JPH11146798A - Quick discrimination of microorganism cell and discrimination kit for microorganism cell - Google Patents

Quick discrimination of microorganism cell and discrimination kit for microorganism cell

Info

Publication number
JPH11146798A
JPH11146798A JP31553697A JP31553697A JPH11146798A JP H11146798 A JPH11146798 A JP H11146798A JP 31553697 A JP31553697 A JP 31553697A JP 31553697 A JP31553697 A JP 31553697A JP H11146798 A JPH11146798 A JP H11146798A
Authority
JP
Japan
Prior art keywords
fluorescent dye
microorganism
cells
fluorescence
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31553697A
Other languages
Japanese (ja)
Inventor
Kazuhide Kanehara
和秀 金原
Toshio Hayakawa
敏雄 早川
Minoru Shimura
稔 志村
Yoshinori Hiraoka
義範 平岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP31553697A priority Critical patent/JPH11146798A/en
Publication of JPH11146798A publication Critical patent/JPH11146798A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for quickly discriminating a microorganism cell capable of more rapidly and surely discriminating the life and death of a microorganisms in a specimen than a conventional method and to obtain a discrimination kit for a microorganism cell therefor. SOLUTION: This method for quickly discriminating the life and death of a microorganism cell comprises treating a microorganism containing specimen with a first fluorescent coloring matter to emit fluorescence by an enzyme reaction in a living cell and a second fluorescent coloring matter to emit fluorescent having a wave length different from that of the first fluorescent coloring matter and discriminating the life and death of the microorganism by difference in wavelength of the fluorescence produced. A discriminating kit for a microorganism cell is provided with the first fluorescent coloring matter to emit fluorescence of an enzyme reaction in a living cell and the second fluorescent coloring matter to emit fluorescence having a wavelength different from that of the first fluorescent coloring matter, treats a microorganism-containing specimen with the first and the second fluorescent coloring matters and discriminating the life and death of the microorganism by difference in wavelength of the fluorescence produced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、医療、食品分野な
どの微生物応用分野において、検体中の微生物の生死を
迅速に識別し得る微生物細胞迅速識別法及びそのための
微生物細胞用識別キットに関する。本発明は、例えば食
品などの殺菌処理の効果確認、抗生物質等の医薬品によ
る殺菌効果の迅速な確認、発酵法による有用物質の生産
プロセスにおける最適培養条件の選定のための迅速な生
死比率の測定、あるいは微生物の実験や研究用のテキス
ト用などの広範な分野に適用が可能である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for rapidly identifying microbial cells in a microbial application field such as the medical field and the food field, which is capable of quickly identifying the viability of microorganisms in a specimen, and a microbial cell identification kit therefor. The present invention is, for example, to confirm the effect of sterilization treatment of foods and the like, to quickly confirm the sterilization effect of pharmaceuticals such as antibiotics, and to quickly measure the viability ratio for the selection of optimal culture conditions in the production process of useful substances by fermentation. Or, it can be applied to a wide range of fields such as textbooks for experiments and research on microorganisms.

【0002】[0002]

【従来の技術】生物細胞の生死を識別するための方法と
して、複数の蛍光色素を用いて、核酸に対する染色の違
いをフローサイトメトリーで検出する方法が知られてい
る。しかしながら、従来法による識別方法は、蛍光色素
で核酸を染色し、生細胞と死細胞との僅かな染色の違い
を検出していたため、特に微生物細胞では、生死の識別
が不明確であった。また、従来法による識別は染色に時
間がかかり、微生物の生死の識別を短時間に行うことが
必要な分野では、より簡便で迅速に識別結果が得られる
方法の提供が望まれていた。
2. Description of the Related Art As a method for discriminating the viability of living cells, a method is known in which a plurality of fluorescent dyes are used to detect differences in staining of nucleic acids by flow cytometry. However, the conventional identification method stains nucleic acid with a fluorescent dye and detects a slight difference in staining between live cells and dead cells, so that it is unclear whether microorganism cells are alive or dead, especially. Further, in the field where the identification by the conventional method requires a long time for staining, and in which it is necessary to identify the life and death of microorganisms in a short time, it has been desired to provide a method which can obtain an identification result more simply and quickly.

