JPH1114533A - Particulate shape measuring instrument - Google Patents
Particulate shape measuring instrumentInfo
- Publication number
- JPH1114533A JPH1114533A JP9162306A JP16230697A JPH1114533A JP H1114533 A JPH1114533 A JP H1114533A JP 9162306 A JP9162306 A JP 9162306A JP 16230697 A JP16230697 A JP 16230697A JP H1114533 A JPH1114533 A JP H1114533A
- Authority
- JP
- Japan
- Prior art keywords
- ultrasonic
- tube
- fine particles
- wave
- particulate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010419 fine particle Substances 0.000 claims description 94
- 239000012530 fluid Substances 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 16
- 239000002245 particle Substances 0.000 claims description 16
- 238000010897 surface acoustic wave method Methods 0.000 claims description 16
- 230000005855 radiation Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 230000001678 irradiating effect Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 230000010363 phase shift Effects 0.000 description 3
- 239000012488 sample solution Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000005686 electrostatic field Effects 0.000 description 2
- 239000011859 microparticle Substances 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000002604 ultrasonography Methods 0.000 description 2
- 230000005653 Brownian motion process Effects 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000005537 brownian motion Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
Landscapes
- Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、超音波輻射圧ある
いは超音波流動現象と画像処理技術とを利用した溶液中
の微粒子形状測定装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring the shape of fine particles in a solution using ultrasonic radiation pressure or ultrasonic flow phenomenon and image processing technology.
【0002】[0002]
【従来の技術】粉体等の微粒子の粒の大きさを見積もる
粒度計測は、粉体の粒の揃い具合などの品質を評価する
上で必須の技術である。微粒子の比重がわかっている場
合には、液相沈降法を用いて微粒子の沈降速度からこれ
らの粒径を見積もることができる。あるいは、微粒子の
ブラウン運動を光学的に観察し、例えば散乱光の波長の
ドップラー変位から微粒子の拡散定数を求め、これから
微粒子の粒径分布を求めることができる。また、微粒子
の光学的な屈折率がわかっている場合には、微粒子の散
乱光の強度が粒径に依存して変化することから、散乱光
強度の分布から微粒子の粒径分布を見積もることができ
る。2. Description of the Related Art Particle size measurement for estimating the size of fine particles such as powder is an essential technique for evaluating quality such as the uniformity of powder particles. When the specific gravity of the fine particles is known, the particle diameter can be estimated from the sedimentation speed of the fine particles using a liquid phase sedimentation method. Alternatively, the Brownian motion of the fine particles is optically observed, for example, the diffusion constant of the fine particles is obtained from the Doppler displacement of the wavelength of the scattered light, and the particle size distribution of the fine particles can be obtained therefrom. In addition, when the optical refractive index of the fine particles is known, since the intensity of the scattered light of the fine particles changes depending on the particle size, it is possible to estimate the particle size distribution of the fine particles from the distribution of the scattered light intensity. it can.
【0003】しかし、先に述べた方法では、微粒子の円
相当径を求めることができるのみであり、平均の粒径が
ほぼ等しく、かつ組成に大きな差がない生体細胞などの
微粒子の分類をするには情報が不十分であった。そこで
画像認識技術を用いて、溶液中に微粒子の像を直接記
録、解析することで、生体細胞の異常を認識する技術が
開発されたが、この場合にも、微粒子のどの断面の像で
あるかを認識できない場合には、画像処理技術を用いた
微粒子の種別認識は難しいことが明らかになった。そこ
で現在は、層流を作り出し、その中に微粒子を含む溶液
を導入して、微粒子の長軸方向を特定の方向に配向させ
ながら微粒子の画像を取得する「フロー式粒子像分析装
置」が粒子像分析技術の主流となりつつある。However, according to the above-described method, only the equivalent circle diameter of the fine particles can be obtained, and fine particles such as living cells having substantially the same average particle size and no large difference in composition are classified. Had insufficient information. Therefore, a technology for recognizing abnormalities in living cells was developed by directly recording and analyzing the image of fine particles in a solution using image recognition technology. When it is not possible to recognize the type, it has been found that it is difficult to recognize the type of the fine particles using the image processing technology. Therefore, at present, a `` flow-type particle image analyzer '' that creates a laminar flow, introduces a solution containing fine particles into it, and acquires an image of the fine particles while orienting the long axis direction of the fine particles in a specific direction, Image analysis technology is becoming mainstream.
【0004】微粒子を配向させることは、先に述べたよ
うな流体力学的な接触力を及ぼす以外にも、何かしらの
非接触力を微粒子に及ぼすことでも実現される。非接触
力としては、たとえば静電場によるクーロン力、静磁場
による磁力、光の放射圧、超音波の輻射圧などがある。
超音波を微粒子に作用させたとき、微粒子が受ける輻射
圧については例えば、ジョンル・ブが、ジャーナル・オブ
・アクースティカル・ソサエティー・オブ・アメリカ 第8
9巻(1991年)2140頁から2143頁(J. Wu,
J. Acoust. Soc. Am. 89 (1991) pp.2140-2143)に、集
束超音波の集束点に直径270μmのポリスチレン球を
捕獲することに成功したことを報告している。また、こ
の超音波の輻射圧によって微粒子が捕獲される原理に関
しては、吉岡らがアコースティカ 第5巻(1955
年)167頁から178頁(K. Yosioka and Y. Kawasi
ma, Acustica 5 (1955) pp.167-178)に、定在波、進行
波中で微粒子が受ける超音波輻射圧の完全流体中での大
きさを計算している。また、発明者らが特開平5―29
6310号公報にも報告しているように、流体を流した
管中に超音波を導入して連続的に微粒子をある範囲に集
束させる手法、あるいは、集束させた微粒子を回収する
方法も発明されており、さらに、特開平6−24197
7号公報に報告されているように超音波の輻射圧と静電
場などの他の外力とを組み合わせることで粒径の異なる
微粒子や材質の異なる微粒子を分画回収する微粒子分画
装置も発明されている。[0004] Orientation of the fine particles can be realized by applying some non-contact force to the fine particles in addition to applying the hydrodynamic contact force as described above. Examples of the non-contact force include Coulomb force due to an electrostatic field, magnetic force due to a static magnetic field, radiation pressure of light, radiation pressure of ultrasonic waves, and the like.
