JPH11144981A - Magnetic shielding device for stationary induction electrical apparatus - Google Patents

Magnetic shielding device for stationary induction electrical apparatus

Info

Publication number
JPH11144981A
JPH11144981A JP30527197A JP30527197A JPH11144981A JP H11144981 A JPH11144981 A JP H11144981A JP 30527197 A JP30527197 A JP 30527197A JP 30527197 A JP30527197 A JP 30527197A JP H11144981 A JPH11144981 A JP H11144981A
Authority
JP
Japan
Prior art keywords
magnetic
shield
slit
magnetic shield
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30527197A
Other languages
Japanese (ja)
Inventor
Yoshio Hamadate
良夫 浜館
Yasunori Ono
康則 大野
Shoichi Yamamoto
正一 山本
Sakae Kudo
栄 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP30527197A priority Critical patent/JPH11144981A/en
Publication of JPH11144981A publication Critical patent/JPH11144981A/en
Pending legal-status Critical Current

Links

Landscapes

  • Regulation Of General Use Transformers (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce losses of magnetic shields themselves and to prevent local overheating, by forming a slit along the straight portion of each magnetic shield and dividing an eddy current flowing over the surface of the magnetic shield into two parts with the slit. SOLUTION: Magnetic shields 8, each formed by laminating thin silicon steel plates, are arranged at such positions as to confront an inner winding 4 and an outer winding 5. The shields 8 are arranged at a predetermined interval horizontally with their longitudinal direction extending perpendicularly. At the center of each shield 8 is formed a slit 10 cut through in the direction of the thickness. Magnetic fluxes 40 from the windings 4 and 5 enter vertically into each shield 8 and flow over the surface of the shield 8 as an eddy current. The slit 10 divides the eddy current into two parts. As a result, the losses of the shields 8 can be reduced and local overheating can be prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は変圧器やリアクトル
等の静止誘導電器の磁気遮蔽装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic shielding device for stationary induction devices such as transformers and reactors.

【0002】[0002]

【従来の技術】一般に変圧器やリアクトル等のタンクに
は、巻線及びリード線からの漏れ磁束の侵入によってう
ず電流が流れ損失を発生する。この損失は大容量化する
ほど大きくなるので、通常は損失を低減するためにタン
クに磁気遮蔽装置が設けられるが、この磁気遮蔽装置と
しては銅,アルミニウム等の非磁性体や珪素鋼板等を積
層した磁性体シールドが使用されている。
2. Description of the Related Art Generally, an eddy current flows into a tank such as a transformer or a reactor due to invasion of leakage magnetic flux from a winding and a lead wire, thereby causing a loss. Since this loss increases as the capacity increases, a magnetic shielding device is usually provided in the tank to reduce the loss. As this magnetic shielding device, a nonmagnetic material such as copper or aluminum or a silicon steel plate is laminated. Magnetic shields are used.

【0003】ところが、従来の磁性体シールドを用いた
磁気遮蔽装置では巻線からの漏れ磁束が磁性体シールド
表面へ垂直に侵入する際に磁性体シールド表面をうず電
流が流れ、そのうず電流によって発生する損失が増加す
ると共に磁性体シールド自身で局部過熱を引き起こして
しまう欠点があった。
However, in a conventional magnetic shielding device using a magnetic shield, eddy current flows through the surface of the magnetic shield when leakage magnetic flux from the winding vertically penetrates into the surface of the magnetic shield, and is generated by the eddy current. However, there is a disadvantage that the magnetic material shield itself causes local overheating.