【0003】[0003]

【発明が解決しようとする課題】本発明は、検体中の微
生物の生死を、従来法よりもより迅速にかつ確実に識別
し得る微生物細胞迅速識別法及びそのための微生物細胞
用識別キットを提供することを課題としている。
SUMMARY OF THE INVENTION The present invention provides a method for rapidly identifying microbial cells, which can more quickly and reliably identify the viability of microorganisms in a specimen than conventional methods, and an identification kit for microorganisms therefor. That is the task.

【0004】[0004]

【課題を解決するための手段】本発明の微生物細胞迅速
識別法は、生細胞内で酵素反応により蛍光を発する第1
の蛍光色素と、死細胞内に取り込まれて前記第1の蛍光
色素と異なる波長の蛍光を発する第2の蛍光色素とを、
微生物を含む検体に作用せしめ、生じる蛍光の波長差に
よって該微生物の生死を識別することを特徴としてい
る。本発明の微生物細胞迅速識別法において、フローサ
イトメトリーによって微生物の生死を識別して良い。ま
た、前記第1の蛍光色素は、カルセイン誘導体を用いる
ことが望ましい。さらに、前記第2の蛍光色素として、
プロピジウムイオダイドを用いて良い。
According to the present invention, there is provided a method for rapidly identifying microbial cells, comprising the steps of:
And a second fluorescent dye, which is taken into dead cells and emits fluorescence of a different wavelength from the first fluorescent dye,
The method is characterized in that it is applied to a specimen containing a microorganism, and the difference between the wavelengths of the generated fluorescence is used to discriminate the life and death of the microorganism. In the method for rapidly identifying microbial cells of the present invention, the viability of microorganisms may be identified by flow cytometry. It is preferable that a calcein derivative is used as the first fluorescent dye. Further, as the second fluorescent dye,
Propidium iodide may be used.

【0005】本発明の微生物細胞用識別キットは、生細
胞内で酵素反応により蛍光を発する第1の蛍光色素と、
死細胞内に取り込まれて前記第1の蛍光色素と異なる波
長の蛍光を発する第2の蛍光色素とを備え、微生物を含
む検体にこれら第1、第2の蛍光色素を作用せしめ、生
じる蛍光の波長差によって該微生物の生死を識別するも
のである。本発明の微生物細胞用識別キットにおいて、
前記第1の蛍光色素は、カルセイン誘導体を用いること
が望ましい。また前記第2の蛍光色素として、プロピジ
ウムイオダイドを用いて良い。
[0005] The identification kit for microbial cells of the present invention comprises a first fluorescent dye that emits fluorescence by an enzymatic reaction in living cells;
A first fluorescent dye which is taken into dead cells and a second fluorescent dye which emits fluorescence having a different wavelength; and reacts the first and second fluorescent dyes on a specimen containing microorganisms to produce a fluorescent light. The difference between the wavelengths is used to determine whether the microorganism is alive or dead. In the identification kit for microbial cells of the present invention,
It is desirable that a calcein derivative be used as the first fluorescent dye. Further, propidium iodide may be used as the second fluorescent dye.

【0006】[0006]

【発明の実施の形態】本発明においては、生細胞内で酵
素反応により蛍光を発する第1の蛍光色素と、死細胞内
に取り込まれて前記第1の蛍光色素と異なる波長の蛍光
を発する第2の蛍光色素とを用いる。第1の蛍光色素と
しては、微生物細胞内に効率よく吸収され、細胞内で酵
素反応(加水分解)を受けて強い蛍光を発するカルセイ
ン誘導体、好ましくはカルセインの各種エステルを用い
ることができ、好適な市販品を例示すれば、Calce
in−AM(株式会社 同仁化学研究所製)などであ
る。このものは、それ自体蛍光はほとんど示さず、微生
物細胞内に取り込まれ易く、微生物細胞内の各種エステ
ラーゼにより加水分解を受け、強い黄緑色蛍光を発する
(励起波長490nm、蛍光波長515nm付近)。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, a first fluorescent dye which emits fluorescence by an enzymatic reaction in a living cell and a second fluorescent dye which is taken in dead cells and emits a fluorescence having a wavelength different from that of the first fluorescent dye. And two fluorescent dyes. As the first fluorescent dye, a calcein derivative, which is efficiently absorbed into microbial cells and emits strong fluorescence upon undergoing an enzymatic reaction (hydrolysis) in the cells, preferably various esters of calcein, can be used. For example, a commercially available product is Calce
in-AM (manufactured by Dojin Chemical Laboratory Co., Ltd.). It exhibits little fluorescence per se, is easily taken into microbial cells, is hydrolyzed by various esterases in microbial cells, and emits strong yellow-green fluorescence (excitation wavelength: 490 nm, fluorescence wavelength: around 515 nm).

