JPH11142585A - Method for converting oxide into metal - Google Patents
Method for converting oxide into metalInfo
- Publication number
- JPH11142585A JPH11142585A JP30392397A JP30392397A JPH11142585A JP H11142585 A JPH11142585 A JP H11142585A JP 30392397 A JP30392397 A JP 30392397A JP 30392397 A JP30392397 A JP 30392397A JP H11142585 A JPH11142585 A JP H11142585A
- Authority
- JP
- Japan
- Prior art keywords
- oxide
- metal
- anode
- cathode
- molten salt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
Landscapes
- Electrolytic Production Of Metals (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は使用済酸化物原子燃
料を金属に転換した後ウランとプルトニウムを回収する
方法に関わり、特に使用済みの原子燃料を金属に転換す
るのに好適な方法に関わる。The present invention relates to a method for recovering uranium and plutonium after converting spent oxide nuclear fuel to metal, and more particularly to a method suitable for converting spent nuclear fuel to metal. .
【0002】[0002]
【従来の技術】溶融塩中での電気分解により使用済酸化
物原子燃料よりウラン及びまたはプルトニウムを回収す
る原子燃料の再処理法については、特開平8−54493号公
報に記載がある。この方法では使用済酸化物原子燃料に
含まれるウランおよび超ウラン元素を溶融塩中で金属に
還元し、次にこの金属を陽極として電気分解することに
より固体陰極にウラン金属を、液体カドミウム陰極にウ
ランおよびプルトニウム等の超ウラン元素金属を析出さ
せてウランおよびプルトニウムを回収する。2. Description of the Related Art A method of reprocessing nuclear fuel for recovering uranium and / or plutonium from spent oxide nuclear fuel by electrolysis in a molten salt is described in JP-A-8-54493. In this method, uranium and transuranium elements contained in spent oxide nuclear fuel are reduced to a metal in a molten salt, and then this metal is used as an anode for electrolysis to convert uranium metal to a solid cathode and to a liquid cadmium cathode. Transuranium elemental metals such as uranium and plutonium are deposited to recover uranium and plutonium.
【0003】この方法では使用済酸化物原子燃料を金属
リチウムを飽和濃度以上含む塩化リチウムの溶融塩また
は塩化リチウムと塩化カリウムの溶融塩に浸漬し、リチ
ウム金属とウランおよび/または超ウラン元素の酸化物
と反応させてウランおよび/または超ウラン元素を金属
に転換する。この化学反応はIn this method, a spent oxide atomic fuel is immersed in a molten salt of lithium chloride or a molten salt of lithium chloride and potassium chloride containing lithium metal in a saturated concentration or more to oxidize lithium metal and uranium and / or transuranium elements. Reacts with the substance to convert uranium and / or transuranium elements into metals. This chemical reaction
【0004】[0004]
【化1】 UO2+Li=U+Li2O …(1)Embedded image UO 2 + Li = U + Li 2 O (1)
【0005】[0005]
【化2】 PuO2+Li=Pu+Li2O …(2) と記述されている。この金属リチウムを用いた金属への
転換方法では金属リチウムが消費されるとともに、還元
反応を妨害するリチウム酸化物Li2O が生成する。Embedded image PuO 2 + Li = Pu + Li 2 O (2) In this method of converting to metal using lithium metal, the lithium metal is consumed and a lithium oxide Li 2 O that hinders the reduction reaction is generated.
【0006】そこで、定期的に溶融塩を電気分解してL
i2O を金属リチウムに再転換する。このとき、好まし
くは陽極としてカーボンを用いる。電極反応はTherefore, the molten salt is electrolyzed periodically to obtain L
Reconvert i 2 O to lithium metal. At this time, carbon is preferably used as the anode. The electrode reaction is
【0007】[0007]
【化3】 Li2O=2Li++O2- …(3)Embedded image Li 2 O = 2Li + + O 2- (3)
【0008】[0008]
【化4】 Li++e-=Li (陰極) …(4)Embedded image Li + + e − = Li (cathode) (4)
【0009】[0009]
【化5】 2O2-+C=CO2+4e-(陽極) …(5) と記述されている。Embedded image 2O 2− + C = CO 2 + 4e − (anode) (5)
【0010】[0010]
【発明が解決しようとする課題】以上の発明に依れば使
用済原子燃料からウラン及び/またはプルトニウムを回
収することができる。According to the above invention, uranium and / or plutonium can be recovered from spent nuclear fuel.