【0004】これに対して、磁性体シールドでの損失を
低減し、局部過熱も防止できる構造として特開昭52−29
928 号公報と実開昭63−12820 号公報が提案されてい
る。特開昭52−29928 号公報は巻線からの侵入磁束の多
い端部にスリットを設けているが、磁性体シールド表面
を流れるうず電流を分断できないために磁性体シールド
自身での損失低減や局部過熱を防止するには不十分であ
る。しかも、磁性体シールド端部にスリットを設けてい
るために磁性体シールドをタンクに取り付けた場合の機
械的強度の低下が懸念される。
On the other hand, Japanese Patent Laid-Open No. 52-29 discloses a structure that can reduce the loss in the magnetic shield and prevent local overheating.
No. 928 and Japanese Utility Model Application Laid-Open No. 63-12820 have been proposed. Japanese Unexamined Patent Publication No. 52-29928 discloses a method in which a slit is provided at an end where a large amount of magnetic flux penetrates from a winding. However, since the eddy current flowing on the surface of the magnetic shield cannot be divided, the loss of the magnetic shield itself can be reduced and the local noise can be reduced. Not enough to prevent overheating. In addition, since the slit is provided at the end of the magnetic shield, there is a concern that the mechanical strength is reduced when the magnetic shield is attached to the tank.

【0005】一方、実開昭63−12820 号公報は磁性体シ
ールドの屈曲部の一部にスリットを設け、そのスリット
を使い磁性体シールドの支持とタンクへの固定をしてい
るが、巻線からの漏れ磁束が磁性体シールド表面へ垂直
に侵入する際に磁性体シールド表面を流れるうず電流を
分断できないために磁性体シールド自身の損失低減や局
部過熱を防止できない等の問題があった。
On the other hand, in Japanese Utility Model Laid-Open Publication No. 63-12820, a slit is provided in a part of a bent portion of a magnetic shield, and the slit is used to support the magnetic shield and fix the tank to a tank. Since the eddy current flowing on the surface of the magnetic shield cannot be divided when the magnetic flux leaking from the magnetic material vertically penetrates into the surface of the magnetic shield, there is a problem that the loss of the magnetic shield itself cannot be reduced and local overheating cannot be prevented.

【0006】[0006]

【発明が解決しようとする課題】上記従来技術の静止誘
導電器の磁気遮蔽装置では巻線からの漏れ磁束が磁性体
シールド表面へ垂直に侵入する際に磁性体シールド表面
をうず電流が流れ、そのうず電流によって発生する磁性
体シールド自身の損失低減や局部過熱対策等について考
慮されていないために、磁性体シールド自身の損失低減
や局部過熱を防止する構造について解決すべき課題があ
った。
In the above-mentioned prior art magnetic shielding apparatus for a static induction device, eddy current flows on the magnetic shield surface when leakage magnetic flux from the winding vertically penetrates into the magnetic shield surface. Since no consideration has been given to reducing the loss of the magnetic shield itself caused by the eddy current or taking measures against local overheating, there is a problem to be solved with respect to a structure for reducing the loss of the magnetic shield itself and preventing local overheating.

【0007】本発明は、このような従来技術の課題を有
効に解決するもので、その目的は磁性体シールド自身の
損失を低減すると共に局部過熱を防止し、かつ安価な静
止誘導電器の磁気遮蔽装置を提供することにある。
SUMMARY OF THE INVENTION The present invention effectively solves the problems of the prior art described above, and has as its object to reduce the loss of the magnetic shield itself, prevent local overheating, and reduce the cost of the magnetic shield of an inexpensive static induction device. It is to provide a device.

【0008】[0008]

【課題を解決するための手段】本発明は鉄心及び巻線を
有する誘導電器本体を収納するタンクの内側に磁性体を
積層してなる磁性体シールドを取り付けた静止誘導電器
の遮蔽装置において、前記磁性体シールドの直線部にス
リットを設けたことを特徴とする静止誘導電器の磁気遮
蔽装置。
According to the present invention, there is provided a shielding device for a stationary induction electric machine in which a magnetic shield formed by laminating a magnetic material is mounted inside a tank accommodating an induction electric body having an iron core and a winding. A magnetic shielding device for a stationary induction machine, wherein a slit is provided in a linear portion of a magnetic shield.

【0009】即ち、本発明の静止誘導電器の磁気遮蔽装
置によれば、巻線からの漏れ磁束が磁性体シールド表面
へ垂直に侵入する際に磁性体シールド表面を流れるうず
電流をスリットで分断することにより、磁性体シールド
自身の損失を低減すると共に局部過熱も防止できること
が可能となる。
That is, according to the magnetic shielding device of the stationary induction device of the present invention, the eddy current flowing through the magnetic shield surface is divided by the slit when the magnetic flux leaking from the winding vertically penetrates into the magnetic shield surface. As a result, it is possible to reduce the loss of the magnetic shield itself and to prevent local overheating.

