JPH1114292A - Method and apparatus for monitoring clogging of air-cooled heat exchanger for stationary induction electric equipment - Google Patents

Method and apparatus for monitoring clogging of air-cooled heat exchanger for stationary induction electric equipment

Info

Publication number
JPH1114292A
JPH1114292A JP18464397A JP18464397A JPH1114292A JP H1114292 A JPH1114292 A JP H1114292A JP 18464397 A JP18464397 A JP 18464397A JP 18464397 A JP18464397 A JP 18464397A JP H1114292 A JPH1114292 A JP H1114292A
Authority
JP
Japan
Prior art keywords
tube
wind
cooling pipe
clogging
differential pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18464397A
Other languages
Japanese (ja)
Inventor
Isao Tsurushima
功 鶴島
Takashi Ogawa
隆司 小川
Hisashi Kubota
恒 久保田
Kazuki Iizuka
一樹 飯塚
Masayuki Kamata
正幸 鎌田
Toshifumi Gamo
敏史 蒲生
Takao Hirai
孝雄 平井
Tatsumi Takizawa
辰美 滝沢
Hideo Namae
英夫 生江
Hajime Watanabe
一 渡辺
Fukuji Nakamura
福治 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takaoka Toko Co Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Takaoka Electric Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Takaoka Electric Mfg Co Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP18464397A priority Critical patent/JPH1114292A/en
Publication of JPH1114292A publication Critical patent/JPH1114292A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transformer Cooling (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To facilitate monitoring of clogging of a cooling tube by monitoring clogging of the tube according to change of pressure loss. SOLUTION: Wind supplied from a blower 10 is exhausted outdoor from an exhaust duct 13 through a cooling tube 5. And, when dust is adhered to the tube 5, an opening area of the tube 5 is gradually reduced by the dust. And, the wind scarcely passes and simultaneously pressure rises between the blower 10 and the tube 5. When a differential pressure of the pressure of the wind is measured by a differential pressure gage 4 at front and rear sides of the tube 5, wind volume passing the tube 5 can be known and simultaneously clogging state of the tube can be also known. Thus, a differential pressure of the wind at front and rear sides of the tube 5 can be simply measured in a short time. And, the wind volume can be known from the differential pressure measured result. Hence, the clogging of the tube 5 can be easily monitored.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は変圧器,リアクトル
等の静止誘導電器用風冷式熱交換器の冷却管の目詰り監
視方法及びその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for monitoring clogging of a cooling pipe of a wind-cooled heat exchanger for a stationary induction device such as a transformer or a reactor.

【0002】[0002]

【従来の技術】風冷式熱交換器は図4のように構成して
屋内に設置され、静止誘導電器の運転によって温められ
た絶縁油が熱交換器の機器接続管6から熱交換部7の冷
却管5に導かれる。冷却管5は図5のように導油管8と
放熱フィン9で構成され、導油管8内に絶縁油を流し放
熱フィン9側を送風機10で強制通風して絶縁油の冷却
を行っている。冷却管5の目詰り診断方法としては一般
に送風機10の吸気口部で風量を測定し熱交換器の定格
風量や風量管理値と比較して風量が下回る場合は冷却管
5が目詰りしていると判断し、冷却管5を洗浄して付着
塵埃を除去している。
2. Description of the Related Art An air-cooled heat exchanger is constructed as shown in FIG. 4 and is installed indoors. To the cooling pipe 5. As shown in FIG. 5, the cooling pipe 5 is composed of an oil guide tube 8 and heat radiating fins 9, and the insulating oil flows through the oil guide tube 8 to forcibly ventilate the heat radiating fin 9 with a blower 10 to cool the insulating oil. As a method of diagnosing clogging of the cooling pipe 5, generally, the air flow is measured at the intake port of the blower 10, and when the air flow is lower than the rated air flow or the air flow control value of the heat exchanger, the cooling pipe 5 is clogged. Therefore, the cooling pipe 5 is washed to remove the attached dust.

