1789KJ)
/ Mol) or a single phase compound having a garnet structure of Er, Dy, Tb and alumina, Er3Al5O12, Dy3Al5O12,
Ho3Al5O12, Lu3Al5O12, Tb3Al5O12 and the like are suitable for the translucent ceramics of the arc tube material, and a discharge lamp with high luminous efficiency and little decrease in linear transmittance can be obtained. For example, according to the present invention, 90 hours after the discharge lamp is turned on.
% Or more can be obtained.

【0017】透光性セラミックスは初期値で、平均3点
曲げ強度が400MPa以上,ワイブル係数が6以上が
好ましい。この条件を充すと、図5に示すように、高温
と室温間の温度変化を繰り返し与えても、ワイブル係数
や平均3点曲げ強度の低下が僅かで、熱疲労が小さい。
The initial value of the translucent ceramic is preferably an average three-point bending strength of 400 MPa or more and a Weibull coefficient of 6 or more. When this condition is satisfied, as shown in FIG. 5, even if the temperature change between high temperature and room temperature is repeatedly given, the Weibull coefficient and the average three-point bending strength are slightly reduced and the thermal fatigue is small.

【0018】発光管材料等に用いる透光性セラミックス
の製造方法として、YAGセラミックスの場合と同様、
希土類酸化物とアルミナの粉末混合物をホットプレス法
で透明化させる方法や、希土類酸化物の超微粉末とAl2
O3の微粉末をボールミル混合した後CIP成形(静水
圧成形)して焼結する直接焼結法等が挙げられる。なお
YAGセラミックスの場合、ホットプレス法は米国特許
3767,745に、直接焼結法は例えば特開平3−2
18963号に開示されている。しかし組成の均一性の
観点から、複合酸化物の単一相原料を出発原料として用
いるのが好ましい。
As a method of manufacturing a translucent ceramic used for an arc tube material or the like, similar to the case of YAG ceramics,
A method of making a powder mixture of a rare earth oxide and alumina transparent by a hot press method, a method of making an ultrafine powder of a rare earth oxide and Al2
A direct sintering method in which fine powder of O3 is mixed in a ball mill, and then subjected to CIP molding (isostatic pressing) and then sintering is used. In the case of YAG ceramics, the hot press method is disclosed in US Pat.
No. 18963. However, from the viewpoint of composition uniformity, it is preferable to use a single-phase raw material of the composite oxide as a starting material.

【0019】複合酸化物の単一相原料は、以下の手順に
より容易に得られる。上記希土類元素とアルミニウムの
塩酸や硝酸、硫酸等の無機酸塩、即ち鉱酸塩を水に溶解
する。そしてこれらの水溶液を希土類元素とアルミニウ
ムの合計金属イオン濃度が例えば0.005〜1.0mol
/Litterになるように、任意の組成に合わせて混合す
る。金属イオン濃度がこれ以上の場合粒子同士の接触が
増加し、仮焼の際に粒子同士の焼き付きが生じて分散性
が悪くなり、これ以下の場合には生産効率が低下する。
アルカリを加えてpH7.5〜11.0に調整した炭酸塩
の水溶液中に、上記鉱酸塩溶液を、例えば攪拌下に滴下
する。炭酸塩の水溶液は、特に限定するものではない
が、例えば炭酸アンモニウム、炭酸水素アンモニウム、
炭酸ナトリウム等の水溶液が挙げられる。
The single-phase raw material of the composite oxide can be easily obtained by the following procedure. An inorganic acid salt of the rare earth element and aluminum, such as hydrochloric acid, nitric acid, and sulfuric acid, that is, a mineral acid salt is dissolved in water. Then, these aqueous solutions are mixed with a rare earth element and aluminum having a total metal ion concentration of, for example, 0.005 to 1.0 mol.
/ Litter and mix according to any composition. If the metal ion concentration is higher than this, the contact between the particles increases, and during the calcination, the seizure of the particles occurs to deteriorate the dispersibility. If the metal ion concentration is lower than this, the production efficiency decreases.
The above mineral salt solution is dropped, for example, with stirring into an aqueous solution of carbonate adjusted to pH 7.5 to 11.0 by adding an alkali. The aqueous solution of the carbonate is not particularly limited. For example, ammonium carbonate, ammonium hydrogen carbonate,
An aqueous solution such as sodium carbonate is used.

【0020】滴下終了後、30分〜100時間攪拌下に
熟成する。炭酸塩水溶液のpHは鉱酸塩水溶液の滴下に
つれて低下するが、その後徐々に上昇して一定値とな
る。そのため熟成はpHが上昇して一定値となるまで行
えばよく、さらに長時間熟成を行っても焼結性に差異は
ない。また熟成温度は特に限定しないが、温度が高すぎ
ると急速に熟成が進み、得られる沈澱粒子の粒度分布が
広くなるため、5℃〜60℃が好ましい。熟成後得られ
た沈澱を濾過、水洗を数回繰り返した後に、120℃〜
200℃にて乾燥する。この沈澱を800℃〜1500
℃で数時間仮焼すると、複合酸化物の単一相原料粉末が
得られる。仮焼温度を800℃〜1500℃の範囲とす
るのは、これ以下の温度では反応が充分進まず単一相原
料が得られないためで、これ以上の温度では粒子同士の
焼き付きがひどく分散性に優れた原料粉末が得られない
ためである。
After completion of the dropwise addition, the mixture is aged for 30 minutes to 100 hours with stirring. The pH of the aqueous carbonate solution decreases as the aqueous mineral salt solution drops, but then gradually rises to a constant value. Therefore, the aging may be performed until the pH rises and reaches a constant value, and there is no difference in sinterability even after aging for a long time. The ripening temperature is not particularly limited, but if the temperature is too high, ripening proceeds rapidly, and the particle size distribution of the resulting precipitated particles is widened. The precipitate obtained after aging was filtered and washed several times with water.
Dry at 200 ° C. The precipitate is heated at 800 ° C. to 1500
Calcination for several hours at ° C gives a single-phase raw material powder of the composite oxide. The reason for setting the calcination temperature in the range of 800 ° C. to 1500 ° C. is that if the temperature is lower than this, the reaction does not proceed sufficiently and a single-phase raw material cannot be obtained. This is because no excellent raw material powder can be obtained.

