JPH11142821A - Optical response element - Google Patents

Optical response element

Info

Publication number
JPH11142821A
JPH11142821A JP9305701A JP30570197A JPH11142821A JP H11142821 A JPH11142821 A JP H11142821A JP 9305701 A JP9305701 A JP 9305701A JP 30570197 A JP30570197 A JP 30570197A JP H11142821 A JPH11142821 A JP H11142821A
Authority
JP
Japan
Prior art keywords
liquid crystal
polymer
light
polarized light
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9305701A
Other languages
Japanese (ja)
Other versions
JP4004604B2 (en
Inventor
Kunihiro Ichimura
國宏 市村
Takahiro Seki
隆広 関
Shinya Morino
慎也 森野
Akihisa Akiyama
陽久 秋山
Akira Kaiho
晶 海保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP30570197A priority Critical patent/JP4004604B2/en
Publication of JPH11142821A publication Critical patent/JPH11142821A/en
Application granted granted Critical
Publication of JP4004604B2 publication Critical patent/JP4004604B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enable writing and rewriting with light by mixing a liquid crystal with a monomer or oligomer having a photoresponsive part, polymerizing the mixture to obtain a polymer dispersion-type liquid crystal and irradiating the liquid crystal with polarized light. SOLUTION: The polymer dispersion-type liquid crystal used is prepared by mixing a liquid crystal and a monomer or oligomer having a photoresponsive part and then polymerizing the mixture, and this liquid crystal is a polarizing polymer dispersion-type liquid crystal in which the liquid crystal is oriented by irradiation of polarized light. As for the monomer having a photoresponsive part to be used, monomers which are polymerized by heat or light are usually used, and acryl monomers, acrylic acid monomers, methacrylic acid monomers, vinyl monomers and epoxy monomers are preferable. As for the oligomer having a photoresponsive part, oligomers which are polymerized by heat or light are used, and urethane acrylates, epoxy acrylates, polyester acrylates, polyether acrylates and polyesterurethane acrylates are preferable.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光による配向変化
を利用した新規な液晶光学素子に関する。更に詳しく
は、光応答可能な部位を含むモノマー若しくはオリゴマ
ーと液晶とを混合し、重合させる事により得られた高分
子分散型液晶であって、偏光を照射することにより液晶
が配向する高分子分散型液晶に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel liquid crystal optical element utilizing a change in alignment by light. More specifically, a polymer-dispersed liquid crystal obtained by mixing and polymerizing a liquid crystal with a monomer or oligomer containing a photoresponsive site, wherein the liquid crystal is oriented by irradiating polarized light. Related to liquid crystal.

【0002】[0002]

【従来の技術】液晶材料を用いた液晶光学素子として
は、電気的作用による液晶配向変化を利用したものと、
光の作用により引き起こされる液晶相変化や配向変化を
利用したものがある。これらの変化を使い情報の保存、
消去を行い光学素子としての機能を果たす事ができる。
2. Description of the Related Art As a liquid crystal optical element using a liquid crystal material, there are a liquid crystal optical element using a change in liquid crystal alignment by an electric action,
Some of them utilize a liquid crystal phase change or alignment change caused by the action of light. Use these changes to store information,
Erasing can be performed to function as an optical element.

【0003】電気的な作用を利用する方法としては、 1.ネマチック液晶を、透明電極層を有する2枚の基板
に挟み、液晶相の複屈折、旋光性、光散乱性を利用する
もの。 2.キラルスメクチック液晶の双安定性や、複屈折性を
利用するもの。 3.コレステリック液晶の相転移を利用するもの。 4.ネマチック液晶とモノマーとを混ぜ合わせて重合し
た高分子分散型液晶の電界変化による光散乱を利用する
もの(特開平1−312527号公報参照)。が知られ
ている。
[0003] As a method of utilizing the electric action, there are the following methods. A device in which a nematic liquid crystal is sandwiched between two substrates having a transparent electrode layer and utilizes the birefringence, optical rotation, and light scattering of the liquid crystal phase. 2. It uses the bistability and birefringence of chiral smectic liquid crystals. 3. A device that uses the phase transition of cholesteric liquid crystal. 4. A device utilizing light scattering due to an electric field change of a polymer-dispersed liquid crystal obtained by mixing and polymerizing a nematic liquid crystal and a monomer (see Japanese Patent Application Laid-Open No. Hei 1-312527). It has been known.

【0004】一方、光の作用により引き起こされる液晶
の相変化や配向変化を利用する方法としては、 1.低分子、高分子ネマティック液晶中に光学応答可能
な部位を持つ化合物を溶解させたもの(「オプトニュー
ス」1993年第3号第16頁参照)。 2.光学応答可能な部位を基板表面に化学的に結合させ
たもの(K.Ichimura,Y.Suzuki,T.Seki,A.Hosoki,K.Aok
i,Langmuir,4,1214(1988)参照)。が知られている。
[0004] On the other hand, a method utilizing a phase change and an orientation change of a liquid crystal caused by the action of light includes: A low molecular weight, high molecular weight nematic liquid crystal in which a compound having an optically responsive site is dissolved (see "Opto News", 1993, No. 3, page 16). 2. Optically responsive sites chemically bonded to the substrate surface (K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, K. Aok
i, Langmuir, 4, 1214 (1988)). It has been known.

【0005】[0005]

【発明が解決しようとする課題】従来の電気的な作用に
よる光学変化を利用する光学素子では、電極の大きさ、
形状により表示の解像度は制約を受け、高精細化が困難
であった。一方、光書き込みによる表示方式では、電極
の制約は受けず高精細な表示が可能である。しかし、光
学応答性を持つ化合物が液晶中に溶解していたり、基板
の表面にのみ存在する場合は、光により光応答可能部位
が誘起された後、周囲の液晶分子の形態や配向を変化さ
せ情報の書き込みを行うためには、数十秒から数百秒の
長い応答時間を要していた。また、光応答可能部位の液
晶への規制力が弱いため、数十秒で元の状態に戻り、光
による光学変化を長時間保存させることは困難であっ
た。
In a conventional optical element utilizing an optical change by an electric action, the size of an electrode,
The display resolution is restricted by the shape, and it is difficult to achieve high definition. On the other hand, in a display method using optical writing, high-definition display is possible without being restricted by electrodes. However, when a compound having optical responsiveness is dissolved in the liquid crystal or exists only on the surface of the substrate, after the light responsive site is induced by light, the morphology and orientation of the surrounding liquid crystal molecules are changed. In order to write information, a long response time of several tens to several hundreds of seconds was required. In addition, since the ability to control the liquid crystal in the light responsive portion is weak, the liquid crystal returns to its original state in several tens of seconds, and it is difficult to preserve optical changes due to light for a long time.