【0003】[0003]

【発明が解決しようとする課題】上述の通り、風冷式熱
交換器の冷却管5の塵埃付着による目詰り診断方法とし
て送風機10の吸気口部で風量の測定を実施するが、測
定方法は吸気口12を通過する風の風速を熱電対形風速
計等により測定して吸気口の断面積を乗じて求められ
る。しかし、実際の風量測定では測定誤差を小さくする
ために一般に風速測定点11は図6のように16箇所又
はそれ以上測定して算術平均風速を算出しており、風量
の測定は風速測定点11の位置を決め、各測定での風速
の測定、平均風速の算出、吸気口12の寸法測定、そし
て風量算出の手順を踏まないと求められないわずらわし
さがあった。
As described above, as a method for diagnosing clogging due to dust adhering to the cooling pipe 5 of the air-cooled heat exchanger, the air volume is measured at the intake port of the blower 10, but the measuring method is as follows. The wind speed of the wind passing through the inlet 12 is measured by a thermocouple-type anemometer or the like, and is obtained by multiplying the cross-sectional area of the inlet. However, in actual airflow measurement, in order to reduce the measurement error, the wind speed measurement points 11 are generally measured at 16 or more points as shown in FIG. 6 to calculate the arithmetic average wind speed. Is determined, the wind speed is measured in each measurement, the average wind speed is calculated, the dimensions of the intake port 12 are measured, and the air volume calculation procedure is required.

【0004】そこで本発明の目的は、風冷式熱交換器の
冷却管5が塵埃付着で目詰りし通風に対する圧力損失が
大きくなる事に着目して、圧力損失の変化で冷却管5の
目詰りを監視する方法及びその装置を提供することにあ
る。
Accordingly, an object of the present invention is to pay attention to the fact that the cooling pipe 5 of the air-cooled heat exchanger is clogged with dust and the pressure loss against ventilation increases, and the change in pressure loss causes the cooling pipe 5 It is an object of the present invention to provide a method and an apparatus for monitoring clogging.

【0005】[0005]

【課題を解決するための手段】本発明は風冷式熱交換器
の冷却管5が塵埃付着で目詰りし通風に対する圧力損失
が大きくなる事を利用して、圧力損失の変化で冷却管5
の目詰り状態を監視するものであり、送風機10から送
り出された風は冷却管部を通過して排気ダクト13から
屋外に排出されるが、冷却管5に塵埃が付着すると塵埃
で冷却管部の開口面積が徐々に小さくなり風が通りにく
くなると同時に、送風機10と冷却管5の間で圧力が上
昇する。この時の送風機10と冷却管5の間の圧力と冷
却管部の通過風量の関係は図3に示す送風機10の「圧
力−風量」特性曲線にそって変化し、例えば図3で冷却
管に塵埃付着が無い場合に風量Q1,圧力P1とすれ
ば、冷却管5が塵埃付着で目詰りすると風量Q2,圧力
P2に変化する。従って、冷却管部前後で風の圧力(P
2−P1)の差圧P3を測定すれば図3に示す曲線と照
合して冷却管部通過風量を知る事が出来ると同時に冷却
管の目詰り状況も知る事が出来る。
The present invention utilizes the fact that the cooling pipe 5 of an air-cooled heat exchanger is clogged with dust and increases the pressure loss with respect to ventilation.
The air blown out from the blower 10 passes through the cooling pipe portion and is exhausted from the exhaust duct 13 to the outside. However, when dust adheres to the cooling pipe 5, the cooling pipe portion is exposed to dust. At the same time as the opening area of the cooling fan 5 becomes smaller and the wind becomes harder to pass. At the same time, the pressure between the blower 10 and the cooling pipe 5 increases. At this time, the relationship between the pressure between the blower 10 and the cooling pipe 5 and the amount of air passing through the cooling pipe portion changes along the "pressure-air flow" characteristic curve of the blower 10 shown in FIG. If the air volume is Q1 and the pressure is P1 when there is no dust adhesion, the air volume changes to Q2 and the pressure P2 when the cooling pipe 5 is clogged with the dust. Therefore, the wind pressure (P
By measuring the differential pressure P3 of 2-P1), it is possible to know the amount of air passing through the cooling pipe portion by referring to the curve shown in FIG. 3 and at the same time to know the clogging state of the cooling pipe.

【0006】上記による本発明の冷却管部前後の差圧測
定による冷却管目詰り監視では、差圧を測定するだけで
風量と冷却管の目詰り状況を知る事が出来る。
In the monitoring of clogging of the cooling pipe by measuring the differential pressure across the cooling pipe section according to the present invention, the air volume and the clogging state of the cooling pipe can be known only by measuring the differential pressure.

【0007】[0007]

【発明の実施の形態】本発明の静止誘導電器用風冷式熱
交換器の目詰り監視方法及びその装置を図面に基づいて
説明する。図1は本発明の一実施例の構造図であり、図
2は差圧測定時に使用する差圧計接続口を示す。冷却管
部前後の風洞2及び排気風洞3に図2に示す差圧計接続
口1を設け、差圧計4を差圧計接続口1に接続すれば冷
却管部の通風に対する風の差圧を簡単に短時間で測定す
ることが出来る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method and an apparatus for monitoring clogging of a wind-cooled heat exchanger for a stationary induction electric machine according to the present invention will be described with reference to the drawings. FIG. 1 is a structural view of one embodiment of the present invention, and FIG. 2 shows a differential pressure gauge connection port used for measuring a differential pressure. The differential pressure gauge connection port 1 shown in FIG. 2 is provided in the wind tunnel 2 and the exhaust wind tunnel 3 before and after the cooling pipe section, and the differential pressure gauge 4 is connected to the differential pressure gauge connection port 1 to easily reduce the differential pressure of the wind with respect to the ventilation of the cooling pipe section. It can be measured in a short time.

【0008】測定結果に対する風量換算は、初期値とし
て風冷式熱交換器据付時、又は、既設品の場合は冷却管
5洗浄後の風量と冷却管部の差圧を測定しておき、その
データを図3に示す送風機の「圧力−風量」特性曲線の
風量Q1,圧力P1とする。冷却管目詰り時の前記差圧
測定結果をP3とすればP1+P3=P2となり図3か
ら圧力P2時の風量を簡単に読み取る事ができ、風冷式
熱交換器の最低風量管理値を決めておけば差圧P3の最
大値が決まりそれを冷却管の目詰り限度管理値とする事
が出来る。
[0008] The air volume conversion for the measurement results is carried out as an initial value when the air-cooled heat exchanger is installed, or in the case of an existing product, the air volume after cleaning the cooling pipe 5 and the differential pressure of the cooling pipe section are measured. The data is assumed to be the air volume Q1 and the pressure P1 of the "pressure-air volume" characteristic curve of the blower shown in FIG. Assuming that the differential pressure measurement result when the cooling pipe is clogged is P3, P1 + P3 = P2, and the air volume at the pressure P2 can be easily read from FIG. 3, and the minimum air volume control value of the air-cooled heat exchanger is determined. If this is done, the maximum value of the differential pressure P3 is determined, and can be used as the clogging limit management value of the cooling pipe.

【0009】[0009]

【発明の効果】以上のように本発明によれば、冷却管部
前後の風の差圧を簡単に短時間で測定でき、差圧測定結
果から風量を知る事が出来るので冷却管の目詰り監視を
容易に行う事が出来る。
As described above, according to the present invention, the differential pressure of the wind before and after the cooling pipe section can be easily measured in a short time, and the flow rate can be known from the differential pressure measurement result. Monitoring can be performed easily.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の風冷式熱交換器差圧測定の一実施例を
示す構造図であり、(A)は正面図(B)は側面図であ
る。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a structural view showing one embodiment of the air-cooled heat exchanger differential pressure measurement of the present invention, wherein (A) is a front view and (B) is a side view.