【0011】しかしながら、上記発明は以下の2点につ
いて考慮がなされていない。第1は、金属リチウムを飽
和濃度以上含むため、過剰分の金属リチウムが溶融塩か
ら分離して、溶融塩の上に浮いてしまう。燃焼しやすい
金属リチウムが溶融塩の上に露出することは、発火や発
熱の回避のための対策を必要とし、装置を複雑にすると
ともに、保守作業量が大きくなる。第2の点は定期的に
溶融塩のLi2O を電気分解しなければならず、装置の
稼働率が低下することである。However, the above-mentioned invention does not consider the following two points. First, since the metal lithium is contained at a saturation concentration or more, the excess metal lithium is separated from the molten salt and floats on the molten salt. Exposure of the easily combustible metallic lithium onto the molten salt requires measures to avoid ignition and heat generation, complicates the apparatus and increases the amount of maintenance work. The second point is that the molten salt, Li 2 O, must be electrolyzed periodically, which lowers the operation rate of the apparatus.
【0012】本発明の目的は、金属リチウムの濃度が飽
和溶解度以下の溶融塩を用いて、かつ、ウランおよびプ
ルトニウムの金属転換とLi2O の電気分解とを同時に
行う方法を与える酸化物の金属転換法を提供することに
ある。An object of the present invention is to provide a method for simultaneously using a molten salt having a lithium metal concentration of not more than the saturation solubility and simultaneously performing metal conversion of uranium and plutonium and electrolysis of Li 2 O. It is to provide a conversion method.
【0013】[0013]
【課題を解決するための手段】本発明では、上記の課題
を解決するため、金属リチウムによる酸化物の還元に替
えて、酸化物を陰極として陰極還元することにより、酸
化物を金属に転換する。このとき陽極は好ましくはカー
ボンを用いる。塩化リチウムを含む溶融塩にウラン及び
/またはプルトニウムの酸化物を浸漬し、該酸化物を陰
極、カーボンを陽極として電流を通じると、陰極ではAccording to the present invention, in order to solve the above-mentioned problems, an oxide is converted to a metal by performing a cathode reduction using an oxide as a cathode instead of reducing the oxide with metallic lithium. . At this time, carbon is preferably used for the anode. When uranium and / or plutonium oxide is immersed in a molten salt containing lithium chloride, the oxide is used as a cathode, and carbon is used as an anode to pass an electric current.
【0014】[0014]
【化6】 UO2+4Li++4e-→U+2Li2O …(6)Embedded image UO 2 + 4Li + + 4e − → U + 2Li 2 O (6)
【0015】[0015]
【化7】 PuO2+4Li++4e-→U+2Li2O …(7) の反応により酸化物が金属に転換されるとともにLi2
O が生成する。The oxide is converted to a metal by the reaction of PuO 2 + 4Li + + 4e − → U + 2Li 2 O (7) and Li 2
O 2 is produced.
【0016】一方陽極ではOn the other hand, at the anode
【0017】[0017]
【化8】 2Li2O+C→4Li++CO2 …(8) の反応によりLi2O が分解される。陰極と陽極の間の
電圧を次第に大きくしていくと、電流は初めは次第に大
きくなるが、ある値で飽和し上限に達する。陽極に流れ
る電流の上限はLi2O が拡散によって陽極に達する速
度に支配されるので、Li2O の濃度が高いほど陽極に
流れる電流は大きい。Embedded image Li 2 O is decomposed by the reaction of 2Li 2 O + C → 4Li + + CO 2 (8) As the voltage between the cathode and anode gradually increases, the current initially increases, but saturates at a certain value and reaches an upper limit. Since the upper limit of the current flowing to the anode is governed by the rate at which the Li 2 O reaches the anode by diffusion, the current flowing through the anode higher the concentration of Li 2 O is large.