【0006】本発明が解決しようとする課題は、従来の
技術の欠点を補い、光書き込みによる情報を長時間保存
でき、書き換えが簡単に行える高精細表示が可能な光応
答素子を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a photoresponse element which compensates for the drawbacks of the prior art, can store information by optical writing for a long time, and can perform high-definition display which can be easily rewritten. is there.

【0007】[0007]

【課題を解決するための手段】本発明は、上記課題を解
決するために、 1.光応答可能な部位を含むモノマー若しくはオリゴマ
ーと液晶とを混合し、重合させる事により得られた高分
子分散型液晶であって、偏光を照射することにより液晶
が配向することを特徴とする高分子分散型液晶。 2.光応答可能な部位を含むモノマー若しくはオリゴマ
ーが、アクリルモノマー、アクリル酸モノマー、メタク
リル酸モノマービニルモノマー、エポキシモノマー若し
くはウレタンアクリレート、エポキシアクリレート、ポ
リエステルアクリレート、ポリエーテルアクリレート、
ポリエステルウレタンアクリレートの少なくと1種であ
ることを特徴とする上記1記載の高分子分散型液晶。 3.光応答可能な部位がアゾベンゼン誘導体、スチルベ
ン誘導体、スピロピラン誘導体、α-アリール-β-ケト
酸エステル誘導体又は、カルコン誘導体の少なくとも1
種である事を特徴とする上記1記載の高分子分散型液
晶。 4.光応答可能な部位がアゾベンゼンであることを特徴
とする上記1記載の高分子分散型液晶。 5.偏光を照射することにより得られた液晶の配向が、
偏光を再度照射することにより、再配向することを特徴
とする上記1記載の高分子分散型液晶。 6.照射する偏光光が可視偏光であることを特徴とする
上記1記載の高分子分散型液晶。を前記解決手段とし
た。
The present invention has been made in order to solve the above problems. A polymer-dispersed liquid crystal obtained by mixing and polymerizing a liquid crystal with a monomer or oligomer containing a photoresponsive portion, wherein the liquid crystal is oriented by irradiating polarized light. Dispersion type liquid crystal. 2. Monomers or oligomers containing photoresponsive sites are acrylic monomers, acrylic acid monomers, methacrylic acid monomer vinyl monomers, epoxy monomers or urethane acrylates, epoxy acrylates, polyester acrylates, polyether acrylates,
2. The polymer-dispersed liquid crystal according to the above 1, wherein the liquid crystal is at least one kind of polyester urethane acrylate. 3. The photoresponsive site is at least one of an azobenzene derivative, a stilbene derivative, a spiropyran derivative, an α-aryl-β-keto acid ester derivative or a chalcone derivative
2. The polymer-dispersed liquid crystal according to the above 1, which is a seed. 4. 2. The polymer-dispersed liquid crystal according to the above item 1, wherein the site capable of responding to light is azobenzene. 5. The orientation of the liquid crystal obtained by irradiating polarized light is
2. The polymer-dispersed liquid crystal according to the above item 1, wherein the liquid crystal is realigned by irradiating polarized light again. 6. 2. The polymer-dispersed liquid crystal according to the above 1, wherein the polarized light to be irradiated is visible polarized light. As the above-mentioned solution.

【0008】本発明者らは、上記課題を解決するため、
光による液晶光学素子について鋭意研究を重ねた結果、
光応答可能な部位を含むモノマー若しくはオリゴマーと
液晶とを混合し、重合させる事により高分子分散型液晶
を作成し、偏光を照射し液晶を配向させることにより、
光書き込みによる情報を長時間保存でき、書き換えが簡
単に行える高精細表示が可能な光応答性液晶光学素子を
見出し、本発明を完成するに至った。
[0008] To solve the above problems, the present inventors have
As a result of intensive studies on liquid crystal optical elements using light,
By mixing and polymerizing a liquid crystal with a monomer or oligomer containing a site that can respond to light, polymer-dispersed liquid crystal is created, and by irradiating polarized light to orient the liquid crystal,
The present inventors have found a photoresponsive liquid crystal optical element capable of storing information by optical writing for a long time and capable of easily rewriting and capable of high-definition display, and have completed the present invention.

【0009】即ち、本発明は、上記課題を解決するため
に光応答可能な部位を含むモノマー若しくはオリゴマー
と液晶とを混合し、重合させる事により得られた高分子
分散型液晶であって、偏光を照射することにより液晶が
配向することを特徴とする高分子分散型液晶である。本
発明による光応答性液晶光学素子では、光応答可能な部
位を含むモノマー若しくはオリゴマーが重合することに
より光応答可能な部位が3次元的に固定化される。この
ため、光学応答する部位を持つ化合物が液晶に溶解して
いる場合に比べて、光により光応答可能部位が誘起され
た後、周囲の液晶分子の形態や配向を変化させて書き込
んだ情報を長時間保存することができる。また、基板の
表面にのみ光応答性部位を持つ化合物が存在する場合に
比べて、2次元的ではなく3次元的に光応答性部位が存
在するため、周囲の液晶に対する制御力が高まるため、
液晶分子の形態や配向を変化させることが迅速かつ容易
にできる。
That is, the present invention provides a polymer-dispersed liquid crystal obtained by mixing and polymerizing a liquid crystal with a monomer or oligomer containing a site capable of photoresponse to solve the above-mentioned problem. Is a polymer-dispersed liquid crystal characterized in that the liquid crystal is oriented by irradiating the polymer. In the photoresponsive liquid crystal optical element according to the present invention, the photoresponsive portion is three-dimensionally fixed by polymerizing a monomer or oligomer containing the photoresponsive portion. Therefore, compared to the case where the compound having an optically responsive part is dissolved in the liquid crystal, after the light responsive part is induced by the light, the information written by changing the form and orientation of the surrounding liquid crystal molecules is changed. Can be stored for a long time. In addition, compared to the case where a compound having a photoresponsive site only on the surface of the substrate is present, since the photoresponsive portion exists not two-dimensionally but three-dimensionally, the controllability for the surrounding liquid crystal is increased.
The morphology and orientation of liquid crystal molecules can be changed quickly and easily.