【0010】[0010]

【発明の実施の形態】以下本発明の一実施例を図面を参
照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings.

【0011】図1は単相センタコア変圧器で磁性体シー
ルドの構成を示す平面図、図2が図1のΙ−Ι断面での
要部断面図をそれぞれ示している。図1,図2におい
て、主脚1及び側脚2,上部継鉄部3と内側巻線4,外
側巻線5からなる変圧器本体を収納したタンク7の内側
で内側巻線4,外側巻線5に対向した位置へ幅Wで板厚
の薄い珪素鋼板を積層してなる磁性体シールド8の長手
方向を垂直にして押え金具(図示せず)を設けて横方向に
所定の間隙部を介して並べられており、しかも磁性体シ
ールド8での損失を低減するためにスリット10を磁性
体シールド8の中央部で厚さ方向全体に1本設けた構成
となっている。
FIG. 1 is a plan view showing a configuration of a magnetic shield in a single-phase center core transformer, and FIG. 2 is a sectional view taken along line II-II of FIG. 1 and 2, an inner winding 4 and an outer winding are provided inside a tank 7 that houses a transformer body including a main leg 1 and side legs 2, an upper yoke 3, an inner winding 4, and an outer winding 5. A magnetic metal shield 8 formed by laminating a thin silicon steel sheet having a width W at a position opposed to the wire 5 is provided with a longitudinal direction perpendicular to the longitudinal direction of the magnetic shield 8, and a holding member (not shown) is provided so that a predetermined gap is provided in the lateral direction. In order to reduce the loss in the magnetic shield 8, one slit 10 is provided at the center of the magnetic shield 8 in the entire thickness direction.

【0012】かかる構成法によれば、内側巻線4及び外
側巻線5からの漏れ磁束40が矢印で示す如く、磁性体
シールド8へ垂直に侵入してもスリット10が設けられ
ているために磁性体シールド8の表面を流れるうず電流
が分断されるために損失を低減できると共に局部過熱も
防止できる。一般に磁性体シールド8のうず電流による
損失は幅Wの2乗で増加するが、磁性体シールド8の中
央部にスリット10を1本設けているために幅Wが1/
2となり、損失は1/4と大幅に低減できるものであ
る。なお、スリット10の長さは磁性体シールド8の表
面を流れるうず電流を効果的に分断するために少なくと
も内側巻線4及び外側巻線5の高さよりも長くする必要
がある。
According to this configuration, the slit 10 is provided even if the leakage magnetic flux 40 from the inner winding 4 and the outer winding 5 penetrates vertically into the magnetic shield 8 as shown by the arrow. Since the eddy current flowing on the surface of the magnetic shield 8 is cut off, the loss can be reduced and local overheating can be prevented. Generally, the loss due to the eddy current of the magnetic shield 8 increases as the square of the width W. However, since one slit 10 is provided at the center of the magnetic shield 8, the width W is reduced by 1 /.
2 and the loss can be greatly reduced to 1/4. The length of the slit 10 needs to be longer than at least the height of the inner winding 4 and the outer winding 5 in order to effectively separate the eddy current flowing on the surface of the magnetic shield 8.

【0013】一方、スリット10は内側巻線4及び外側
巻線5からの漏れ磁束40が磁性体シールド8の表面へ
垂直に侵入する際に磁性体シールド8の表面をうず電流
が流れなくなる深さまで入れる必要があり、スリット1
0の深さは磁界計算などにより、事前に決定することが
できる。また、磁性体シールド8の表面にスリット10
を設ける作業は専用の機械、例えばシャーライン等を用
いることにより簡単にできるため安価な磁性体シールド
8を製作することが可能となる。
On the other hand, the slit 10 extends to a depth at which no eddy current flows on the surface of the magnetic shield 8 when the leakage flux 40 from the inner winding 4 and the outer winding 5 vertically enters the surface of the magnetic shield 8. It is necessary to insert, slit 1
The depth of 0 can be determined in advance by magnetic field calculation or the like. A slit 10 is formed on the surface of the magnetic shield 8.
Can be simplified by using a dedicated machine, for example, a shear line or the like, so that an inexpensive magnetic shield 8 can be manufactured.

【0014】図3,図4に他の実施例を示す。図3は単
相センタコア変圧器で磁性体シールドの構成を示す平面
図、図4が図3のI−Ι断面での要部断面図をそれぞれ
示している。図3及び図4から、わかるように内側巻線
4,外側巻線5と対向した位置に通常の磁性体シールド
8に比べて幅を広くした磁性体シールド9にスリット1
0を5本配置した構成となっている。
FIGS. 3 and 4 show another embodiment. FIG. 3 is a plan view showing the configuration of a magnetic shield in the single-phase center core transformer, and FIG. 4 is a cross-sectional view of a main part taken along the line I-Ι of FIG. As can be seen from FIGS. 3 and 4, a slit 1 is provided in the magnetic shield 9 wider than the normal magnetic shield 8 at a position facing the inner winding 4 and the outer winding 5.
In this configuration, five 0s are arranged.

【0015】かかる構成法によれば、通常の磁性体シー
ルド8に比べて、磁性体シールド幅を広くしているため
に間隙部が少なくなり磁性体シールド9からタンク7へ
移行する内側巻線4及び外側巻線5からの漏れ磁束40
を低減できると共に磁性体シールド板9により取付け範
囲が拡大しているためにシールド効果も向上できる。し
かも、内側巻線4及び外側巻線5からの漏れ磁束40が
矢印で示す如く、磁性体シールド9へ垂直に侵入しても
スリット10が5本設けられているために磁性体シール
ド9の表面を流れるうず電流が分断されるために損失を
低減できると共に局部過熱も防止できる。また、通常の
磁性体シールド8に比べて幅を広くしているために磁性
体シールド8の数が減り、押え金具(図示せず)の個数も
少なくなって磁性体シールド8,9の取付け作業効率も
向上させることができる。また、スリット10は磁性体
シールドでの発生損失を低減し、局部過熱も防止できる
ように多数設ける必要がある。
According to this configuration, the width of the magnetic shield is made wider than that of the ordinary magnetic shield 8 so that the gap is reduced, and the inner winding 4 that moves from the magnetic shield 9 to the tank 7 is formed. And the leakage flux 40 from the outer winding 5
Can be reduced, and the shielding effect can be improved because the mounting range is expanded by the magnetic shield plate 9. Moreover, even if the leakage magnetic flux 40 from the inner winding 4 and the outer winding 5 penetrates perpendicularly into the magnetic shield 9 as shown by arrows, the five slits 10 are provided, so that the surface of the magnetic shield 9 is formed. Since the eddy current flowing through the circuit is divided, loss can be reduced and local overheating can be prevented. In addition, since the width is wider than that of the normal magnetic shield 8, the number of the magnetic shields 8 is reduced, and the number of presser fittings (not shown) is also reduced. Efficiency can also be improved. Further, it is necessary to provide a large number of slits 10 so as to reduce the loss generated in the magnetic shield and prevent local overheating.

【0016】図5,図6に他の実施例を示す。図5は単
相4脚変圧器で磁性体シールドの構成を示す平面図、図
6が図5のI−Ι断面での正面図をそれぞれ示してい
る。図5,図6から、わかるように内側巻線4及び外側
巻線5と対向した位置に通常の磁性体シールド8に比べ
て幅を広くし、スリット10を5本入れた磁性体シール
ド9と巻線間(相間部)にスリット10がない磁性体シー
ルド11を配置した構成となっている。
FIGS. 5 and 6 show another embodiment. FIG. 5 is a plan view showing the configuration of a magnetic shield in a single-phase four-legged transformer, and FIG. 6 is a front view taken along the line II in FIG. As can be seen from FIGS. 5 and 6, the width of the magnetic shield 9 is set to be wider than that of the normal magnetic shield 8 at the position facing the inner winding 4 and the outer winding 5 and five slits 10 are inserted. A magnetic shield 11 having no slit 10 is provided between the windings (interphase).

【0017】かかる構成法によれば、内側巻線4及び外
側巻線5と対向する位置で内側巻線4及び外側巻線5か
らの漏れ磁束40が矢印で示す如く、磁性体シールド9
へ垂直に侵入してもスリット10が5本設けられている
ために磁性体シールド9の表面を流れるうず電流が分断
されるために損失を低減できると共に局部過熱も防止で
きる。
According to this configuration, the leakage flux 40 from the inner winding 4 and the outer winding 5 at the position facing the inner winding 4 and the outer winding 5 is indicated by the arrow, as shown by the arrow.
Even if it enters vertically, the eddy current flowing on the surface of the magnetic shield 9 is divided because the five slits 10 are provided, so that loss can be reduced and local overheating can be prevented.

【0018】しかも、巻線間では内側巻線4及び外側巻
線5からの漏れ磁束40が磁性体シールド8の幅方向と
平行に流れるためスリット10を設ける必要がなくな
り、磁性体シールド8の製作工数を低減できるメリット
がある。なお、本発明は単相センタコア及び単相4脚変
圧器を例にして述べているが、3相3脚,3相5脚変圧
器についても同様な効果が期待できるのは言うまでもな
い。
Further, since the magnetic flux leaking from the inner winding 4 and the outer winding 5 flows between the windings in parallel with the width direction of the magnetic shield 8, it is not necessary to provide the slit 10, and the magnetic shield 8 is manufactured. There is an advantage that man-hours can be reduced. Although the present invention has been described using a single-phase center core and a single-phase four-leg transformer as an example, it goes without saying that the same effect can be expected for a three-phase three-leg, three-phase five-leg transformer.

【0019】図7,図8に他の実施例を示すが、図7は
変圧器タンク7の屈曲部に沿うように磁性体曲げシール
ド板12を配置した縦断面図、図8が変圧器タンク7の
屈曲部の内側に設けられる磁性体曲げシールド12の直
線部にスリット10を1本入れた構成をそれぞれ示して
いる。
FIGS. 7 and 8 show another embodiment. FIG. 7 is a longitudinal sectional view in which a magnetic bending shield plate 12 is arranged along the bent portion of the transformer tank 7, and FIG. 8 is a transformer tank. 7 shows a configuration in which one slit 10 is inserted in the linear portion of the magnetic bending shield 12 provided inside the bent portion of FIG.

【0020】かかる構成法によれば、内側巻線4及び外
側巻線5と対向する磁性体曲げシールド12の直線部に
スリット10を設けているために内側巻線4及び外側巻
線5からの漏れ磁束40が矢印で示す如く、磁性体曲げ
シールド12の直線部へ垂直に侵入しても磁性体曲げシ
ールド12の直線部の表面を流れるうず電流が分断され
るために損失を低減できると共に局部過熱も防止でき
る。
According to this construction method, since the slit 10 is provided in the linear portion of the magnetic bending shield 12 facing the inner winding 4 and the outer winding 5, the inner winding 4 and the outer winding 5 As shown by the arrow, even if the leakage magnetic flux 40 enters the straight portion of the magnetic bending shield 12 perpendicularly, the eddy current flowing on the surface of the straight portion of the magnetic bending shield 12 is divided, so that the loss can be reduced and the local portion can be reduced. Overheating can be prevented.

【0021】しかも、タンク7の屈曲部の内側に沿うよ
うに磁性体曲げシールド12が設けられているために内
側巻線4及び外側巻線5からの漏れ磁束40が矢印で示
す如く、タンク7に移行することなく、すべての漏れ磁
束40が磁性体曲げシールド12を流れるためにタンク
7の損失を大幅に低減できる。また、磁性体曲げシール
ド12をタンク7の屈曲部に沿うように成形するには専
用の治具を用いることにより容易に製作することが可能
である。
In addition, since the magnetic bending shield 12 is provided along the inside of the bent portion of the tank 7, the leakage flux 40 from the inner winding 4 and the outer winding 5 is shown by an arrow as shown by an arrow. Since all the leakage magnetic fluxes 40 flow through the magnetic bending shield 12, the loss of the tank 7 can be greatly reduced. Further, the magnetic material bending shield 12 can be easily manufactured by using a dedicated jig to form the magnetic material bending shield 12 along the bent portion of the tank 7.