【0018】ところが、陰極と陽極に流れる電流は同一
の値であるから、陰極に流れる電流の上限もLi2O の
濃度が高いほど大きくなる。陰極に流れる電流によっ
て、反応式(6),(7)の金属への転換がなされるか
ら、金属への転換速度の上限も、Li2O の濃度が高い
ほど大きくなる。即ち、陰極,陽極間にかける印可電圧
を大きくすると金属への転換速度は次第に増加するが、
やがて上限値に達し、その上限値はLi2O の濃度が高
いほど大きい。従って、速やかに金属転換を行うにはL
i2O の濃度を高くするとよく、好ましくは飽和濃度で
ある。However, since the currents flowing through the cathode and the anode have the same value, the upper limit of the current flowing through the cathode increases as the concentration of Li 2 O increases. The conversion to the metal of the reaction formulas (6) and (7) is performed by the current flowing through the cathode, and therefore, the upper limit of the conversion speed to the metal increases as the concentration of Li 2 O increases. That is, when the applied voltage between the cathode and the anode is increased, the conversion speed to metal gradually increases,
Eventually, the upper limit is reached, and the upper limit increases as the concentration of Li 2 O increases. Therefore, to perform metal conversion quickly, L
The concentration of i 2 O may be increased, and is preferably a saturation concentration.
【0019】[0019]
【発明の実施の形態】(実施例1)本発明の好適な一実
施例である、ウランとプルトニウムの酸化物が金属に転
換される装置の構成を図1を用いて説明する。この金属
転換装置は電解槽1,電解槽に張り込まれた電解用の溶
融塩2,ウランとプルトニウムの酸化物3を保持する電
気伝導性のバスケット4,カーボン陽極5,陽極回転装
置6,Li2O を溶融塩に添加するための投入機7,電
解用電源8,電解槽加熱ヒータ9からなる。溶融塩は塩
化リチウムを含み、酸化物の電気伝導性をよくするため
電解槽加熱ヒータ9により、500℃以上の温度に保持
されている。ウランとプルトニウムの酸化物3は電気伝
導性のバスケット4に装荷されて電解槽底部に保持され
る。電解による酸化物の金属への転換速度の上限は、L
i2O の濃度が高いほど大きくなるので、投入機7によ
りLi2O を溶融塩に添加する。陽極回転装置6により
カーボン陽極を回転させながら電解用電源8によりカー
ボン陽極とバスケットに電圧を印可する。バスケットを
カーボン陽極より負電位になるように電圧を印可する
と、酸化物が陰極として作用し、DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS (Embodiment 1) A preferred embodiment of the present invention, in which an apparatus for converting uranium and plutonium oxide to metal is described with reference to FIG. This metal conversion device is composed of an electrolytic cell 1, a molten salt 2 for electrolysis stuck in the electrolytic cell 2, an electrically conductive basket 4 holding uranium and plutonium oxide 3, a carbon anode 5, an anode rotating device 6, Li It comprises a charging machine 7 for adding 2 O to the molten salt, a power supply 8 for electrolysis, and a heater 9 for electrolyzer. The molten salt contains lithium chloride, and is maintained at a temperature of 500 ° C. or more by the electrolytic bath heater 9 to improve the electrical conductivity of the oxide. Uranium and plutonium oxide 3 is loaded into an electrically conductive basket 4 and held at the bottom of the electrolytic cell. The upper limit of the conversion rate of oxide to metal by electrolysis is L
Since the higher the concentration of i 2 O is, the larger the concentration is, the more the Li 2 O is added to the molten salt by the charging machine 7. A voltage is applied to the carbon anode and the basket by the electrolytic power source 8 while rotating the carbon anode by the anode rotating device 6. When a voltage is applied so that the basket has a negative potential from the carbon anode, the oxide acts as a cathode,
【0020】[0020]
【化9】 UO2+4Li++4e-→U+2Li2O …(9)Embedded image UO 2 + 4Li + + 4e − → U + 2Li 2 O (9)
【0021】[0021]
【化10】 PuO2+4Li++4e-→Pu+2Li2O …(10) の反応により酸化物が金属に転換されるとともにLi2
O が生成する。陽極回転装置6によりカーボン陽極が
回転しているため、電解槽の底部中央からカーボン陽極
に向かって対流が起こり、生成したLi2O が陽極に運
ばれる。陽極ではEmbedded image PuO 2 + 4Li + + 4e - → Li 2 together with Pu + 2Li oxide by reaction of 2 O ... (10) is converted to the metal
O 2 is produced. Since the carbon anode is rotated by the anode rotating device 6, convection occurs from the bottom center of the electrolytic cell toward the carbon anode, and the generated Li 2 O is carried to the anode. At the anode
【0022】[0022]
【化11】 2Li2O+C→4Li++CO2 …(11) の反応によりLi2O が分解される、Li2O 濃度が一
定に保たれる。陰極,陽極反応全体として[Image Omitted] Li 2 O is decomposed by the reaction of 2Li 2 O + C → 4Li + + CO 2 (11), and the Li 2 O concentration is kept constant. Cathode and anode reactions as a whole
【0023】[0023]
【化12】 UO2+C→U+CO2 …(12)Embedded image UO 2 + C → U + CO 2 (12)
【0024】[0024]
【化13】 PuO2+C→Pu+CO2 …(13) の還元反応が電気化学的に行われ、酸化物の金属への転
換が行われる。Embedded image The reduction reaction of PuO 2 + C → Pu + CO 2 (13) is performed electrochemically, and the oxide is converted to a metal.
