JPH1114541A - Cr densitometer - Google Patents

Cr densitometer

Info

Publication number
JPH1114541A
JPH1114541A JP16765797A JP16765797A JPH1114541A JP H1114541 A JPH1114541 A JP H1114541A JP 16765797 A JP16765797 A JP 16765797A JP 16765797 A JP16765797 A JP 16765797A JP H1114541 A JPH1114541 A JP H1114541A
Authority
JP
Japan
Prior art keywords
light
concentration
reference light
hexavalent chromium
waste liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16765797A
Other languages
Japanese (ja)
Inventor
Katsuro Dejima
勝郎 出島
Kunitaka Sugano
邦孝 菅野
Yoshihisa Tanemoto
敬久 種本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP16765797A priority Critical patent/JPH1114541A/en
Publication of JPH1114541A publication Critical patent/JPH1114541A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a Cr densitometer which improves the operability of maintenance operation for keeping clean transparent windows on the optical paths of detection light and reference light and has simpler constitution as a dip type Cr densitometer that adopts a two-wavelength absorptivity system. SOLUTION: In addition to a signal processor 33 which calculates hexavalent chromium density from the photodetection intensity values of the detection light S from a detection light source 15 and the reference light R from a reference light source 16, an abnormality occurrence monitor device 40 is provided which monitors variation in the photodetection intensity of the reference light R and generates an abnormality signal when the intensity decreases to a specific level. The frequency of cleaning operation for the transparent windows 17 and 19 can be minimized and the total operability is improved. Further, dirt is monitored by making use of the reference light R, so it is not necessary to specially provide an optical system etc. dedicated to dirt monitoring, thereby making the whole constitution simpler.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えばメッキ工場
における廃液処理設備で処理される廃液などに含まれる
6価クロム濃度を測定するためのCr濃度計に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Cr concentration meter for measuring the concentration of hexavalent chromium contained in, for example, waste liquid treated in a waste liquid treatment facility in a plating factory.

【0002】[0002]

【従来の技術】鉄鋼、自動車、電子産業等ではクロムメ
ッキが多用される。これらメッキ工場から排出される廃
液中の6価クロムは人体に有害なため、公共水域に放流
する際の濃度が、水質汚濁防止法により環境基準値0.05
mg/リットル(0.05ppm)以下に規制されている。
2. Description of the Related Art Chrome plating is frequently used in the steel, automobile, and electronics industries. Since hexavalent chromium in the waste liquid discharged from these plating plants is harmful to humans, its concentration when discharged into public waters has an environmental standard value of 0.05 according to the Water Pollution Control Law.
It is regulated to mg / liter (0.05 ppm) or less.

【0003】このようなメッキ工場等の廃液処理設備に
おいて、廃液中に直接浸漬して使用し得るCr濃度計を本
発明者等は先に提案した(特開平9-54036 号公報参
照)。このCr濃度計は、相対向する投光ハウジングと受
光ハウジングとをそれぞれ水密構造とし、投光ハウジン
グ内に検出光光源と参照光光源とが配置される一方、受
光ハウジング内に、各光源に対応させて各々フォトダイ
オードから成る受光器が設けられている。なお、投光ハ
ウジングと受光ハウジングとにおける相対向する外壁面
には、各光源から受光器に至る光路上に、それぞれ透明
な石英ガラスから成る投光窓・受光窓が気密に取付けら
れている。
The present inventors have previously proposed a Cr concentration meter which can be used by directly immersing it in a waste liquid in such a waste liquid treatment facility such as a plating factory (see Japanese Patent Application Laid-Open No. 9-54036). This Cr concentration meter has a watertight housing for the light-emitting housing and the light-receiving housing that face each other, and the detection light source and the reference light source are arranged in the light-emitting housing, while the light-receiving housing supports each light source. In addition, a photodetector composed of a photodiode is provided. In addition, on the opposing outer wall surfaces of the light emitting housing and the light receiving housing, light emitting windows and light receiving windows made of transparent quartz glass are hermetically mounted on optical paths from each light source to the light receiver.

【0004】このような構成のCr濃度計を廃液中に浸漬
し、投光窓・受光窓間の廃液を透過してきた検出光、参
照光の強度を検出する。検出光としては波長450nm を中
心波長とする光が出射され、この光は、廃液中を透過す
る際に、6価クロム濃度に応じて減衰する。また、赤色
LED からは850nm を中心波長とする光が出射され、この
光は廃液中の6価クロム濃度による吸光は殆ど生じな
い。これら検出光と参照光とを用いた2波長吸光度測定
方式を採用して、廃液中の6価クロム濃度を算出するよ
うに構成されている。
The Cr concentration meter having such a configuration is immersed in a waste liquid, and the intensity of the detection light and the reference light transmitted through the waste liquid between the light emitting window and the light receiving window is detected. Light having a center wavelength of 450 nm is emitted as detection light, and this light is attenuated in accordance with the concentration of hexavalent chromium when passing through the waste liquid. Also red
Light having a center wavelength of 850 nm is emitted from the LED, and this light hardly absorbs due to the concentration of hexavalent chromium in the waste liquid. A two-wavelength absorbance measurement method using the detection light and the reference light is employed to calculate the hexavalent chromium concentration in the waste liquid.

【0005】特に上記では、6価クロム溶液での吸光度
がピークになる近紫外領域での波長(340 〜350nm)から
青色側に偏倚した光を検出光とすることで、6価クロム
濃度について0〜4000ppm の広い測定範囲を備えるもの
となっている。
[0005] In particular, in the above, the light deviating toward the blue side from the wavelength (340 to 350 nm) in the near ultraviolet region where the absorbance in the hexavalent chromium solution peaks is used as the detection light, so that the hexavalent chromium concentration can be reduced to zero. It has a wide measurement range of ~ 4000 ppm.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記の
ようなCr濃度計を廃液中に浸漬し連続測定を継続してい
くと、廃液中に含まれる汚濁物質が前記した投光窓・受
光窓の外表面に次第に付着し、これによって透明度が損
なわれると測定精度が低下する。このため、作業者がCr
濃度計を適宜廃液槽から引上げて、投光窓・受光窓の曇
り具合を目視によってチェックし、曇りの程度に応じて
清掃作業を行うことが必要となっている。この作業は、
例えば強風時に廃液飛散に対する注意も払いながら廃液
槽周囲で行う過酷な作業となっており、その作業性の向
上が望まれている。
However, when the above-mentioned Cr concentration meter is immersed in the waste liquid and the continuous measurement is continued, the pollutants contained in the waste liquid are contaminated by the light transmitting window and the light receiving window. Gradually adheres to the outer surface, which impairs transparency and reduces measurement accuracy. Therefore, the worker
It is necessary to pull up the densitometer appropriately from the waste liquid tank, visually check the degree of fogging of the light emitting window and the light receiving window, and perform a cleaning operation according to the degree of fogging. This work
For example, it is a severe operation to be performed around the waste liquid tank while paying attention to the scattering of the waste liquid at the time of strong wind, and improvement of the workability is desired.