【0007】また、死細胞内に取り込まれて前記第1の
蛍光色素と異なる波長の蛍光を発する第2の蛍光色素と
しては、例えばプロピジウムイオダイド、エチジウムホ
モダイマーなどの蛍光染料が使用でき、特にプロピジウ
ムイオダイドが好適に用いられる。
As the second fluorescent dye which is taken into dead cells and emits fluorescence having a wavelength different from that of the first fluorescent dye, a fluorescent dye such as propidium iodide or ethidium homodimer can be used, and in particular, propidium Iodide is preferably used.

【0008】本発明の微生物細胞用識別キットは、これ
ら第1の蛍光色素と第2の蛍光色素とを備えていればよ
く、緩衝液や希釈用の生理食塩水、あるいは試験管など
の分析に必要なその他の試薬や器具を含めることもでき
る。また、第1の蛍光色素と第2の蛍光色素を一回の分
析の必要量毎に包装したり、希釈用の目盛付容器に封入
するなどの形態を適用させることもできる。
The microbial cell identification kit of the present invention only needs to include the first fluorescent dye and the second fluorescent dye, and can be used for analyzing a buffer solution, a physiological saline for dilution, or a test tube. Other necessary reagents and equipment may also be included. It is also possible to apply a form in which the first fluorescent dye and the second fluorescent dye are packed for each required amount of one analysis, or are enclosed in a graduated container for dilution.

【0009】本発明の微生物細胞迅速識別法は、微生物
を含む検体に、上記第1の蛍光色素と第2の蛍光色素と
を作用せしめ、生じる蛍光の波長差によって微生物の生
死を識別する。この識別には、蛍光顕微鏡を用いて微生
物の染色を観察する方法や、フローサイトメトリーの手
法を用いて識別することができる。
In the method for rapidly identifying microbial cells of the present invention, the first fluorescent dye and the second fluorescent dye are allowed to act on a specimen containing a microorganism, and the viability of the microorganism is identified based on the wavelength difference of the generated fluorescence. This identification can be performed using a method of observing the staining of microorganisms using a fluorescence microscope or a flow cytometry method.

【0010】フローサイトメトリーを用いて、染色後の
微生物細胞の生死を識別するには、識別装置の受光部の
受光波長を、第1の蛍光色素(加水分解後)の蛍光波長
と、第2の蛍光色素の蛍光波長に合わせておく。このフ
ローサイトメトリーによる識別法では、微生物培養液に
第1の蛍光色素と第2の蛍光色素を作用させ、染色を終
えた試験液を、識別装置に流すだけで、微生物培養液中
の微生物の生死を測定することができ、多くの試料を連
続して測定でき、オートメーション化が可能であること
から特に好ましい。
[0010] In order to discriminate the viability of microbial cells after staining using flow cytometry, the light receiving wavelength of the light receiving section of the discriminating apparatus is determined by comparing the light receiving wavelength of the first fluorescent dye (after hydrolysis) with the light receiving wavelength of the second fluorescent dye. To the fluorescence wavelength of the fluorescent dye. In this identification method by flow cytometry, a first fluorescent dye and a second fluorescent dye are allowed to act on a microorganism culture solution, and the stained test solution is simply passed through an identification device, and the microorganisms in the microorganism culture solution are removed. It is particularly preferable because viability can be measured, many samples can be measured continuously, and automation can be performed.