【0010】本発明を更に詳細に述べると、熱及び光に
よる重合で作成した高分子分散型液晶に、偏光を照射す
ることにより、誘起された光応答性部位の配向方向が偏
光方向により規制される。配向した光応答部位が液晶の
配向を促すことにより光照射した部分が配向性を増し
て、光の透過吸収作用に関して、光照射されていない部
分と差異を生じ、情報が保存される。
The present invention will be described in further detail. By irradiating polarized light to a polymer-dispersed liquid crystal formed by polymerization by heat and light, the induced orientation of the photoresponsive portion is regulated by the polarization direction. You. The aligned light-responsive portion promotes the alignment of the liquid crystal, so that the light-irradiated portion increases the orientation, causing a difference in the transmission and absorption of light from the non-light-irradiated portion, thereby preserving information.

【0011】この配向は、1回目の照射と異なる方向に
偏光軸を持つ2回目の偏光を照射すると、再配向し、2
回目の偏光照射により誘起された配向を液晶に起こす。
この効果により情報の書き換えも可能となる。
When this alignment is irradiated with a second polarized light having a polarization axis in a direction different from that of the first irradiation, it is re-oriented, and
The liquid crystal undergoes the alignment induced by the second polarized light irradiation.
Due to this effect, information can be rewritten.

【0012】[0012]

【発明の実施の形態】以下に本発明の光応答素子の一例
について説明する。本発明は、光応答可能な部位を含む
モノマー若しくはオリゴマーと液晶とを混合し、重合さ
せる事により得られた高分子分散型液晶であって、偏光
を照射することにより液晶が配向することを特徴とする
高分子分散型液晶に関する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an example of a photoresponsive device according to the present invention will be described. The present invention is a polymer-dispersed liquid crystal obtained by mixing and polymerizing a liquid crystal with a monomer or oligomer containing a photoresponsive portion, and the liquid crystal is oriented by irradiating polarized light. And a polymer-dispersed liquid crystal.

【0013】また、光応答可能な部位を含むモノマー若
しくはオリゴマーが、アクリルモノマー、アクリル酸モ
ノマー、メタクリル酸モノマービニルモノマー、エポキ
シモノマー若しくは、ウレタンアクリレート、エポキシ
アクリレート、ポリエステルアクリレート、ポリエーテ
ルアクリレート、ポリエステルウレタンアクリレートの
少なくとも1種である、偏光を照射することにより液晶
が配向することを特徴とする高分子分散型液晶に関す
る。
[0013] The monomer or oligomer containing a photoresponsive site may be an acrylic monomer, an acrylic acid monomer, a methacrylic acid monomer vinyl monomer, an epoxy monomer, or urethane acrylate, epoxy acrylate, polyester acrylate, polyether acrylate, polyester urethane acrylate. A polymer-dispersed liquid crystal, wherein the liquid crystal is oriented by irradiating polarized light.

【0014】又、本発明は、光応答可能な部位がアゾベ
ンゼン誘導体、スチルベン誘導体、スピロピラン誘導
体、α-アリール-β-ケト酸エステル誘導体又は、カル
コン誘導体の少なくとも1種である高分子分散型液晶で
あって、偏光を照射することにより液晶が配向すること
を特徴とする高分子分散型液晶に関する。
Further, the present invention provides a polymer-dispersed liquid crystal in which the photoresponsive site is at least one of an azobenzene derivative, a stilbene derivative, a spiropyran derivative, an α-aryl-β-keto acid ester derivative or a chalcone derivative. Further, the present invention relates to a polymer-dispersed liquid crystal characterized in that the liquid crystal is oriented by irradiating polarized light.

【0015】又、光応答可能な部位がアゾベンゼンであ
るモノマー若しくはオリゴマーと液晶とを混合し、重合
させる事により得られた高分子分散型液晶であって、偏
光を照射することにより液晶が配向する高分子分散型液
晶に関する。
A polymer-dispersed liquid crystal obtained by mixing and polymerizing a liquid crystal and a monomer or oligomer whose photoresponsive portion is azobenzene, and the liquid crystal is oriented by irradiating polarized light. The present invention relates to a polymer-dispersed liquid crystal.

【0016】又、本発明は、偏光を照射することにより
得られた液晶の配向が、偏光を再度照射することによ
り、再配向する光応答可能な部位を含むモノマー若しく
はオリゴマーと液晶とを混合し、重合させる事により得
られた高分子分散型液晶にも関する。
Further, according to the present invention, the liquid crystal obtained by irradiating the polarized light is obtained by mixing the liquid crystal with a monomer or oligomer containing a photoresponsive portion which reorients by irradiating the polarized light again. And a polymer-dispersed liquid crystal obtained by polymerization.

【0017】また、本発明は、可視偏光により液晶を配
向させることができる光応答可能な部位を含むモノマー
若しくはオリゴマーと液晶とを混合し、重合させる事に
より得られた高分子分散型液晶にも関する。
The present invention also relates to a polymer-dispersed liquid crystal obtained by mixing and polymerizing a liquid crystal with a monomer or oligomer containing a photoresponsive portion capable of aligning the liquid crystal with visible polarized light. Related.