【図2】本発明の差圧計取付口の一例を示す断面図であ
る。
FIG. 2 is a sectional view showing an example of a differential pressure gauge mounting port of the present invention.

【図3】送風機の「圧力−風量」特性曲線の一例であ
る。
FIG. 3 is an example of a “pressure-air flow” characteristic curve of the blower.

【図4】風冷式熱交換器の一例を示す外観図であり、
(A)は正面図(B)は側面図である。
FIG. 4 is an external view showing an example of an air-cooled heat exchanger;
(A) is a front view and (B) is a side view.

【図5】冷却管の一例を示す図であり(A)は正面図
(B)は側面図である。
5A and 5B are views showing an example of a cooling pipe, wherein FIG. 5A is a front view and FIG. 5B is a side view.

【図6】送風機吸気口の風速測定点の一例を示す図であ
る。
FIG. 6 is a diagram illustrating an example of a wind speed measurement point at a blower inlet.

【符号の説明】[Explanation of symbols]

1 差圧計接続口 2 風洞 3 排気風洞 4 差圧計 5 冷却管 6 機器接続管 7 熱交換部 8 導油管 9 放熱フィン 10 送風機 11 風速測定点 12 吸気口 13 排気ダクト DESCRIPTION OF SYMBOLS 1 Differential pressure gauge connection port 2 Wind tunnel 3 Exhaust wind tunnel 4 Differential pressure gauge 5 Cooling pipe 6 Equipment connection pipe 7 Heat exchange part 8 Oil guide pipe 9 Radiation fin 10 Blower 11 Wind speed measurement point 12 Inlet 13 Exhaust duct

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小川 隆司 東京都千代田区神田神保町1丁目50番地 株式会社高岳製作所神田分室内 (72)発明者 久保田 恒 東京都千代田区神田神保町1丁目50番地 株式会社高岳製作所神田分室内 (72)発明者 飯塚 一樹 東京都千代田区内幸町1丁目1番3号 東 京電力株式会社内 (72)発明者 鎌田 正幸 東京都渋谷区神南1丁目10番1号 東京電 力株式会社東京南支店内 (72)発明者 蒲生 敏史 東京都渋谷区神南1丁目10番1号 東京電 力株式会社東京南支店内 (72)発明者 平井 孝雄 東京都新宿区新宿5丁目4番9号 東京電 力株式会社東京西支店内 (72)発明者 滝沢 辰美 東京都港区芝公園2丁目2番4号 東京電 力株式会社銀座支店内 (72)発明者 生江 英夫 東京都荒川区東尾久5丁目31番11号 東京 電力株式会社東京東支店内 (72)発明者 渡辺 一 栃木県小山市大字出井840番地 高岳金属 株式会社内 (72)発明者 中村 福治 栃木県小山市大字出井840番地 高岳金属 株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Takashi Ogawa 1-50 Kanda Jimbocho, Chiyoda-ku, Tokyo Takada Manufacturing Co., Ltd. (72) Inventor Kazuki Iizuka 1-1-3 Uchisaiwai-cho, Chiyoda-ku, Tokyo Inside Tokyo Electric Power Company (72) Inventor Masayuki Kamada 1-1-1 Jinnan, Shibuya-ku, Tokyo TEPCO Tokyo Minami Branch (72) Inventor Toshifumi Gamo 1-10-1 Jinnan, Shibuya-ku, Tokyo Tokyo Electric Power Company Tokyo Minami Branch (72) Inventor Takao Hirai 5-4-2 Shinjuku, Shinjuku-ku, Tokyo Tokyo Electric Power Company, Tokyo West Branch (72) Inventor Tatsumi Takizawa 2-4-2 Shiba Park, Minato-ku, Tokyo Tokyo Electric Power Company Inside the Ginza Branch (72) Inventor Hideo Ikue 5-31-11 Higashiogu, Arakawa-ku, Tokyo Tokyo Electric Power Co., Inc.Tokyo East Branch (72) Inventor Fukuharu Nakamura 840 Izui, Oyama, Tochigi Pref.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 静止誘導電器用風冷式熱交換器の冷却管
の目詰りによって生じる冷却管部の風の圧力損失増加を
冷却管部前後で差圧計により差圧を測定し、差圧の変化
で冷却管部の目詰り状態を監視すること及び冷却管部前
後に設けた差圧計接続口と差圧計で構成することを特徴
とした静止誘導電器用風冷式熱交換器の目詰り監視方法
及びその装置。
An increase in the pressure loss of wind in a cooling pipe caused by clogging of a cooling pipe of a wind-cooled heat exchanger for a stationary induction electric device is measured by a differential pressure gauge before and after the cooling pipe. Monitoring the clogging state of the cooling pipe part by the change and monitoring the clogging of the air-cooled heat exchanger for stationary induction electric appliances characterized by comprising a differential pressure gauge connection port provided before and after the cooling pipe part and a differential pressure gauge Method and apparatus.
JP18464397A 1997-06-26 1997-06-26 Method and apparatus for monitoring clogging of air-cooled heat exchanger for stationary induction electric equipment Pending JPH1114292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18464397A JPH1114292A (en) 1997-06-26 1997-06-26 Method and apparatus for monitoring clogging of air-cooled heat exchanger for stationary induction electric equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18464397A JPH1114292A (en) 1997-06-26 1997-06-26 Method and apparatus for monitoring clogging of air-cooled heat exchanger for stationary induction electric equipment