【0011】本発明は、大腸菌、黄色ブドウ球菌、連鎖
球菌、肺炎菌、シュードモナス属、バチルス属、クロス
トリジウム属などの細菌や、酵母、カビ、放線菌などの
微生物一般の生死の識別に適用が可能である。本発明
は、例えば食品などの殺菌処理の効果確認、抗生物質等
の医薬品による殺菌効果の迅速な確認、発酵法による有
用物質の生産プロセスにおける最適培養条件の選定のた
めの迅速な生死比率の測定、あるいは微生物の実験や研
究用のテキスト用などの広範な分野に適用が可能であ
る。
The present invention can be applied to the identification of bacteria such as Escherichia coli, Staphylococcus aureus, Streptococcus, Pneumococcus, Pseudomonas sp., Bacillus sp., Clostridium sp. It is. The present invention is, for example, to confirm the effect of sterilization treatment of foods and the like, to quickly confirm the sterilization effect of pharmaceuticals such as antibiotics, and to quickly measure the viability ratio for the selection of optimal culture conditions in the production process of useful substances by fermentation. Or, it can be applied to a wide range of fields such as textbooks for experiments and research on microorganisms.

【0012】[0012]

【実施例】[実施例1:フローサイトメトリーによる微
生物の生死の識別]微生物として大腸菌(Escherichia
coli)の生菌と、加熱処理した死滅菌を用い、本発明方
法に従って染色し、フローサイトメトリーにより生死を
識別した。
EXAMPLES Example 1 Discrimination of Viable and Dead Microorganisms by Flow Cytometry Escherichia coli (Escherichia)
E. coli) and heat-killed death sterilization were used to stain the cells according to the method of the present invention, and life and death were identified by flow cytometry.

【0013】(試薬) A液:Calcein−AM(株式会社 同仁化学研究
所製)をDMSOに溶かし、1mM/mlとした生細胞
用蛍光色素溶液。 B液:プロピジウムイオダイドをエタノールに溶かし、
1mg/mlとした死細胞用蛍光色素溶液。
(Reagent) Solution A: Fluorescent dye solution for live cells prepared by dissolving Calcein-AM (manufactured by Dojindo Laboratories Co., Ltd.) in DMSO at 1 mM / ml. Solution B: Dissolve propidium iodide in ethanol,
Fluorescent dye solution for dead cells at 1 mg / ml.

【0014】(操作) 上記微生物の培養液10mlを、35ml遠心チュー
ブに採取し、4000rpmで10分間(4℃)、遠心
分離する。 上清を捨て、氷冷した10mM HEPES(緩衝
液)を5ml加え、氷上でゆっくり懸濁し、再び400
0rpmで10分間(4℃)、遠心分離する。 上清を捨て、氷冷したPBS(生理食塩水)を5ml
加え、氷上でゆっくり懸濁する。 1.5ml遠心チューブにで得た懸濁液500μl
をとり、A液(生細胞用蛍光色素溶液)500μl(P
BS500μlにCalcein-AM 5μlを加えたもの)を
加え(氷上)、その後、30℃で30分間、インキュベ
ートする。 さらに、の遠心チューブ内に、B液(死細胞用蛍光
色素溶液)5μlを加え、室温で5分間放置する。 反応後、フローサイトメトリーで測定する。
(Operation) 10 ml of the culture of the microorganism is collected in a 35 ml centrifuge tube, and centrifuged at 4000 rpm for 10 minutes (4 ° C.). The supernatant was discarded, 5 ml of ice-cold 10 mM HEPES (buffer) was added, and the suspension was slowly suspended on ice.
Centrifuge at 0 rpm for 10 minutes (4 ° C.). Discard the supernatant, and add 5 ml of ice-cold PBS (physiological saline).
Add and suspend slowly on ice. 500 μl of the suspension obtained in a 1.5 ml centrifuge tube
Solution A (fluorescent dye solution for living cells) 500 μl (P
500 μl of BS plus 5 μl of Calcein-AM) (on ice) and then incubate at 30 ° C. for 30 minutes. Further, 5 μl of solution B (fluorescent dye solution for dead cells) is added to the centrifuge tube, and left at room temperature for 5 minutes. After the reaction, measurement is performed by flow cytometry.

【0015】死細胞の場合には、上記微生物の培養液を
100℃、10分、加熱してから、生細胞の場合と同じ
く、上記〜を行った。
In the case of dead cells, the culture of the microorganism was heated at 100 ° C. for 10 minutes, and then the above-mentioned steps were performed as in the case of living cells.

【0016】測定装置は、BECTON DICKINSON社製 FACS
Calibur を用い、測定条件は、励起波長488nm、蛍
光波長515nm(緑色側)、及び635nm(赤色
側)とした。大腸菌の生細胞を用いて、フローサイトメ
トリーによって蛍光波長を測定した結果を図1に、また
死細胞を用いた結果を図2に示す。図1と図2を比較す
れば明らかなように、生細胞を測定した図1のプロット
と、死細胞を測定した図2のプロットは、蛍光波長が明
瞭に区別された。これによって、本発明を実施すること
によって、検体中の微生物の生死を迅速かつ確実に測定
可能であることが判った。
The measuring device is FACS manufactured by BECTON DICKINSON.
Using a Calibur, the measurement conditions were an excitation wavelength of 488 nm, a fluorescence wavelength of 515 nm (green side), and 635 nm (red side). FIG. 1 shows the results of measuring the fluorescence wavelength by flow cytometry using live cells of Escherichia coli, and FIG. 2 shows the results of using the dead cells. As is clear from the comparison between FIG. 1 and FIG. 2, the plot of FIG. 1 where live cells were measured and the plot of FIG. 2 where dead cells were measured clearly distinguished the fluorescence wavelength. Thus, it was found that by implementing the present invention, the viability of microorganisms in a specimen can be measured quickly and reliably.

【0017】[実施例2:増殖曲線と生死細胞の経時変
化]ジャーファーメンターを用い、大腸菌を培養して、
培養液を所定時間毎に取り出し、吸光度(O.D.)を
測定すると共に、上記実施例1の操作〜と同様にし
て生細胞と死細胞(及び瀕死細胞)の割合を調べた。図
3に吸光度の経時変化、すなわち増殖曲線を、図4に生
死細胞の経時変化を調べた結果を示す。図3、図4より
培養開始時は生細胞率は低く、死細胞率が高いが、対数
増殖期になると生細胞率は高く、死細胞率は低くなる。
安定期になると生細胞率は徐々に低下し、死細胞率は徐
々に増加していく傾向が認められた。この測定法によ
り、生死細胞率の経時的変化の測定が可能であることが
明らかになった。
Example 2 Growth Curve and Time-Dependent Changes of Living and Dead Cells Escherichia coli was cultured using a jar fermenter.
The culture solution was taken out at predetermined time intervals, the absorbance (OD) was measured, and the ratio of living cells to dead cells (and dying cells) was examined in the same manner as in the above-described Example 1. FIG. 3 shows the time course of the absorbance, that is, the growth curve, and FIG. 4 shows the results of the time course of the living and dead cells. 3 and 4, the viable cell rate is low and the dead cell rate is high at the start of culture, but the viable cell rate is high and the dead cell rate is low in the logarithmic growth phase.
In the stable period, the viable cell rate gradually decreased and the dead cell rate tended to gradually increase. This measurement method revealed that the change over time in the viable cell rate can be measured.

【0018】[0018]

【発明の効果】以上説明したように、本発明によれば、
医療、食品分野などの微生物応用分野において、検体中
の微生物の生死を、従来法よりもより迅速にかつ確実に
識別し得る微生物細胞迅速識別法及びそのための微生物
細胞用識別キットを提供することができる。
As described above, according to the present invention,
In the field of microbial applications such as medical and food fields, it is possible to provide a microbial cell rapid identification method and a microbial cell identification kit that can more rapidly and reliably identify the viability of microorganisms in a sample than conventional methods. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 生細胞を用いたフローサイトメトリーの結果
を示すグラフ。
FIG. 1 is a graph showing the results of flow cytometry using living cells.

【図2】 死細胞を用いたフローサイトメトリーの結果
を示すグラフ。
FIG. 2 is a graph showing the results of flow cytometry using dead cells.

【図3】 使用細菌の増殖曲線を示すグラフ。FIG. 3 is a graph showing a growth curve of bacteria used.

【図4】 生死細胞の経時変化を示すグラフ。FIG. 4 is a graph showing the change over time of living and dead cells.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C12R 1:185) (72)発明者 平岡 義範 広島県呉市阿賀南4−12−9────────────────────────────────────────────────── (5) Continuation of the front page (51) Int.Cl. 6 Identification code FI C12R 1: 185) (72) Inventor Yoshinori Hiraoka 4-12-9 Agananami, Kure City, Hiroshima Prefecture

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 生細胞内で酵素反応により蛍光を発する
第1の蛍光色素と、死細胞内に取り込まれて前記第1の
蛍光色素と異なる波長の蛍光を発する第2の蛍光色素と
を、微生物を含む検体に作用せしめ、生じる蛍光の波長
差によって該微生物の生死を識別することを特徴とする
微生物細胞迅速識別法。
1. A first fluorescent dye which emits fluorescence by an enzymatic reaction in a living cell, and a second fluorescent dye which is taken into dead cells and emits fluorescence having a wavelength different from that of the first fluorescent dye, A method for rapidly identifying microbial cells, wherein the method is applied to a specimen containing a microorganism, and the viability of the microorganism is identified based on the wavelength difference of the generated fluorescence.
【請求項2】 フローサイトメトリーによって微生物の
生死を識別することを特徴とする請求項1記載の微生物
細胞迅速識別法。
2. The method for rapidly identifying microbial cells according to claim 1, wherein viability of the microorganism is identified by flow cytometry.
【請求項3】 前記第1の蛍光色素に、カルセイン誘導
体を用いることを特徴とする請求項1または2記載の微
生物細胞迅速識別法。
3. The method for rapidly identifying microbial cells according to claim 1, wherein a calcein derivative is used as the first fluorescent dye.
【請求項4】 前記第2の蛍光色素に、プロピジウムイ
オダイドを用いることを特徴とする請求項3記載の微生
物細胞迅速識別法。
4. The method according to claim 3, wherein propidium iodide is used as the second fluorescent dye.
【請求項5】 生細胞内で酵素反応により蛍光を発する
第1の蛍光色素と、死細胞内に取り込まれて前記第1の
蛍光色素と異なる波長の蛍光を発する第2の蛍光色素と
を備え、微生物を含む検体にこれら第1、第2の蛍光色
素を作用せしめ、生じる蛍光の波長差によって該微生物
の生死を識別する微生物細胞用識別キット。
5. A method according to claim 1, wherein the first fluorescent dye emits fluorescence by an enzymatic reaction in living cells, and the second fluorescent dye emits fluorescence having a wavelength different from that of the first fluorescent dye when taken into dead cells. An identification kit for microbial cells, wherein the first and second fluorescent dyes act on a specimen containing a microorganism, and the difference between the wavelengths of the generated fluorescence is used to determine the viability of the microorganism.
【請求項6】 前記第1の蛍光色素に、カルセイン誘導
体を用いることを特徴とする請求項5記載の微生物細胞
用識別キット。
6. The identification kit for microbial cells according to claim 5, wherein a calcein derivative is used as the first fluorescent dye.
【請求項7】 前記第2の蛍光色素に、プロピジウムイ
オダイドを用いることを特徴とする請求項6記載の微生
物細胞用識別キット。
7. The microbial cell identification kit according to claim 6, wherein propidium iodide is used as the second fluorescent dye.
JP31553697A 1997-11-17 1997-11-17 Quick discrimination of microorganism cell and discrimination kit for microorganism cell Pending JPH11146798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31553697A JPH11146798A (en) 1997-11-17 1997-11-17 Quick discrimination of microorganism cell and discrimination kit for microorganism cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31553697A JPH11146798A (en) 1997-11-17 1997-11-17 Quick discrimination of microorganism cell and discrimination kit for microorganism cell

Publications (1)

Publication Number Publication Date
JPH11146798A true JPH11146798A (en) 1999-06-02

Family

ID=18066528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31553697A Pending JPH11146798A (en) 1997-11-17 1997-11-17 Quick discrimination of microorganism cell and discrimination kit for microorganism cell

Country Status (1)

Country Link
JP (1) JPH11146798A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000075367A1 (en) * 1999-06-07 2000-12-14 Lilius Esa Matti A method to enable assessment of growth and death of micro-organisms
WO2001057180A1 (en) * 2000-01-31 2001-08-09 Matsushita Seiko Co., Ltd. Kit for detecting microorganisms, apparatus for quanitifying microorganisms and method for quantifying microorganisms
WO2003083112A1 (en) * 2002-04-01 2003-10-09 Japan Science And Technology Agency Cell population provided with identification codes and method of screening cell population
JP2007097582A (en) * 2005-09-08 2007-04-19 Matsushita Electric Ind Co Ltd Microorganisms-counting apparatus
JP2007097583A (en) * 2005-09-09 2007-04-19 Matsushita Electric Ind Co Ltd Microorganisms-counting apparatus
JP2007097532A (en) * 2005-10-07 2007-04-19 Okayama Univ Method for judging physiological activity and kit for judging physiological activity
KR101305905B1 (en) * 2011-07-04 2013-09-06 한국과학기술연구원 Apparatus and method for real-time separation and detection of airborne microbe
KR102253941B1 (en) * 2020-08-07 2021-05-20 제주대학교 산학협력단 Method for assessing the viability of Kudoa

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000075367A1 (en) * 1999-06-07 2000-12-14 Lilius Esa Matti A method to enable assessment of growth and death of micro-organisms
US6866995B1 (en) 1999-06-07 2005-03-15 Esa-Matti Lilius Method to enable assessment of growth and death of micro-organisms
WO2001057180A1 (en) * 2000-01-31 2001-08-09 Matsushita Seiko Co., Ltd. Kit for detecting microorganisms, apparatus for quanitifying microorganisms and method for quantifying microorganisms
AU2001227112B2 (en) * 2000-01-31 2006-06-15 Panasonic Ecology Systems Co., Ltd. Kit for Detecting Microorganisms, Apparatus for Quantifying Microorganisms and Method for Quantifying Microorganisms
WO2003083112A1 (en) * 2002-04-01 2003-10-09 Japan Science And Technology Agency Cell population provided with identification codes and method of screening cell population
JP2007097582A (en) * 2005-09-08 2007-04-19 Matsushita Electric Ind Co Ltd Microorganisms-counting apparatus
JP2007097583A (en) * 2005-09-09 2007-04-19 Matsushita Electric Ind Co Ltd Microorganisms-counting apparatus
JP2007097532A (en) * 2005-10-07 2007-04-19 Okayama Univ Method for judging physiological activity and kit for judging physiological activity
KR101305905B1 (en) * 2011-07-04 2013-09-06 한국과학기술연구원 Apparatus and method for real-time separation and detection of airborne microbe
KR102253941B1 (en) * 2020-08-07 2021-05-20 제주대학교 산학협력단 Method for assessing the viability of Kudoa

Similar Documents

Publication Publication Date Title
RU2384624C2 (en) Method for sampling for detecting microorganism, method for detecting microorganism and set for detecting microorganism
Jepras et al. Development of a robust flow cytometric assay for determining numbers of viable bacteria
López-Campos et al. Detection, identification, and analysis of foodborne pathogens
AU2009269581B2 (en) Method, kit and system for culturable cell count
WO2002000100A9 (en) Method for separation, identification and evaluation of microbes and cells
CN112410405B (en) Rapid detection method for bacteria in complex sample
US6803208B2 (en) Automated epifluorescence microscopy for detection of bacterial contamination in platelets
AU2013243378A1 (en) Sample preparation for flow cytometry
CN112159854A (en) Primer composition for CRISPR/Cas12a detection of Escherichia coli O157: H7 and detection method
US20220098645A1 (en) Fast and portable microfluidic detection system as an alternative to salmonella's classical culture method
JP6005053B2 (en) Microbial detection and quantification method
US4639421A (en) Fluorescent gram stain
JPH11146798A (en) Quick discrimination of microorganism cell and discrimination kit for microorganism cell
CN110760559A (en) Rapid detection method for microbial antibiotic sensitivity
Bruetschy et al. Use of flow cytometry in oenology to analyse yeasts
KRAMER et al. Recovery of Escherichia coli O157: H7 from fiber optic waveguides used for rapid biosensor detection
Mozioğlu et al. Oligomer based real-time detection of microorganisms producing nuclease enzymes
JP2020022374A (en) Microorganism inspection
JP4510222B2 (en) Bacteria identification method
CN110157819B (en) LAMP kit for rapidly detecting Salmonella indiana in livestock and poultry feces
Fung Rapid methods and automation in food microbiology: 25 years of development and predictions
CN112779319B (en) LAMP-based nano material and visual detection method thereof applied to food drug-resistant staphylococcus aureus
Puchkov et al. Fiuorimetric assessment of Pseudomonas fluorescens viability after freeze‐thawing using ethidium bromide
RU2820141C1 (en) Method of identifying and determining pathogenicity of vibrio cholerae strains by loop-mediated isothermal amplification (lamp)
US20240376515A1 (en) Method and apparatus for rapidly testing microorganism