【0018】以下本発明について詳述する。本発明で使
用する光応答可能な部位を含むモノマーは、通常熱重
合、光重合するものが使用することが出来るが、アクリ
ルモノマー、アクリル酸モノマー、メタクリル酸モノマ
ービニルモノマー、エポキシモノマーが好ましい。
Hereinafter, the present invention will be described in detail. As the monomer containing a photoresponsive site used in the present invention, those which generally undergo thermal polymerization and photopolymerization can be used, but acrylic monomers, acrylic acid monomers, vinyl methacrylate monomers, and epoxy monomers are preferred.

【0019】本発明で使用する光応答可能な部位を含む
オリゴマーは、通常熱重合、光重合するものが使用する
ことが出来るが、ウレタンアクリレート、エポキシアク
リレート、ポリエステルアクリレート、ポリエーテルア
クリレート、ポリエステルウレタンアクリレートが好ま
しい。
As the oligomer having a photoresponsive site used in the present invention, those which generally undergo thermal polymerization and photopolymerization can be used. Urethane acrylate, epoxy acrylate, polyester acrylate, polyether acrylate, polyester urethane acrylate Is preferred.

【0020】光応答可能な部位は、光吸収を持つ部位が
本発明の効果を持つと考えられるが、好ましくはアゾベ
ンゼン誘導体、スチルベン誘導体、スピロピラン誘導
体、α-アリール-β-ケト酸エステル誘導体又は、カル
コン誘導体であり、特に好ましくは、アゾベンゼン誘導
体である。
The site capable of photoresponsiveness is considered to be a site having light absorption, which has the effect of the present invention. Preferably, the azobenzene derivative, stilbene derivative, spiropyran derivative, α-aryl-β-keto acid ester derivative or It is a chalcone derivative, particularly preferably an azobenzene derivative.

【0021】偏光光照射は、室温でも行うことが出来る
が、好ましくは高分子分散型液晶を室温より加温した状
態でおこなうことが好ましい。特に好ましくは、70℃
〜80℃に加温した状態での偏光光照射である。光照射
エネルギーは、0.5J/cm2以上のエネルギーが好ましく、
特に2J/cm2以上のエネルギーが好ましい。偏光光の波長
は、光応答可能部位の吸収波長が最も望ましい。可視光
であることが好ましく、アゾベンゼンに対しては、400
〜450nmが好ましく、430〜440nmが特に好ましい。
The irradiation of polarized light can be carried out at room temperature, but it is preferable to carry out the irradiation of the polymer-dispersed liquid crystal at a temperature higher than room temperature. Particularly preferably, 70 ° C
Polarized light irradiation in a state of being heated to 8080 ° C. Light irradiation energy is preferably 0.5 J / cm 2 or more,
Particularly, an energy of 2 J / cm 2 or more is preferable. The wavelength of the polarized light is most preferably the absorption wavelength of the light-responsive portion. Visible light is preferable, and for azobenzene, 400
-450 nm is preferred, and 430-440 nm is particularly preferred.

【0022】更に本発明は、偏光を照射することにより
得られた液晶の配向が、偏光を再度照射することによ
り、再配向することにも関する。上記のように、光応答
性部位に光を照射し配向させる事により高分子分散型液
晶に書き込まれた表示を、更に異なった方向の偏光を照
射すると、液晶の配向方向が変化し、再配向され、新た
な表示を書き込むことができる。
Further, the present invention relates to the fact that the orientation of the liquid crystal obtained by irradiating polarized light is realigned by irradiating polarized light again. As described above, the display written on the polymer-dispersed liquid crystal by irradiating light to the photoresponsive portion and orienting it, and further irradiating polarized light in a different direction, changes the orientation direction of the liquid crystal and reorients it. Then, a new display can be written.

【0023】[0023]

【実施例】以下、実施例を用いて本発明を具体的に説明
するが、本発明はこれらの実施例に限定されるものでは
ない。 (実施例1) [サンプル調製] 4-(2-アクリロイルエトキシ)アゾベ
ンゼン(AzM2A)、0.021g、液晶組成物DON-103(組成は下
記に記載)0.38gを塩化メチレンに溶かし、1時間、真
空乾燥し塩化メチレンを留去する。さらに、過酸化ベン
ゾイル(BPO)の塩化メチレン溶液(濃度10重量%)を20
0μl加え、1時間、真空乾燥したあとに、1,4-ブタン
ジオールジアクリレート(BDA)0.021g(20μl)を加え
激しく撹拌する。得られた混合物をガラス板にはさみ、
エポキシレジンで密封したあとに、80℃で10分間加熱
し、重合させることにより高分子分散型液晶を得た。DO
N-103は下記の3化合物の等重量%組成物である。
EXAMPLES Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to these Examples. (Example 1) [Sample preparation] 4- (2-acryloylethoxy) azobenzene (AzM2A), 0.021 g, liquid crystal composition DON-103 (composition described below) 0.38 g was dissolved in methylene chloride, and vacuum was applied for 1 hour. Dry and remove the methylene chloride. Further, a solution of benzoyl peroxide (BPO) in methylene chloride (concentration 10% by weight)
After adding 0 μl and drying under vacuum for 1 hour, 0.021 g (20 μl) of 1,4-butanediol diacrylate (BDA) is added and the mixture is vigorously stirred. The obtained mixture is sandwiched between glass plates,
After sealing with an epoxy resin, the mixture was heated at 80 ° C. for 10 minutes and polymerized to obtain a polymer-dispersed liquid crystal. DO
N-103 is an equal weight percent composition of the following three compounds.