【0022】[0022]

【発明の効果】以下、本発明の静止誘導電器の磁気遮蔽
装置によれば、巻線からの漏れ磁束が磁性体シールド表
面へ垂直に侵入する際に磁性体シールド表面を流れるう
ず電流がスリットで分断されることにより、磁性体シー
ルドでの損失を低減すると共に局部過熱も防止できるこ
とが可能となる。
According to the magnetic shielding apparatus for a stationary induction device of the present invention, when the magnetic flux leaking from the winding perpendicularly enters the magnetic shield surface, the eddy current flowing through the magnetic shield surface passes through the slit. The division makes it possible to reduce the loss in the magnetic shield and to prevent local overheating.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す静止誘導電器の磁気遮
蔽装置の平面図。
FIG. 1 is a plan view of a magnetic shielding device of a stationary induction device showing one embodiment of the present invention.

【図2】本発明の一実施例を示す静止誘導電器の磁気遮
蔽装置の要部を示す斜視図。
FIG. 2 is a perspective view showing a main part of a magnetic shielding device for a stationary induction device according to an embodiment of the present invention.

【図3】本発明の一実施例を示す静止誘導電器の磁気遮
蔽装置の平面図。
FIG. 3 is a plan view of a magnetic shielding device of the stationary induction device showing one embodiment of the present invention.

【図4】本発明の一実施例を示す静止誘導電器の磁気遮
蔽装置の要部を示す斜視図。
FIG. 4 is a perspective view showing a main part of a magnetic shielding device for a stationary induction device according to an embodiment of the present invention.

【図5】本発明の一実施例を示す静止誘導電器の磁気遮
蔽装置の平面図。
FIG. 5 is a plan view of the magnetic shielding device of the stationary induction device showing one embodiment of the present invention.

【図6】本発明の一実施例を示す静止誘導電器の磁気遮
蔽装置の正面図。
FIG. 6 is a front view of the magnetic shielding device of the stationary induction device showing one embodiment of the present invention.

【図7】本発明の一実施例を示す静止誘導電器の磁気遮
蔽装置の縦断面図。
FIG. 7 is a longitudinal sectional view of a magnetic shielding device for a stationary induction device showing one embodiment of the present invention.

【図8】本発明の一実施例を示す静止誘導電器の磁気遮
蔽装置の要部を示す斜視図。
FIG. 8 is a perspective view showing a main part of a magnetic shielding device of a stationary induction device showing one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…主脚、2…側脚、3…上部継鉄部、4…内側巻線、
5…外側巻線、6,7…タンク、8,9,11…磁性体
シールド、10…スリット、12…磁性体曲げシール
ド、40…漏れ磁束。
DESCRIPTION OF SYMBOLS 1 ... Main leg, 2 ... Side leg, 3 ... Upper yoke part, 4 ... Inner winding,
5 ... outer winding, 6,7 ... tank, 8,9,11 ... magnetic shield, 10 ... slit, 12 ... magnetic bending shield, 40 ... leakage magnetic flux.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 工藤 栄 茨城県日立市国分町一丁目1番1号 株式 会社日立製作所国分工場内 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Sakae Kudo 1-1-1, Kokubuncho, Hitachi City, Ibaraki Prefecture Inside the Kokubu Plant of Hitachi, Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】鉄心及び巻線を有する誘導電器本体を収納
するタンクの内側に磁性体を積層してなる磁性体シール
ドを取り付けた静止誘導電器の遮蔽装置において、前記
磁性体シールドの直線部にスリットを設けたことを特徴
とする静止誘導電器の磁気遮蔽装置。
1. A static induction device shielding apparatus in which a magnetic material shield formed by laminating a magnetic material is mounted inside a tank accommodating an induction device main body having an iron core and a winding, wherein a linear portion of the magnetic material shield is provided. A magnetic shielding device for a stationary induction device, comprising a slit.
【請求項2】磁性体シールドの直線部に設けられるスリ
ットの長さを巻線の高さよりも長くしたことを特徴とす
る請求項1記載の静止誘導電器の磁気遮蔽装置。
2. The magnetic shielding device for a stationary induction electric device according to claim 1, wherein the length of the slit provided in the linear portion of the magnetic shield is longer than the height of the winding.
【請求項3】内側巻線及び外側巻線と対向する位置に設
けられる磁性体シールド幅を通常の磁性体シールド幅よ
りも広くし、かつスリットを複数設けたことを特徴とす
る請求項1記載の静止誘導電器の磁気遮蔽装置。
3. The magnetic shield according to claim 1, wherein a width of the magnetic shield provided at a position facing the inner winding and the outer winding is wider than a normal magnetic shield width, and a plurality of slits are provided. Magnetic shielding device for stationary induction equipment.
【請求項4】鉄心及び巻線を有する誘導電器本体を収納
するタンク屈曲部の内側に沿うように磁性体を積層して
なる磁性体曲げシールドを取り付けた静止誘導電器の遮
蔽装置において、前記磁性体曲げシールドの直線部にス
リットを設けたことを特徴とする静止誘導電器の磁気遮
蔽装置。
4. A shielding device for a stationary induction electric machine to which a magnetic material bending shield formed by laminating magnetic materials along the inside of a bent portion of a tank accommodating an induction electric device main body having an iron core and a winding is provided. A magnetic shielding device for a stationary induction device, wherein a slit is provided in a straight portion of a body bending shield.
JP30527197A 1997-11-07 1997-11-07 Magnetic shielding device for stationary induction electrical apparatus Pending JPH11144981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30527197A JPH11144981A (en) 1997-11-07 1997-11-07 Magnetic shielding device for stationary induction electrical apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30527197A JPH11144981A (en) 1997-11-07 1997-11-07 Magnetic shielding device for stationary induction electrical apparatus

Publications (1)

Publication Number Publication Date
JPH11144981A true JPH11144981A (en) 1999-05-28

Family

ID=17943100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30527197A Pending JPH11144981A (en) 1997-11-07 1997-11-07 Magnetic shielding device for stationary induction electrical apparatus

Country Status (1)

Country Link
JP (1) JPH11144981A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160086726A1 (en) * 2014-09-19 2016-03-24 Hitachi, Ltd. Transformer
CN111934258A (en) * 2020-08-04 2020-11-13 中国能源建设集团广东省电力设计研究院有限公司 Underground substation electromagnetic insulation outer wall and tunnel connecting device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160086726A1 (en) * 2014-09-19 2016-03-24 Hitachi, Ltd. Transformer
TWI595517B (en) * 2014-09-19 2017-08-11 Hitachi Ltd Ground induction electrical appliances
US9812250B2 (en) * 2014-09-19 2017-11-07 Hitachi, Ltd. Transformer
CN111934258A (en) * 2020-08-04 2020-11-13 中国能源建设集团广东省电力设计研究院有限公司 Underground substation electromagnetic insulation outer wall and tunnel connecting device

Similar Documents

Publication Publication Date Title
KR100208483B1 (en) Cylinderical type linear motor
TWI595517B (en) Ground induction electrical appliances
JP6158579B2 (en) Static induction machine
JP6407549B2 (en) Static induction machine
JP3646595B2 (en) Static induction machine
JP2010171313A (en) Stationary induction electrical apparatus
JPH11144981A (en) Magnetic shielding device for stationary induction electrical apparatus
JP2008177325A (en) Stationary induction apparatus
JP3713172B2 (en) Static induction machine
JP2000348953A (en) Magnetic shield for stationary induction apparatus
JP7365120B2 (en) stationary induction equipment
JPH0110915Y2 (en)
JP7149908B2 (en) Static induction device
JP6739359B2 (en) Transformer
KR200203543Y1 (en) Reactor structure with air gap on magnetic pass
JP2568559Y2 (en) Foil wound transformer
JP2001035733A (en) Magnetic shield device for stationary induction electrical apparatus
JP2008041929A (en) Stationary induction electric appliance
JPH04158505A (en) Reactor
JPH0423294Y2 (en)
JPH08124767A (en) Stationary induction electric apparatus
JPS58279Y2 (en) stationary induction appliance
JP4282123B2 (en) Magnetic shield type static induction machine
JP3647548B2 (en) Static induction machine
JP2002075751A (en) Stationary induction apparatus