Publications (1)

Publication Number Publication Date
JPH1114292A true JPH1114292A (en) 1999-01-22

Family

ID=16156830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18464397A Pending JPH1114292A (en) 1997-06-26 1997-06-26 Method and apparatus for monitoring clogging of air-cooled heat exchanger for stationary induction electric equipment

Country Status (1)

Country Link
JP (1) JPH1114292A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022195768A1 (en) * 2021-03-17 2022-09-22 東芝三菱電機産業システム株式会社 Power conversion system and maintenance assistance device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022195768A1 (en) * 2021-03-17 2022-09-22 東芝三菱電機産業システム株式会社 Power conversion system and maintenance assistance device

Similar Documents

Publication Publication Date Title
JP3757269B2 (en) Method and apparatus for reducing pressure fluctuation in wind path in recirculating supersonic wind tunnel
US6086330A (en) Low-noise, high-performance fan
CN102985761B (en) Air conditioner
US6185481B1 (en) Air cooled electronic equipment apparatus
CN207198768U (en) A kind of computer radiating denoising device
CN111351148A (en) Electrical box radiating assembly, control method and air conditioner
JPH1114292A (en) Method and apparatus for monitoring clogging of air-cooled heat exchanger for stationary induction electric equipment
CA2261385C (en) Method and apparatus for measuring the quantity of outdoor air processed by an air preconditioning module
CN111698892B (en) Compact noise-suppression air cooling system and design method thereof
CN113782940A (en) High-speed airflow through type air-cooling heat dissipation airborne antenna
JP2006153332A (en) Outdoor unit for air conditioner
JPS6210552A (en) Air flow deflection device for air conditioner
EP1245908B1 (en) Air conditioner and indoor unit therefor
JP3463302B2 (en) Compressor cooling system
CN211575275U (en) Air conditioner indoor unit and air conditioner
JP3065290B2 (en) Air conditioner heat exchanger
Monroe Improving cooling tower fan system efficiencies
JPH06341660A (en) Heat exchanger for air conditioner
JPH0692226A (en) Control device for vehicle
JPH0638546A (en) Forcedly-air-cooled inverter apparatus
JPH068409Y2 (en) Air conditioner indoor unit
JP2004139724A (en) Disk array device
CN102235386B (en) Airflow driving device and applicative air condition thereof
JPS6030921A (en) Air conditioner
JPH07176182A (en) Magnetic disk device