Regarding the radiation pressure applied to the particles when the ultrasonic waves are applied to the particles, for example, Jonle Bourg describes in Journal of Acoustic Society of America No. 8
9 (1991), pp. 2140-2143 (J. Wu,
J. Acoust. Soc. Am. 89 (1991) pp. 2140-2143) reported that a 270 μm diameter polystyrene sphere was successfully captured at the focal point of focused ultrasound. Regarding the principle of capturing fine particles by the radiation pressure of ultrasonic waves, Yoshioka et al.
Years pp. 167-178 (K. Yosioka and Y. Kawasi)
ma, Acustica 5 (1955) pp. 167-178) calculate the magnitude of the ultrasonic radiation pressure applied to microparticles in standing waves and traveling waves in perfect fluid. Further, the inventors have disclosed in Japanese Patent Laid-Open No. 5-29.
As reported in Japanese Patent No. 6310, a method of introducing ultrasonic waves into a tube through which a fluid is flown to continuously focus fine particles in a certain range, or a method of collecting the focused fine particles has also been invented. And Japanese Patent Laid-Open No. 6-24197.
As reported in Japanese Patent Publication No. 7, a fine particle fractionating device for fractionating and collecting fine particles having different particle diameters and fine particles of different materials by combining the radiation pressure of ultrasonic waves and other external force such as an electrostatic field has also been invented. ing.
【0005】超音波輻射圧を微粒子に作用させること
で、微粒子を回転、あるいは配向させることもできる。
たとえば、直交する2つの音源から90度位相をずらし
た超音波を照射することで、音場中の微粒子は回転を始
めるが、バルマッツ(M. B. Barmatz)らはさらに米国
特許4、800、756( 1989年1月31日)の
中で、2つの直交する超音波振動子の発生する超音波の
位相のずれを調節することで、音場中の微粒子の回転の
速度を調節することができたり、または、形状異方性の
ある微粒子の配向させる方向を調節することができるこ
とを報告している。By applying ultrasonic radiation pressure to the fine particles, the fine particles can be rotated or oriented.
For example, by irradiating ultrasonic waves 90 degrees out of phase from two orthogonal sound sources, fine particles in the sound field start rotating, but MB Barmatz et al. Further describe in US Pat. No. 4,800,756 (1989). By adjusting the phase shift of the ultrasonic waves generated by the two orthogonal ultrasonic vibrators, the rotation speed of the fine particles in the sound field can be adjusted. Alternatively, it is reported that the direction in which fine particles having shape anisotropy are oriented can be adjusted.
【0006】超音波を液体に照射することで、液体自体
に流れが生じる超音波流動現象は、超音波強度の傾きに
よって生じるものと考えられており、より大きな駆動力
を得るためには超音波のパワー密度を増加させるか、超
音波の流体中での減衰を大きくすればよい。また、表面
弾性波(SAW)による流動現象に関しても塩川らによ
ってジャパニーズ・ジャーナル・オブ・アプライド・フィジ
ックス 第29巻(1990年)第135頁から137
頁に報告されている(S. Shiokawa et al., Jpn. J. Ap
pl. Phys. Supl. 29-1 (1990) pp. 135-137)。これ
は、櫛形電極によって基板表面に作り出されたレーリー
SAWが、水/個体の界面では水中への放射モードであ
るリーキーSAWとなり、これによって基板上に滴下し
た水滴が流動したり飛翔したりする現象である。It is considered that the ultrasonic flow phenomenon in which a liquid flows by irradiating an ultrasonic wave to a liquid itself is caused by a gradient of ultrasonic intensity. It is only necessary to increase the power density or increase the attenuation of the ultrasonic wave in the fluid. The flow phenomenon caused by surface acoustic waves (SAW) is also described by Shiokawa et al. In Japanese Journal of Applied Physics, Vol. 29 (1990), pp. 135-137.
(S. Shiokawa et al., Jpn. J. Ap
pl. Phys. Supl. 29-1 (1990) pp. 135-137). This is a phenomenon that the Rayleigh SAW created on the substrate surface by the comb-shaped electrode becomes a leaky SAW that is a radiation mode into water at the water / solid interface, whereby the water droplets dropped on the substrate flow or fly. It is.
【0007】SAWを発生させる手法としては、主とし
てインター・ディジタル・トランスデューサー(ID
T)を用いた方法と、バルク波を表面波に変換する方法
の2つがある。IDTを用いた手法は、圧電体基板上に
櫛形に電極を交差させて、これらの電極に交流電圧を印
加することで発生させるものであるが、この場合には櫛
電極の間隔は、用いたい超音波の波長(λ)の1/2
(すなわちλ/2)にする必要があり、また、櫛形電極
に印加できる電界は、4kV/cmまでに制限されてい
るため、周波数の低い超音波で強力超音波を発生させる
ことは難しい。As a method for generating a SAW, an inter digital transducer (ID) is mainly used.
T) and a method of converting a bulk wave into a surface wave. The method using IDT is generated by crossing electrodes in a comb shape on a piezoelectric substrate and applying an AC voltage to these electrodes. In this case, the interval between the comb electrodes is desired to be used. 1/2 of the wavelength (λ) of the ultrasonic wave
(Ie, λ / 2), and the electric field that can be applied to the comb electrode is limited to 4 kV / cm, so it is difficult to generate strong ultrasonic waves with low frequency ultrasonic waves.
【0008】バルク波を表面波に変換する方法は、すで
に確立されているバルク波の発生手段を利用して、強力
超音波等のバルク波を表面波に変換する手法である。た
とえば、プリズム形状の固体を用いてバルク波の境界面
での漏洩波からSAWを発生させるプリズムカップラ法
や、SAWを発生させる固体表面上に周期構造を作り、
これにバルク波を当てることでSAWを発生させるグレ
ーティングカップラ法などがハンフリーズらによってエ
レクトロニクス・レター 第5巻(1969年)第175
頁から176頁に報告されている(R. F. Humphryes an
d E. A. Ash, Electronics Lett. Vol. 5 (1969) pp.17
5-176)。A method of converting a bulk wave into a surface wave is a method of converting a bulk wave such as a strong ultrasonic wave into a surface wave by using a previously established bulk wave generating means. For example, using a prism-shaped solid, a prism coupler method for generating SAW from a leaky wave at the boundary surface of a bulk wave, or a periodic structure on a solid surface for generating SAW,
A grating coupler method for generating a SAW by applying a bulk wave to this is disclosed by Humphries et al. In Electronics Letter, Vol. 5 (1969), No. 175.