【0024】[0024]

【化1】 Embedded image

【0025】[光照射] 得られたセルを75℃に加熱し
ながら、図1に示すように、光照射装置水銀ランプと色
ガラスフィルタ、Y-43、V-44(東芝)と、偏光板を用い
て得られた436nmの偏光を、照射光のエネルギーが、0.5
0J/cm2、1.0J/cm2、2.0J/cm2、5.0J/cm2、10J/cm2にな
るように加温装置上に置いた高分子分散型液晶サンプル
に照射することにより、光配向した高分子分散型液晶を
得た。得られた配向は、長時間の保存性を有していた。 [測定] 照射光のエネルギーが10J/cm2の時に得られ
た光配向した高分子分散型液晶を、図2のように直交さ
せた2枚の偏光板の間に挟み、光配向で照射した偏光の
方向を、上側の偏光板の方向から反時計回りにα゜回し
て、輝度を室温にて測定し観察した。図3に観察した写
真を示した。図3において左上がα=0゜、右上がα=15
゜、左下がα=30゜、右下がα=45゜での輝度を観察した
写真である。α=45゜の時に最も明るく、α=0゜の時に
最も暗くなり、偏光により液晶が一方向に配向している
ことがわかる。
[Light Irradiation] While heating the obtained cell to 75 ° C., as shown in FIG. 1, a light irradiator mercury lamp, a colored glass filter, Y-43, V-44 (Toshiba), a polarizing plate 436 nm polarized light obtained by using, the energy of the irradiation light is 0.5
0J / cm 2, 1.0J / cm 2, 2.0J / cm 2, by irradiating the polymer dispersed liquid crystal sample was placed 5.0J / cm 2, the heating device so as to 10J / cm 2, A photo-aligned polymer dispersed liquid crystal was obtained. The obtained orientation had a long-term storage property. [Measurement] The photo-aligned polymer-dispersed liquid crystal obtained when the energy of the irradiation light was 10 J / cm 2 was sandwiched between two orthogonal polarizing plates as shown in FIG. The direction was rotated α ° counterclockwise from the direction of the upper polarizing plate, and the luminance was measured at room temperature and observed. FIG. 3 shows the observed photograph. In FIG. 3, the upper left is α = 0 ° and the upper right is α = 15.
゜, the lower left is a photograph observing the luminance at α = 30 °, and the lower right is an observation of the luminance at α = 45 °. It can be seen that the liquid crystal is the brightest when α = 45 ° and the darkest when α = 0 °, and the liquid crystal is aligned in one direction due to polarized light.

【0026】照射光エネルギー10J/cm2で光配向した高
分子分散型液晶の、光配向に使用した436nm照射に
よる偏光と平行方向及び垂直方向の吸収スペクトルを測
定した。偏光照射前では、平行と垂直の吸収に差は見ら
れず一致しており(図4参照)液晶材料は等方的である
ことが理解できるが、偏光照射後では、垂直が平行より
吸収が大きくなっている(図5参照)。これは偏光照射
により液晶が配向したため、散乱が増加したためと考え
られる。
The absorption spectra of the polymer-dispersed liquid crystal, which was photoaligned at an irradiation light energy of 10 J / cm 2 , in the direction parallel to and perpendicular to the polarization by irradiation at 436 nm used for photoalignment were measured. Before the irradiation of polarized light, there is no difference between the parallel and perpendicular absorptions, and they agree (see FIG. 4). It can be understood that the liquid crystal material is isotropic. It is larger (see FIG. 5). This is presumably because the liquid crystal was oriented by the irradiation of polarized light, and the scattering was increased.

【0027】更に、得られた光配向した高分子分散型液
晶を、図6に示す測定系により、偏光板に対して回転さ
せ(角度Φ゜)、室温でHe-Ne-レーザ(633nm)により透
過光強度を照射温度75℃、室温にて測定し、観察した。
観察の結果を図7に示した。偏光板となす角である回転
角度Φが0゜、90゜、180゜、270゜、360゜の時最も暗く
なり、45゜、135゜、225゜、315゜の時最も明るくなっ
ている。このことより、偏光照射により液晶が一方向に
配向され、照射した偏光の偏光方向と偏光板のなす角を
90゜のように偏光方向と垂直にすれば、光照射された部
位を黒く表示することができ、照射した偏光の偏光方向
と偏光板のなす角を0゜、180゜のように平行にすると、
暗い背景に対して明るい書き込みができることがわか
る。
Further, the obtained photo-aligned polymer-dispersed liquid crystal is rotated with respect to a polarizing plate (angle φ ゜) by a measurement system shown in FIG. 6 and is irradiated with a He-Ne-laser (633 nm) at room temperature. The transmitted light intensity was measured at an irradiation temperature of 75 ° C. and room temperature, and observed.
The results of the observation are shown in FIG. When the rotation angle Φ, which is an angle formed with the polarizing plate, is 0 °, 90 °, 180 °, 270 °, and 360 °, it is darkest, and when 45 °, 135 °, 225 °, and 315 °, it is the brightest. As a result, the liquid crystal is oriented in one direction by the polarized light irradiation, and the angle between the polarized direction of the irradiated polarized light and the polarizing plate is changed.
If it is perpendicular to the direction of polarization, such as 90 °, the irradiated part can be displayed in black, and if the direction of polarization of the irradiated polarized light and the angle between the polarizers are parallel to 0 °, 180 °, etc. ,
It can be seen that bright writing can be performed on a dark background.