【0021】発明者は上記の条件で、Er3Al5O12,T
m3Al5O12,Ho3Al5O12,Dy3Al5O12,Lu3Al5O
12やTb3Al5O12等の、ガーネット構造の単一相の原料
粉末が得られることを確認した。このようにして得られ
た原料粉末をプレス成形や鋳込成形、押出成形や射出成
形等の既知の成形法により所望の形状に成形する。
Under the above conditions, the inventor made Er3Al5O12, T
m3Al5O12, Ho3Al5O12, Dy3Al5O12, Lu3Al5O
It was confirmed that a single-phase raw material powder having a garnet structure, such as 12 or Tb3Al5O12, was obtained. The raw material powder thus obtained is molded into a desired shape by a known molding method such as press molding, cast molding, extrusion molding or injection molding.

【0022】まず、単一相原料粉末100部に対し、純
水やアルコール等の媒液を20〜100部、バインダ及
び解膠剤を0.2〜10部加えてボールミル中で10時
間以上混合分散してスラリーを得る。なお、射出成形を
行う場合には媒液を加えない。バインダーとしてはメチ
ルセルロース、アクリルエマルジョン、ポリビニルアル
コール等が挙げられ、解膠剤としてはポリアクリル酸の
アンモニウム塩やポリカルボン酸等が挙げられる。
First, 20 to 100 parts of a medium such as pure water or alcohol, and 0.2 to 10 parts of a binder and a deflocculant are added to 100 parts of the single-phase raw material powder and mixed in a ball mill for 10 hours or more. Disperse to obtain a slurry. When performing injection molding, no medium is added. Examples of the binder include methyl cellulose, acrylic emulsion, and polyvinyl alcohol, and examples of the deflocculant include ammonium salts of polyacrylic acid and polycarboxylic acids.

【0023】調製したスラリーは必要に応じて乾燥ある
いは濃縮する。即ち、プレス成形ではスプレードライヤ
ー等の乾燥機を用いてスラリーを乾燥し、単一相原料粉
末の顆粒を得る。この顆粒を所望の形状をした金型やゴ
ム型により成形する。また、押出成形では、押出に可能
な粘度にまで濃縮し、押出機により成形する。鋳込成形
においては、スラリーのまま石膏型、多孔質樹脂型ある
いは多孔質セラミック型等を用いて鋳込成形を行い、発
光管形状をしたセラミック成形体を得る。これらの方法
により得られた成形体を、酸素,水素,希ガスあるいは
これらの混合雰囲気もしくは真空中等で、1500℃以
上で、焼結体の融点よりも50℃以上低い温度で1時間
から100時間焼結すると、ガーネット単一相で偏析の
無い透光性セラミックスが得られる。
The prepared slurry is dried or concentrated as required. That is, in press molding, the slurry is dried using a drier such as a spray dryer to obtain granules of a single-phase raw material powder. The granules are molded using a mold or rubber mold having a desired shape. In the extrusion molding, the resin is concentrated to a viscosity that allows extrusion, and is molded by an extruder. In the casting, the slurry is cast using a gypsum mold, a porous resin mold, a porous ceramic mold, or the like to obtain a ceramic molded article having a shape of an arc tube. The molded body obtained by these methods is heated at a temperature of at least 1500 ° C. and at least 50 ° C. lower than the melting point of the sintered body for 1 hour to 100 hours in an atmosphere of oxygen, hydrogen, a rare gas or a mixed atmosphere or vacuum thereof. Upon sintering, a translucent ceramic having a garnet single phase and no segregation is obtained.

【0024】焼結雰囲気は、短時間で透光性の良好なセ
ラミックスを得るには、真空中または水素中とするのが
好ましい。また焼結温度を1500℃以上で焼結体の融
点より50℃以上低い温度としたのは、1500℃未満
では充分な緻密化が起こらないため満足な透明度が得ら
れず、また焼結体の融点近傍では異常粒成長が生じ、強
度の低下が顕著になるためで、最高焼結温度は融点より
も50℃以上低い温度とする。焼結直後の焼結体表面は
凹凸があり、これにより光散乱が生じるため半透明であ
る。そのままの状態でも使用可能であるが、高圧放電灯
用発光管として用いる場合には、発光効率を高めるため
ダイヤモンド、アルミナ等の研磨材を用い、焼結体内外
面の鏡面研磨を行った方が好ましい。以上のようにし
て、発光管材料に適した透光性セラミックスが得られ
る。
The sintering atmosphere is preferably in a vacuum or in hydrogen in order to obtain a ceramic having good translucency in a short time. The reason why the sintering temperature is set to a temperature of 1500 ° C. or more and lower than the melting point of the sintered body by 50 ° C. or more is that if the temperature is lower than 1500 ° C., sufficient densification does not occur, so that satisfactory transparency cannot be obtained. In the vicinity of the melting point, abnormal grain growth occurs and the strength is remarkably reduced. Therefore, the maximum sintering temperature is set to a temperature lower than the melting point by 50 ° C. or more. Immediately after sintering, the surface of the sintered body has irregularities, which causes light scattering to be translucent. Although it can be used as it is, when it is used as an arc tube for a high pressure discharge lamp, it is preferable to use a polishing material such as diamond or alumina to enhance the luminous efficiency, and to perform mirror polishing of the outer and inner surfaces of the sintered body. . As described above, a translucent ceramic suitable for the arc tube material is obtained.

【0025】[0025]

【実施例】以下にこの発明の実施例を説明するが、この
発明はこれらに限定されるものではない。高圧放電灯の
構造を図1,図2に示す。高圧放電灯1は、略円筒状を
した透光性セラミックス発光管2の内部に、金属ハロゲ
ン化物が発光物質として封入してあり、発光管2の両端
部は溶融した封着材16で気密に封止されている。なお
発光管2との密着性の向上やマイクロクラックの発生防
止のため、封着剤16には発光管2に用いたのと同じ希
土類元素の酸化物とアルミナ及びシリカからなるものを
用いるのが好ましい。通常の高圧放電灯では封着剤にガ
ラスフリットを用いるため、発光管2との接合強度が低
く、使用中にマイクロクラックが生じる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below, but the present invention is not limited to these embodiments. The structure of the high-pressure discharge lamp is shown in FIGS. The high-pressure discharge lamp 1 has a substantially cylindrical translucent ceramic arc tube 2 in which a metal halide is sealed as a light-emitting substance, and both ends of the arc tube 2 are hermetically sealed with a molten sealing material 16. It is sealed. In order to improve the adhesion to the arc tube 2 and to prevent the occurrence of microcracks, the sealing agent 16 is preferably made of the same rare earth element oxide, alumina and silica as used for the arc tube 2. preferable. Since a normal high-pressure discharge lamp uses glass frit as a sealing agent, the bonding strength with the arc tube 2 is low, and microcracks occur during use.

【0026】セラミックス発光管2は、高圧放電灯の点
灯時に1000℃以上の高温と40気圧以上の高圧にさ
らされる。従って発光管2には充分な強度が要求され、
このため3点平均3点曲げ強度がJIS−R1601準
拠で400MPa以上必要で、ワ イブル係数が6以上必
要である。この条件の意義は図5を用いて後述する。封
入する発光物質は発光効率の高い希土類ハロゲン化物
(Sc系を除く)が望ましい。封着材16は、熱膨張係
数が発光管2と近似しており、封入発光物質との反応性
が低く、封着の際に1600℃以下で溶融可能な材料が
好ましい。これらのことから、封着剤16には発光管2
に用いたのと同じ希土類元素の酸化物とアルミナ及びシ
リカからなるものが好ましい。
The ceramic arc tube 2 is exposed to a high temperature of 1000 ° C. or more and a high pressure of 40 atm or more when the high pressure discharge lamp is turned on. Therefore, the arc tube 2 is required to have sufficient strength,
For this reason, the three-point average three-point bending strength is required to be 400 MPa or more in accordance with JIS-R1601, and the Weibull coefficient is required to be six or more. The significance of this condition will be described later with reference to FIG. It is desirable that the luminescent material to be encapsulated is a rare earth halide (excluding Sc-based) having high luminous efficiency. The sealing material 16 is preferably a material which has a thermal expansion coefficient close to that of the arc tube 2, has low reactivity with the encapsulated luminescent substance, and can be melted at 1600 ° C. or less at the time of sealing. From these facts, the sealing agent 16 contains the arc tube 2
It is preferable to use an oxide of the same rare earth element as used in the above and alumina and silica.

【0027】4は例えばタングステンの電極で、6,8
はWコイルで、10はリードピンで、リードピン10に
電圧を印加し電極4,4間にアーク放電を発生させるこ
とにより、発光管2に封入された発光物質がガス化して
発光する。12はW電極4をNb合金のリードピ ン10
に密着させるためのかしめ部、14は発光物質と封着材
16等の反応を防止するためのアルミナワッシャであ
る。
Reference numeral 4 denotes a tungsten electrode, for example.
Is a W coil, and 10 is a lead pin. When a voltage is applied to the lead pin 10 to generate an arc discharge between the electrodes 4 and 4, the luminescent material sealed in the arc tube 2 is gasified to emit light. Reference numeral 12 denotes a W electrode 4 which is a lead pin 10 of Nb alloy.
A caulking portion 14 for bringing the sealing material 16 into close contact with the sealing member 16 is an alumina washer for preventing a reaction between the light emitting substance and the sealing material 16.

【0028】[0028]

【実施例1】硝酸ルテチウム水溶液と硝酸アルミニウム
水溶液とをルテチウムアルミニウムガーネット(Lu3A
l5O12:以下LuAG)組成となるように混合し、水を
加えてLuAG換算で0.01mol/Litterとした。この
溶液を、アンモニア水を加えてpH8.0とした2Mの
炭酸水素アンモニウム水溶液100Litter中に500ml
/minの速度で滴下した。この際、LuAG組成の混合溶
液と、炭酸水素アンモニウム水溶液は共に恒温漕中で2
0℃に維持した。滴下の途中でのpHの最小値は6.8
で、滴下終了後6時間程度でpHは8.0に達した。滴
下終了後、20℃で30時間熟成した後、濾過、水洗の
サイクルを6回繰り返した。水洗後得られる沈殿はアモ
ルファスで形態は粒状であった。このアモルファス沈殿
を空気中150℃で24時間乾燥した後に、空気中12
50℃で3時間仮焼することにより、平均一次粒子径
0.3μmのLuAG原料粉末が得られた。この原料粉末
はガーネット構造で、LuやAl元素の偏析は見られなか
った。
Example 1 Lutetium aluminum garnet (Lu3A) was mixed with lutetium nitrate aqueous solution and aluminum nitrate aqueous solution.
(l5O12: hereinafter LuAG) composition, and water was added to make 0.01 mol / Litter in LuAG conversion. 500 ml of this solution was added to 100 Litter of a 2M aqueous solution of ammonium bicarbonate adjusted to pH 8.0 by adding aqueous ammonia.
The solution was dropped at a rate of / min. At this time, the mixed solution of the LuAG composition and the aqueous solution of ammonium bicarbonate were both placed in a thermostatic bath for 2 hours.
Maintained at 0 ° C. The minimum value of the pH during the dropping is 6.8.
The pH reached 8.0 about 6 hours after the completion of the dropping. After completion of the dropwise addition, the mixture was aged at 20 ° C. for 30 hours, and the cycle of filtration and washing was repeated six times. The precipitate obtained after washing with water was amorphous and the form was granular. After drying this amorphous precipitate in air at 150 ° C. for 24 hours,
By calcining at 50 ° C. for 3 hours, a LuAG raw material powder having an average primary particle size of 0.3 μm was obtained. This raw material powder had a garnet structure, and no segregation of Lu and Al elements was observed.

【0029】得られたLuAG原料粉末200gに対し
て、解膠剤として中京油脂製E−50 3とF−219
(E−50 3とF−219は各々中京油脂株式会社の
商品名)をそれぞれ12g及び4g添加し、さらにバイ
ンダーとして積水化学製PVB−BL1(PVB−BL
1は積水化学株式会社の商品名)を1g添加して、エタ
ノール50gを加えた。この混合物を、ナイロンポット
及びナイロンボールを用いて12時間混合し、アルコー
ルスラリーとした。このアルコールスラリーを石膏型に
流し込み、100mm×100mm×5mmの成形体を
得た。この成形体を700℃で5時間脱脂した後、真空
炉にて1680℃の温度で5時間焼結した。この際、昇
温速度は100℃/hr、真空度は10-3Torr以下とし
た。
With respect to 200 g of the obtained LuAG raw material powder, E-503 and F-219 manufactured by Chukyo Yushi Co., Ltd.
(E-503 and F-219 are trade names of Chukyo Yushi Co., Ltd., respectively) in an amount of 12 g and 4 g, respectively, and as a binder, PVB-BL1 (PVB-BL manufactured by Sekisui Chemical)
1 was 1 g of Sekisui Chemical Co., Ltd.), and 50 g of ethanol was added. This mixture was mixed for 12 hours using a nylon pot and a nylon ball to obtain an alcohol slurry. This alcohol slurry was poured into a gypsum mold to obtain a molded product of 100 mm × 100 mm × 5 mm. This molded body was degreased at 700 ° C. for 5 hours, and then sintered in a vacuum furnace at a temperature of 1680 ° C. for 5 hours. At this time, the rate of temperature rise was 100 ° C./hr, and the degree of vacuum was 10 −3 Torr or less.

【0030】得られた焼結体はJIS−R1601に従
って、3点曲げ試験に供した。曲げ試験は10点行いワ
イブル確率紙(日本規格協会)を用いてワイブル係数を
求めた。その結果、3点曲げ強度は530MPa、ワイ
ブル係数は6であった。
The obtained sintered body was subjected to a three-point bending test according to JIS-R1601. The bending test was performed at 10 points, and the Weibull coefficient was determined using Weibull probability paper (Japanese Standards Association). As a result, the three-point bending strength was 530 MPa and the Weibull coefficient was 6.

【0031】また得られた焼結体を、両面をダイヤモン
ドスラリーにて鏡面研磨を行い分光光度計にて光直線透
過率を測定した。その結果、波長600nmでの直線光
透過率(試料厚1.0mmで、測定波長は600nm)
は62.4%であった。さらにこの試料を大気中150
0℃にて2時間サーマ ルエッチングを行い、微細構造
を光学顕微鏡にて観察した結果、焼結体平均粒子径は1
2.6μmであった。
The obtained sintered body was mirror-polished on both sides with diamond slurry, and the light linear transmittance was measured with a spectrophotometer. As a result, the linear light transmittance at a wavelength of 600 nm (a sample thickness of 1.0 mm and a measurement wavelength of 600 nm)
Was 62.4%. Further, this sample was placed in the atmosphere for 150 minutes.
Thermal etching was performed at 0 ° C for 2 hours, and the fine structure was observed with an optical microscope.
It was 2.6 μm.

【0032】[0032]

【実施例2】高圧放電灯の効率評価のため、実施例1と
同様にして鋳込み成形により厚み1.0mmの略円筒状
のLuAG発光管を作製し、これを用いて高圧放電灯を
作製した。以下、図1を用いて説明する。高圧放電灯1
は透光性LuAG発光管2の内部にHg,Arとともに、
発光物質としてDy−Tl−Na−(Br−I)のハロゲン
化物を封入してあり、発光管2の両端部は封着材16に
より封止した。また両電極間距離は9.2mmとした。
リードピン10に100Wの定電力交流安定器にて電圧
を印加すると、電極間で放電が生じ、発光管2に封入し
たハロゲン化物がガス化して発光する。
Example 2 In order to evaluate the efficiency of a high-pressure discharge lamp, a substantially cylindrical LuAG arc tube having a thickness of 1.0 mm was produced by casting in the same manner as in Example 1, and a high-pressure discharge lamp was produced using this. . This will be described below with reference to FIG. High pressure discharge lamp 1
Is Hg and Ar inside the translucent LuAG arc tube 2,
A halide of Dy-Tl-Na- (Br-I) was sealed as a light emitting substance, and both ends of the light emitting tube 2 were sealed with a sealing material 16. The distance between the two electrodes was 9.2 mm.
When a voltage is applied to the lead pin 10 with a constant power AC ballast of 100 W, discharge occurs between the electrodes, and the halide sealed in the arc tube 2 is gasified to emit light.

【0033】実施例2での高圧放電灯の点灯直後から5
000時間経過後までの高圧放電灯効率(ランプ効
率)、平均演色評価数(Ra)の測定結果を表1に示
す。
5 immediately after lighting of the high pressure discharge lamp in the second embodiment.
Table 1 shows the measurement results of the high-pressure discharge lamp efficiency (lamp efficiency) and the average color rendering index (Ra) up to the lapse of 000 hours.

【0034】[0034]

【表1】 高圧放電灯の特性 点灯後経過時間(hr) ランプ効率(lm/W) 光束維持率(%) 平均演色評価数(Ra) 0 85.0 100 90 100 83.3 98 88 500 79.9 94 81 1000 77.4 91 77 2000 73.1 86 73 5000 62.0 73 66Table 1 Elapsed time after characteristic lighting of high-pressure discharge lamp (hr) Lamp efficiency (lm / W) Luminous flux maintenance rate (%) Average color rendering index (Ra) 085.0 100 90 90 83.3 98 88 500 79 .9 94 81 1000 77.4 91 77 2000 73.1 86 73 5000 62.0 73 66

【0035】発光管材料に用いたLuの酸化物の標準生
成ギブスエネルギーはΔG=−1789KJ/molであ
り、発光物質中の希土類DyのそれはΔG=−1772
KJ/molである。1000時間点灯後においても発光
管にはほとんど白濁がなく、光束維持率は91%と非常
に良好であった。しかし発光物質としてTmI3−HoI3
−TlI−NaIを用いた場合には100時間点灯後の光
束維持率は78%と低く、発光管内面は白濁していた。
これは発光物質Tmの酸化物の標準生成ギブスエネルギ
ー(ΔG=−1795KJ/mol)がLuのそれより絶対
値が大きいことで説明できる。そして発明者の試験で
は、発光管内面にTm酸化物が生成していた。
The standard Gibbs energy of formation of Lu oxide used for the arc tube material is ΔG = 1789 KJ / mol, and that of rare earth Dy in the luminescent material is ΔG = −1772.
KJ / mol. Even after lighting for 1000 hours, the arc tube had almost no turbidity, and the luminous flux maintenance ratio was very good at 91%. However, as a luminescent substance, TmI3-HoI3
When -TlI-NaI was used, the luminous flux maintenance ratio after lighting for 100 hours was as low as 78%, and the inner surface of the arc tube was cloudy.
This can be explained by the fact that the standard Gibbs energy of formation of the oxide of the luminescent material Tm (ΔG = -1795 KJ / mol) is larger in absolute value than that of Lu. And in the test of the inventor, Tm oxide was generated on the inner surface of the arc tube.

【0036】[0036]

【実施例3】Dy3Al5O12及びEr3Al5O12,Yb3Al5
O12により各々発光管2を作製し、発光物質としてDy
−Tl−Na−(Br−I)を用いた。この高圧放電灯の
光束維持率の変化を図3に、平均演色評価数(Ra)の
変化を図4に示す。100時間点灯 後の光束維持率が
90%以上のものでは、その後の点灯による光束の低下
は僅かであるが、90%以下のものではその後の劣化が
著しく、Yb3Al5O12の場合には最終的に発光管が全く
透光性を失った後に破裂した。これは、光束維持率が低
い発光管では光エネルギーが熱として蓄積され、異常な
高温にさらされて内圧に耐えられなくなったためと考え
られる。
Embodiment 3 Dy3Al5O12 and Er3Al5O12, Yb3Al5
Each arc tube 2 is made of O12, and Dy
-Tl-Na- (Br-I) was used. FIG. 3 shows a change in the luminous flux maintenance factor of the high-pressure discharge lamp, and FIG. 4 shows a change in the average color rendering index (Ra). When the luminous flux maintenance rate after lighting for 100 hours is 90% or more, the luminous flux is slightly reduced by lighting after that, but when the luminous flux is less than 90%, the deterioration is remarkable thereafter, and in the case of Yb3Al5O12, the light is finally emitted. The tube burst after losing any light transmission. This is considered to be because light energy was accumulated as heat in the arc tube having a low luminous flux maintenance factor, and was exposed to an abnormally high temperature so that it could not withstand the internal pressure.

【0037】[0037]

【実施例4】図5に、Er3Al5O12及びDy3Al5O12、
SmAlO3の平均3点曲げ強度とワイブル係数との関係
を示す。曲げ強度及びワイブル係数は、焼結温度を変え
て変化させた。図5は、10分間隔で1200℃と室温
との間で加熱冷却を1000回繰り返して、温度変化に
対する耐熱疲労試験を行った結果を同時に示している。
この図より、当初のワイブル係数が6以上、平均3点曲
げ強度が400MPa以上であれば、ワイブル係数の低
下が少なく、温度変化に十分対応できることが分かる。
なおTm3Al5O12,Ho3Al5O12,Lu3Al5O12,及び
Tb3Al5O12でも、同様に当初のワイブル係数が6以
上、平均3点曲げ強度が400MPa以上であれば、1
000回の温度サイクルを経験した後も、ワイブル係数
や平均3点曲げ強度は同じ範囲に保たれていた。
Embodiment 4 FIG. 5 shows that Er3Al5O12 and Dy3Al5O12,
The relationship between the average three-point bending strength of SmAlO3 and the Weibull coefficient is shown. The bending strength and the Weibull coefficient were changed by changing the sintering temperature. FIG. 5 simultaneously shows the results of performing a heat-resistant fatigue test for a temperature change by repeating heating and cooling between 1200 ° C. and room temperature 1000 times at intervals of 10 minutes.
From this figure, it can be seen that when the initial Weibull coefficient is 6 or more and the average three-point bending strength is 400 MPa or more, the decrease in the Weibull coefficient is small, and it is possible to sufficiently cope with temperature changes.
Tm3Al5O12, Ho3Al5O12, Lu3Al5O12, and Tb3Al5O12 also have the same initial Weibull coefficient of 6 or more and an average three-point bending strength of 400 MPa or more.
Even after experiencing 000 temperature cycles, the Weibull modulus and average three-point bending strength remained in the same range.

【0038】[0038]

【比較例】表2に、発光管材料に焼結体の平均粒子径1
μmで直線光透過率83%のYAGを用いた比較例の結
果を示す。発光物質として、実施例2と同様にDy−Tl
−Na −(Br,I)を封入した。
[Comparative Example] Table 2 shows that the average particle diameter of the sintered body was 1 for the arc tube material.
The result of the comparative example using YAG having a linear light transmittance of 83% in μm is shown. As a luminescent substance, Dy-Tl was used in the same manner as in Example 2.
-Na- (Br, I) was enclosed.

【0039】[0039]

【表2】 比較例(YAG発光管使用) 点灯後経過時間(hr) ランプ効率(lm/W) 光束維持率(%) 平均演色評価数(Ra) 0 90 100 95 100 70 78 77 200 27 30 61Table 2 Comparative Example (using YAG arc tube) Elapsed time after lighting (hr) Lamp efficiency (lm / W) Luminous flux maintenance rate (%) Average color rendering index (Ra) 0 90 100 95 100 70 78 78 77 200 27 30 61

【0040】発光管としてYAGを用いた場合、点灯直
後のランプ効率及び演色性は優れているが、点灯後数十
時間経過後から発光管内面が封入されたDyとの反応に
より白濁し始め、200時間経過後には白濁も激しく、
光束維持率は30%まで低下した。しかし発光管材料が
YAGであっても、発光元素としてCsI −NdI3を封
入した場合、点灯後1000時間経過しても発光管内部
の白濁はほとんど見られなかった。なおNdの標準生成
ギブスエネルギーは−1721KJ/molで、Yよりも
絶対値が小さい。
When YAG is used as the arc tube, the lamp efficiency and color rendering properties immediately after lighting are excellent, but after several tens of hours after lighting, the inner surface of the arc tube starts to become cloudy due to the reaction with Dy enclosed therein. After 200 hours, cloudiness became intense,
The luminous flux maintenance rate decreased to 30%. However, even when the arc tube material was YAG, when CsI-NdI3 was encapsulated as a light emitting element, almost no cloudiness inside the arc tube was observed even after 1000 hours from the lighting. The standard Gibbs energy of formation of Nd is −1721 KJ / mol, and the absolute value is smaller than that of Y.

【0041】[0041]

【実施例5】希土類酸化物とアルミニウム酸化物(Al2
O3)の化合物からなる各種透光性セラミックス発光管
や、それらを用いた高圧放電灯を、実施例1及び2と同
様にして作製した。試料は、ワイブル係数の初期値が6
以上で、平均3点曲げ強度が400MPa以上の焼結条
件のもののみを示した。これらの高圧放電灯に希土類発
光物質を封入して、発光管との反応性を評価した結果を
表3に示す。表3において、100時間点灯後反応が生
じ発光管が白濁したものは×、白濁のなかったものを○
とした。表4に、表3に示した発光管材料の初期特性を
示した。
Embodiment 5 Rare earth oxide and aluminum oxide (Al2
Various translucent ceramic arc tubes made of the compound of O3) and high pressure discharge lamps using them were produced in the same manner as in Examples 1 and 2. The sample has an initial Weibull coefficient of 6
As described above, only those obtained under the sintering conditions having an average three-point bending strength of 400 MPa or more are shown. Table 3 shows the results of evaluating the reactivity with the arc tube by enclosing a rare earth luminescent substance in these high-pressure discharge lamps. In Table 3, x indicates that the reaction occurred after lighting for 100 hours and the arc tube became opaque, and x indicates that there was no opacity.
And Table 4 shows the initial characteristics of the arc tube materials shown in Table 3.

【0042】[0042]

【表3】 発光管材料と発光物質との反応性 発 光 物 質発光管材料 CeI3 NdI3 DyI3 HoI3 ErI3 TmI3 Er3Al5O12 ○ ○ ○ ○ ○ ○ Tm3Al5O12 ○ ○ ○ ○ × ○ Ho3Al5O12 ○ ○ ○ ○ × × Dy3Al5O12 ○ ○ ○ × × × Lu3Al5O12 ○ ○ ○ × × × Tb3Al5O12 ○ ○ ○ × × × Yb3Al5O12 ○ ○ × × × × YAlO3 ○ ○ × × × × Y3Al5O12 ○ ○ × × × × Y4Al2O3 ○ ○ × × × × NdAlO3 ○ ○ × × × × SmAlO3 ○ ○ × × × × LaAlO3 ○ × × × × ×[Table 3] Reactive luminescent material between arc tube material and luminous substance Arc tube material CeI3 NdI3 DyI3 HoI3 ErI3 TmI3 Er3Al5O12 ○ ○ ○ ○ ○ ○ Tm3Al5O12 ○ ○ ○ ○ × ○ Ho3Al5O12 ○ ○ ○ ○ × × O ○ ○ × × × Lu3Al5O12 ○ ○ ○ × × × Tb3Al5O12 ○ ○ ○ × × × Yb3Al5O12 ○ ○ × × × × × YAlO3 ○ ○ × × × × Y3Al5O12 ○ ○ × × × × Y4Al2O3 ○ ○ × × × × NdAlO3 × × × × SmAlO3 ○ ○ × × × × LaAlO3 ○ × × × × ×

【0043】[0043]

【表4】 各種発光管材料の物性 発光管材料 結晶系 直線透過率(%) 3点曲げ強度(MPa) ワイブル係数 Er3Al5O12 立方晶 72 500 8 Tm3Al5O12 立方晶 61 620 6 Ho3Al5O12 立方晶 78 540 8 Dy3Al5O12 立方晶 69 440 7 Lu3Al5O12 立方晶 60 530 7 Tb3Al5O12 立方晶 70 570 6 Yb3Al5O12 立方晶 75 600 6 YAlO3 斜方晶 22 570 8 Y3Al5O12 立方晶 83 800 9 Y4Al2O3 単斜晶 11 490 8 NdAlO3 立方晶 53 480 7 SmAlO3 六方晶 36 520 8 LaAlO3 六方晶 45 460 7Table 4 Physical properties of various arc tube materials Arc tube material Crystalline linear transmittance (%) Three-point bending strength (MPa) Weibull coefficient Er3Al5O12 cubic 72 500 8 Tm3Al5O12 cubic 61 620 6 Ho3Al5O12 cubic 78 78 540 Dy crystals 69 440 7 Lu3Al5O12 cubic 60 530 7 Tb3Al5O12 cubic 70 570 6 Yb3Al5O12 cubic 75 600 6 YAlO3 orthorhombic 22 570 8 Y3 Al5 O12 cubic 83 800 9 Y4Al2O3 monoclinic 11 490 8 NdAlO3 cubic 53 480 7 SmAlO3 hexagonal Crystal 36 520 8 LaAlO3 hexagonal 45 460 7

【0044】表5に1000時間点灯後の光束維持率を
示し、表中の×は放電灯が破損したことを示す。発光物
質をCeI3,NdI3,またはDyI3とすれば、いずれの
高圧放電灯でも1000時間点灯後に90%以上の光束
維持率が得られた。
Table 5 shows the luminous flux maintenance rate after 1000 hours of operation, and x in the table indicates that the discharge lamp was damaged. When the light-emitting substance was CeI3, NdI3, or DyI3, a luminous flux maintenance ratio of 90% or more was obtained in all the high-pressure discharge lamps after 1000 hours of operation.

【0045】[0045]

【表5】 発光管の光束維持率(1000時間点灯後) 発 光 物 質発光管材料 CeI3 NdI3 DyI3 HoI3 ErI3 TmI3 Er3Al5O12 91 91 91 92 94 90 Tm3Al5O12 91 92 91 92 × 95 Ho3Al5O12 91 91 91 94 × × Dy3Al5O12 90 90 96 × × × Lu3Al5O12 92 91 91 × × × Tb3Al5O12 91 91 90 × × ×Table 5 Luminous flux maintenance rate of the arc tube (after lighting for 1000 hours) Emitting substance Arc tube material CeI3 NdI3 DyI3 HoI3 ErI3 TmI3 Er3Al5O12 91 91 91 92 94 90 Tm3Al5O12 91 92 91 92 × 91 91 × 95 91 92 × 95 91 Dy3Al5O12 90 90 96 × × × Lu3Al5O12 92 91 91 × × × Tb3Al5O12 91 91 90 × × ×

【0046】実施例ではEr3Al5O12,Tm3Al5O12,
Ho3Al5O12,Dy3Al5O12,Lu3Al5O12,Tb3Al5
O12を示したが、ガーネット化合物をM3Al5O12とし
た際に、M元素はEr,Tm,Ho,Dy,Lu,Tbのいず
れか単独の元素ではなく、これらの元素の混合物でも良
い。これらの元素はイオン半径等が類似した元素で、こ
れらの元素を混合すると、ガーネット化合物はより安定
になる場合が多い。なおこれらの元素を混合する場合、
透光性セラミックスはガーネット単一相で、M元素やA
l元素の偏析がなく、特にM元素間の偏析がないことが
条件となる。
In the embodiment, Er3Al5O12, Tm3Al5O12,
Ho3Al5O12, Dy3Al5O12, Lu3Al5O12, Tb3Al5
Although O12 is shown, when the garnet compound is M3Al5O12, the M element is not a single element of Er, Tm, Ho, Dy, Lu, or Tb, but may be a mixture of these elements. These elements are elements having similar ionic radii and the like, and when these elements are mixed, the garnet compound often becomes more stable. When mixing these elements,
Translucent ceramics are garnet single phase, M element and A
The condition is that there is no segregation of the l element, especially no segregation between the M elements.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例での高圧放電灯用を示す断面図FIG. 1 is a cross-sectional view showing a high pressure discharge lamp according to an embodiment.

【図2】 実施例での電極部の側面図FIG. 2 is a side view of an electrode unit in the embodiment.

【図3】 実施例での光束維持率の変化を示す特性図FIG. 3 is a characteristic diagram showing a change in a luminous flux maintenance ratio in an example.

【図4】 実施例での平均演色評価数(Ra)の変化を
示す特性図
FIG. 4 is a characteristic diagram showing a change in an average color rendering index (Ra) in the embodiment.

【図5】 実施例での平均3点曲げ強度とワイブル係数
の関係を示す図
FIG. 5 is a diagram showing a relationship between an average three-point bending strength and a Weibull coefficient in Examples.

【符号の説明】[Explanation of symbols]

1 高圧放電灯 2 セラミックス発光管 4 W電極 6,8 Wコイル 10 リードピン 12 かしめ部 14 ワッシャ 16 封着材 DESCRIPTION OF SYMBOLS 1 High-pressure discharge lamp 2 Ceramic arc tube 4 W electrode 6,8 W coil 10 Lead pin 12 Caulked part 14 Washer 16 Sealing material

フロントページの続き (72)発明者 久保 仁 大阪市中央区高麗橋4丁目2番7号 神島 化学工業株式会社内Continuation of the front page (72) Inventor Hitoshi Kubo 4-2-7 Komyobashi, Chuo-ku, Osaka City Kamijima Chemical Industry Co., Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 組成式M3Al5O12からなるガーネット
構造の化合物で、MはEr,Tm,Ho,Dy,Lu,及び
Tbからなる群の少なくとも1員の元素である、透光性
セラミックス。
1. A translucent ceramic compound having a garnet structure having a composition formula of M3Al5O12, wherein M is at least one member of the group consisting of Er, Tm, Ho, Dy, Lu, and Tb.
【請求項2】 Er3Al5O12,Tm3Al5O12,Ho3Al5
O12,Dy3Al5O12,Lu3Al5O12,及びTb3Al5O12
からなる群の1員の化合物を用いた透光性セラミック
ス。
2. Er3Al5O12, Tm3Al5O12, Ho3Al5
O12, Dy3Al5O12, Lu3Al5O12, and Tb3Al5O12
A translucent ceramic using a one-member compound of the group consisting of:
【請求項3】 平均3点曲げ強度が400MPa以上、
ワイブル係数が6以上で、固有の吸収を除く可視光にお
ける直線透過率が50%以上であることを特徴とする、
請求項2の透光性セラミックス。
3. An average three-point bending strength of 400 MPa or more,
A Weibull coefficient of 6 or more, and a linear transmittance of visible light excluding intrinsic absorption of 50% or more,
The translucent ceramic according to claim 2.
【請求項4】 請求項2または3の透光性セラミックス
を用いた発光管。
4. An arc tube using the translucent ceramic according to claim 2.
【請求項5】 透光性セラミックスからなる発光管内
に、少なくとも金属ハロゲン化物を内封すると共に発光
管開口を気密に封止した高圧放電灯において、 前記発光管が、Er3Al5O12,Tm3Al5O12,Ho3Al5
O12,Dy3Al5O12,Lu3Al5O12,及びTb3Al5O12
からなる群の1員の化合物を用いた透光性セラミックス
からなることを特徴とする、高圧放電灯。
5. A high-pressure discharge lamp in which at least a metal halide is enclosed in an arc tube made of translucent ceramic and an arc tube opening is hermetically sealed, wherein the arc tube is made of Er3Al5O12, Tm3Al5O12, Ho3Al5.
O12, Dy3Al5O12, Lu3Al5O12, and Tb3Al5O12
A high-pressure discharge lamp comprising a translucent ceramic using a one-member compound of the group consisting of:
【請求項6】 発光管開口を、発光管の構成希土類酸化
物とアルミナ及びシリカからなる封着材で封着したこと
を特徴とする、請求項5の高圧放電灯。
6. The high pressure discharge lamp according to claim 5, wherein the arc tube opening is sealed with a sealing material made of a rare earth oxide, alumina and silica constituting the arc tube.
【請求項7】 希土類元素の無機酸塩とアルミニウムの
無機酸塩とを、両者の合計金属イオン濃度が0.005
〜1.0mol/Litterとなるように水に溶解した後、p
H7.5〜11.0の炭酸塩水溶液に滴下して沈澱させ、
得られた沈澱を水洗乾燥後に、800℃〜1500℃で
仮焼することにより複合酸化物の単一相原料を得、該単
一相原料を成形した後、1500℃以上で焼結体の融点
よりも50℃以上低い温度で焼結する、ことを特徴とす
る透光性セラミックスの製造方法。
7. An inorganic acid salt of a rare earth element and an inorganic acid salt of aluminum having a total metal ion concentration of 0.005.
After dissolving in water so as to be ~ 1.0 mol / Litter, p
H 7.5 to 11.0 was dropped into a carbonate aqueous solution to precipitate,
The obtained precipitate is washed with water, dried and calcined at 800 ° C. to 1500 ° C. to obtain a single-phase raw material of the composite oxide. After molding the single-phase raw material, the melting point of the sintered body is raised to 1500 ° C. or higher. Sintering at a temperature lower by at least 50 ° C. than the above.
JP30345197A 1997-09-12 1997-10-17 Light-transmitting ceramic, arc tube made therefrom, high-pressure discharge lamp using the arc tube, and production of light-transmitting ceramic Pending JPH11147757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30345197A JPH11147757A (en) 1997-09-12 1997-10-17 Light-transmitting ceramic, arc tube made therefrom, high-pressure discharge lamp using the arc tube, and production of light-transmitting ceramic