【0025】[0025]
【発明の効果】本発明を従来法と比較すると、金属リチ
ウムを含まないため、燃焼しやすい金属リチウムが溶融
塩の上に露出することがなく、発火や発熱の回避のため
の対策を不要とし、装置を簡略化するとともに、保守作
業量を低減できるという効果がある。また、Li2O の
分解は金属転換と同時に行われるので、従来法のような
定期的にLi2O を電気分解する操作が省略でき、稼働
率が高くなる効果がある。As compared with the conventional method, the present invention does not contain metallic lithium, so that flammable metallic lithium is not exposed on the molten salt, and it is not necessary to take measures to avoid ignition or heat generation. This has the effect of simplifying the apparatus and reducing the amount of maintenance work. Further, since the decomposition of Li 2 O is carried out simultaneously with the metal conversion, periodic electrolysis of operating the Li 2 O as in the conventional methods can be omitted, there is a high becomes effective utilization.
【図1】本発明の好適な一実施例であるウランとプルト
ニウムの酸化物が金属に転換される装置を示す構成図で
ある。FIG. 1 is a block diagram showing an apparatus for converting an oxide of uranium and plutonium to a metal according to a preferred embodiment of the present invention.
1…電解槽、2…溶融塩、3…酸化物、4…バスケッ
ト、5…カーボン陽極、6…陽極回転装置、7…投入
機、8…電解用電源、9…電解槽加熱用ヒータ。DESCRIPTION OF SYMBOLS 1 ... Electrolysis tank, 2 ... Molten salt, 3 ... Oxide, 4 ... Basket, 5 ... Carbon anode, 6 ... Anode rotating device, 7 ... Injector, 8 ... Electrolysis power supply, 9 ... Electrolyzer heating heater.
Claims (2)
溶融塩に浸漬して酸化物を金属に転換する方法におい
て、溶融塩が塩化リチウムを含みかつ該酸化物を陰極と
して電気分解することによって酸化物を金属に還元する
ことを特徴とする酸化物の金属転換法。A method for converting an oxide of uranium and / or plutonium into a metal by dipping the oxide of uranium and / or plutonium in a molten salt, wherein the molten salt contains lithium chloride and the oxide is electrolyzed using the oxide as a cathode. A metal conversion method of an oxide, comprising reducing the metal to a metal.
おいて、溶融塩中にあらかじめLi2Oを加えておくことに
より、金属転換速度を速めることを特徴とする請求項1
の酸化物の金属転換法。2. The method according to claim 1, wherein the metal conversion rate is increased by adding Li 2 O to the molten salt in advance.