【0028】また、加温75℃で、偏光方向0゜の43
6nmの偏光光を照射して(図8)得られた高分子分散
型液晶に対して、45゜方向に再度偏光光を照射した(図
9)高分子分散型液晶の光透過率を測定した結果が図1
0である。最初の偏光照射(0゜)で得られた液晶の配
向が、2回目の照射(45゜)により、45゜明暗が回転して
いることがわかる。このように、一度光配向により書き
込まれた表示を、再度偏光光を照射することにより、再
配向させることが本発明では可能となることがわかる。 (実施例2)実施例1と同様の条件でサンプルを調製
し、光照射も、実施例1と同様の光源を用い、35度に暖
めながら、照射偏光のエネルギーが、0.50J/cm2、2.0J/
cm2、5.0J/cm2、10J/cm2になるように照射し、実施例1
と同様に配向した高分子分散型液晶を得た。 (実施例3)実施例1と同様の条件でサンプルを調製
し、光照射も、実施例1と同様の光源を用い、40度に暖
めながら、照射偏光のエネルギーが、0.50J/cm2、2.0J/
cm2、5.0J/cm2、10J/cm2になるように照射し、実施例1
と同様に配向した高分子分散型液晶を得た。 (実施例4)実施例1と同様の条件でサンプルを調製
し、光照射も、実施例1と同様の光源を用い、47.5度に
暖めながら、照射偏光のエネルギーが、0.50J/cm2、2.0
J/cm2、5.0J/cm2、10J/cm2になるように照射し、実施例
1と同様に配向した高分子分散型液晶を得た。 (実施例5)実施例1と同様の条件でサンプルを調製
し、光照射も、実施例1と同様の光源を用い、50度に暖
めながら、照射偏光のエネルギーが、0.50J/cm2、2.0J/
cm2、5.0J/cm2、10J/cm2になるように照射し、実施例1
と同様に配向した高分子分散型液晶を得た。 (実施例6)実施例1と同様の条件でサンプルを調製す
る。光照射も、実施例1と同様の光源を用い、57度に暖
めながら、照射偏光のエネルギーが、0.50J/cm2、2.0J/
cm2、5.0J/cm2、10J/cm2になるように照射し、実施例1
と同様に配向した高分子分散型液晶を得た。 (実施例7)実施例1と同様の条件でサンプルを調製す
る。光照射も、実施例1と同様の光源を用い、70度に暖
めながら、照射偏光のエネルギーが、0.50J/cm2、2.0J/
cm2、5.0J/cm2、10J/cm2になるように照射し、実施例1
と同様に配向した高分子分散型液晶を得た。 (実施例8)実施例1と同様の条件でサンプルを調製
し、光照射も、実施例1と同様の光源を用い、25度に暖
めながら、照射偏光のエネルギーが、0.50J/cm2、2.0J/
cm2、5.0J/cm2、10J/cm2になるように照射し、実施例1
と同様に配向した高分子分散型液晶を得た。 (実施例9)実施例1と同様の条件でサンプルを調製す
る。光照射も、実施例1と同様の光源を用い、80度に暖
めながら、照射偏光のエネルギーが、0.50J/cm2、2.0J/
cm2、5.0J/cm2、10J/cm2になるように照射し、実施例1
と同様に配向した高分子分散型液晶を得た。
At a heating temperature of 75 ° C., the polarization direction
The polymer-dispersed liquid crystal obtained by irradiating polarized light of 6 nm (FIG. 8) was again irradiated with polarized light in the 45 ° direction (FIG. 9), and the light transmittance of the polymer-dispersed liquid crystal was measured. Figure 1 shows the result
0. It can be seen that the orientation of the liquid crystal obtained by the first irradiation (0 °) is rotated by 45 ° between light and dark by the second irradiation (45 °). As described above, it is understood that the present invention can re-orient the display once written by the optical alignment by irradiating the polarized light again. (Example 2) A sample was prepared under the same conditions as in Example 1 and the light irradiation was performed using the same light source as in Example 1 and the irradiation light was heated to 35 degrees and the energy of the irradiation polarized light was 0.50 J / cm 2 . 2.0J /
cm 2, was irradiated so as to 5.0J / cm 2, 10J / cm 2, Example 1
A polymer-dispersed liquid crystal oriented in the same manner as in was obtained. (Example 3) A sample was prepared under the same conditions as in Example 1 and the light irradiation was performed using the same light source as in Example 1 and the irradiation light was heated to 40 degrees and the energy of the irradiation polarization was 0.50 J / cm 2 . 2.0J /
cm 2, was irradiated so as to 5.0J / cm 2, 10J / cm 2, Example 1
A polymer-dispersed liquid crystal oriented in the same manner as in was obtained. (Example 4) A sample was prepared under the same conditions as in Example 1 and the light was irradiated with the same light source as in Example 1 while heating to 47.5 degrees while the energy of the irradiation polarization was 0.50 J / cm 2 , 2.0
J / cm 2, was irradiated so as to 5.0J / cm 2, 10J / cm 2, Example
A polymer-dispersed liquid crystal aligned in the same manner as in 1 was obtained. (Example 5) A sample was prepared under the same conditions as in Example 1 and the light irradiation was performed using the same light source as in Example 1, while heating to 50 degrees and the energy of the irradiation polarization was 0.50 J / cm 2 , 2.0J /
cm 2, was irradiated so as to 5.0J / cm 2, 10J / cm 2, Example 1
A polymer-dispersed liquid crystal oriented in the same manner as in was obtained. (Example 6) A sample is prepared under the same conditions as in Example 1. Light irradiation was also performed using the same light source as in Example 1, and while heating to 57 degrees, the energy of the irradiation polarized light was 0.50 J / cm 2 , 2.0 J /
cm 2, was irradiated so as to 5.0J / cm 2, 10J / cm 2, Example 1
A polymer-dispersed liquid crystal oriented in the same manner as in was obtained. (Example 7) A sample is prepared under the same conditions as in Example 1. Light irradiation was also performed using the same light source as in Example 1 and the irradiation polarization energy was 0.50 J / cm 2 , 2.0 J /
cm 2, was irradiated so as to 5.0J / cm 2, 10J / cm 2, Example 1
A polymer-dispersed liquid crystal oriented in the same manner as in was obtained. (Example 8) A sample was prepared under the same conditions as in Example 1 and the light irradiation was performed using the same light source as in Example 1, while heating to 25 degrees, the energy of the irradiation polarization was 0.50 J / cm 2 , 2.0J /
cm 2, was irradiated so as to 5.0J / cm 2, 10J / cm 2, Example 1
A polymer-dispersed liquid crystal oriented in the same manner as in was obtained. (Example 9) A sample is prepared under the same conditions as in Example 1. Light irradiation was also performed using the same light source as in Example 1, and while heating to 80 degrees, the energy of the irradiation polarized light was 0.50 J / cm 2 , 2.0 J /
cm 2, was irradiated so as to 5.0J / cm 2, 10J / cm 2, Example 1
A polymer-dispersed liquid crystal oriented in the same manner as in was obtained.