Pages 176 to 176 (RF Humphryes an
d EA Ash, Electronics Lett.Vol. 5 (1969) pp.17
5-176).
【0009】[0009]
【発明が解決しようとする課題】上記従来技術のうち、
フロー式粒子像分析装置は、層流中にある微粒子が配向
することを利用した技術であるため、微粒子が特定の方
向に配向した場合の、その断面の2次元断面像を撮るこ
とは容易にできるが、微粒子の3次元像を得るために、
微粒子の配向の方向を制御し、異なる角度から取得した
複数の2次元断面像をとることは難しかった。また、層
流中で発生するトルクを利用するため、一定流速以上で
溶液を流す必要があり、また、流体を流す容器の形状に
特別な工夫が必要であった。SUMMARY OF THE INVENTION Among the above prior arts,
Since the flow type particle image analyzer is a technique utilizing the orientation of fine particles in a laminar flow, it is easy to take a two-dimensional cross-sectional image of the cross section when the fine particles are oriented in a specific direction. Yes, but to get a three-dimensional image of the particles,
It was difficult to control the orientation direction of the fine particles and to take a plurality of two-dimensional cross-sectional images obtained from different angles. Further, in order to utilize the torque generated in the laminar flow, it is necessary to flow the solution at a certain flow rate or higher, and special measures are required for the shape of the container through which the fluid flows.
【0010】本発明は、微粒子を含む流体の流速に関係
なく、管中を連続的に流れる微粒子の向きを連続的に変
化させながら、微粒子の2次元断面像を連続的に取得
し、その微粒子の異なる角度からの2次元断面像を取得
する装置を提供することを目的とする。According to the present invention, a two-dimensional cross-sectional image of a fine particle is continuously obtained while continuously changing the direction of the fine particle flowing continuously in a pipe, regardless of the flow velocity of the fluid containing the fine particle. It is an object of the present invention to provide a device for acquiring two-dimensional cross-sectional images from different angles.
【0011】[0011]
【課題を解決するための手段】上記目的を達成するた
め、本発明の微粒子形状測定装置は、微粒子が流れる管
中に管中の流体の流れに垂直な方向に超音波定在波を導
入する手段と、超音波によって作り出される位置ポテン
シャル分布の形状を時間的に連続的に変化させる手段
と、その位置ポテンシャル分布の変化に応じて連続的に
管中の微粒子の2次元断面像を取得する手段とを有す
る。より詳細には、管中の異なる2方向に平面定在波を
発生させ、各々の発生する超音波輻射圧の強度の比を経
時的に変化させることで、微粒子の配向する方向を経時
的に変化させればよい。In order to achieve the above object, a fine particle shape measuring apparatus according to the present invention introduces an ultrasonic standing wave into a pipe through which fine particles flow in a direction perpendicular to the flow of fluid in the pipe. Means, means for continuously changing the shape of the position potential distribution created by ultrasonic waves, and means for continuously obtaining a two-dimensional cross-sectional image of the fine particles in the tube according to the change in the position potential distribution And More specifically, a plane standing wave is generated in two different directions in a tube, and the intensity ratio of the generated ultrasonic radiation pressure is changed over time to change the direction in which the fine particles are oriented over time. You only need to change it.
【0012】あるいは、上記目的を達成するため、本発
明の微粒子形状測定装置は、管中の微粒子を含む溶液の
流れとは垂直な方向に、超音波によって一定の回転方向
を持った音響流の渦を作り出し、この渦の回転によって
流体中の微粒子を連続的に回転させる手段と、その変化
に応じて連続的に管中の微粒子の2次元断面像を取得す
る手段とを有する。より詳細には、管壁の1つの壁面の
一部から超音波を管内に導入する手段と、この音源に対
面する壁面がある一定の角度を有することで、管内に渦
を発生させればよい。あるいは、円筒形の管の外壁に複
数の超音波の音源を扇状に配置し、各々の超音波振動子
の発生する超音波の位相が、管の周囲を1周したとき、
2nπ位相がずれるように、位相のずれを発生させれば
よい。ただし、ここでnは整数である。あるいは、管内
壁面に超音波の弾性波を発生させることで、管壁近傍に
超音波流動現象に由来する渦を発生させればよい。[0012] Alternatively, in order to achieve the above object, the fine particle shape measuring apparatus of the present invention uses an ultrasonic wave to generate an acoustic stream having a certain rotational direction in a direction perpendicular to the flow of a solution containing fine particles in a tube. It has means for creating a vortex and continuously rotating fine particles in the fluid by the rotation of the vortex, and means for continuously obtaining a two-dimensional cross-sectional image of the fine particles in the tube according to the change. More specifically, a means for introducing ultrasonic waves into the tube from a part of one wall surface of the tube wall and a wall facing the sound source having a certain angle may generate a vortex in the tube. . Alternatively, when a plurality of ultrasonic sound sources are arranged in a fan shape on the outer wall of a cylindrical tube, and the phase of the ultrasonic wave generated by each ultrasonic vibrator makes one round around the tube,
A phase shift may be generated so that the 2nπ phase shifts. Here, n is an integer. Alternatively, by generating an ultrasonic elastic wave on the inner wall surface of the pipe, a vortex derived from an ultrasonic flow phenomenon may be generated near the pipe wall.
【0013】[0013]
【発明の実施の形態】図1に、本発明の第1の実施例の
模式図を示す。本実施例は、管中に作り出した直交する
2つの平面定在波によって作り出される直交する2方向
のポテンシャル面を組み合わせることで、微粒子の配向
する方向を制御するものである。形状を観察する微粒子
は、観察窓20を持つ管10中を流れる。管の中の微粒
子は光源80によって照明され、テレビカメラ60によ
って、微粒子の像が撮影され、制御解析装置部70に画
像データが記録される。微粒子の配向する向きを制御す
るために、微粒子を含む溶液が連続的に流れる管10の
隣り合った2つの壁面に、超音波振動子30と31が配
置され、制御解析装置部70からの指令に応じて、波形
合成器40で作られた電圧振幅の波形が各々増幅器5
0、51で増幅された後、超音波振動子30、31に導
入されるように構成されている。超音波振動子30、3
1は各々管中に互いに直交した平面定在波を発生させる
ことができ、各平面定在波はその波面で作られる定在波
の位置ポテンシャルの極小面上に微粒子を配向させるこ
とができる。FIG. 1 is a schematic diagram of a first embodiment of the present invention. In this embodiment, the orientation direction of the fine particles is controlled by combining two orthogonal potential surfaces created by two orthogonal plane standing waves created in the tube. The fine particles whose shape is to be observed flow through the tube 10 having the observation window 20. The fine particles in the tube are illuminated by the light source 80, an image of the fine particles is taken by the television camera 60, and the image data is recorded in the control analysis unit 70. In order to control the direction in which the fine particles are oriented, ultrasonic vibrators 30 and 31 are arranged on two adjacent wall surfaces of the tube 10 through which the solution containing the fine particles continuously flows. , The waveform of the voltage amplitude generated by the waveform synthesizer 40 is
After being amplified at 0 and 51, they are introduced into the ultrasonic transducers 30 and 31. Ultrasonic transducers 30, 3
1 can generate plane standing waves orthogonal to each other in the tube, and each plane standing wave can orient the fine particles on the minimum surface of the position potential of the standing wave generated by the wave front.
【0014】図2に、図1で示した本発明の装置内での
微粒子の実際の回転の様子を模式的に示す。図2(a)
に示すように管91、92中を流れる微粒子101は、
試料溶液の流れに沿って、矢印111のように回転しな
がら下流に進行してゆく。このとき、図2(b)に示す
ように、超音波振動子30の超音波照射強度が強いとき
には超音波振動子31の超音波照射強度は弱く、超音波
振動子30の超音波照射強度が弱いときには超音波振動
子31の超音波照射強度は強くというように連続的に超
音波照射強度の比を変化させることで、微粒子は各超音
波振動子から照射される超音波強度の割合に応じて配向
する向きを変えることから、図2(a)に示したような
微粒子の回転を実現することができる。すなわち、微粒
子101が横向きに配向している像Aの状態から、連続
的に超音波振動子30の超音波強度を減少させ、超音波
振動子31の超音波強度を増加させることで、微粒子は
管中を流れながら矢印112のように向きを変え、微粒
子102のように縦向きの像(像B)を観察することが
できる。テレビカメラで微粒子の像を連続的あるいは断
片的に取得する場合には、この、超音波振動子30、3
1の超音波照射強度の比を参照することで、微粒子の配
向方向を同時に見積ることができる。また、微粒子が1
回転する時間は、微粒子がテレビカメラの視野内にある
うちが望ましい。したがって、流速に応じて、超音波振
動子の超音波強度の変化の速さを調節する必要がある。FIG. 2 schematically shows the actual rotation of the fine particles in the apparatus of the present invention shown in FIG. FIG. 2 (a)
The fine particles 101 flowing in the tubes 91 and 92 as shown in FIG.
Along the flow of the sample solution, it proceeds downstream while rotating as indicated by arrow 111. At this time, as shown in FIG. 2B, when the ultrasonic irradiation intensity of the ultrasonic oscillator 30 is strong, the ultrasonic irradiation intensity of the ultrasonic oscillator 31 is weak, and the ultrasonic irradiation intensity of the ultrasonic oscillator 30 is low. By changing the ratio of the ultrasonic irradiation intensity continuously so that the ultrasonic irradiation intensity of the ultrasonic oscillator 31 is strong when the ultrasonic oscillator 31 is weak, the fine particles are adjusted according to the ratio of the ultrasonic intensity irradiated from each ultrasonic oscillator. By changing the orientation of the fine particles, the rotation of the fine particles as shown in FIG. 2A can be realized. That is, by continuously reducing the ultrasonic intensity of the ultrasonic vibrator 30 and increasing the ultrasonic intensity of the ultrasonic vibrator 31 from the state of the image A in which the fine particles 101 are horizontally oriented, the fine particles The direction is changed as indicated by an arrow 112 while flowing through the tube, and a vertically oriented image (image B) can be observed like the fine particles 102. When an image of fine particles is continuously or fragmentarily acquired by a television camera, the ultrasonic transducers 30, 3
By referring to the ultrasonic irradiation intensity ratio of 1, the orientation direction of the fine particles can be simultaneously estimated. In addition, one
The rotation time is desirably while the particles are within the field of view of the television camera. Therefore, it is necessary to adjust the speed of change of the ultrasonic intensity of the ultrasonic transducer according to the flow velocity.
【0015】図3に、本発明の第2の実施例の模式図を
示す。本実施例は、超音波によって管中に作り出した、
試料を含む溶液の流れに直交する溶液の渦によって微粒
子を回転させるものである。観測窓121を持つ管12
0中に溶媒が矢印141、142の方向に流れている。
この管の中央部に管151から微粒子を含む試料液が導
入される。管の向かい合った2面の一部には各々超音波
振動子131、132が配置されており、これらの超音
波振動子から導入された超音波によって作り出された音
響流によって管内に流体の回転が発生する。図4は、管
120のA−A断面図である。各超音波振動子131、
132に向かい合った管内の壁面は、超音波振動子に対
してある一定の角度を持っており、この壁面で反射した
超音波が音源方向に戻ってゆくことで定在波が発生しな
いようになっている。このような構成によって発生した
超音波の進行波によって、微粒子を含む溶液の回転17
0が起こり微粒子160は管内を流れながら回転する。FIG. 3 is a schematic diagram of a second embodiment of the present invention. This example was created in a tube by ultrasound,
The fine particles are rotated by a vortex of the solution orthogonal to the flow of the solution containing the sample. Tube 12 with observation window 121
During 0, the solvent flows in the directions of arrows 141 and 142.
A sample liquid containing fine particles is introduced from the tube 151 into the center of the tube. Ultrasonic vibrators 131 and 132 are respectively disposed on a part of two opposite surfaces of the tube, and rotation of the fluid in the tube is caused by an acoustic stream generated by ultrasonic waves introduced from these ultrasonic vibrators. Occur. FIG. 4 is a sectional view of the tube 120 taken along the line AA. Each ultrasonic transducer 131,
The wall surface in the tube facing 132 has a certain angle with respect to the ultrasonic vibrator, and the ultrasonic wave reflected by this wall returns to the sound source direction so that a standing wave is not generated. ing. The traveling wave of the ultrasonic wave generated by such a configuration causes rotation of the solution containing the fine particles 17.
0 occurs and the fine particles 160 rotate while flowing in the tube.
【0016】図5は、本発明の第3の実施例の管の流れ
に垂直な断面から見た断面図である。本実施例は、図3
に示した第2の実施例と同様、超音波によって管中に作
り出した試料を含む溶液の流れに直交する溶液の渦によ
って微粒子を回転させるものである。管122の内壁面
中に超音波を反射する詰め物を加えることで、先に述べ
た第2の実施例と同様の効果を得ることができる。FIG. 5 is a sectional view of a third embodiment of the present invention as viewed from a section perpendicular to the flow of the pipe. In the present embodiment, FIG.
As in the case of the second embodiment shown in (1), the fine particles are rotated by a vortex of the solution orthogonal to the flow of the solution containing the sample created in the tube by ultrasonic waves. The same effect as that of the above-described second embodiment can be obtained by adding a filler that reflects ultrasonic waves to the inner wall surface of the tube 122.
【0017】図6は、本発明の第4の実施例の管の流れ
に垂直な断面から見た断面図である。本実施例も、図3
に示した第2の実施例と同様、超音波によって管中に作
り出した試料を含む溶液の流れに直交する溶液の渦によ
って微粒子を回転させるものである。管124の1つの
面の一部に超音波振動子135が配置されており、管内
面である角度を持った方向に超音波が反射されること
で、溶液の回転172が発生し、微粒子162が回転す
る。FIG. 6 is a sectional view of a fourth embodiment of the present invention as viewed from a section perpendicular to the flow of the pipe. In this embodiment, FIG.
As in the case of the second embodiment shown in (1), the fine particles are rotated by a vortex of the solution orthogonal to the flow of the solution containing the sample created in the tube by ultrasonic waves. An ultrasonic vibrator 135 is arranged on a part of one surface of the tube 124, and the ultrasonic wave is reflected in a direction having an angle, which is the inner surface of the tube, to generate a rotation 172 of the solution and generate fine particles 162. Rotates.
【0018】図7は、本発明の第5の実施例の管の流れ
に垂直な断面から見た断面図である。本実施例も、図3
に示した第2の実施例と同様、超音波によって管中に作
り出した試料を含む溶液の流れに直交する溶液の渦によ
って微粒子を回転させるものである。観測窓127を持
つ円筒形の管126の周囲には、複数の扇型の超音波振
動子1361、1362、1363、1364、136
5、1366が配置されている。これら各超音波振動子
からは同じ強度、振動数の超音波が照射されるが、各振
動子から照射される超音波の位相が各々の振動子の管表
面での角度をθとしたとき、θ/2nπだけずらされる
ものとする。ただし、ここでnは整数である。このよう
に超音波振動子を駆動することで溶液を矢印173のよ
うに回転させることができ、その結果微粒子163は回
転する。また、本実施例では、流体の回転を利用して微
粒子の回転をさせたが、本発明の第1の実施例と同様
に、超音波振動子1361と1365、1362と13
66、1363の各組の超音波振動子の強度を経時的に
変化させることで微粒子を回転させることもできる。FIG. 7 is a sectional view of a fifth embodiment of the present invention as viewed from a section perpendicular to the flow of the pipe. In this embodiment, FIG.
As in the case of the second embodiment shown in (1), the fine particles are rotated by a vortex of the solution orthogonal to the flow of the solution containing the sample created in the tube by ultrasonic waves. Around the cylindrical tube 126 having the observation window 127, a plurality of fan-shaped ultrasonic transducers 1361, 1362, 1363, 1364, 136 are provided.
5, 1366 are arranged. Ultrasonic waves of the same intensity and frequency are emitted from each of these ultrasonic transducers, but when the phase of the ultrasonic waves emitted from each transducer is the angle at the tube surface of each transducer as θ, It is assumed that it is shifted by θ / 2nπ. Here, n is an integer. By driving the ultrasonic vibrator in this manner, the solution can be rotated as indicated by an arrow 173, and as a result, the fine particles 163 rotate. Further, in the present embodiment, the rotation of the fluid is used to rotate the fine particles. However, similarly to the first embodiment of the present invention, the ultrasonic vibrators 1361 and 1365 and 1362 and 1362 are used.
The particles can be rotated by changing the strength of the ultrasonic transducers 66 and 1363 with time.
【0019】図8は、本発明の第6の実施例の管の流れ
に垂直な断面から見た断面図である。本実施例は、管内
壁に超音波の表面弾性波を発生させ、管内壁から溶液中
にしみだした超音波進行波によって作られた溶液の渦に
よって微粒子を回転させるものである。管壁191、1
93に取付けられた超音波振動子137、138によっ
て表面弾性波が管内壁面を矢印181、182の方向に
進行する。この、表面弾性波が溶液中に漏れだし、これ
によって溶液の回転174が発生し、微粒子164が回
転する。この回転する微粒子は観測窓193から観測す
ることができる。同様に、図9で示した第7の実施例の
ように、管内壁に表面弾性波を発生させる手法として、
超音波のバルク波を表面弾性波に変換するグレーティン
グカップラー法を用いてもよい。ここでは、表面弾性波
を発生させたい管壁194、197の内壁面上に周期的
な溝195、196を形成し、これに超音波振動子13
91、1392より超音波バルク波を照射することで矢
印183、184の方向に表面弾性波を発生させ、溶液
中に漏れだした表面弾性波によって作り出された溶液の
渦175によって微粒子165は回転する。FIG. 8 is a sectional view of a sixth embodiment of the present invention as viewed from a section perpendicular to the flow of the pipe. In this embodiment, a surface acoustic wave of ultrasonic waves is generated on the inner wall of the tube, and the fine particles are rotated by the vortex of the solution generated by the ultrasonic traveling wave that has permeated into the solution from the inner wall of the tube. Tube wall 191, 1
The surface acoustic waves travel in the directions of arrows 181 and 182 on the inner wall surface of the tube by the ultrasonic vibrators 137 and 138 attached to 93. This surface acoustic wave leaks into the solution, which causes rotation 174 of the solution and rotation of the fine particles 164. The rotating fine particles can be observed from the observation window 193. Similarly, as in the seventh embodiment shown in FIG. 9, a method for generating a surface acoustic wave on the inner wall of the tube is as follows.
A grating coupler method for converting ultrasonic bulk waves into surface acoustic waves may be used. Here, periodic grooves 195 and 196 are formed on the inner wall surfaces of the tube walls 194 and 197 where the surface acoustic waves are to be generated, and the ultrasonic oscillator 13
By irradiating ultrasonic bulk waves from 91 and 1392, surface acoustic waves are generated in the directions of arrows 183 and 184, and the fine particles 165 are rotated by the vortex 175 of the solution created by the surface acoustic waves leaking into the solution. .
【0020】[0020]
【発明の効果】以上詳述したように、本発明を用いるこ
とによって、流体中の微粒子を連続的に回転させなが
ら、その形状を連続的に観測することができるという効
果を奏する。As described above in detail, by using the present invention, there is an effect that the shape can be continuously observed while continuously rotating the fine particles in the fluid.
【図1】本発明の第1の実施例の基本構成を示す模式
図。FIG. 1 is a schematic diagram showing a basic configuration of a first embodiment of the present invention.
【図2】図1で示した装置の管内での微粒子の動作を示
す図であり、(a)は微粒子が管内で回転しながら流れ
る様子を表す模式図、および(b)は(a)で示したよ
うに微粒子が回転するために超音波振動子30、31が
照射する超音波の強度の経時変化を示す図。FIGS. 2A and 2B are diagrams showing an operation of fine particles in a tube of the apparatus shown in FIG. 1, wherein FIG. 2A is a schematic diagram showing a state in which the fine particles flow while rotating in the tube, and FIG. The figure which shows the time-dependent change of the intensity | strength of the ultrasonic wave irradiated by the ultrasonic transducers 30 and 31 for the rotation of a microparticle as shown.
【図3】本発明の第2の実施例の基本構成を示す模式
図。FIG. 3 is a schematic diagram showing a basic configuration of a second embodiment of the present invention.
【図4】図3で示した実施例のA−A断面図。FIG. 4 is a sectional view taken along the line AA of the embodiment shown in FIG. 3;
【図5】本発明の第3の実施例のA−A断面図。FIG. 5 is a sectional view taken along line AA of a third embodiment of the present invention.
【図6】本発明の第4の実施例のA−A断面図。FIG. 6 is an AA sectional view of a fourth embodiment of the present invention.
【図7】本発明の第5の実施例のA−A断面図。FIG. 7 is a sectional view taken along line AA of a fifth embodiment of the present invention.
【図8】本発明の第6の実施例のA−A断面図。FIG. 8 is an AA sectional view of a sixth embodiment of the present invention.
【図9】本発明の第7の実施例のA−A断面図。FIG. 9 is an AA sectional view of a seventh embodiment of the present invention.
【符号の説明】 10、120、122、124、126…管、 20、121、123、125、127…観察窓、 30、31、131、132、133、134、13
5、1361、1362、1363、1364、136
5、1366、137、138、1391、1392…
超音波振動子、 40…波形合成器、 50、51…増幅器、 60…テレビカメラ、 70…制御解析装置部、 80…光源、 91、92…管10の壁面、 101、102、160、161、162、163、1
64、165…管中の微粒子、 111、112、113…微粒子の回転方向、 141、142…溶媒液の流れ、 151…試料液152を管120中に導入する管、 152…微粒子を含む試料液の流れ、 170、171、172、173、174、175…溶
液の渦の回転方向、 181、182、183、184…超音波の進行方向、 191、192、194…管壁、 195、196…周期的な溝、 193、197…ガラス、 201、202、203、204…スペーサー。[Description of References] 10, 120, 122, 124, 126 ... tube, 20, 121, 123, 125, 127 ... observation window, 30, 31, 131, 132, 133, 134, 13
5, 1361, 1362, 1363, 1364, 136
5, 1366, 137, 138, 1391, 1392 ...
Ultrasonic vibrator, 40: waveform synthesizer, 50, 51: amplifier, 60: television camera, 70: control analyzer unit, 80: light source, 91, 92: wall surface of tube 10, 101, 102, 160, 161, 162, 163, 1
64, 165: fine particles in a tube; 111, 112, 113: rotating direction of fine particles; 141, 142: flow of a solvent solution; 151: tube for introducing a sample solution 152 into a tube 120; 152: sample solution containing fine particles , 170, 171, 172, 173, 174, 175: rotating direction of the vortex of the solution, 181, 182, 183, 184: traveling direction of ultrasonic waves, 191, 192, 194: tube wall, 195, 196 ... cycle Grooves, 193, 197 ... glass, 201, 202, 203, 204 ... spacers.
Claims (6)
体の流れに垂直な方向に超音波の定在波を導入する手段
と、超音波によって作り出される位置ポテンシャル分布
の形状を時間的に連続的に変化させる手段と、前記位置
ポテンシャル分布の変化に応じて連続的に管中の微粒子
の2次元断面像を取得する手段とを有することを特徴と
する微粒子形状測定装置。1. A tube through which a fluid containing fine particles flows, a means for introducing a standing wave of ultrasonic waves in a direction perpendicular to the flow of the fluid in the tube, and a shape of a position potential distribution generated by the ultrasonic waves in time. And a means for continuously acquiring a two-dimensional cross-sectional image of the fine particles in the tube according to the change in the potential distribution.
面に配置されており、各々の音源から照射される超音波
の強度比を、時間経過に従い変化させる手段をさらに有
することを特徴とする請求項1記載の微粒子形状測定装
置。2. The method according to claim 1, wherein said ultrasonic sound source does not face the tube wall.
2. The fine particle shape measuring apparatus according to claim 1, further comprising means arranged on a surface, for changing the intensity ratio of the ultrasonic waves emitted from each sound source over time.
粒子を含む流体の流れとは垂直な方向に、超音波によっ
て一定の回転方向を持った音響流の渦を作り出し、前記
渦の回転によって流体中の微粒子を連続的に回転させる
手段と、回転に対応して管中の微粒子の2次元断面像を
取得する手段とを有することを特徴とする微粒子形状測
定装置。3. A tube through which a fluid containing fine particles flows and a flow of the fluid containing fine particles in the tube create an acoustic flow vortex having a certain rotational direction by ultrasonic waves in a direction perpendicular to the tube. A fine particle shape measuring apparatus comprising: means for continuously rotating fine particles in a fluid by rotation; and means for acquiring a two-dimensional cross-sectional image of fine particles in a tube in response to the rotation.
とも1つの壁面の一部から超音波を前記管内に導入する
手段と、前記音源に対面する壁面が平行でなく、所定の
角度を有することを特徴とする請求項3記載の微粒子形
状測定装置。4. A means for introducing an ultrasonic wave into a part of at least one wall of the tube through which a fluid containing fine particles flows, and a wall facing the sound source is not parallel and has a predetermined angle. The particle shape measuring device according to claim 3, wherein:
円筒形で有り、管の外壁に複数の超音波振動子を扇状に
配置し、所定の超音波振動子を基準の超音波振動子とし
て、各超音波振動子の前記基準の超音波振動子からなす
角度をθとしたとき、前記複数の超音波振動子のなす角
θに応じてθ/2nπ(nは整数)ずれた超音波を前記
複数の超音波振動子からそれぞれ発生させる手段を有す
ることを特徴とする請求項3記載の微粒子形状測定装
置。5. A cross section of said pipe through which a fluid containing fine particles flows is cylindrical, a plurality of ultrasonic vibrators are arranged in a fan shape on an outer wall of the pipe, and a predetermined ultrasonic vibrator is used as a reference ultrasonic vibrator. Assuming that an angle between each ultrasonic transducer and the reference ultrasonic transducer is θ, an ultrasonic wave shifted by θ / 2nπ (n is an integer) according to an angle θ formed by the plurality of ultrasonic transducers. 4. The fine particle shape measuring apparatus according to claim 3, further comprising: means for generating each of the plurality of ultrasonic transducers.
に超音波弾性表面波を導入する手段を有することを特徴
とする請求項3記載の微粒子形状測定装置。6. An apparatus for measuring the shape of fine particles according to claim 3, further comprising means for introducing an ultrasonic surface acoustic wave to an inner wall surface of said tube through which a fluid containing fine particles flows.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9162306A JPH1114533A (en) | 1997-06-19 | 1997-06-19 | Particulate shape measuring instrument |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9162306A JPH1114533A (en) | 1997-06-19 | 1997-06-19 | Particulate shape measuring instrument |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1114533A true JPH1114533A (en) | 1999-01-22 |
Family
ID=15752010
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9162306A Pending JPH1114533A (en) | 1997-06-19 | 1997-06-19 | Particulate shape measuring instrument |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1114533A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008508520A (en) * | 2004-07-29 | 2008-03-21 | ロスアラモス ナショナル セキュリティ,エルエルシー | Aggregation of analytes by ultrasound and application of flow cytometry |
US20090178716A1 (en) * | 2008-01-16 | 2009-07-16 | Acoustic Cytometry Systems, Inc. | System and Method for Acoustic Focusing Hardware and Implementations |
JP2010276338A (en) * | 2009-05-26 | 2010-12-09 | Shimadzu Corp | Method and instrument for measuring particle |
JP2011508220A (en) * | 2007-12-19 | 2011-03-10 | ロス アラモス ナショナル セキュリティー,エルエルシー | Particle analysis in an acoustic cytometer |
US8846408B2 (en) | 2007-04-02 | 2014-09-30 | Life Technologies Corporation | Particle analyzing systems and methods using acoustic radiation pressure |
US8863958B2 (en) | 2007-04-09 | 2014-10-21 | Los Alamos National Security, Llc | Apparatus for separating particles utilizing engineered acoustic contrast capture particles |
US8932520B2 (en) | 2007-10-24 | 2015-01-13 | Los Alamos National Security, Llc | Method for non-contact particle manipulation and control of particle spacing along an axis |
US9494509B2 (en) | 2006-11-03 | 2016-11-15 | Los Alamos National Security, Llc | System and method for measuring particles in a sample stream of a flow cytometer using low-power laser source |
US9733171B2 (en) | 2007-04-09 | 2017-08-15 | Los Alamos National Security, Llc | Acoustic concentration of particles in fluid flow |
-
1997
- 1997-06-19 JP JP9162306A patent/JPH1114533A/en active Pending
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008508520A (en) * | 2004-07-29 | 2008-03-21 | ロスアラモス ナショナル セキュリティ,エルエルシー | Aggregation of analytes by ultrasound and application of flow cytometry |
US9074979B2 (en) | 2004-07-29 | 2015-07-07 | Los Alamos National Security, Llc | Ultrasonic analyte concentration and application in flow cytometry |
US10537831B2 (en) | 2004-07-29 | 2020-01-21 | Triad National Security, Llc | Ultrasonic analyte concentration and application in flow cytometry |
JP2012230121A (en) * | 2004-07-29 | 2012-11-22 | Los Alamos National Security Llc | Ultrasonic analysis object concentration and application in flow cytometry |
US9494509B2 (en) | 2006-11-03 | 2016-11-15 | Los Alamos National Security, Llc | System and method for measuring particles in a sample stream of a flow cytometer using low-power laser source |
US8900870B2 (en) | 2007-04-02 | 2014-12-02 | Life Technologies Corporation | Methods for fusing cells using acoustic radiation pressure |
US9134271B2 (en) | 2007-04-02 | 2015-09-15 | Life Technologies Corporation | Particle quantifying systems and methods using acoustic radiation pressure |
US8865476B2 (en) | 2007-04-02 | 2014-10-21 | Life Technologies Corporation | Particle switching systems and methods using acoustic radiation pressure |
US10254212B2 (en) | 2007-04-02 | 2019-04-09 | Life Technologies Corporation | Particle analyzing systems and methods using acoustic radiation pressure |
US8873051B2 (en) | 2007-04-02 | 2014-10-28 | Life Technologies Corporation | Methods and systems for controlling the flow of particles for detection |
US10969325B2 (en) | 2007-04-02 | 2021-04-06 | Life Technologies Corporation | Particle analyzing systems and methods using acoustic radiation pressure |
US9476855B2 (en) | 2007-04-02 | 2016-10-25 | Life Technologies Corporation | Particle analyzing systems and methods using acoustic radiation pressure |
US8846408B2 (en) | 2007-04-02 | 2014-09-30 | Life Technologies Corporation | Particle analyzing systems and methods using acoustic radiation pressure |
US9733171B2 (en) | 2007-04-09 | 2017-08-15 | Los Alamos National Security, Llc | Acoustic concentration of particles in fluid flow |
US9909117B2 (en) | 2007-04-09 | 2018-03-06 | Los Alamos National Security, Llc | Systems and methods for separating particles utilizing engineered acoustic contrast capture particles |
US9339744B2 (en) | 2007-04-09 | 2016-05-17 | Los Alamos National Security, Llc | Apparatus for separating particles utilizing engineered acoustic contrast capture particles |
US8863958B2 (en) | 2007-04-09 | 2014-10-21 | Los Alamos National Security, Llc | Apparatus for separating particles utilizing engineered acoustic contrast capture particles |
US8932520B2 (en) | 2007-10-24 | 2015-01-13 | Los Alamos National Security, Llc | Method for non-contact particle manipulation and control of particle spacing along an axis |
US9488621B2 (en) | 2007-12-19 | 2016-11-08 | Los Alamos National Security, Llc | Particle analysis in an acoustic cytometer |
JP2015172602A (en) * | 2007-12-19 | 2015-10-01 | ロス アラモス ナショナル セキュリティー,エルエルシーLos Alamos National Security,Llc | Particle analysis in acoustic cytometer |
US9038467B2 (en) | 2007-12-19 | 2015-05-26 | Los Alamos National Security, Llc | Particle analysis in an acoustic cytometer |
JP2013101153A (en) * | 2007-12-19 | 2013-05-23 | Los Alamos National Security Llc | Particle analysis in acoustic cytometer |
JP2011508220A (en) * | 2007-12-19 | 2011-03-10 | ロス アラモス ナショナル セキュリティー,エルエルシー | Particle analysis in an acoustic cytometer |
US11287363B2 (en) | 2007-12-19 | 2022-03-29 | Triad National Security, Llc | Particle analysis in an acoustic cytometer |
US11287362B2 (en) | 2007-12-19 | 2022-03-29 | Triad National Security, Llc | Particle analysis in an acoustic cytometer |
JP2014211454A (en) * | 2008-01-16 | 2014-11-13 | ライフ テクノロジーズ コーポレーション | System and method for acoustic focusing hardware and implementations |
US8714014B2 (en) * | 2008-01-16 | 2014-05-06 | Life Technologies Corporation | System and method for acoustic focusing hardware and implementations |
AU2009206101B2 (en) * | 2008-01-16 | 2014-03-06 | Life Technologies Corporation | System and method for acoustic focusing hardware and implementations |
US20090178716A1 (en) * | 2008-01-16 | 2009-07-16 | Acoustic Cytometry Systems, Inc. | System and Method for Acoustic Focusing Hardware and Implementations |
US10976234B2 (en) | 2008-01-16 | 2021-04-13 | Life Technologies Corporation | System and method for acoustic focusing hardware and implementations |
JP2010276338A (en) * | 2009-05-26 | 2010-12-09 | Shimadzu Corp | Method and instrument for measuring particle |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kuttruff | Ultrasonics: Fundamentals and applications | |
Raj et al. | Science and technology of ultrasonics | |
Li et al. | Rotational manipulation by acoustic radiation torque of high-order vortex beams generated by an artificial structured plate | |
US20120227473A1 (en) | Apparatus and method for visualization of particles suspended in a fluid and fluid flow patterns using ultrasound | |
Dunn et al. | Ultrasonic absorption microscope | |
Pei et al. | Cracks measurement using fiber-phased array laser ultrasound generation | |
Hayashi | Imaging defects in a plate with complex geometries | |
JPH0136584B2 (en) | ||
JPH1114533A (en) | Particulate shape measuring instrument | |
JP3205413B2 (en) | Particle measuring device and particle measuring method | |
Li et al. | Acoustic radiation torque of an acoustic-vortex spanner exerted on axisymmetric objects | |
Cacace et al. | Assembling and rotating erythrocyte aggregates by acoustofluidic pressure enabling full phase-contrast tomography | |
Wells | Physics of ultrasound | |
Hou et al. | Composite ultrasound transducer for multi-size of tweezer manipulation | |
JP2010261910A (en) | Dynamic ultrasonic scattering method measuring device and analysis method of particles | |
Lefebvre et al. | Inline high frequency ultrasonic particle sizer | |
Zang et al. | Natural oscillation frequencies of a Rayleigh sphere levitated in standing acoustic waves | |
JPH07318476A (en) | Particulate analyzer | |
Mitome et al. | Quasi acoustic streaming induced by generation of cavitation bubbles | |
Luan et al. | Combined optical sizing and acoustical characterization of single freely-floating microbubbles | |
Lobkis et al. | Spherical inclusion characterization by the acoustical microscope: Axisymmetric case | |
Bruneel et al. | Reconstruction of an acoustical image using an ‘acousto-electronic’lens device | |
Collis et al. | Micro PIV analysis of secondary vortices with observations of primary vortices in single bubble cavitation microstreaming | |
Huber et al. | Excitation of vibrational eigenstates of coupled microcantilevers using ultrasound radiation force | |
Żmijan et al. | Imaging cytometer with acoustic focussing |