Metal oxide conversion method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30392397A JPH11142585A (en) | 1997-11-06 | 1997-11-06 | Method for converting oxide into metal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30392397A JPH11142585A (en) | 1997-11-06 | 1997-11-06 | Method for converting oxide into metal |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11142585A true JPH11142585A (en) | 1999-05-28 |
Family
ID=17926913
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30392397A Pending JPH11142585A (en) | 1997-11-06 | 1997-11-06 | Method for converting oxide into metal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11142585A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002517613A (en) * | 1998-06-05 | 2002-06-18 | ケンブリッジ ユニヴァーシティ テクニカル サービスイズ リミティッド | Removal of oxygen from metal oxides and solid solutions by electrolysis in molten salt |
US7338588B2 (en) | 2000-11-15 | 2008-03-04 | Cambridge Enterprise Limited | Intermetallic compounds |
US7879219B2 (en) | 2001-12-01 | 2011-02-01 | Metalysis Limited | Electrochemical processing of solid materials in fused salt |
JP2013224488A (en) * | 2012-04-23 | 2013-10-31 | Ge-Hitachi Nuclear Energy Americas Llc | Method for corium and used nuclear fuel stabilization processing |
US9920443B2 (en) | 2010-12-23 | 2018-03-20 | Ge-Hitachi Nuclear Energy Americas Llc | Modular cathode assemblies and methods of using the same for electrochemical reduction |
-
1997
- 1997-11-06 JP JP30392397A patent/JPH11142585A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002517613A (en) * | 1998-06-05 | 2002-06-18 | ケンブリッジ ユニヴァーシティ テクニカル サービスイズ リミティッド | Removal of oxygen from metal oxides and solid solutions by electrolysis in molten salt |
JP2012180596A (en) * | 1998-06-05 | 2012-09-20 | Cambridge Enterprise Ltd | Removal of oxygen from metal oxide and solid solution by electrolysis in fused salt |
US7338588B2 (en) | 2000-11-15 | 2008-03-04 | Cambridge Enterprise Limited | Intermetallic compounds |
US7879219B2 (en) | 2001-12-01 | 2011-02-01 | Metalysis Limited | Electrochemical processing of solid materials in fused salt |
US9920443B2 (en) | 2010-12-23 | 2018-03-20 | Ge-Hitachi Nuclear Energy Americas Llc | Modular cathode assemblies and methods of using the same for electrochemical reduction |
JP2013224488A (en) * | 2012-04-23 | 2013-10-31 | Ge-Hitachi Nuclear Energy Americas Llc | Method for corium and used nuclear fuel stabilization processing |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7638026B1 (en) | Uranium dioxide electrolysis | |
Souček et al. | Exhaustive electrolysis for recovery of actinides from molten LiCl–KCl using solid aluminium cathodes | |
RU2603844C1 (en) | Method of nitride spent nuclear fuel recycling in salt melts | |
JP4928917B2 (en) | Spent oxide nuclear fuel reduction device and lithium regenerative electrolysis device | |
Gonzalez et al. | Identification, measurement, and mitigation of key impurities in LiCl-Li2O used for direct electrolytic reduction of UO2 | |
EP1481401B1 (en) | Electrochemical cell for metal production | |
Wang et al. | Electrochemical behavior of Th (IV) and its electrodeposition from ThF4-LiCl-KCl melt | |
JPH11142585A (en) | Method for converting oxide into metal | |
JP3763980B2 (en) | Spent oxide fuel reduction device and reduction method thereof | |
EP1240647B1 (en) | Actinide production | |
Shirai et al. | Recovery of neptunium by electrolysis of NpN in LiCl-KCl eutectic melts | |
Meibuhr | Review of United States fuel-cell patents issued from 1860 to 1947 | |
KR20200008307A (en) | Electroreduction device of metal oxide and electroreduction method of metal oxide using the same | |
JPWO2004036595A1 (en) | Light water reactor spent fuel reprocessing method and apparatus | |
Kim et al. | Electrolytic behavior of SrCl 2 and BaCl 2 in LiCl molten salt during oxide reduction in pyroprocessing | |
JP2875819B2 (en) | Molten salt electrorefining equipment | |
KR102094481B1 (en) | Method for reducing spent nuclear fuel and apparatus for reducing spent nuclear fuel | |
Kim et al. | TiN anode for electrolytic reduction of UO2 in pyroprocessing | |
Gorochov et al. | Remarks on the Hydrogen Photoevolution at p‐InP and Metallized p‐InP Electrodes | |
JPH1164577A (en) | Fused salt electrolytic reprocessing method for spent fuel | |
JP2005213638A (en) | Electrolysis method, method for regenerating and electrolyzing lithium utilizing the same, and method for reducing spent oxide atomic fuel | |
JPH09281279A (en) | Retreatment of used nuclear fuel | |
JP2023037458A (en) | Electrolytic reduction apparatus and electrolytic reduction method | |
Zvejskova et al. | Electrochemical separation studies of selected actinides and lanthanides in molten fluorides | |
Chamberlain et al. | Process engineering challenges for the development of electrolytic reduction of uranium oxide in molten LiCl-Li2O |