【0029】図11には、実施例で作成した高分子分散
型液晶の偏光照射時の加温温度及び光照射エネルギーに
よる透過度の変化を示した。明らかに加温することによ
り液晶の光配向性が増し、透過率が増加していることが
わかる。70℃から80℃の加温で最も高い透過率が得
られた。また照射エネルギーは高い程透過率が高くなる
が、2 J/cm2のエネルギー以上であれば書き込みには十
分である。
FIG. 11 shows the change in transmittance of the polymer-dispersed liquid crystal prepared in the example according to the heating temperature and the light irradiation energy during the irradiation of polarized light. It can be seen that the apparent orientation of the liquid crystal is increased by heating, and the transmittance is increased. The highest transmittance was obtained by heating from 70 ° C to 80 ° C. The transmittance increases as the irradiation energy increases, but an energy of 2 J / cm 2 or more is sufficient for writing.

【0030】[0030]

【発明の効果】本発明の光応答可能な部位を有するモノ
マー若しくはオリゴマーと液晶を混合し、重合させるこ
とにより得られた高分子分散型液晶は、偏光を照射する
ことにより光書き込みが可能であり、再度偏光を照射す
ることにより、再書き込みが可能である。
The polymer-dispersed liquid crystal obtained by mixing and polymerizing a liquid crystal and a monomer or oligomer having a photoresponsive site according to the present invention can be optically written by irradiating polarized light. By irradiating polarized light again, rewriting can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】FIG.

【図2】る際の、高分子分散型液晶と直交させた2枚の
偏光板との位置関係を示す配置図である。
FIG. 2 is a layout diagram showing a positional relationship between a polymer-dispersed liquid crystal and two polarizing plates orthogonal to each other when the liquid crystal is dispersed.

【図3】した写真である。FIG. 3 is a photograph taken.

【図4】FIG. 4

【図5】偏光を10J/cm2のエネルギーで照射した後の吸
収スペクトルである。
FIG. 5 is an absorption spectrum after irradiation with polarized light at an energy of 10 J / cm 2 .

【図6】ある。FIG.

【図7】転させながら、透過率を測定した結果である。FIG. 7 shows the result of measuring the transmittance while rotating.

【図8】偏光方向0゜の偏光を10J/cm2のエネルギーで
照射する際の模式図である。
FIG. 8 is a schematic diagram when irradiating a polarized light having a polarization direction of 0 ° with an energy of 10 J / cm 2 .

【図9】を変えて、偏光方向45゜の偏光を10J/cm2のエ
ネルギーで照射する際の模式図である。
FIG. 9 is a schematic view when irradiating polarized light having a polarization direction of 45 ° with an energy of 10 J / cm 2 by changing FIG.

【図10】過率である。FIG. 10 is an excess rate.

【図11】光照射時の加熱温度を変えたときの、透過率
変化である。
FIG. 11 shows a change in transmittance when the heating temperature during light irradiation is changed.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森野 慎也 神奈川県横浜市長津田町2丁目42番5号ハ イムマツダ202号 (72)発明者 秋山 陽久 茨城県つくば市吾妻1丁目16番2号 (72)発明者 海保 晶 東京都江東区亀戸1丁目27番9号503 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shinya Morino 2-42-5 Nagatsuta-cho, Yokohama-shi, Kanagawa Pref. ) Inventor Akira Kaiho 503-1, 27-9-9 Kameido, Koto-ku, Tokyo

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 光応答可能な部位を含むモノマー若しく
はオリゴマーと液晶とを混合し、重合させる事により得
られた高分子分散型液晶であって、偏光を照射すること
により液晶が配向することを特徴とする高分子分散型液
晶。
1. A polymer-dispersed liquid crystal obtained by mixing and polymerizing a liquid crystal and a monomer or oligomer containing a site capable of responding to light, wherein the liquid crystal is oriented by irradiating polarized light. Characteristic polymer dispersed liquid crystal.
【請求項2】 光応答可能な部位を含むモノマー若しく
はオリゴマーが、アクリルモノマー、アクリル酸モノマ
ー、メタクリル酸モノマービニルモノマー、エポキシモ
ノマー若しくはウレタンアクリレート、エポキシアクリ
レート、ポリエステルアクリレート、ポリエーテルアク
リレート、ポリエステルウレタンアクリレートの少なく
と1種であることを特徴とする請求項1記載の高分子分
散型液晶。
2. The method according to claim 1, wherein the monomer or oligomer containing a photoresponsive site is an acrylic monomer, an acrylic acid monomer, a methacrylic acid monomer vinyl monomer, an epoxy monomer or a urethane acrylate, an epoxy acrylate, a polyester acrylate, a polyether acrylate, or a polyester urethane acrylate. The polymer-dispersed liquid crystal according to claim 1, wherein the liquid crystal is at least one kind.
【請求項3】 光応答可能な部位がアゾベンゼン誘導
体、スチルベン誘導体、スピロピラン誘導体、α-アリ
ール-β-ケト酸エステル誘導体又は、カルコン誘導体の
少なくとも1種である事を特徴とする請求項1記載の高
分子分散型液晶。
3. The photoresponsive site according to claim 1, wherein the photoresponsive site is at least one of an azobenzene derivative, a stilbene derivative, a spiropyran derivative, an α-aryl-β-keto acid ester derivative, and a chalcone derivative. Polymer dispersed liquid crystal.
【請求項4】 光応答可能な部位がアゾベンゼンである
ことを特徴とする請求項1記載の高分子分散型液晶。
4. The polymer-dispersed liquid crystal according to claim 1, wherein the photoresponsive portion is azobenzene.
【請求項5】 偏光を照射することにより得られた液晶
の配向が、偏光を再度照射することにより、再配向する
ことを特徴とする請求項1記載の高分子分散型液晶。
5. The polymer-dispersed liquid crystal according to claim 1, wherein the orientation of the liquid crystal obtained by irradiating the polarized light is realigned by irradiating the polarized light again.
【請求項6】 照射する偏光光が可視偏光であることを
特徴とする請求項1記載の高分子分散型液晶。
6. The polymer-dispersed liquid crystal according to claim 1, wherein the polarized light to be applied is visible polarized light.
JP30570197A 1997-11-07 1997-11-07 Photoresponsive element Expired - Fee Related JP4004604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30570197A JP4004604B2 (en) 1997-11-07 1997-11-07 Photoresponsive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30570197A JP4004604B2 (en) 1997-11-07 1997-11-07 Photoresponsive element