【0007】本発明は、上記した問題点に鑑みなされた
もので、その目的は、前記した廃液処理設備などに適用
される浸漬型のCr濃度計において、その測定精度を維持
するためのメンテナンス作業の作業性を向上し得ると共
に、全体の構成をより簡素なものとすることが可能なCr
濃度計を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and has as its object to perform maintenance work for maintaining the measurement accuracy of an immersion type Cr concentration meter applied to the above-mentioned waste liquid treatment equipment and the like. Cr that can improve the workability of the steel and make the overall structure simpler
It is to provide a densitometer.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めの本発明のCr濃度計は、6価クロム溶液を透過すると
きの吸光度が6価クロム濃度に応じて変化する波長の光
を出射する検出光光源と、6価クロム濃度で変化しない
波長の光を出射する参照光光源と、これら両光源からの
光を各々受光する検出光受光器および参照光受光器とが
相対向して配置された水密構造の投光ハウジングと受光
ハウジングとに収納され、各受光器での受光量に応じて
それぞれ出力される強度信号に基づき溶液中の6価クロ
ム濃度に応ずる信号を出力する信号処理手段と、参照光
受光器での受光量に応じた強度信号を基準値と比較して
基準値以下となったときに異常信号を発する異常発生監
視手段とが設けられていることを特徴としている。
A Cr concentration meter according to the present invention for achieving the above object emits light having a wavelength at which the absorbance when passing through a hexavalent chromium solution changes according to the hexavalent chromium concentration. Light source, a reference light source that emits light of a wavelength that does not change with the hexavalent chromium concentration, and a detection light receiver and a reference light receiver that receive light from both light sources, respectively, are placed opposite to each other. Signal processing means for outputting a signal corresponding to the concentration of hexavalent chromium in the solution based on the intensity signal output in accordance with the amount of light received by each of the light receivers, the light receiving housing being housed in the light-tight housing and the light-receiving housing. And an abnormality occurrence monitoring means for comparing the intensity signal corresponding to the amount of light received by the reference light receiver with a reference value and issuing an abnormality signal when the intensity signal becomes equal to or less than the reference value.

【0009】このような構成によれば、水密構造の両ハ
ウジングを廃液中に直接浸漬させて、検出光と参照光と
の受光量に基づき6価クロム濃度の測定が信号処理手段
で連続的に行われると同時に、参照光の受光量の変化が
異常発生監視手段で監視される。つまり、投光ハウジン
グや受光ハウジングに設けられている投光窓や受光窓が
汚れてくると、上記の参照光の受光量低下が生じ、これ
が基準値以下となったときに、異常信号が発せられて例
えば警報などが発生される。
According to such a configuration, the two housings having the watertight structure are directly immersed in the waste liquid, and the measurement of the hexavalent chromium concentration is continuously performed by the signal processing means based on the amounts of the detected light and the reference light received. At the same time, the change in the amount of received reference light is monitored by the abnormality occurrence monitoring means. In other words, if the light-emitting window or light-receiving window provided in the light-emitting housing or light-receiving housing becomes dirty, the amount of received reference light decreases, and when this falls below the reference value, an abnormal signal is generated. Then, for example, an alarm is generated.

【0010】したがって、作業者はこのときに投光窓や
受光窓の清掃作業を行えば良く、このためのメンテナン
ス作業の作業頻度を必要最小限のものとすることができ
るので、全体的な作業性が向上する。しかも上記では、
参照光を利用して上記のような投光窓や受光窓の汚れの
監視を行う構成であり、この場合、単に参照光に対する
信号処理回路を付加するだけで、例えば汚れ監視専用の
光学系を別途設ける必要がないので、全体の構成をより
簡素なものとすることができる。
Therefore, the worker only needs to clean the light-emitting window and the light-receiving window at this time, and the frequency of the maintenance work can be minimized. The performance is improved. Moreover, in the above,
It is a configuration that monitors the dirt on the light projecting window and the light receiving window using the reference light as described above. In this case, only by adding a signal processing circuit for the reference light, for example, an optical system dedicated to dirt monitoring is provided. Since there is no need to provide a separate configuration, the overall configuration can be simplified.

【0011】[0011]

【発明の実施の形態】以下、図面に基づいて本発明の一
実施形態について説明する。初めに、廃液中の6価クロ
ムを無害な3価クロムに還元して沈澱させる廃液処理設
備の一例について、図2を参照して説明する。この設備
には、例えば鉄鋼製造場での表面処理工場や冷延工場か
ら排出される廃液の受け入れ槽として、6価クロム濃度
が1000ppm を超える高濃度の廃液を溜める濃厚メッキ廃
水槽1と、100ppm程度の廃液を溜める一般メッキ廃水槽
2とが設けられている。濃厚メッキ廃水槽1中の廃液は
少量ずつ一般メッキ廃水槽2に送られ、この廃水槽2の
廃液と共に一次pH調整槽3に送られる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. First, an example of a waste liquid treatment facility for reducing and depositing hexavalent chromium in the waste liquid to harmless trivalent chromium will be described with reference to FIG. This equipment includes a concentrated plating wastewater tank 1 for storing high-concentration wastewater with a hexavalent chromium concentration of more than 1000 ppm as a tank for receiving a wastewater discharged from a surface treatment plant or a cold rolling plant at a steel mill, for example. A general plating wastewater tank 2 for storing a certain amount of waste liquid is provided. The waste liquid in the concentrated plating waste water tank 1 is sent little by little to the general plating waste water tank 2 and sent to the primary pH adjusting tank 3 together with the waste liquid in the waste water tank 2.

【0012】この一次pH調整槽3で、硫酸の添加により
pHが2〜3程度に調整され、次いで、還元槽4にて還元
剤としての重亜硫酸ソーダが注入され、下記の反応式
に示すように、6価クロムが3価クロムに還元される。 4H2CrO4+6NaHSO3 +3H2SO4→2Cr2(SO4)3+3Na2SO4
+10H2O その後、二次・三次pH調整槽5・6にて水酸化ナトリウ
ム等のアルカリ剤で中和処理が行われ、下記式で示す
ように、3価クロムは水に不溶性の水酸化クロムとな
る。
In this primary pH adjustment tank 3, the addition of sulfuric acid
The pH is adjusted to about 2 to 3, and then sodium bisulfite as a reducing agent is injected into the reducing tank 4 to reduce hexavalent chromium to trivalent chromium as shown in the following reaction formula. 4H 2 CrO 4 + 6NaHSO 3 + 3H 2 SO 4 → 2Cr 2 (SO 4 ) 3 + 3Na 2 SO 4
+ 10H 2 O After that, neutralization treatment is performed with an alkaline agent such as sodium hydroxide in the secondary and tertiary pH adjusting tanks 5 and 6, and trivalent chromium is converted into water-insoluble chromium hydroxide as shown in the following formula. Becomes

【0013】 Cr2(SO4)3+6NaOH →2Cr(OH)3+3Na2SO4 この析出物を除去するために助剤がさらに注入され、次
の沈澱槽7にて水酸化クロムが沈降分離される。沈降し
たクロム化合物は、その他の亜鉛や鉄などの金属と共に
スラッジ貯槽に回収される一方、沈澱槽7の上澄水が次
段の集合原水槽に送られ、最終的な濃度の確認を行った
うえで放流される。
Cr 2 (SO 4 ) 3 + 6NaOH → 2Cr (OH) 3 + 3Na 2 SO 4 An auxiliary agent is further injected to remove these precipitates, and chromium hydroxide is precipitated and separated in the next precipitation tank 7. You. The sedimented chromium compound is collected in a sludge storage tank together with other metals such as zinc and iron, and the supernatant water of the sedimentation tank 7 is sent to the next collecting raw water tank to confirm the final concentration. It is released at.

【0014】上記した一次pH調整槽3に、廃液中の6価
クロム濃度を検出するCr濃度計10が設置されている。次
に、このCr濃度計10について、図3を参照してそのセン
サヘッド部11の構成について説明する。このセンサヘッ
ド部11は、略水平なベース板12上に所定の間隔を置いて
固定された投光ハウジング13と受光ハウジング14とを備
えている。これらハウジング13・14は、外部からの水の
浸入を阻止した水密構造を有しており、投光ハウジング
13内には、青色発光ダイオード(以下、青LED と略記す
る)から成る検出光光源15と、赤色発光ダイオード(以
下、赤LED と略記する)から成る参照光光源16とが収納
されている。
A Cr concentration meter 10 for detecting the concentration of hexavalent chromium in the waste liquid is installed in the primary pH adjusting tank 3 described above. Next, the configuration of the sensor head section 11 of the Cr concentration meter 10 will be described with reference to FIG. The sensor head section 11 includes a light emitting housing 13 and a light receiving housing 14 fixed on a substantially horizontal base plate 12 at predetermined intervals. These housings 13 and 14 have a watertight structure that prevents water from entering from outside.
A detection light source 15 composed of a blue light-emitting diode (hereinafter abbreviated as a blue LED) and a reference light source 16 composed of a red light-emitting diode (hereinafter abbreviated as a red LED) are housed in 13.

【0015】また、この投光ハウジング13における受光
ハウジング14側の外壁面に、透明な石英ガラスから成る
投光窓17が気密に取付けられ、その内側には集光レンズ
18が配設されている。各光源15・16から出射される光
は、集光レンズ18によりほぼ平行光とされた後、投光窓
17を通して受光ハウジング14側に向かうように構成され
ている。
A light-transmitting window 17 made of transparent quartz glass is hermetically mounted on an outer wall surface of the light-transmitting housing 13 on the light-receiving housing 14 side, and a condenser lens is provided inside the light-transmitting window 17.
18 are arranged. The light emitted from each of the light sources 15 and 16 is converted into a substantially parallel light by the condenser lens 18 and then emitted from the light emitting window.
It is configured so as to pass through 17 to the light receiving housing 14 side.

【0016】一方、受光ハウジング14には、上記同様に
透明な石英ガラスから成る受光窓19が投光ハウジング13
側の壁面に沿って気密に取付けられ、この受光窓19の内
側に、順次、散乱板20と集光レンズ21とが配設されてい
る。そして、投光ハウジング13側から受光窓19・散乱板
20・集光レンズ21を順次透過して直進する光路上、およ
び、この光路の途中に配置されたハーフミラー22によっ
て90°屈曲される光路上に、それぞれホトダイオードか
ら成る検出光受光器23と参照光受光器24とが設けられて
いる。
On the other hand, the light receiving housing 19 is provided with a light receiving window 19 made of transparent quartz glass similarly to the above.
A light-scattering plate 20 and a condenser lens 21 are sequentially arranged inside the light-receiving window 19 along the side wall surface. Then, from the light emitting housing 13 side, the light receiving window 19 and the scattering plate
Reference is made to a detection light receiver 23 composed of a photodiode on an optical path which sequentially passes through the condenser lens 21 and travels straight, and on an optical path which is bent 90 ° by a half mirror 22 arranged in the middle of this optical path. An optical receiver 24 is provided.

【0017】検出光受光器23の前面には赤外光カットフ
ィルタ25が、また、参照光受光器24の前面には可視光カ
ットフィルタ26がそれぞれ設けられ、これによって、検
出光受光器23には前記検出光光源15からの光が、また、
参照光受光器24には参照光光源16からの光が各々入射
し、各入射光の強度に応じた信号が出力される。これら
各入射光に応じた出力信号に基づいて、後述するように
6価クロム濃度が演算されるが、ここで、検出光光源15
および参照光光源16として、前記のように青LED,赤LED
を選定した理由について説明する。
An infrared light cut filter 25 is provided on the front surface of the detection light receiver 23, and a visible light cut filter 26 is provided on the front surface of the reference light receiver 24. Is the light from the detection light source 15,
Light from the reference light source 16 is incident on the reference light receiver 24, and a signal corresponding to the intensity of each incident light is output. The hexavalent chromium concentration is calculated based on the output signal corresponding to each of the incident lights as described later.
And as the reference light source 16, a blue LED and a red LED as described above.
The reason for selecting is described.

【0018】図4には、前記した一次pH調整槽3から還
元槽4に送られる廃水での光の吸光度の調査結果を示し
ている。受入れ廃水、すなわち、還元剤を注入する前の
6価クロム濃度“大”の廃水では、波長 260nm近傍と、
340 〜350nm の近紫外近傍とにそれぞれ吸光度のピーク
がある。これらのうち、ピークが340 〜350nm で、かつ
500nmまで広がる波長領域では、この領域に吸収帯をも
つ物質が6価クロム以外には前記した廃液処理設備での
廃液中には含まれないことから、還元処理中の廃水(濃
度“中”)や、還元処理済みの廃水(濃度“小”)で示
されているように、6価クロム濃度に対応した吸光度変
化が現れている。
FIG. 4 shows the results of an examination of the light absorbance of the wastewater sent from the primary pH adjusting tank 3 to the reducing tank 4. The incoming wastewater, that is, wastewater with a “large” hexavalent chromium concentration before injecting the reducing agent, has a wavelength near 260 nm,
There are peaks of absorbance in the near ultraviolet region at 340 to 350 nm. Of these, the peaks are at 340-350nm, and
In the wavelength region extending to 500 nm, since the substances having an absorption band in this region are not contained in the waste liquid in the waste liquid treatment equipment except for hexavalent chromium, the wastewater during the reduction treatment (concentration “medium”) Also, as shown by the wastewater after the reduction treatment (concentration “small”), a change in absorbance corresponding to the hexavalent chromium concentration appears.

【0019】そこで、検出光光源15として、上記吸収帯
での吸光度変化を測定することを前提に、さらに、測定
濃度範囲を0から数千ppm まで広げるために、ピーク波
長域340 〜350nm から幾分ずれた波長450nm にピークを
有する高輝度の青LED を用いている。一方、500nm 以上
の波長の光は、6価クロム濃度の変化に吸光度が殆ど影
響されておらず、そこで、参照光光源16として、波長85
0nm にピークを有する赤LEDを参照光光源16として用い
ている。
Therefore, on the assumption that the change in the absorbance in the above-mentioned absorption band is measured as the detection light source 15, in order to extend the measurement concentration range from 0 to several thousand ppm, the peak wavelength range from 340 to 350 nm is increased. A high-brightness blue LED having a peak at a wavelength of 450 nm which is shifted is used. On the other hand, the light having a wavelength of 500 nm or more is hardly affected by the change in the concentration of hexavalent chromium in the absorbance.
A red LED having a peak at 0 nm is used as the reference light source 16.

【0020】このように、検出光と共に参照光を照射す
る二色検出方式により、廃水中に含まれる粉塵等によっ
て光が散乱する場合でも、これによる透過光の強度低下
が検出光と参照光とで同程度に生じ、したがって、これ
らを比較することで、光の散乱による影響が除かれて高
精度の測定を行うことができる。図5に、上記した青LE
D と赤LED との各発光スペクトル分布を示している。
As described above, according to the two-color detection method of irradiating the detection light with the reference light, even if the light is scattered by dust or the like contained in the waste water, the decrease in the intensity of the transmitted light due to this is reduced by the detection light and the reference light Therefore, by comparing these, the effect of light scattering can be eliminated and high-precision measurement can be performed. FIG. 5 shows the blue LE described above.
The emission spectrum distributions of D and the red LED are shown.

【0021】なお、図3に示すように、受光ハウジング
14内における上部側には、後述する信号処理装置33等を
構成する回路素子が組み付けられた回路基板27が配設さ
れている。また、受光ハウジング14および投光ハウジン
グ13の各上端側にそれぞれ防水コード28・29が接続さ
れ、これらを通して外部からの電源の供給や検出信号の
出力が行われる。また、受光ハウジング14における前記
受光窓19上部の壁面に、このセンサヘッド部11の全体
を、前記した一次pH調整槽3の廃液中に浸漬させ、所定
の高さ位置で保持するための操作パイプ30が固定されて
いる。
Note that, as shown in FIG.
A circuit board 27 on which circuit elements constituting a signal processing device 33 and the like to be described later are mounted is provided on an upper side in the inside of the apparatus. Waterproof cords 28 and 29 are connected to upper ends of the light-receiving housing 14 and the light-emitting housing 13, respectively, through which power is supplied from outside and a detection signal is output. Further, an operation pipe for immersing the whole of the sensor head unit 11 in the waste liquid of the primary pH adjustment tank 3 and holding the sensor head unit 11 at a predetermined height position on a wall surface above the light receiving window 19 in the light receiving housing 14. 30 has been fixed.

【0022】次に、上記回路基板27上に構成されている
制御回路について、図1を参照して動作と共に説明す
る。この回路基板27には、まず、3kHz電源31および 10k
Hz電源32が設けられている。外部から供給される商用電
源が、これら高周波電源31・32により、各々、所定の発
光ダイオード動作電圧に降圧されて、検出光光源15と参
照光光源16とに印加される。これにより、検出光光源15
からは3kHzで点滅する青色光が、また、参照光光源16か
らは10kHz で点滅する赤外光がそれぞれ出射される。こ
のように、検出光および参照光を所定の周波数で点滅さ
せる構成とすることで、屋外で使用される場合でも、外
乱光による検出精度の低下が防止される。
Next, a control circuit formed on the circuit board 27 will be described with reference to FIG. First, a 3 kHz power supply 31 and a 10 k
A Hz power supply 32 is provided. The commercial power supplied from the outside is stepped down to a predetermined light emitting diode operating voltage by these high frequency power supplies 31 and 32, and applied to the detection light source 15 and the reference light source 16. Thereby, the detection light source 15
Blue light that blinks at 3 kHz, and infrared light that blinks at 10 kHz are emitted from the reference light source 16. As described above, by making the detection light and the reference light blink at a predetermined frequency, a decrease in detection accuracy due to disturbance light can be prevented even when used outdoors.

【0023】上記のように駆動される各光源15・16から
の出射光が、それぞれ検出光受光器22・参照光受光器24
に入射し、これら入射光の強度に応じて出力される各受
光器22・24からの信号は、信号処理装置(信号処理手
段)33に送られる。この信号処理装置33において、ま
ず、検出光受光器22からの出力信号は、3kHzの周波数成
分を通過させる第1バンドパスフィルタ34によって検出
光信号Aとして平滑化されて、後述する割算器36に送ら
れ、同様に、参照光受光器24からの出力信号は、10kHz
の周波数成分を通過させる第2バンドパスフィルタ35に
よって参照光信号Bとして平滑化されて割算器36に送ら
れる。
Light emitted from each of the light sources 15 and 16 driven as described above is applied to the detection light receiver 22 and the reference light receiver 24, respectively.
The signal from each of the light receivers 22 and 24 output according to the intensity of the incident light is sent to a signal processing device (signal processing means) 33. In this signal processing device 33, first, the output signal from the detection light receiver 22 is smoothed as a detection light signal A by a first band pass filter 34 that passes a frequency component of 3 kHz. Similarly, the output signal from the reference light receiver 24 is 10 kHz
Are passed through a second band-pass filter 35 which passes the frequency component of the reference light signal B and smoothed as a reference light signal B and sent to a divider 36.

【0024】これら両信号A・Bから、廃液中の6価ク
ロム濃度Cが算出される。すなわち、検出光光源15から
出射される青色光の強度をS、廃液中の光路長をdとす
ると、検出光信号Aについては、 log(A/S)=−εCd ここで、ε:モル吸光係数 の関係が成立する。
From these two signals A and B, the hexavalent chromium concentration C in the waste liquid is calculated. That is, assuming that the intensity of the blue light emitted from the detection light source 15 is S and the optical path length in the waste liquid is d, for the detection light signal A, log (A / S) = − εCd, where ε: molar absorption The relationship of coefficient holds.

【0025】一方、参照光光源16から出射される赤外光
の強度Rと、これが廃液を通過後に参照光受光器24で検
出されるときの強度Bとの間には、廃液中の6価クロム
濃度Cには影響されずに、廃液中の光路長dに依存して
減衰する関係式が導かれ、これらから、6価クロム濃度
Cが、 C=k1+k2・log(A/B) ……(1) 但し、k1,k2 は定数 で求められる。
On the other hand, between the intensity R of the infrared light emitted from the reference light source 16 and the intensity B when the infrared light is detected by the reference light receiver 24 after passing through the waste liquid, there is a hexavalent value in the waste liquid. A relational expression is obtained, which is not affected by the chromium concentration C and attenuates depending on the optical path length d in the waste liquid. From these, the hexavalent chromium concentration C is calculated as follows: C = k1 + k2 · log (A / B) (1) However, k1 and k2 are obtained by constants.

【0026】そこで、まず、A/Bの演算処理を行う割
算器36と、その出力信号の対数を演算して(1) 式に基づ
く計算を行う対数変換器37とが信号処理装置33に設けら
れ、対数変換器37から、廃液中の6価クロム濃度に対応
した電圧信号Voが出力される。図6には、この電圧信号
(以下、センサ出力という)Voと、6価クロム濃度との
関係を測定した結果を示している。同図のように、セン
サ出力Voは、0ppm から500ppm程度まで急峻な変化を示
した後、さらに濃度が上昇すると変化勾配が徐々に緩や
かになるが、4000ppm を超えるまで、センサ出力Voは6
価クロム濃度の上昇に伴って漸増する。したがって、0
〜4000ppm の広い範囲にわたって、センサ出力Voから6
価クロム濃度を一義的に求めることが可能となってい
る。
Therefore, first, a divider 36 for performing A / B arithmetic processing and a logarithmic converter 37 for calculating the logarithm of the output signal and performing the calculation based on the equation (1) are included in the signal processing device 33. The logarithmic converter 37 outputs a voltage signal Vo corresponding to the concentration of hexavalent chromium in the waste liquid. FIG. 6 shows the result of measuring the relationship between the voltage signal (hereinafter referred to as sensor output) Vo and the concentration of hexavalent chromium. As shown in the figure, the sensor output Vo shows a steep change from 0 ppm to about 500 ppm, and then gradually changes gradually as the concentration increases. However, until the sensor output Vo exceeds 4000 ppm, the sensor output Vo becomes 6
It gradually increases with increasing chromium (VI) concentration. Therefore, 0
The sensor output Vo is 6 to 4000 ppm over a wide range.
It is possible to uniquely determine the chromium (VI) concentration.

【0027】そこで、上記信号処理装置33には、図6に
示したセンサ出力−濃度曲線に対応する検量線データを
0〜4000ppm の範囲にわたって記憶する記憶装置38と、
対数変換器37から出力されるセンサ出力Voを所定のサン
プリング時間毎に上記の検量線データと比較し、濃度値
Cとしてデジタル値に変換して出力する濃度データ換算
器39とがさらに設けられている。。
The signal processing device 33 has a storage device 38 for storing calibration curve data corresponding to the sensor output-concentration curve shown in FIG. 6 over a range of 0 to 4000 ppm.
A density data converter 39 is further provided, which compares the sensor output Vo output from the logarithmic converter 37 with the above-mentioned calibration curve data at every predetermined sampling time, converts it into a digital value as a density value C and outputs it. I have. .

【0028】一方、前記第2バンドパスフィルタ35を通
して平滑化された参照光信号Bは、上記のように割算器
36に送られると共に、さらに、異常発生監視装置(異常
発生監視手段)40にも送られる。この装置40は、前記し
た投光窓17や受光窓19表面の汚れの度合いを監視する機
能を有するものである。すなわち、前記した一次pH調整
槽3には、亜鉛や鉄などの粉塵が含まれた廃液が送ら
れ、これら汚濁物質を含む廃液に浸漬して使用する間
に、投光窓17や受光窓19(以下では、これら投光窓17と
受光窓19とを「透明窓」と総称する)の表面に汚濁物質
が徐々に付着して曇りを生じてくる。これによって、前
記した検出光や参照光の受光感度が低下し、これに基づ
いて出力される6価クロムの濃度値の精度も低下するこ
とになる。そこで、上記した透明窓の汚れの度合いを監
視する異常発生監視装置40が設けられている。
On the other hand, the reference light signal B smoothed through the second band-pass filter 35 is divided by the divider as described above.
In addition to being sent to 36, it is also sent to an abnormality occurrence monitoring device (an abnormality occurrence monitoring means) 40. This device 40 has a function of monitoring the degree of dirt on the surface of the light emitting window 17 and the light receiving window 19 described above. That is, the wastewater containing dust such as zinc and iron is sent to the above-mentioned primary pH adjustment tank 3, and the light-emission window 17 and the light-receiving window 19 are immersed in the wastewater containing these pollutants. (Hereinafter, the light projecting window 17 and the light receiving window 19 are collectively referred to as “transparent windows”). As a result, the light receiving sensitivity of the detection light and the reference light described above decreases, and the accuracy of the concentration value of hexavalent chromium output based on the detection light also decreases. Therefore, an abnormality occurrence monitoring device 40 that monitors the degree of dirt on the transparent window is provided.

【0029】この装置40は、平均値演算器41と警報レベ
ル設定器42と警報発生器43とを設けて構成されている。
平均値演算器41は、所定の時間、例えば一日(24時間)
の期間内における参照光信号Bの平均値を各日毎に算出
する。つまり、参照光信号Bは、廃液中の6価クロム濃
度の変化には影響されないものの、廃液中に浮遊する粉
塵によって光の散乱が生じることから、一日のうちに
は、浮遊する粉塵の含有割合が異なる各種廃液を処理す
る間、廃液の種類に応じて短期的に変動する。そこで、
一日にわたる平均値を算出することで、上記のような浮
遊粉塵の含有割合の変化等による影響が除かれ、透明窓
表面の汚濁度合いに応じた変化が検出される。
This device 40 is provided with an average value calculator 41, an alarm level setter 42 and an alarm generator 43.
The average value calculator 41 is used for a predetermined time, for example, one day (24 hours)
The average value of the reference light signal B during the period is calculated every day. In other words, although the reference light signal B is not affected by the change in the concentration of hexavalent chromium in the waste liquid, light scattering occurs due to the dust floating in the waste liquid. During the processing of various types of waste liquid having different ratios, it varies in a short term according to the type of waste liquid. Therefore,
By calculating the average value over one day, the influence due to the change in the content ratio of the floating dust as described above is removed, and the change according to the degree of contamination of the transparent window surface is detected.

【0030】図7には、上記した平均値演算器41からの
出力結果の一例を示している。すなわち、透明窓の表面
が清浄な状態でCr濃度計10を一次pH調整槽3に設置した
日を基準とし、この日における参照光信号Bの一日の平
均値を初期レベル(100%) として、その後の日数経過に
伴う平均値の低下度合いをグラフにしたもので、透明窓
表面の汚れの進行と共に参照光信号Bの平均値は次第に
低下し、同図の場合には、例えば13日目に初期レベルの
90%に低下したことが示されている。
FIG. 7 shows an example of the output result from the average value calculator 41 described above. That is, on the basis of the day when the Cr concentration meter 10 was installed in the primary pH adjusting tank 3 with the surface of the transparent window being clean, the average of the day of the reference light signal B on this day was defined as the initial level (100%). In the graph, the average value of the reference light signal B gradually decreases with the progress of dirt on the surface of the transparent window. In the case of FIG. To the initial level
It is shown to have dropped to 90%.

【0031】このように、参照光信号Bの変化を監視
し、前記した6価クロム濃度の演算結果が所定の精度内
で維持できなくなった時点に対応する低下レベル、例え
ば「90%」が警報設定値として図1に示す警報レベル設
定器42に設定される。警報発生器43では、平均値演算器
41からの出力を上記警報設定値と比較し、設定値まで低
下した時に、警報信号EMを発生する。これにより、作業
者が常駐する運転監視室で例えばブザーなどの警報が発
せられる。
As described above, the change in the reference light signal B is monitored, and the lowering level corresponding to the time when the above-described calculation result of the hexavalent chromium concentration cannot be maintained within the predetermined accuracy, for example, "90%" is alarmed. The set value is set in the alarm level setter 42 shown in FIG. In the alarm generator 43, an average calculator
The output from 41 is compared with the alarm set value, and when the output decreases to the set value, an alarm signal EM is generated. Thereby, an alarm such as a buzzer is issued in the operation monitoring room where the worker is resident.

【0032】上記構成のCr濃度計10により、前記した一
次pH調整槽3に流入する廃液中の6価クロム濃度が検出
される。この検出濃度に応じて、濃厚メッキ廃水槽1か
ら一般メッキ廃水槽2への廃液の送り出し量や、一般メ
ッキ廃水槽2から一次pH調整槽3への廃液の送り出し
量、さらに、還元槽4への重亜硫酸ソーダの注入量が調
整される。
The concentration of hexavalent chromium in the waste liquid flowing into the above-mentioned primary pH adjusting tank 3 is detected by the Cr concentration meter 10 having the above configuration. Depending on the detected concentration, the amount of waste liquid sent from the thick plating wastewater tank 1 to the general plating wastewater tank 2, the amount of wastewater sent from the general plating wastewater tank 2 to the primary pH adjustment tank 3, and further to the reduction tank 4 The injection amount of sodium bisulfite is adjusted.

【0033】一次pH調整槽3に流入する廃液の6価クロ
ム濃度は千ppm を超える広い範囲で変動するが、上記の
Cr濃度計10は0〜4000ppm の測定範囲を備えており、ま
た、光源そのものを点滅させて変調し、透過光を検波す
る方式と共に2波長吸光度測定方式を採用することで、
外乱光や、メッキ廃液に含まれる亜鉛や鉄などの他の金
属イオンや錯イオン等に影響されない高精度の測定が可
能となっている。
The concentration of hexavalent chromium in the waste liquid flowing into the primary pH adjusting tank 3 varies over a wide range exceeding 1,000 ppm.
The Cr concentration meter 10 has a measurement range of 0 to 4000 ppm, and also employs a two-wavelength absorbance measurement method together with a method of flickering and modulating the light source itself and detecting transmitted light.
High-precision measurement that is not affected by disturbance light or other metal ions or complex ions such as zinc and iron contained in the plating waste liquid is possible.

【0034】また、上記のCr濃度計10により、一次pH調
整槽3内の廃液中の6価クロム濃度が連続的に計測され
るが、この場合に、透明窓が汚れて所定の精度が維持で
きなくなると、異常発生監視装置40から警報が発せられ
る。したがって、作業者はこのときに透明窓の清掃作業
を行えば良く、このためのメンテナンス作業の作業頻度
を必要最小限のものとすることができるので、全体的な
作業性や稼働率が向上する。
The concentration of hexavalent chromium in the waste liquid in the primary pH adjusting tank 3 is continuously measured by the above-mentioned Cr concentration meter 10, but in this case, the transparent window becomes dirty and the predetermined accuracy is maintained. If no longer possible, the abnormality occurrence monitoring device 40 issues an alarm. Therefore, the worker only needs to perform the cleaning work of the transparent window at this time, and the frequency of maintenance work for this can be minimized, so that the overall workability and the operation rate are improved. .

【0035】さらに、上記のCr濃度計10は、2波長吸光
度測定方式における参照光を利用して、上記のような透
明窓の汚れの監視を行う構成であり、この場合、単に参
照光に対する信号処理回路を付加するだけで、例えば汚
れ監視専用の光学系などを別途設ける必要がないので、
全体の構成もより簡素なものとなっている。また、上記
では、参照光信号Bの平均値を算出する平均値演算器41
を備えているので、廃液中の浮遊粉塵等に影響されずに
透明窓の汚れ具合をより的確に把握することが可能であ
る。したがって、本実施形態でのCr濃度計は、特に粉塵
等の浮遊量が種々異なる廃液を処理する廃液処理設備で
の使用に好適である。
Further, the Cr concentration meter 10 is configured to monitor the dirt on the transparent window as described above using the reference light in the two-wavelength absorbance measurement method. Just by adding a processing circuit, for example, there is no need to separately provide an optical system dedicated to dirt monitoring.
The overall configuration is also simpler. In the above description, the average calculator 41 calculates the average of the reference light signal B.
Therefore, the degree of dirt on the transparent window can be grasped more accurately without being affected by floating dust and the like in the waste liquid. Therefore, the Cr concentration meter according to the present embodiment is particularly suitable for use in a waste liquid treatment facility that treats waste liquid having various floating amounts of dust and the like.

【0036】なお、上記の実施形態は本発明を限定する
ものではなく、本発明の範囲内で種々の変更が可能であ
る。例えば上記では、光源15・16を点滅させて変調する
方式を採用したが、例えば外乱光の影響が少ない設備で
の使用を前提とすれば、このような方式は必ずしも必要
ではなく、少なくとも2波長吸光度測定方式を採用した
その他の構成のCr濃度計に本発明を適用することができ
る。また、上記実施形態では、鉄鋼製造場での廃液処理
設備に設置されるCr濃度計を例に挙げて説明したが、例
えば自動車や家電部品メッキ工場などの廃液処理設備
や、その他のメッキプロセスなどにも利用することが可
能である。
The above embodiment does not limit the present invention, and various modifications can be made within the scope of the present invention. For example, in the above description, a method in which the light sources 15 and 16 are turned on and off to modulate the light is adopted. However, if it is assumed that the light source 15 and 16 are used in a facility where the influence of disturbance light is small, such a method is not necessarily required. The present invention can be applied to a Cr concentration meter having another configuration employing an absorbance measurement method. Further, in the above embodiment, the Cr concentration meter installed in the waste liquid treatment facility at the steel plant was described as an example, but for example, a waste liquid treatment facility such as a plating factory for automobiles and home appliance parts, and other plating processes. It is also possible to use it.

【0037】[0037]

【発明の効果】以上の説明のように、本発明のCr濃度計
は、検出光光源からの検出光の受光強度と参照光光源か
らの参照光の受光強度とから、6価クロム濃度の測定が
連続的に行われと共に、参照光の受光強度の低下を監視
して、透明窓が汚れてきたときに異常信号が発せられ
る。したがって、作業者はこのときに透明窓の清掃作業
を行えば良く、このためのメンテナンス作業の作業頻度
を必要最小限のものとすることができるので、全体的な
作業性が向上する。また、このような透明窓の汚れの監
視も参照光を利用して行う構成であるので、単に参照光
に対する信号処理回路を付加するだけで、汚れ監視専用
の光学系などを別途設ける必要がなく、これにより、全
体の構成をより簡素なものとすることができる。
As described above, the Cr concentration meter of the present invention measures the concentration of hexavalent chromium from the received light intensity of the detected light from the detected light source and the received light intensity of the reference light from the reference light source. Is continuously performed, and a decrease in the received light intensity of the reference light is monitored, and an abnormal signal is issued when the transparent window becomes dirty. Therefore, the worker only needs to perform the cleaning work of the transparent window at this time, and the frequency of the maintenance work for this can be minimized, so that the overall workability is improved. In addition, since such monitoring of the dirt on the transparent window is also performed using the reference light, it is not necessary to separately provide an optical system or the like dedicated to the dirt monitoring only by adding a signal processing circuit for the reference light. Thus, the overall configuration can be made simpler.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態におけるCr濃度計の構成を
示す制御ブロック図である。
FIG. 1 is a control block diagram illustrating a configuration of a Cr concentration meter according to an embodiment of the present invention.

【図2】上記Cr濃度計が設置された廃液処理設備を示す
模式図である。
FIG. 2 is a schematic diagram showing a waste liquid treatment facility provided with the Cr concentration meter.

【図3】上記Cr濃度計のセンサヘッド部を示す一部切欠
正面図である。
FIG. 3 is a partially cutaway front view showing a sensor head of the Cr concentration meter.

【図4】上記廃液処理設備での廃液における吸光度の測
定結果を示すグラフである。
FIG. 4 is a graph showing a measurement result of absorbance of a waste liquid in the waste liquid treatment facility.

【図5】上記Cr濃度計に用いられている光源としての青
LED と赤LED との発光スペクトル分布を示すグラフであ
る。
FIG. 5 shows blue as a light source used in the Cr concentration meter.
4 is a graph showing emission spectrum distributions of an LED and a red LED.

【図6】上記Cr濃度計におけるセンサ出力と6価クロム
濃度との関係を示すグラフである。
FIG. 6 is a graph showing a relationship between a sensor output and a hexavalent chromium concentration in the Cr concentration meter.

【図7】上記Cr濃度計における参照光受光強度の変化に
ついての測定結果の一例を示すグラフである。
FIG. 7 is a graph showing an example of a measurement result of a change in received light intensity of reference light in the Cr concentration meter.

【符号の説明】[Explanation of symbols]

10 Cr濃度計 13 投光ハウジング 14 受光ハウジング 15 検出光光源 16 参照光光源 17 投光窓 19 受光窓 23 検出光受光器 24 参照光受光器 33 信号処理装置(信号処理手段) 40 異常発生監視装置(異常発生監視手段) 10 Cr concentration meter 13 Light emitting housing 14 Light receiving housing 15 Detection light source 16 Reference light source 17 Light emitting window 19 Light receiving window 23 Detection light receiver 24 Reference light receiver 33 Signal processing device (signal processing means) 40 Abnormality monitoring device (Abnormality monitoring means)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 6価クロム溶液を透過するときの吸光度
が6価クロム濃度に応じて変化する波長の光を出射する
検出光光源と、6価クロム濃度で変化しない波長の光を
出射する参照光光源と、これら両光源からの光を各々受
光する検出光受光器および参照光受光器とが相対向して
配置された水密構造の投光ハウジングと受光ハウジング
とに収納され、 各受光器での受光量に応じてそれぞれ出力される強度信
号に基づき溶液中の6価クロム濃度に応ずる信号を出力
する信号処理手段と、 参照光受光器での受光量に応じた強度信号を基準値と比
較して基準値以下となったときに異常信号を発する異常
発生監視手段とが設けられていることを特徴とするCr
濃度計。
1. A detection light source which emits light having a wavelength whose absorbance changes according to the concentration of hexavalent chromium when passing through a hexavalent chromium solution, and a reference which emits light having a wavelength which does not change with the concentration of hexavalent chromium. A light source, a detection light receiver and a reference light receiver that respectively receive light from both of these light sources are housed in a light-tight housing and a light-receiving housing in which the light receiver and the reference light receiver are arranged opposite to each other. Signal processing means for outputting a signal corresponding to the concentration of hexavalent chromium in the solution based on the intensity signal output according to the amount of received light, and comparing the intensity signal corresponding to the amount of light received by the reference light receiver with a reference value And an abnormality occurrence monitoring means for generating an abnormality signal when the value falls below the reference value.
Densitometer.
JP16765797A 1997-06-24 1997-06-24 Cr densitometer Pending JPH1114541A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16765797A JPH1114541A (en) 1997-06-24 1997-06-24 Cr densitometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16765797A JPH1114541A (en) 1997-06-24 1997-06-24 Cr densitometer

Publications (1)

Publication Number Publication Date
JPH1114541A true JPH1114541A (en) 1999-01-22

Family

ID=15853827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16765797A Pending JPH1114541A (en) 1997-06-24 1997-06-24 Cr densitometer

Country Status (1)

Country Link
JP (1) JPH1114541A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6890769B2 (en) * 2001-12-04 2005-05-10 Fujitsu Limited Ferroelectric capacitor having upper electrode lamination and manufacture thereof
JP2006343293A (en) * 2005-06-10 2006-12-21 Toyota Motor Corp Exhaust gas analyzer
JP2010151811A (en) * 2008-11-28 2010-07-08 Shimadzu Corp Particle counter
CN103543115A (en) * 2013-10-31 2014-01-29 大连大公环境检测有限公司 Method for detecting concentration of chromium ion in water body

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6890769B2 (en) * 2001-12-04 2005-05-10 Fujitsu Limited Ferroelectric capacitor having upper electrode lamination and manufacture thereof
JP2006343293A (en) * 2005-06-10 2006-12-21 Toyota Motor Corp Exhaust gas analyzer
JP4566070B2 (en) * 2005-06-10 2010-10-20 トヨタ自動車株式会社 Exhaust gas analyzer
JP2010151811A (en) * 2008-11-28 2010-07-08 Shimadzu Corp Particle counter
CN103543115A (en) * 2013-10-31 2014-01-29 大连大公环境检测有限公司 Method for detecting concentration of chromium ion in water body

Similar Documents

Publication Publication Date Title
US11874226B2 (en) Determination of water treatment parameters based on absorbance and fluorescence
US4849178A (en) Apparatus for measuring ozone concentration
EP1228358B1 (en) Device for measuring water colour and turbidity using a single detector
US10371685B2 (en) Method, device and apparatus for monitoring halogen levels in a body of water
US7172903B2 (en) Method for on-line monitoring of lubricating oil using light in the visible and near IR spectra
WO2023004423A1 (en) Fluorescence and scatter and absorption spectroscopic apparatus with a sapphire tube and method for analyzing inline low level hydrocarbon in a flow medium
JPH1114541A (en) Cr densitometer
JP3920504B2 (en) UV sterilizer
JPH0458900B2 (en)
JP3817936B2 (en) Water quality measuring instrument
JP3063962B2 (en) Cr concentration meter
GB2355524A (en) Device for measuring colour and turbidity in a liquid sample
CN113310893B (en) Optical path-variable multi-parameter water quality monitoring device and method based on spectroscopy
CA2961087C (en) Method, device and apparatus for monitoring halogen levels in a body of water
JPH0952091A (en) Treatment of waste fluid
JPS62228145A (en) Ultraviolet type organic substance measuring apparatus
JPH10148612A (en) Sensor head
KR20220053355A (en) Apparatus and method for measuring concentration using absorption photometry
CN221260799U (en) Sensor for measuring COD parameters of water quality by single-channel double-wave band
CN113866134A (en) External light interference resistant turbidimeter and turbidity detection method
JPS6129450B2 (en)
JPH08304383A (en) Ultraviolet radiation absorbance measuring method for process and its device
RU2771221C1 (en) Device for selective monitoring of emergency discharges
JPS62135750A (en) Immersion type turbidity meter
CN211263145U (en) Total nitrogen analyzer light source adjusting device