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP26802697 1997-09-12
JP9-268026 1997-09-12
JP30345197A JPH11147757A (en) 1997-09-12 1997-10-17 Light-transmitting ceramic, arc tube made therefrom, high-pressure discharge lamp using the arc tube, and production of light-transmitting ceramic

Publications (1)

Publication Number Publication Date
JPH11147757A true JPH11147757A (en) 1999-06-02

Family

ID=26548127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30345197A Pending JPH11147757A (en) 1997-09-12 1997-10-17 Light-transmitting ceramic, arc tube made therefrom, high-pressure discharge lamp using the arc tube, and production of light-transmitting ceramic

Country Status (1)

Country Link
JP (1) JPH11147757A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6740262B2 (en) 2000-05-09 2004-05-25 Matsushita Electric Industrial Co., Ltd. Light-transmitting sintered body, light-emitting tube and electric discharge lamp using same
EP1737021A2 (en) * 2005-06-24 2006-12-27 Osram Sylvania Inc. Doped dysprosia discharge vessel
EP1755145A2 (en) * 2005-06-24 2007-02-21 Osram-Sylvania Inc. Metal halide lamp with a ceramic discharge vessel
US7691765B2 (en) 2005-03-31 2010-04-06 Fujifilm Corporation Translucent material and manufacturing method of the same
KR100951690B1 (en) 2008-01-23 2010-04-07 한국세라믹기술원 Ceramic material of garnet crystal structure with low thermal conductivity and manufacturing method of the same
CN115180940A (en) * 2022-07-06 2022-10-14 中国科学院上海硅酸盐研究所 Dy, tb and LuAG transparent ceramic for yellow laser and preparation method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6740262B2 (en) 2000-05-09 2004-05-25 Matsushita Electric Industrial Co., Ltd. Light-transmitting sintered body, light-emitting tube and electric discharge lamp using same
US7691765B2 (en) 2005-03-31 2010-04-06 Fujifilm Corporation Translucent material and manufacturing method of the same
EP1737021A2 (en) * 2005-06-24 2006-12-27 Osram Sylvania Inc. Doped dysprosia discharge vessel
EP1755145A2 (en) * 2005-06-24 2007-02-21 Osram-Sylvania Inc. Metal halide lamp with a ceramic discharge vessel
EP1737021A3 (en) * 2005-06-24 2007-08-15 Osram Sylvania Inc. Doped dysprosia discharge vessel
EP1755145A3 (en) * 2005-06-24 2008-04-30 Osram-Sylvania Inc. Metal halide lamp with a ceramic discharge vessel
US7420331B2 (en) 2005-06-24 2008-09-02 Osram Sylvania Inc. Doped dysprosia discharge vessel
KR100951690B1 (en) 2008-01-23 2010-04-07 한국세라믹기술원 Ceramic material of garnet crystal structure with low thermal conductivity and manufacturing method of the same
CN115180940A (en) * 2022-07-06 2022-10-14 中国科学院上海硅酸盐研究所 Dy, tb and LuAG transparent ceramic for yellow laser and preparation method thereof

Similar Documents

Publication Publication Date Title
CA2255983C (en) A corrosion resistant ceramic and a production method thereof
US6844285B1 (en) Transparent polycrystalline yttrium aluminum garnet
JP2001322867A (en) Translucent sintered compact, as fluorescent tube and discharge lamp using the same
US20080108496A1 (en) Composition Used to Make a Transparent Ceramic Material and Method of Manufacturing the Same
US5236876A (en) Body of cerium-doped quartz glass
CN102428049A (en) Rare earth ion doped silicate luminescence glass and preparation method thereof
US5032762A (en) Protective beryllium oxide coating for high-intensity discharge lamps
CN101855186A (en) Translucent polycrystalline alumina ceramic
EP0667322B1 (en) Light-permeable ceramic material and method of manufacturing the same
JPH11147757A (en) Light-transmitting ceramic, arc tube made therefrom, high-pressure discharge lamp using the arc tube, and production of light-transmitting ceramic
JPH11157933A (en) Light transmission ceramic, its production, and arc tube and high-voltage discharge lamp by using light transmission ceramic
JP2002316884A (en) High-transmittance alumina for ceramic metal halide lamp
JPH11255559A (en) Corrosion-resistant ceramic and its production
US7884550B2 (en) Arc tube composed of yttrium aluminum garnet ceramic material
US5780377A (en) Light-transmissive ceramics and method of manufacturing same
US20080106010A1 (en) Transparent Ceramic Material and Method of Manufacturing the Same
JPH08298099A (en) Arc tube for metal vapor discharge lamp
JP3340024B2 (en) Method for manufacturing light-transmitting tube used for arc tube for discharge lamp
CN101918339A (en) Translucent polycrystalline alumina ceramic
WO2008057678A2 (en) An arc tube for a high intensity discharge lamp
JP2002203513A (en) High pressure discharge lamp
JP2001199761A (en) High purity alumina ceramic and method of producing the same
JP2001035445A (en) Seal part structure of arc tube
JPH04370643A (en) Arc tube for high brightness discharge lamp
JPH1067555A (en) Light-transmitting ceramic, luminous tube comprising light-transmitting ceramic and production of light-transmitting ceramic

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20060113

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20060124

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060601