Publications (2)

Publication Number Publication Date
JPH11142821A true JPH11142821A (en) 1999-05-28
JP4004604B2 JP4004604B2 (en) 2007-11-07

Family

ID=17948329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30570197A Expired - Fee Related JP4004604B2 (en) 1997-11-07 1997-11-07 Photoresponsive element

Country Status (1)

Country Link
JP (1) JP4004604B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002256031A (en) * 2001-02-28 2002-09-11 Jsr Corp Liquid crystal material, its production method, liquid crystal film, its production method and method of use
JP2005077518A (en) * 2003-08-28 2005-03-24 Mitsui Chemicals Inc Member and method for controlling orientation of liquid crystal molecule
JP2008116672A (en) * 2006-11-02 2008-05-22 Au Optronics Corp Equipment and method for manufacturing liquid crystal panel
JP2008116675A (en) * 2006-11-02 2008-05-22 Au Optronics Corp Equipment and method for manufacturing liquid crystal panel

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6486338A (en) * 1987-06-09 1989-03-31 Sanyo Chemical Ind Ltd Liquid crystal optical element
JPH02277025A (en) * 1989-03-08 1990-11-13 Hercules Inc Method of molecular alignment in liquid crystal cell
JPH0336527A (en) * 1989-07-03 1991-02-18 Agency Of Ind Science & Technol Optical element
JPH03266826A (en) * 1990-03-16 1991-11-27 Fuji Xerox Co Ltd Optical modulation display element and display method
JPH047520A (en) * 1990-04-25 1992-01-10 Agency Of Ind Science & Technol Method for orienting liquid crystal by linearly polarized light
JPH05119304A (en) * 1991-03-25 1993-05-18 Fuji Xerox Co Ltd Liquid crystal-high polymer composite film and its production
JPH05241151A (en) * 1992-02-27 1993-09-21 Res Dev Corp Of Japan Method for orienting liquid crystal and liquid crystal optical element
JPH06148608A (en) * 1992-11-09 1994-05-27 Fuji Xerox Co Ltd Optical modulation element material
JPH0815680A (en) * 1994-06-30 1996-01-19 Mitsubishi Electric Corp Polymer dispersion liquid crystal composite film, its production and polymer dispersion liquid crystal optical element using that

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6486338A (en) * 1987-06-09 1989-03-31 Sanyo Chemical Ind Ltd Liquid crystal optical element
JPH02277025A (en) * 1989-03-08 1990-11-13 Hercules Inc Method of molecular alignment in liquid crystal cell
JPH0336527A (en) * 1989-07-03 1991-02-18 Agency Of Ind Science & Technol Optical element
JPH03266826A (en) * 1990-03-16 1991-11-27 Fuji Xerox Co Ltd Optical modulation display element and display method
JPH047520A (en) * 1990-04-25 1992-01-10 Agency Of Ind Science & Technol Method for orienting liquid crystal by linearly polarized light
JPH05119304A (en) * 1991-03-25 1993-05-18 Fuji Xerox Co Ltd Liquid crystal-high polymer composite film and its production
JPH05241151A (en) * 1992-02-27 1993-09-21 Res Dev Corp Of Japan Method for orienting liquid crystal and liquid crystal optical element
JPH06148608A (en) * 1992-11-09 1994-05-27 Fuji Xerox Co Ltd Optical modulation element material
JPH0815680A (en) * 1994-06-30 1996-01-19 Mitsubishi Electric Corp Polymer dispersion liquid crystal composite film, its production and polymer dispersion liquid crystal optical element using that

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002256031A (en) * 2001-02-28 2002-09-11 Jsr Corp Liquid crystal material, its production method, liquid crystal film, its production method and method of use
JP2005077518A (en) * 2003-08-28 2005-03-24 Mitsui Chemicals Inc Member and method for controlling orientation of liquid crystal molecule
JP4617422B2 (en) * 2003-08-28 2011-01-26 独立行政法人産業技術総合研究所 Liquid crystal molecular alignment control member and control method thereof
JP2008116672A (en) * 2006-11-02 2008-05-22 Au Optronics Corp Equipment and method for manufacturing liquid crystal panel
JP2008116675A (en) * 2006-11-02 2008-05-22 Au Optronics Corp Equipment and method for manufacturing liquid crystal panel

Also Published As

Publication number Publication date
JP4004604B2 (en) 2007-11-07

Similar Documents

Publication Publication Date Title
KR100607007B1 (en) Liquid Crystal Device and a Method Manufacturing the Same
EP1093599B1 (en) Liquid crystal device with dynamic alignment layer
JP5007771B2 (en) Liquid crystal display element
JP4384262B2 (en) Liquid crystal device
JPH06242429A (en) High-molecular liquid crystal complex
JPH0336527A (en) Optical element
JP4520314B2 (en) Liquid crystal display element
JPH0367219A (en) Liquid crystal display element
JP4676214B2 (en) Liquid crystal display element
JP3477000B2 (en) Reflective liquid crystal display
JP4004604B2 (en) Photoresponsive element
JPH06214218A (en) Liquid crystal display element and its production
JPH09243984A (en) Liquid crystal element
Cui et al. Photo-driven liquid crystal cell with high sensitivity
JPH11501359A (en) Liquid crystal polymer
US20160145493A1 (en) Dichroic-dye-doped isotropic chiral liquid crystals
JP3055299B2 (en) Liquid crystal-polymer composite film and method for producing the same
JP3225932B2 (en) Manufacturing method of liquid crystal display element
TW379290B (en) Bistable nematic liquid crystal device
Muravsky et al. High efficiency optical rewritable device
JP2001083516A (en) Alignment layer, liquid crystal display element and optical film
JP2881073B2 (en) Electric field birefringence control type liquid crystal device and manufacturing method thereof
JP2783197B2 (en) Liquid crystal optical element
JPH10183117A (en) Record displaying medium and use thereof
JP2770688B2 (en) Method for manufacturing liquid crystal-polymer composite film and electro-optical element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041101

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070822

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees